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Infinite-Duration All-Pay Bidding Games∗

Guy Avni† Ismäel Jecker‡ Ðorđe Žikelić§

Abstract
In a two-player zero-sum graph game the players move a
token throughout a graph to produce an infinite path, which
determines the winner or payoff of the game. Traditionally,
the players alternate turns in moving the token. In bidding
games, however, the players have budgets, and in each
turn, we hold an “auction” (bidding) to determine which
player moves the token: both players simultaneously submit
bids and the higher bidder moves the token. The bidding
mechanisms differ in their payment schemes. Bidding games
were largely studied with variants of first-price bidding in
which only the higher bidder pays his bid. We focus on
all-pay bidding, where both players pay their bids. Finite-
duration all-pay bidding games were studied and shown
to be technically more challenging than their first-price
counterparts. We study for the first time, infinite-duration
all-pay bidding games. Our most interesting results are for
mean-payoff objectives: we portray a complete picture for
games played on strongly-connected graphs. We study both
pure (deterministic) and mixed (probabilistic) strategies and
completely characterize the optimal and almost-sure (with
probability 1) payoffs the players can respectively guarantee.
We show that mean-payoff games under all-pay bidding
exhibit the intriguing mathematical properties of their first-
price counterparts; namely, an equivalence with random-turn
games in which in each turn, the player who moves is selected
according to a (biased) coin toss. The equivalences for all-
pay bidding are more intricate and unexpected than for first-
price bidding.

1 Background, Definitions, and Summary of
Results

Graph games are two-player zero-sum games with deep
connections to foundations of logic [29]. They have
numerous practical applications, e.g., verification [19],
reactive synthesis [27], and reasoning about multi-agent
systems [2]. There are interesting theoretical problems
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CoG 863818 (FoRM-SMArt), and by the European Union’s
Horizon 2020 research and innovation programme under the Marie
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on graph games: e.g., solving parity games is a rare
problem in NP and coNP for which no polynomial-
time algorithm is known and only recently a quasi-
polynomial time algorithm was found [13].

A graph game is played on a finite directed graph.
The game proceeds by placing a token on one of the
vertices and allowing the players to move it throughout
the graph to produce an infinite path, which determines
the winner or payoff of the game. Traditionally, the
players alternate turns when moving the token. We
study bidding games [23, 22] in which the players
have budgets, and in each turn, we hold an “auction”
(bidding) to determine which player moves the token.

1.1 Bidding mechanisms, budget ratios, and
strategies. In all the mechanisms we consider, in each
turn, both players simultaneously submit a bid that
does not exceed their available budget, and the higher
bidder moves the token. The mechanisms differ in their
payment schemes. We classify the payment schemes
according to two orthogonal properties: who pays and
who is the recipient. For the first, we consider first-
price bidding, in which only the higher bidder pays,
and all-pay bidding in which both players pay their
bids. For the latter, two mechanisms were defined in
[22]: in Richman bidding (named after David Richman),
payments are made to the other player, and in poorman
bidding the payments are made to the “bank” thus the
money is lost. A third payment scheme called taxman
spans the spectrum between Richman and poorman, as
we elaborate in Sec. 1.5.

Previously, bidding games were largely studied in
combination with first-price bidding. In this work we
study, for the first time, infinite-duration bidding games
under all-pay bidding and portray a complete picture for
both all-pay Richman and poorman bidding.

We make the payment schemes precise below. For
i ∈ {1, 2}, suppose Player i’s budget is Bi prior to
a bidding and his bid is bi ∈ [0, Bi], and assume
for convenience that Player 1 wins the bidding, thus
b1 > b2. The budgets are updated as follows:

• First-price: Only the higher bidder pays.
– Richman: B′1 = B1 − b1 and B′2 = B2 + b1.
– Poorman: B′1 = B1 − b1 and B′2 = B2.

• All-pay: Both players pay their bids.
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– Richman: B′1 = B1 − b1 + b2 and B′2 =
B2 + b1 − b2. Thus, Player 1 pays Player 2
the difference between the two bids.

– Poorman: B′1 = B1 − b1 and B′2 = B2 − b2.
For convenience, we assume ties are broken in favor

of Player 2, and our results are independent of the tie-
breaking mechanism that is used. A central quantity in
bidding games is the following:

Definition 1.1. (Budget ratio). Suppose Player i’s
budget is Bi, for i ∈ {1, 2}, then Player i’s ratio is
Bi

B1+B2

A strategy in a bidding game is a function that,
in full generality, takes a finite history of the game,
which includes the visited vertices, the bids made by the
players, their outcomes, etc. It prescribes a probability
distribution over legal bids, i.e., bids that do not exceed
the available budget, and a neighboring vertex to move
the token to upon winning the bidding. We say that
a strategy is pure when it prescribes one bid with
probability 1 and otherwise we call the strategy mixed.
One of our contributions is that we construct budget
based strategies in which the bid depends only on the
current vertex and the current budget, and the choice
of move does not depend on the budget.

Applications. All-pay bidding is often better
suited than first-price bidding for modelling practical
settings. Applications arise from viewing the players’
budgets as resources with little or no inherent value,
e.g., time or strength, and a strategy as a recipe to
invest resources with the goal of maximizing the ex-
pected utility. In many settings, invested resources are
lost, thus all-pay bidding is more appropriate than first-
price bidding. All-pay poorman games can be seen as
a dynamic variant of Colonel Blotto games, which date
back to [12] and have been extensively studied since.
Applications of Colonel Blotto games, which carry over
to all-pay bidding games, include political lobbying and
campaigning, rent seeking [31], and modelling biologi-
cal processes [16]. In fact, due to their dynamic nature,
bidding games are a better model for these applications.

Another application of bidding games is reasoning
about systems in which the scheduler accepts payment
in exchange for priority. Blockchain technology is one
such example. Simplifying the technology, a blockchain
is a log of transactions issued by clients and maintained
by miners, who accept transaction fees from clients
in exchange for writing transactions to the blockchain.
In Etherium, the blockchain consists of snippets of
code (called smart contracts). Verification of Etherium
programs is both challenging and important since bugs
can cause loss of money (e.g., [15]). Bidding games,
and specifically all-pay poorman games, can model

Etherium programs: we associate players with clients
and, as is standard in model checking, we associate the
states of the program with the vertices of the graph. All-
pay poorman bidding is the most appropriate bidding
mechanism since in Etherium, the transaction fees are
always paid to the miners.

1.2 Reachability bidding games

Definition 1.2. (Reachability games). A reacha-
bility game has two target vertices t1 and t2. The game
ends once a target ti is visited, for i ∈ {1, 2}. Then,
Player i is the winner.

v0 v1 t1t2

Richman 1 2/3 1/3 0

poorman 1
√

5−1

2

3−
√

5

2
0

Figure 1: A reachability bidding game with the thresh-
old ratios under first-price Richman and poorman bid-
ding.

v0 v1 t1t2

0 1/3 2/3 1

1

2

1

2

1

2

1

2

Figure 2: The random-turn game that corresponds the
game in Fig. 1 with the probabilities to reach t1 from
each vertex.

In [23, 22], only first-price bidding mechanisms were
considered and only in combination with reachability
objectives. The main question studied concerned a
necessary and sufficient initial budget ratio for winning
the game called the threshold ratio, and denoted Th(v),
for a vertex v. Formally, for a vertex v, if Player 1’s
ratio is greater than Th(v), he deterministically wins
the game from v, and if Player 2’s ratio is greater than
1 − Th(v), she wins the game. Threshold ratios were
shown to exist for reachability first-price bidding games.
See for example Fig. 1. Moreover, threshold ratios in
first-price Richman bidding are particularly favorable:
the threshold ratio in a vertex is the average of two of
its neighbors. This implies an intriguing equivalence
with a class of games called random-turn games (see
Def. 1.8), which is well-studied in its own account since
the seminar paper [26]. We illustrate a simplified version
of the equivalence on games with out-degree 2 and the
general statement can be found in [22, 5].

Example 1.3. Consider the game depicted in Fig. 1.
Construct a Markov chain by labeling each edge with
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1 0

vMax vMin

Figure 3: The mean-
payoff game G./ with
weights in the vertices.

1 0

vMax vMin

p 1− p

1− p

p

Figure 4: The simplified
random-turn game that
corresponds to G./ w.r.t.
p ∈ [0, 1].

probability 0.5 (see Fig. 2). Note that for each vertex
u, we have Th(u) = 1− P[reach(u, t1)]. /

Remark 1.4. For reachability objectives, apart from
Richman bidding, no equivalence is known between
bidding games and random-turn games, for any other
bidding mechanism. Moreover, such an equivalence is
unlikely to exist since values in stochastic games are
rational numbers (they constitute a solution to a linear
program) and threshold ratios under first-price poorman
bidding are irrational already in the game depicted in
Fig. 1. /

Reachability all-pay poorman bidding games
were only recently studied [8]. Technically, these games
are significantly harder than first-price bidding and
there are large gaps in our understanding of this model.
To illustrate, contrary to reachability first-price bidding,
mixed strategies are required already in the simplest
interesting bidding game “Player 1 needs to win two
biddings in a row”, whose solution was left as an open
question in [22]. It was shown in [8] that for n > 1,
when Player 2’s budget is 1 and Player 1’s budget is in
(1 + 1

n , 1 + 1
n−1 ], in the first bidding, a Player 1 optimal

strategy bids uniformly at random from { in : 1 ≤ i ≤ n}
and guarantees winning with probability 1

n . Reachabil-
ity all-pay bidding games become complicated very fast;
e.g., strategies in “Player 1 wins three times in a row”
require infinite support, and experiments hint that un-
like “win twice in a row” the optimal winning probability
as a function of the initial budget ratio is a continuous
function. Moreover, the basic question of the existence
of a value of the game, remains open.

1.3 Mean-payoff bidding games Mean payoff
games are quantitative games. Each infinite play has
a payoff, which is Player 1’s reward and Player 2’s cost,
thus we call the players in a mean-payoff game Max and
Min, respectively. We illustrate the mean-payoff objec-
tive in the following example.

Example 1.5. Suppose two advertisers repeatedly
(e.g., daily) compete to publish their ad on a content-
provider’s website (e.g., New York Times). We asso-

ciate the advertisers with two players in a mean-payoff
bidding game. The payoff is the long-run average time
that Max’s ad shows (e.g., the number of days his ad
appears in a year). Since bids are paid to the content
provider, poorman bidding is the appropriate bidding
mechanism. When the site has only one ad slot, only
the higher bidder’s ad shows and only he pays his bid,
thus we use first-price poorman bidding. Alternatively,
when there are two ad slots (e.g., at the top and bottom
of the page), the players compete on who gets the better
position, and both pay their bids, thus we use all-pay
poorman bidding. Our goal is to find an optimal bid-
ding strategy for an advertiser that, given his budget
constraints, maximizes the long-run ratio of the time
that his ad shows. To find such a strategy, we reason
about G./ in Fig. 3: Max moves to the vertex vMax upon
winning a bidding, which represents his ad showing or
showing in the favorable position. /

Formally, a mean-payoff game is played on a
weighted graph 〈V,E,w〉, where w : V → Q. The payoff
is defined as follows.

Definition 1.6. (Payoff and energy). Consider an
infinite path η = η0, η1, . . .. For n > 1, let ηn =
η0, . . . , ηn be a prefix of η. The energy of ηn, denoted
energy(ηn), is the sum of weights it traverses, thus
energy(ηn) =

∑
0≤i<n w(ηi). The payoff of η, denoted

payoff(η), is payoff(η) = lim infn→∞
1
n ·energy(η

n). Note
that the use of lim inf gives Min an advantage.

Remark 1.7. Unless stated otherwise, we consider
games played on strongly-connected graphs. Under
first-price bidding, this implies a solution to general
games since we first solve the bottom-strongly con-
nected components (BSSCs) and then construct a reach-
ability game in which a player’s goal is to force the game
to a BSCC that is “good” for him. A similar solution
would apply also under all-pay bidding, but reachability
games are not yet solved for these bidding mechanisms.

The central question in mean-payoff bidding games
is (see Def. 1.11 for a formal definition):

What is the optimal payoff a player can guarantee
given an initial budget ratio?

For example, suppose Max’s ratio is 2/3. What is the
optimal payoff he can guarantee in G./ (Fig. 3) under
first-price Richman bidding? Would Max prefer first-
price Richman or poorman bidding? Does the answer
change when the ratio is 1/3?

We answer these questions by showing an equiva-
lence between bidding games and random-turn games,
which are defined as follows.
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Definition 1.8. (Random-turn games). Consider
a bidding game G that is played on a graph over a set
of vertices V . For p ∈ [0, 1], the random-turn game
that corresponds to G w.r.t. p, denoted RT(G, p), is
a game in which instead of bidding, in each turn we
toss a (biased) coin to determine which player gets to
move the token: Player 1 is chosen with probability p
and Player 2 with probability 1− p. Formally, RT(G, p)
is a stochastic game [17]. For each vertex v ∈ V , we add
two vertices v1 and v2. The vertex v is a “Nature” vertex
and simulates the coin toss, thus it has two outgoing
edges: one with probability p to v1 and a second with
probability 1 − p to v2. For i ∈ {1, 2}, the vertex vi
is controlled by Player i and there are deterministic
edges from vi to u, for every neighbor u of v. The
objective in RT(G, p) matches that of G, thus when G
is a mean-payoff game, so is RT(G, p). Its mean-payoff
value, denoted MP

(
RT(G, p)

)
, is a well-known concept

and is defined as the expected payoff under optimal play
of the two players. It is known that the optimal value
exists and that it can be achieved using optimal pure
positional strategies; namely, a strategy that prescribes,
at each vertex, a successor that does not depend on the
history of the game. Since G is strongly-connected, the
value does not depend on the initial vertex.

Example 1.9. In G./, since when Max and Min win a
bidding they respectively move to vMax and vMin, we
can simplify RT(G./, p) to a weighted Markov chain (see
Fig. 4). Informally, we expect that a random walk
“stays” in vMax portion p of the time and since the
weights are simple, we have MP

(
RT(G./, p)

)
= p. /

Mean-payoff First-price bidding games. We sur-
vey the results on first-price bidding games obtained in
[5, 6].

First-price Richman bidding: The initial budgets
do not matter in mean-payoff first-price Richman bid-
ding games. Moreover, these games are equivalent to
fair random-turn games by associating optimal payoff in
the bidding game with expected payoff in the random-
turn game. Formally, consider a strongly-connected
mean-payoff game G and suppose both players have pos-
itive initial ratios. Then, for every ε > 0, Max has
a pure strategy that guarantees a payoff of at least
MP
(
RT(G, 0.5)

)
− ε. Since Def. 1.6 favors Min, this

implies that Min can guarantee a payoff of at most
MP
(
RT(G, 0.5)

)
+ ε. For example, in G./, both play-

ers can (roughly) guarantee a payoff of 0.5, no matter
the initial ratios.

First-price poorman bidding: While the equivalence
for Richman bidding can be seen as a generalization of
the equivalence for reachability objectives, recall that

no such equivalence is known for first-price poorman
bidding. We thus find it surprising that mean-payoff
first-price poorman bidding are equivalent to random-
turn games. In fact, the equivalence is richer than under
Richman bidding. In a mean-payoff game G with a
ratio that exceeds r ∈ (0, 1) and for every ε > 0, under
first-price poorman bidding, Max can deterministically
guarantee a payoff of MP

(
RT(G, r)

)
− ε. Again, a dual

result holds for Min. For example, in G./, with a ratio of
2/3, the optimal payoff Max can guarantee is 2/3. Thus,
when Max’s initial ratio is greater than Min’s ratio, he
prefers playing with poorman bidding, when his ratio
is less than Min, he prefers Richman, and interestingly,
when the ratios are the same, the payoffs under both
bidding rules coincide.

A secondary contribution of this work is a new and
significantly simpler construction of optimal budget-
based strategies under first-price Richman and poorman
bidding.

Remark 1.10. (Strategies in bidding games vs.
stochastic games). We point out that strategies
in bidding games are much more complicated than in
stochastic games. At a vertex v in a stochastic game,
a strategy only needs to select a vertex u to move the
token to from v. In a bidding game, in addition to
the choice of u, a strategy prescribes a bid. While
in reachability games, a bidding strategy can easily be
extracted from the solution of the random-turn game, in
mean-payoff games, this is no longer the case: knowing
the optimal payoff a player can achieve in a game does
not give any hint on the optimal bidding strategy and
finding the right bids is indeed a challenging task.

1.4 Mean-payoff all-pay bidding games. The
starting point of this research is inspired by the results
for first-price poorman bidding: the moral of those re-
sults is that as we “go to the infinity”, bidding games
become cleaner and exhibit a more elegant mathemat-
ical structure. We ask: Does this phenomenon also
hold for all-pay bidding, where reachability games are
highly complex? Would infinite-duration all-pay bid-
ding games reveal a clean mathematical structure like
their first-price counterparts? We answer both of these
questions positively.

In this section, we survey our most technically-
challenging contribution in which we portray a complete
picture for mean-payoff all-pay Richman and poorman
bidding played on strongly-connected graphs: we study
both pure and mixed strategies and completely char-
acterize the optimal and almost-sure (with probability
1) payoffs the players can respectively guarantee. We
draw corollaries of these results on qualitative objectives

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited620



(Sec. 1.6) and on computational complexity (Sec. 1.7).
In Sections 2 and 3, we respectively prove the results
for mean-payoff all-pay Richman and poorman bidding.

Before we state our results, we need several defi-
nitions. Let f and g be two strategies for Max and
Min, respectively. When both strategies are determin-
istic, together with an initial vertex, they give rise to a
unique play, which we denote play(f, g), where for ease
of notation we omit the initial vertex since it usually
does not play a role in our results. Roughly, we obtain
play(f, g) inductively. Suppose a finite play π that ends
in v is defined. Then, we feed π into f and g, to ob-
tain actions 〈bi, ui〉, for each i ∈ {1, 2}, where bi is a
legal bid and ui is a neighbor of v. Then, if b1 > b2,
the token moves to u1 and otherwise it moves to u2.
When f and g are mixed, they give rise to a distri-
bution over infinite plays, denoted dist(f, g). Since we
consider mixed strategies with continuous support, the
definition requires us to define a probability space us-
ing a cylinder construction [3, Theorem 2.7.2], which is
technical but standard and we do not present it here
(see more details in Sec. 2.5).

Definition 1.11. (Mean-payoff value). Consider a
mean-payoff game G and a ratio r.

• The sure-value of G w.r.t. r, denoted sMP(G, r), is
c ∈ R if with a ratio that exceeds r, Max can deter-
ministically guarantee a payoff arbitrary close to c
and cannot do better. Formally, for every ε > 0 and
no matter where the game starts, there is a deter-
ministic Max strategy f s.t. for every deterministic
Min strategy g, we have payoff(play(f, g)) > c − ε.
On the other hand, for every deterministic Max
strategy f , with a ratio that exceeds 1 − r, there
is a deterministic Min strategy g that guarantees
payoff(play(f, g)) < c+ ε.

• The almost-sure value of G w.r.t. r, denoted
asMP(G, r), is c ∈ R if for every ε > 0 and
no matter where the game starts, when Max’s
ratio exceeds r, he has a mixed strategy f s.t.
for every deterministic Min strategy g, we have
Pπ∼dist(f,g)[payoff(π) > c−ε] = 1, and dually, when
Min’s ratio exceeds 1− r, she has a mixed strategy
g s.t. for every deterministic Max strategy f , we
have Pπ∼dist(f,g)[payoff(π) < c+ ε] = 1.

All-pay Richman bidding: A simple argument
shows that deterministic strategies are “useless”: for
every Max strategy, Min has a strategy that wins all
but a constant number of biddings. For example, in
G./, no matter what the initial ratio is, Max cannot
deterministically guarantee any positive payoff. On
the positive side, we show that with mixed strategies
first-price and all-pay Richman bidding coincide. For

example, in G./, with any positive initial ratio, Max can
guarantee an almost-sure payoff of 0.5. We prove the
following result on mean-payoff all-pay Richman games.

Theorem 1.1. Consider a strongly-connected mean-
payoff all-pay Richman bidding game G. For every ratio
r ∈ (0, 1), we have:

• Pure strategies: sMP(G, r) = MP
(
RT(G, 0)

)
.

• Mixed strategies: asMP(G, r) = MP
(
RT(G, 0.5)

)
.

All-pay poorman bidding: Given the results on
all-pay Richman, it seems safe to guess that under all-
pay poorman bidding, deterministic strategies are use-
less and that first-price and all-pay poorman coincide.
Both guesses, however, turn out to be incorrect. Con-
sider again the game G./ and suppose Max’s budget is
B = 0.75 and Min’s budget is C = 0.25, thus the initial
ratio is 0.75. As a baseline, recall that under first-price
poorman, the optimal payoff Max can guarantee is 0.75.

First, deterministic strategies are useful in all-pay
poorman bidding for the player who has the higher ratio.
For example, in G./, with a ratio that exceeds 0.75, Max
can deterministically guarantee a payoff of 2/3. On the
other hand, when B ≤ C, a simple argument shows that
deterministic strategies are useless.

The real surprise is with mixed strategies. Given a
choice between all-pay and first-price poorman bidding,
with a ratio of 0.75, Max strictly prefers all-pay bidding!
In G./, he can guarantee an almost-sure payoff of 5/6.
This is tight; namely, with a ratio that exceeds 0.25,
Min can guarantee an almost-sure payoff of 1/6. Thus,
when Max’s ratio is at most 0.5, he would prefer first-
price over all-pay poorman bidding.

We prove the following result on mean-payoff all-
pay poorman games.

Theorem 1.2. Consider a strongly-connected mean-
payoff all-pay poorman bidding game G and initial bud-
gets B0 for Max and C0 for Min, thus the ratio is
r = B0

B0+C0
.

• Deterministic strategies: If B0 > C0 then
sMP(G, r) ≥ MP

(
RT(G, 1 − C0

B0
)
)
, and if B0 ≤ C0,

then sMP(G, r) = MP
(
RT(G, 0)

)
.

• Mixed strategies: If B0 > C0 then asMP(G, r) =
MP
(
RT(G, 1 − C0

2B0
)
)
, and if B0 ≤ C0, then

asMP(G, r) = MP
(
RT(G, B0

2C0
)
)
.

1.5 Taxman bidding. Taxman bidding span the
spectrum between Richman and poorman bidding. It
is parameterized by a constant τ ∈ [0, 1], and when
Player i, for i ∈ {1, 2}, wins a bidding with a bid b,
he pays τ · b to the bank and (1 − τ) · b to the other
player. Thus, poorman bidding is τ = 1 and Richman
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Richman poorman
First-price RT(G, 1

2 ) [5] RT(G, r) [6]
All-pay Pure Mixed Pure Mixed

RT(G, 0) RT(G, 1
2 ) RT(G, 2r−1

r ) RT(G, 3r−1
r )

Figure 5: For a strongly-connected mean-payoff game
G and a ratio r ∈ (0, 1), the table summarizes the
equivalences with random-turn games for the various
bidding mechanisms and allowed strategies.

bidding is τ = 0. Threshold ratios were shown to
exist in reachability first-price taxman bidding games
[22]. Mean-payoff first-price taxman bidding games
were studied in [7], where the equivalence for first-price
Richman and poorman bidding was unified: a mean-
payoff game G with taxman parameter τ ∈ [0, 1] and
ratio r ∈ (0, 1) is equivalent to the random-turn game
RT(G, r+τ ·(1−r)1+τ ).

Our proof for all-pay poorman can be extended to
all-pay taxman bidding. Since the notation is already
heavy, to ease the presentation we omit the general
proof. The properties of a mean-payoff game G with
taxman parameter τ ∈ [0, 1] and budgets X for Max
and Y for Min are as follows. Let X̃ = X + τY
and Ỹ = Y + τX. With deterministic strategies,
when X > Y , we have sMP(G, r) ≥ MP

(
RT(G, 1 −

Ỹ
X̃

)
)
, and when X ≤ Y , deterministic strategies are

useless. For mixed strategies, when X > Y , we have
asMP(G, r) = MP

(
RT(G, 1− Ỹ

2X̃
)
)
and when X ≤ Y , we

have sMP(G, r) = MP
(
RT(G, X̃

2Ỹ
)
)
.

1.6 Qualitative all-pay bidding games. We focus
on parity objectives, which are important, for example,
since the problem of LTL synthesis reduces to solving a
parity game [27].

Definition 1.12. (Parity objectives). A parity
game is played on a graph 〈V,E, p〉, where p : V → N is
a parity function. Player 1 wins an infinite play iff the
maximal index that is visited infinitely often is odd.

Under first-price bidding, parity bidding games
reduce to reachability bidding games. The proof relies
on a lemma shown in [5, 6, 7] that in a strongly-
connected parity taxman bidding game, one of the
players deterministically wins with any positive initial
ratio. Intuitively, when the highest parity index is odd,
Player 1 wins with any positive initial budget since no
matter how small (but positive) his initial budget is,
he can draw the game to the vertex with the highest
parity index. Below, we describe a corresponding result
for parity all-pay bidding games.

Theorem 1.3. Consider a strongly-connected parity
game with a highest odd parity index, a cycle with
highest even parity, and an initial ratio r ∈ (0, 1) for
Player 1.

• Under all-pay Richman: for any r, Player 1 almost-
surely wins and cannot surely win in G.

• Under all-pay poorman: Player 1 almost-surely
wins with any r, and surely-wins only when r > 0.5.

In Sec. 4, we prove Thm. 1.3 by reducing parity
bidding games to mean-payoff bidding games and using
Thms. 1.2 and 1.1. This proof technique applies also
to first-price bidding games and significantly simplifies
the previous techniques, which are based on reasoning
on reachability bidding games. In parity first-price
bidding games, the solution to general games follows
from solutions to games played on SCCs and a solution
to reachability bidding games. Thm. 1.3 gives one of
these ingredients and the second, namely a solution to
reachability all-pay bidding games, is yet to be solved.

1.7 Computational complexity. The computa-
tional complexity problem we are interested in is given a
mean-payoff bidding game and a budget ratio, find the
optimal sure or almost-sure value. The following the-
orem follows from the complexity of the corresponding
problem in mean-payoff stochastic games, since random-
turn games are a special case of stochastic games.

Theorem 1.4. Given a strongly-connected mean-
payoff all-pay Richman or poorman bidding game G and
an initial ratio r ∈ (0, 1), deciding whether the sure or
almost-sure value in G w.r.t. r is at least 0.5 is in NP
and coNP. Deciding whether Player 1 almost-surely or
surely wins a strongly-connected parity all-pay Richman
or poorman bidding game can be done in linear time.

We leave open the problem of improving the
bounds. Since the upper bounds for mean-payoff games
are derived from solving random-turn games, the prob-
lem is relevant and open also for first-price bidding. It is
possible that solving random-turn games is in P and it
is possible that it is as hard as solving general stochastic
games, which is a long standing open problem.

1.8 Related work. All the results surveyed above
highly depend on the fact that the players’ bids can be
arbitrarily small. This is a problematic assumption for
practical applications. To address this limitation dis-
crete bidding games were studied in [18], where the bud-
gets are given in “cents” and the minimal positive bid
is one cent. Their motivation came from recreational
play like bidding chess [11, 21]. Discrete all-pay Rich-
man bidding has been studied in [25] (we encourage the
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reader to try playing all-pay Richman tic-tac-toe on-
line: https://bit.ly/2WmOjHO). While the issue of tie
breaking does not play a key role in continuous bidding,
it is important in discrete bidding [1]. Non-zero-sum
first-price Richman games were studied in [24].

1.9 Outline of the rest of the paper. Richman
bidding is technically easier than poorman bidding. We
thus start by proving Thm. 1.1 for Richman bidding
in Sec. 2 while presenting general techniques that will
also be used in the proof of Thm. 1.2 for poorman
bidding. Namely, in Sec. 2.3 we describe a framework for
extending a solution to G./ to games played on strongly-
connected graphs, which was developed for first-price
bidding and extends to all-pay bidding. In Sec. 2.5,
we survey notations and results from probability theory
and martingale theory that will be relevant in the rest of
the paper. The proof of Thm. 1.2 for poorman bidding
is presented in Sec. 3. In Sec. 4, we present a proof of
Thm. 1.3 on parity bidding games (both Richman and
poorman). Finally, we close with a conclusion section
(Sec. 5).

Due to lack of space some proofs are omitted and
appear in the full version [9].

2 Mean-Payoff All-Pay Richman Games
In this section we prove Thm. 1.1. We start in Sec. 2.1
by proving that pure strategies are useless. In Sec. 2.2
we revisit mean-payoff first-price Richman games and
present a new construction of optimal strategies. This
serves both as a warm-up for all-pay bidding with
mixed strategies and the construction is of independent
interest. We then turn to construct optimal mixed
strategies.

2.1 Deterministic strategies are useless. We
prove the claim of Thm. 1.1 on pure strategies; namely,
for a strongly-connected mean-payoff game G, for every
ratio r, we have sMP(G, r) = MP

(
RT(G, 0)

)
. It suf-

fices to show that for any initial budgets and given a
strategy of Max, Min can counter it with a strategy
that ensures winning all but a constant number of bid-
dings. Thus as the underlying game graph is strongly-
connected, given any deterministic Max strategy Min
can eventually push the game to the cycle in G of min-
imal weight and keep looping the cycle. By doing this,
Min ensures the mean-payoff equal to MP

(
RT(G, 0)

)
.

Hence, it remains to prove the following lemma.

Lemma 2.1. Let G be a strongly-connected all-pay Rich-
man bidding game. For any initial ratio r ∈ (0, 1) and
a deterministic strategy of Max, Min has a strategy that
wins all but a constant number of biddings.

Proof. Let B0 and C0 respectively denote Max and
Min’s initial budgets. Suppose Max plays according to
some pure strategy. Let C be Min’s budget prior to a
bidding. Suppose Max bids b. Knowing Max’s bid, Min
bids as follows. If b > C, Min bids 0 and otherwise
she bids b. Min’s strategy is clearly legal. Recall that
Min wins ties. Thus, every time she wins a bidding,
the budgets are unchanged. The only biddings that she
loses are the ones in which Max bids more than C. But
this can happen at most dB0/C0e+ 1 times.

2.2 Warm up; Revisiting mean-payoff first-
price Richman games. Constructions of optimal
strategies in mean-payoff first-price Richman games
were shown in [5, 7]. The construction we show here
is significantly simpler. Moreover, it is the first budget-
based strategy (the bids depend only on the current ver-
tex and budget), which will be crucial later in all-pay
bidding.

Our constructions throughout the paper are based
on the shift function λ : (0, 1) → (1,+∞), which is
defined as λ(x) = − log(1−x)

log(1+x) .

Lemma 2.2. The shift function has the following prop-
erties:

• For every c ∈ (1,+∞), there exists α ∈ (0, 1) such
that λ(α) = c.

• For c ∈ (1,+∞) and c = λ(α), we have (1 − α) =
(1 + α)−c.

Proof. The shift function is surjective since (1)
limx→0 λ(x) = 1 (l’Hôpital rule), (2) limx→1 λ(x) =
+∞, and (3) λ is continuous as its denominator is
strictly positive over the domain, and log is continu-
ous. As a consequence, for every y ∈ [1,∞), there
exists x ∈ [0, 1] such that λ(x) = y. The second item is
a direct consequence of the definition of the shift func-
tion.

For ease of presentation, we illustrate the construc-
tion on the simple game G./, and it can easily be ex-
tended to general SCCs using the framework in the next
section.

Proposition 2.1. In the mean-payoff game G./
(Fig. 3), under first-price Richman bidding, for every
initial ratio r ∈ (0, 1) and ε > 0, Max has a determin-
istic budget-based strategy that guarantees a payoff of
at least 0.5− ε, thus the sure mean-payoff value of G is
MP
(
RT(G./, 0.5)

)
= 0.5.

Proof. Let ε > 0 and let B0 > 0 be Max’s initial budget.
We show that Max can guarantee a payoff of at least

1
2+ε . We re-normalize the weights to be w(vMax) =
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c = 1 + ε and w(vMin) = −1. Recall that the energy
of a finite play is the sum of the weights it traverses.
The following observation is a direct consequence of the
definition of payoff.
Observation: Suppose Max plays according to a
strategy that guarantees that the energy is bounded
from below by a constant. Then, the payoff with the
updated weights is non-negative, and the payoff with
the original weights is at least 1

2+ε .
Let α such that α = λ(c) (see Lem. 2.2). Let k0 ∈ N

be the initial energy. We devise a strategy of Max that
maintains the invariant that when the energy is k ∈ N,
his budget exceeds (1 + α)−k−k0 . The invariant implies
k > −k0. Indeed, recall that the sum of budgets in
Richman bidding is 1. Thus, k = k0 is impossible since
the invariant would imply that Max’s budget exceeds
(1 + α)0 = 1. The observation above implies that the
strategy guarantees a payoff of at least 1

2+ε , as required.
We turn to construct Max’s strategy. We choose

k0 ∈ N such that B0 = B + δ, where B = (1 + α)−k0

and δ > 0. This is possible since limk→∞(1 +α)−k = 0.
We call δ the “spare change”, and it is never used for
bidding. We refer to B as Max’s main budget. Max’s
strategy bids as follows: when Max’s main budget is B,
he bids α · B. Note that the strategy is budget based
since the bid depends only on the budget.

We prove by induction that by following this strat-
egy Max maintains the invariant that when the energy
is k, his main budget is at least (1 + α)−k−k0 . Initially,
the invariant holds by our choice of k0. For the induc-
tive step, we distinguish between the two outcomes of
a bidding. If Max loses, the energy decreases to k − 1.
Moreover, Min overbids Max, thus Max’s new main bud-
get B′ is at least B + αB ≥ 1

(1+α)k+k0
+ α

(1+α)k+k0
=

(1 + α)−(k−1)−k0 . On the other hand, if Max wins, the
energy increases to k+ c and his new main budget B′ is
at least B−αB = 1−α

(1+α)k+k0
. Since (1−α) = (1 +α)−c

(see Lem. 2.2), we obtain B′ = (1 + α)−(k+c)−k0 , and
we are done.

2.3 A framework for solving SCCs. In this sec-
tion, we describe a framework that was developed in
[5, 6, 7] for any first-price bidding mechanism and intu-
itively extends a solution to G./ to general SCCs. The
framework extends from first-price to all-pay bidding
and we rely on it throughout the rest of the paper.

Intuitively, in Prop. 2.1, in order to bound the
energy from below, we bid in such a way that bounds
the difference between Max bidding wins and loses in
a finite play. In G./, the bound on the difference of
wins translates immediately to a bound on the energy,
and thus to a guarantee on the payoff. In general SCCs,

vertices have different “importance”, called strength, and
each bid is “scaled” according to its strength. The
strengths are chosen in such a way that in each finite
path, bounding the difference of bidding wins and losses
implies a bound on the accumulated energy.

The definition of strengths relies on potentials,
which were originally defined in the context of the
strategy iteration algorithm [20]. Let G be a strongly-
connected mean-payoff game and p ∈ (0, 1). It is well-
known that optimal positional strategies exist in mean-
payoff stochastic games [28]; namely, strategies in which
moves depend only on the current position. Consider
such optimal strategies σMax and σMin for the two
players. For every vertex v, we denote v+ = σMax(v)
and v− = σMin(v). Intuitively, when Max and Min
win a bidding in v, they should move to v+ and v−,
respectively. We denote the potential of a vertex v
by Potp(v) and the strength of v by Stp(v), and we
define them as solutions to the following equations. The
potential equation roughly coincides with the equation
to compute the expected energy in a path to a target.

Potp(v) = p·Potp(v+)+(1−p)·Potp(v−)+w(v)−MP(RT(G, p))

Stp(v) = p · (1− p) ·
(
Potp(v+)− Potp(v−)

)
Note that St(v) ≥ 0, for every v ∈ V . We denote

the maximal strength by Smax = maxv∈V Stp(v) and we
assume Smax > 0 otherwise the game is trivial as all
weights are equal.

Consider a finite path η = v1, . . . , vn in G. We
intuitively think of η as a play, where for every 1 ≤
i < n, the bid of Max in vi is St(vi) and he moves to
v+
i upon winning. Thus, when vi+1 = v+

i , we think of
Max as investing Stp(vi) and when vi+1 6= v+

i , we think
of Min winning the bid thus Max gains Stp(vi). We
denote by I+(η) and G+(η) the sum of investments and
gains, respectively. The difference between Max’s wins
and loses in η is then I+(η) −G+(η). Note that I+(η)
and G+(η) are defined w.r.t RT(G, p) and p will be clear
from the context. Recall that the energy of η is the sum
of weights it traverses. The following lemma connects
the energy, potentials, and strengths.

Lemma 2.3. [5, 6, 7] Consider a strongly-connected
game G, and p = ν

ν+µ ∈ (0, 1), thus Max’s budget is
ν and Min’s budget is µ. For every finite path η from v
to u, we have

Potp(v)− Potp(u) + (n− 1) ·MP
(
RT(G, p)

)
≤

energy(η) +
ν + µ

νµ
·
(
G+(η) · ν − I+(η) · µ

)
.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited624



For example, suppose η is a cycle, i.e., u = v, that
ν = µ = 1, and MP

(
RT(G, p)

)
= 0. Then, exactly as in

G./, we have I+(η) − G+(η) ≤ energy(η) (and equality
holds when Min plays optimally). See [6, 5] for further
examples. We obtain the following corollary by dividing
both sides by n, and letting n tend towards infinity.

Corollary 2.1. Consider a strongly-connected game
G, let η be an infinite play and let µ, ν ∈ R>0. For
every n ∈ N, let ηn denote the prefix of η of size n.
Then

payoff(η) ≥

MP(RT(G, p)) +
µ+ ν

µν
· lim inf
n→∞

µ · I+(ηn)− ν ·G+(ηn)

n
.

2.4 Mean-payoff all-pay Richman games with
mixed strategies. This section consists of the more
technically challenging proof of Thm. 1.1: we show that
no matter the initial ratios, the optimal almost-sure
payoff under all-pay Richman bidding equals the opti-
mal expected payoff in an un-biased random-turn game,
thus all-pay and first-price Richman bidding coincide.
We illustrate the ideas behind the construction in the
following example.

Example 2.4. We describe a simple Max strategy for
G./, which achieves an expected payoff of 0.25; still
not optimal, but better than any deterministic strategy
can achieve. We start with the following observation.
Suppose Max chooses a bid uniformly at random from
{0, b}, for some b > 0. We assume Min wins ties.
Thus, knowing Max’s strategy, Min chooses between
deterministically bidding 0 or b. There are four possible
outcomes (see Fig. 6). The “bad” outcomes for Max
are 〈0, 0〉 and 〈b, b〉 since Min wins without any budget
penalty. The two other outcomes are “good” since they
are similar to first-price Richman bidding: Max pays
b for winning and gains b when losing. To choose b,
we rely on an optimal bidding strategy fFP for first-
price Richman bidding. As seen in Prop. 2.1, fFP
guarantees that in any finite play, Max wins roughly half
the biddings. Under all-pay Richman bidding, consider
a finite play π and let π′ be the restriction of π to good
bidding outcomes. We choose b = fFP(π′). Intuitively,
we expect half the outcomes in a play to be good, out of
these, fFP guarantees that Max wins half the biddings,
for a total expected payoff of 0.25.

We minimize the probability of ending in a bad
outcome by bidding uniformly at random in [0, b]. This
opens a spectrum between good and bad outcomes:
Max is “lucky” if his bid is either just above Min’s bid
or way below it. We show that lucky events cancel
unlucky events, which we formally prove by defining a

submartingale called luck that sums Max’s luck in a
finite play. Finally, we note that it is technically not
possible to define such a mixed bidding strategy when
fFP is not budget-based and the previous constructions
in [5, 7] are not budget based, hence the importance of
the new proof of Prop. 2.1. /

Max Min

B′� = BB′ � = B − b
Min winsMax wins

B′� = B
Min wins

B′� = B + b
Min wins

0

b

b0

Figure 6: Max’s budget updates in four bidding outcomes
under AP-Rich.

Lemma 2.5. Let G be a strongly-connected mean-payoff
all-pay Richman bidding game. For every initial ratio
r ∈ (0, 1) of Max and for every ε > 0, Max has a mixed
budget-based strategy in G that guarantees almost-surely
a payoff of at least MP(RT(G, 1

2+ε )).

Proof. Let c = 1 + ε, and let p = 1
2+ε = 1

1+c . We
fix two optimal positional strategies in the random-turn
game RT(G, 1

2+ε ) for Max and Min, and use them to
define vertex strengths and neighboring vertices v+ and
v− for each vertex v as in Sec. 2.3. Let α ∈ (0, 1) s.t.
λ(α) = 1 + ε (see Lem. 2.2). We define Max’s strategy
f in the bidding game G as follows:

• When the token is on vertex v with strength s =
Stp(v), and Max’s budget is B, Max bids x ∼
Unif [0, αB s

Smax
].

• Upon winning, Max moves the token to v+.
The strategy f is clearly budget-based, so in or-

der to prove the lemma it suffices to show that, no
matter which mixed strategy g Min chooses, we have
Pπ∼dist(f,g)[lim infn→∞ payoff(π) ≥ MP

(
RT(G, p)

)
] = 1.

Fix a mixed strategy g of Min. Intuitively, consider
the event in which Max bids x and Min bids y. Max’s
budget gain is x − y. Max is “lucky” when x − y is
maximized, which happens either when x is slightly
above y (then Max pays little for winning) or when
x is way lower than y (then Max gains a lot when
losing). We formalize luck below and later show that the
expected luck is non-negative in each bidding. Assume
Wlog that at each turn Min bids y ∈ [0, αB s

Smax
], since

she has the tie-breaking advantage and does not profit
from bidding higher. For any infinite play π that can
arise from strategies f and g, define L0(π) = log1+α r,
and for each i ∈ N let
(2.1)

∆Li(π) = Li(π)−Li−1(π) =

{
c(s+ 2Smax

y−x
αB ), if x > y,

(−s+ 2Smax
y−x
αB ), if x ≤ y,

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited625



where B is Max’s budget and x and y are the bids of
Max and Min at the i-th bidding in π, respectively.

Recall that in Prop. 2.1, we devise an invariant
between Max’s budget and the energy of a finite play.
Here, the invariant is more involved. First, the graph
is more involved than G./, thus we depend on the
framework in Sec. 2.3 and bound the difference between
Max’s wins and loses in a finite play, formally denoted
I+(πn) − G+(πn), for a prefix πn of a play π. Recall
that Lem. 2.3 implies that such a bound also implies
a bound on the energy. Second, in all-pay bidding,
we incorporate the luck into the invariant. Let B(πn)
denote Max’s budget following the finite play πn and we
use L(πn) instead of Ln(π) above. The following claim
identifies the key invariant that holds throughout the
game and on which the rest of our proof is based.

Claim: For every finite prefix πn of an infinite play π
coherent with the strategies f and g, we have

(2.2) B(πn) ≥ (1 + α)
L(πn)−c·I+(πn)+G+(πn)

2Smax .

Proof of claim: Let πn be a finite prefix of a play. To
ease notation, we write H = c · I+(πn) − G+(πn) and
omit references to πn. We show that B ≥ (1 +α)

L−H
2Smax .

We proceed by induction on n. The base case follows
from our choice of L0. Suppose by induction that the
equation holds for the values B and H obtained after
prefix πn, and that in the next bidding Max bids x
and Min bids y. Let B′ = B + y − x = B + ∆B and
L′ = L+∆L. We want to show that B′ ≥ (1+α)

L′−H′
2Smax ,

where H ′ = H + cs if Max wins, and H ′ = H − s if Min
wins. By the definition of ∆L, we get

(2.3) ∆B =

{
(∆L+ s) αB

2Smax
, if x ≤ y;

(∆L
c − s)

αB
2Smax

, if x > y.

To conclude, we distinguish between the case in which
Min wins and Max wins:

1. If Min wins the bidding, i.e. x ≤ y, thenH ′ = H−s,
and we get:

B′
()
= B + ∆B

(2.3)
= B + (∆L+ s) αB

2Smax
()
= B · (1 + (∆L+ s) α

2Smax
)

Bernoulli
≥ B · (1 + α)

∆L+s
2Smax

ind. hyp.
≥ (1 + α)

L+∆L−H+s
2Smax

()
= (1 + α)

L′−H′
2Smax .

Here, Bernoulli’s inequality could be used since
α > −1 and ∆L+s

2Smax
= y−x

αB ∈ [0, 1].

2. If Max wins the bidding, i.e., x > y, then H ′ =
H + cs, and we get:

B′ = B + ∆B
(2.3)
= B + (∆L

c − s)
αB

2Smax

()
= B · (1− α(− ∆L

c·2Smax
+ s

2Smax
))

Bernoulli
≥ B · (1− α)−

∆L
c·2Smax

+ s
2Smax

Lemma 2.2
≥ B · (1 + α)

∆L−cs
2Smax

ind. hyp.
≥ (1 + α)

L+∆L−H−cs
2Smax

()
= (1 + α)

L′−H′
2Smax

Here, Bernoulli’s inequality could be used since
−α > −1 and − ∆L

c·2Smax
+ s

2Smax
= x−y

αB ∈ [0, 1].
We also used Lemma 2.2: 1− α = (1 + α)−c since
λ(α) = c.

(of claim) /
Since the sum of budgets of the players is 1, we have

that B(πn) ≤ 1 = (1 + α)0. Hence, by comparing the
exponents in eq. (2.2) we obtain c · I+(πn)−G+(πn) ≥
L(πn). On the other hand, by plugging ν = 1 and µ = c
into Lemma 2.3, since p = 1/(c + 1) we obtain c+1

c (c ·
I+(πn)−G+(πn)) ≤ energy(πn)−P −n ·MP(RT(G, p))
(note that there are n + 1 vertices along πn, hence the
factor n). Combining the two inequalities gives

energy(πn) ≥ c+ 1

c
· L(πn) + P + n ·MP(RT(G, p)).

(2.4)

The last equation holds for any finite prefix πn of an
infinite play π, so by dividing both sides by n and letting
n→∞ we get

(2.5) payoff(π) ≥ c+ 1

c
·lim inf
n→∞

Ln(π)

n
+MP(RT(G, p)).

The infinite play π was arbitrary, hence eq. (2.5) holds
for any play that is coherent with f and g.

To conclude the lemma, recall that Max tries to
maximize his luck. In the full version, we prove an
almost-sure lower-bound on the luck in the following
claim:
Claim: Pπ∼dist(f,g)[lim infn→∞

Ln
n ≥ 0] = 1.

Proving this last claim implies the lemma. Indeed,
since eq. (2.5) holds for any infinite play π we conclude
that payoff(π) ≥ MP(RT(G, p)) almost-surely, and thus
f guarantees the desired mean-payoff almost-surely.
The proof of this claim, however, is intricate. We regard
(Ln)∞n=0 as a stochastic process in the probability space
over the set of all infinite plays defined by strategies f
and g. We then show that (Ln)∞n=0 is a submartinale,
which intuitively means that for every infinite play π,
the expectation of Ln+1(π) given the finite history πn
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is at least Ln(π). The claim then follows from results
from martingale theory.

Since MP
(
RT(G, p)

)
is continuous in p [14, 30], it

follows from Lem. 2.5 that Max can ensure a payoff
of at least MP

(
RT(G, 0.5)

)
, with every initial budget

ratio. To deduce that asMP(G, r) = MP(RT(G, 0.5)),
for every r, we also need to show that Min can ensure
a payoff of at most MP

(
RT(G, 0.5)

)
+ ε for any ε > 0

and with every initial budget ratio. To construct an
optimal strategy for Min we rely on the advantage that
the definition of payoff (Def. 1.6) gives to Min. We
consider the game G− obtained from G by negating
the weight of each vertex. It is not hard to show that
MP
(
RT(G−, 0.5)) = −MP

(
RT(G, 0.5)). Then, to ensure

a payoff of at most MP
(
RT(G, 0.5)) + ε, Min follows an

optimal Max strategy in G−. The symmetry argument
is standard and has already been used in the first-price
bidding games setting [5, 6, 7], so we omit the details.
Hence we have asMP(G, r) = MP

(
RT(G, 0.5)

)
for every

r, which concludes the proof of Thm. 1.1.

2.5 An aside on martingale theory. In this sec-
tion, we presents results on martingale theory which are
needed to prove Lem. 2.5, as well as in the later parts of
this paper. We start with an intermezzo on necessary
background on probability theory and martingale the-
ory. We keep this exposition brief. For more details, we
refer the reader to [32].

A probability space is a triple (Ω,F ,P), where Ω
is a non-empty sample space, F is a sigma-algebra
over Ω which is a collection of subsets of Ω which is
closed under complementation and countable unions
and contains ∅, and P : F → [0, 1] is a function such
that P[∅] = 0, P[Ω\A] = 1 − P[A] for each A ∈ F ,
and P[∪∞i=1Ai] =

∑∞
i=1 P[Ai] for a sequence of pairwise

disjoint sets A1, A2, . . . in F . An element of F is said
to be an event.

In the case of a bidding game G and mixed strategies
f and g of Max and Min, we let ΩG be the set of all infi-
nite plays in G, FG be the unique smallest sigma-algebra
which contains all subsets of ΩG defined by plays with a
common finite prefix (thus every finite play defines one
such set), and P be the probability measure dist(f, g)
defined by the cylinder construction [3, Theorem 2.7.2].
Since the construction of dist(f, g) is standard but tech-
nical, we omit it from this exposition however we note
that it satisfies all intuitive properties.

We say that a sequence (Fi)∞i=0 of sigma-algebras
in (Ω,F ,P) is a filtration if F0 ⊆ F1 ⊆ · · · ⊆ F .
In the case of bidding games, we are particularly
interested in the so-called canonical filtration (Ri)∞i=0 of
(ΩG ,FG , dist(f, g)). Each Ri is defined as the smallest

sigma-algebra containing all subsets of ΩG defined by
plays with a common finite prefix of length at most i.
Intuitively, Ri contains those events which are defined
by what happened in G during the first i steps.

A random variable X in (Ω,F ,P) is an F-
measurable function X : Ω → R (w.r.t. the stan-
dard Lebesgue measure on R), i.e. a function for which
{ω ∈ Ω | f(ω) ≤ c} ∈ F for each c ∈ R. A stochas-
tic process (Xi)

∞
i=0 is a sequence of random variables in

(Ω,F ,P).

Before being able to define (sub)martingales, we
need to introduce one more important notion. Let
(Ω,F ,P) be a probability space, X a random variable,
and F ′ ⊆ F a sigma-sub-algebra of F . The conditional
expectation of X w.r.t. F ′ is an F ′-measurable random
variable Y such that, for each A ∈ F ′, we have that
E[Y · 1A] = E[X · 1A]. Here, 1A is an indicator function
of A, defined as 1A(ω) = 1 if ω ∈ A and 1A(ω) = 0
otherwise.

Intuitively, conditional expectation of X w.r.t. F ′
is an F ′-measurable random variable which captures
the behavior of X on those events contained in F ′.
Note that X is not necessarily equal to its conditional
expectation as X need not be F ′-measurable. In fact,
conditional expectation of a random variable X need
not even exist. However, it is known that whenever X is
integrable (meaning that E[|X|] < ∞), the conditional
expectation of X w.r.t. F ′ exists and is almost-surely
unique. Almost-sure uniqueness means that, if two
random variables Y and Y ′ satisfy the definition of
conditional expectation of X w.r.t. F ′, then P[Y =
Y ′] = 1. In this case, we denote any such random
variable as E[X | F ′].

We are finally ready to define the notion of a
submartingale.

Definition 2.6. (Submartingale) Let (Ω,F ,P) be a
probability space, (Fi)∞i=0 a filtration and (Xi)

∞
i=0 a

stochastic process. Then we say that (Xi)
∞
i=0 is a

submartingale w.r.t. (Fi)∞i=0 if

• for each i ∈ N0, Xi is integrable and Fi-measurable,
and

• for each i ∈ N0, E[Xi+1 | Fi] ≥ Xi almost-surely.

If in the second point above we have equality for each i,
we say that (Xi)

∞
i=0 is a martingale w.r.t. (Fi)∞i=0.

The following theorem is the key result from mar-
tingale theory that will be needed in our proofs.

Theorem 2.1. (Azuma-Hoeffding inequality [10])
Let (Ω,F ,P) be a probability space and (Fi)∞i=0 a fil-
tration. Suppose that (Xi)

∞
i=0 is a submartingale
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w.r.t. (Fi)∞i=0, and suppose that there exists c > 0 such
that |Xi+1 − Xi| ≤ c almost-surely for each i ∈ N0.
Then, for each N ∈ N0 and ε > 0 we have that

P[Xi −X0 ≤ −ε] ≤ e
−ε2

2Nc2 .

We conclude this section by introducing and prov-
ing a lemma on submartingales, which follows from the
Azuma-Hoeffding inequality and which will be the main
technical ingredient for studying mean-payoffs guaran-
teed by mixed strategies constructed in our proofs.

Lemma 2.7. Let (Ω,F ,P) be a probability space and
(Fi)∞i=0 a filtration. Suppose that (Xi)

∞
i=0 is a sub-

martingale w.r.t. (Fi)∞i=0, and suppose that there exists
c > 0 such that |Xi+1 −Xi| ≤ c almost-surely for each
i ∈ N0. Furthermore, suppose that X0 ≥ K for some
K ∈ R. Then

P
[

lim inf
N→∞

XN

N
≥ 0
]

= 1.

Proof. Let A0 = {lim infN→∞XN/N ≥ 0} be the event
whose probability we want to show is 0. For each
δ ∈ Q≥0, let A−δ = {lim infN→∞XN/N < −δ}. Then
A0 = Ω\(∪δ∈Q≥0

A−δ), thus it suffices to prove that
P[∪δ∈Q≥0

A−δ] = 0. By the union bound, we have
P[∪δ∈Q≥0

A−δ] ≤
∑∞
i=0 P[A−δ], so it also suffices to

prove that P[A−δ] = 0 for each δ ∈ Q≥0.
Fix δ ∈ Q≥0. Note that lim infN→∞XN/N < −δ if

for eachM ∈ N there exists N ≥M such that XN/N <
−δ. For fixed M ∈ N, denote this event by AMδ . Then
A−δ = ∩M∈NAM−δ, and so P[A−δ] ≤ P[AM−δ] for each M .
Hence, if we prove that limM→∞ P[AM−δ] = 0, it follows
that P[A−δ] = 0 as wanted.

Fixing M ∈ N and rewriting the definition of the
event AM−δ, we see that

AM−δ = ∪∞N=M{XN/N < −δ} =

= ∪∞N=M{XN −X0 < −K −N · δ}.

By the union bound and by letting M be sufficiently
large so that M > |K|/δ, we have

P[AM−δ] ≤
∞∑

N=M

P[XN −X0 < −K −N · δ] ≤

≤
∞∑

N=M

e
−(−K−N·δ)2

2Nc2

≤
∞∑

N=M

e
−(−2N·δ)2

2Nc2 =
∞∑

N=M

e
−2N·δ2

c2 ,

(2.6)

where for the second inequality we used Azuma-
Hoeffding, and for the third inequality thatM > |K|/δ.

As the series
∑∞
N=0 e−2N ·δ2/c2 converges since it is a

geometric series, we have that the sum on the RHS of
eq. (2.6) tends to 0 as M →∞. Thus we conclude that
limM→∞ P[AM−δ] = 0, which finishes the proof.

Proof of Lem. 2.5: Recall the definition of Li(π)
for each infinite play π and i ∈ N0. Consider
(Li)

∞
i=0 as a stochastic process over the probability space

(ΩG ,FG , dist(f, g)) defined by G and mixed strategies f
and g of Max and Min, respectively.

Observe that each Li isRi-measurable, where recall
Ri is the i-th sigma-algebra of the canonical filtration
on (ΩG ,FG , dist(f, g)). This is because both the budget
B and bids x and y depend only on the first i steps
of the game. Moreover, for each i ∈ N we easily see
that |∆Li(π)| ≤ 3c · Smax for every π, thus by triangle
inequality |Li(π)| ≤ | log1+α r|+ 3ic · Smax and so each
Li is integrable.
Claim: (Li)

∞
i=0 is a submartingale w.r.t. the canonical

filtration.
The measurability and integrability conditions were

checked above. It remains to show that the conditional
expectations property holds, i.e. E[Li+1 | Ri] ≥ Li for
each i ∈ N0. We first describe what this conditional
expectation looks like. Let π ∈ ΩG and let πi be its
prefix of length i. Then

E[Li+1 | Ri](π) = Li−1(π)+

Ex∼Unif [0,β],y∼g(πi)

[
c(s+ 2Smax

y − x
αB

) · 1x>y+

(−s+ 2Smax
y − x
αB

) · 1x≤y
]
,

where β = αB s
Smax

and g(πi) is the distribution over
the bids of Min defined by the mixed strategy g and a
finite history πi. The fact that this is indeed the right
expression for conditional expectation follows from the
definition of canonical filtration. Formally showing this
is technical but straightforward, so we omit it.

To prove that (Li)
∞
i=0 is a submartingale, it thus

suffices to prove that

Ex∼Unif [0,β],y∼g(πi)

[
c(s+ 2Smax

y − x
αB

) · 1x>y+

(−s+ 2Smax
y − x
αB

) · 1x≤y
]
≥ 0

for each π ∈ ΩG . By Fubini’s theorem (which can be
applied since the integrand is a bounded function), we
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may rewrite this expectation as

Ex∼Unif [0,β],y∼g(πi)

[
c(s+ 2Smax

y−x
αB ) · 1x>y + (−s+ 2Smax

y−x
αB ) · 1x≤y

]
= Ey∼g(πi)

[
Ex∼Unif [0,β]

[
c(s+ 2Smax

y−x
αB ) · 1x>y + (−s+ 2Smax

y−x
αB ) · 1x≤y

]]
.

Hence to prove non-negativity, it suffices to show that
for any y ∈ [0, β] the inner expectation is non-negative.
Fix y ∈ [0, β]. We obtain:

Ex∼Unif [0,β]

[
c(s+ 2Smax

y−x
αB ) · 1x>y+

(−s+ 2Smax
y−x
αB ) · 1x≤y

]
= 1

β

( ∫ y
0
(−s+ 2Smax

y−x
αB ) dx+∫ β

y
c(s+ 2Smax

y−x
αB ) dx

)
= 1

β

(
y(−s+ 2Smax

y
αB )− y2Smax

αB +

c(β − y)(s+ 2Smax
y
αB )− cβ2Smax

αB +
cy2Smax

αB

)
.

Since β = αB s
Smax

, we may substitute s
Smax

= β
αB above

to get

Ex∼Unif [0,β]

[
c(s+

2Smax
y−x
αB ) · 1x>y+

(−s+ 2Smax
y−x
αB ) · 1x≤y

]
= Smax

β

(
y(− β

αB + 2y
αB )− y2

αB+

c(β − y)( β
αB + 2y

αB )− cβ2

αB + cy2

αB

)
= Smax

β

(
y(y−β)
αB + cβy

αB −
cy2

αB

)
= Smax

β

(
y(y−β)
αB + cy(β−y)

αB

)
= (c−1)y(β−y)

βαB ≥ 0,

where the last inequality follows since c > 1 and y ∈
[0, β]. (of claim) /

Thus, (Li)
∞
i=0 is a submartingale w.r.t. the canon-

ical filtration. Moreover, as we observed above it
has differences bounded by 3c · Smax and also L0 =
log1+α r which is thus bounded below by a real con-
stant. Hence we may apply Lemma 2.7 to conclude that
P[lim infn→∞

Ln
n ≥ 0] = 1, thus we are done.

3 Mean-Payoff All-Pay Poorman Games
This section is devoted to the proof of Thm. 1.2. We
first revisit first-price poorman bidding and describe
a significantly simpler proof. We unify the proofs for
all-pay poorman bidding by introducing and studying

a variant of bidding games called asymmetric bidding
games. We first show the connection between values in
asymmetric bidding games and all-pay poorman games.
Then, using similar (though more involved) techniques
as in the Richman setting, we show that in asymmetric
bidding games the sure and almost-sure values do not
depend on the initial ratios.

3.1 Warm up; revisiting mean-payoff first-price
poorman games. The value of mean-payoff first-price
poorman games was first identified in [6].

Theorem 3.1. ([6]) Let G be a strongly-connected
mean-payoff all-pay poorman bidding game. For
every initial ratio r ∈ (0, 1) of Max, we have
sMPFP-poor(G, r) = MP

(
RT(G, r)

)
.

We revisit this result and provide an alternative
proof by constructing new and significantly simpler
optimal budget-based bidding strategies.

Lemma 3.1. Let G be a strongly-connected mean-payoff
all-pay poorman bidding game. For every initial ratio
r = B0

B0+C0
∈ (0, 1) of Max, for every ε > 0, Max has

a deterministic budget-based strategy that guarantees a
payoff of MP(RT(G, B0−ε

B0+C0
)).

Proof. Let B0 ∈ R be Max’s initial budget. Throughout
this proof, we keep Min’s budget normalized to C = 1
and use B to denote Max’s budget. Thus, assuming
Max bids x and Min bids y, when Max wins the bidding
(b > a), we have B′ = B − b, and when Min wins the
bidding Max’s new budget is B′ = B

1−y . Let ε > 0, and
let W = B0 − ε. We construct a pure Max strategy
that maintains the invariant that B ≥W . The key new
insight is that when Max loses a bidding, we have

(3.7) B′ =
B

1− y
>
B(1− y2)

1− y
= B(1 + y) > B +Wy.

Intuitively, the property states that every cent is W
times more valuable to Min than it is to Max. For
example, if Max’s budget is 2 and Min’s budget is 1,
then paying 0.1 is twice as painful for Min as it is
for Max. Roughly, on average, this means that Max
wins W ∼ B0 times more biddings than Min, thus he
guarantees a payoff close to MP

(
RT(G, B0

B0+1 )
)
.

We now proceed to define formally a budget-based
bidding strategy f for Max that guarantees a payoff of
at least MP

(
RT(G, p)

)
, where p = (B0 − ε)/(B0 + 1).

We pick α ∈ (0, 1) satisfying λ(α) = 1 + ε (see
Lemma 2.2). We find vertex strengths using RT(G, p) as
in Section 2.3. Let N = max(W, 1) ·Smax. The strategy
f is defined as follows.
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• When the token is placed on a vertex v with
strength s = Stp(v) and Max’s budget is B, Max
bids f(B, s) = α·s

N (B −W ).

• Upon winning, Max moves the token to v+.

We first show that Max’s bidding strategy f is legal, by
showing that we always have B > W . Indeed, initially,
we have B0 > W , and whenever Max loses a bidding
his budget increases, and when Max wins a bidding his
updated budget is B−f(B, s) = B− α·s

N (B−W ), which
is still greater than W since α·s

N < 1.
Next, for any finite play π, let H(π) = (1 + ε) ·

I+(π) − (B0 − ε) · G+(π) − N · log1+α(ε). Recall that
I+(π) and G+(π) denote the sum of the strengths of the
vertices of π in which Max wins and loses, respectively.
We prove that the budget B(π) of Max after the play
π satisfies the following invariant, using induction on
the length of π and Bernoulli’s inequality. The proof
is similar to proofs for claims on asymmetric bidding
games, which can be found in the full version.
Claim: For every finite play π coherent with the
strategy f of Max, we have

(3.8) (B(π)−W )N ≥ (1 + α)−H(π).

Next, we show that the claim above implies a lower
bound on H. We describe the key ideas and similar
proofs can be found for asymmetric bidding games in the
full version. Observe Eq. 3.8. Since both N and W are
constants, whenH(π) shrinks, the equation implies that
B(π) must grow, and in turn Max’s bid grows since it
depends on (B(π)−W ). When Max’s bid is greater than
1, he necessarily wins the bidding since Min’s budget is
fixed to 1, causing H to increase.
Claim: There exists M ∈ R such that for every finite
play π coherent with f , we have

(3.9) (1 + ε)I+(π)− (B0 − ε)G+(π) ≥M.

Combining the claim above with Corollary 2.1
(plugging ν = B0−ε and µ = 1+ε), we obtain that any
infinite play coherent with the strategy f has a mean-
payoff greater than MP

(
RT(G, B0−ε

B0+1 )
)
.

3.2 Asymmetric bidding games. In this section
we study the properties of asymmetric bidding games
defined as follows.

Definition 3.2. (Asymmetric bidding games).
For W > 0, a W -asymmetric game is a bidding game
with the following payment scheme. Suppose Player 1
and 2’s bids are respectively x and y. Then, Player 1
pays x and Player 2’s pays y ·W (hence the name “asym-
metric”). The budgets are updated as follows. We keep
Player 2’s budget constant at 1. Suppose Player 1’s bud-
get is B, then his new budget is B′ = B − x+ y ·W .

The following theorem, whose proof can be found in
the following sections (Lemmas 3.4, 3.5, and 3.6 for pure
strategies and Lemmas 3.7 and 3.8 for mixed strategies),
shows that asymmetric bidding games have similar
properties to Richman bidding: the initial budgets do
not matter and the game has values w.r.t. pure and
mixed strategies.

Theorem 3.2. (Informal) Let G̃ be a strongly-
connected mean-payoff W -asymmetric bidding game.
Then,

• Pure strategies: For W > 1, with any positive
initial ratio Max can guarantee a sure-payoff that
is arbitrarily close to MP

(
RT(G̃, 1− 1

W )
)
, and this

is optimal.
• Mixed strategies: With any positive initial ratio
Max can guarantee an almost-sure payoff that is
arbitrarily close to MP

(
RT(G̃, 1− 1

2W )
)
, when W >

1, and arbitrarily close to MP
(
RT(G̃, W2 )

)
, when

W ≤ 1.

The following lemma relates the values of a W -
asymmetric game G̃ with the values of G under all-
pay poorman w.r.t. a ratio r. Intuitively, we obtain
a strategy for Max in G by simulating his strategy
in G̃. Technically, to simulate the strategy in G̃, we
need Max’s budget to be at least δ > 0. This is
indeed a technicality since the theorem above shows that
the value does not depend on the ratio in asymmetric
bidding games.

Lemma 3.3. Consider a mean-payoff all-pay poorman
game G with initial ratio r = B0

B0+C0
. Let W < B0

C0
, let

G̃ denote the W -asymmetric bidding game played on the
same graph as G. There exists δ > 0 such that

sMP(G, r) ≥ sMP(G̃, δ), and asMP(G, r) ≥ asMP(G̃, δ).

Proof. Suppose the initial budgets in G are B0 and C0

for Min and Max, respectively. Let W < B0

C0
and G̃

be the W -asymmetric bidding game that corresponds
to G. Let B̃0 = B0

C0
−W and δ = B̃0

B̃0+1
. We construct

a strategy for Max in G that simulates his strategy in
G̃ when his initial budget in the latter is δ. We use C
and B to respectively denote Min’s and Max’s budgets
in G and B̃ to denote Max’s budget in G̃. Max bids to
maintain the following invariant:

B

C
−W ≥ B̃.

The definition of B̃0 implies that the invariant holds
initially. Assuming the invariant holds, we show how
Max maintains it. Suppose Max’s bid in G̃ is x̃ ∈ [0, B̃].
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Then, Max bids x̃ · C in G. We claim that the bid is
legal, i.e., that x̃ · C ≤ B. Indeed, plugging in x̃ ≤ B̃
in the invariant, and multiplying both sides by C, we
obtain x̃ · C ≤ B − C ·W ≤ B.

Suppose Min bids y ≤ C in G. We simulate his
strategy in G̃ using the bid ỹ = y

C . Recall that Min’s
budget in G̃ is 1. Since y ≤ C, we have ỹ ≤ 1, thus
the bid is legal. Note that ỹ accurately simulates y
since x > y if and only if x̃ > ỹ. That is, Max wins the
bidding in G if and only if he wins in G̃. Thus, when Min
wins the bidding in G, we can continue the simulation
of G̃ by using Min’s move in G.

To conclude, we show that the invariant is pre-
served. We first claim that B−x

C ≥ W . Indeed, Max’s
bid in G̃ is x̃ = x

C and re-arranging the invariant, we
obtain B

C ≥W − B̃. Combining the two we have:

B − x
C

≥ B

C
− x

C
=
B

C
− x̃ ≥W + B̃ − x̃ ≥W.

Recall that under all-pay poorman bidding, the budgets
are updated to B′ = B−x and C ′ = C− y. Combining
with the above, we obtain

B′

C ′
=
B − x
C − y

=
B − x
C

+
B−x
C y

C − y
≥ B − x

C
+

Wy

C − y
≥

≥ B − x+Wy

C
.

Recall that in the W -asymmetric bidding game
Max’s budget is updated to B̃′ = B̃ − x̃ + Wỹ. We
conclude by combining with the above:

B′

C ′
−W ≥ B − x+Wy

C
−W ≥ B̃ − x̃+Wỹ = B̃′.

3.3 Mean-payoff all-pay poorman games under
pure strategies. In this section, we show that, for a
strongly-connected mean-payoff all-pay poorman bid-
ding game G with initial budgets B0 for Max and C0

for Min (thus the ratio is r = B0

B0+C0
), we have

sMP(G, r) =

{
MP
(
RT(G, 1− C0

B0
)
)

if B0 > C0;

MP
(
RT(G, 0)

)
if B0 ≤ C0.

We start with the second part and show that
deterministic strategies are useless when the initial
budget of Max is not larger than the initial budget of
Min.

Lemma 3.4. Consider a strongly-connected mean-
payoff all-pay poorman game G an initial budget B0

of Max and an initial budget C0 of Min such that
B0 ≤ C0. Then, Min can counter every deterministic
strategy of Max with a strategy that wins all biddings.

Proof. Min maintains the invariant that her budget
exceeds Max’s budget while winning all biddings. The
assumptions of the lemma imply that the invariant holds
initially. Suppose Max’s budget is B, Min’s budget is
C ≥ B, and Max bids b. Then, Min bids b as well, wins
the bidding (since she wins ties), and the new budgets
are C − b ≥ B − b thus the invariant is maintained.

We continue to the case in which Max’s budget
is greater than Min’s budget. Consider a strongly-
connected all-pay poorman game G and initial budget
B0 and C0 such that B0 > C0. Lem. 3.5 below
shows that for every W > 1 and every positive initial
budget, Max has a strategy in the asymmetric game
G̃ that ensures a payoff which is arbitrarily close to
MP
(
RT(G, 1− 1

W )
)
. By lettingW → B0/C0 from below

and using the connection between asymmetric bidding
games and all-pay poorman bidding games in Lem. 3.3,
we show that Max can guarantee a payoff in G that is
arbitrarily close to MP

(
RT(G, 1− C0

B0
)
)
.

Lemma 3.5. Consider a strongly-connected mean-
payoff game G. For W > 1, let G̃ be the W -asymmetric
game obtained from G. For every ε > 0, Max has
a pure budget-based strategy ensuring the payoff
MP(RT(G, 1− 1+ε

W+ε )).

Proof. Let ε > 0. We set p = 1 − 1+ε
W+ε , and find

the strengths of the vertices of G̃ using RT(G, p). We
define Max’s strategy f in G̃ as follows. Let α ∈ (0, 1)
such that λ(α) = 1 + ε (see Lemma 2.2), and let
N = max(Smax, (W − 1)Smax). When the token is on a
vertex v with strength s = Stp(v) and Max’s budget is
B,

• Max bids s
N α ·B;

• Upon winning, Max moves the token to v+.

To prove the lemma, we show that every infinite play
π coherent with f satisfies payoff(π) ≥ MP

(
RT(G, p)

)
.

Suppose Max’s budget is B, he bids x, and Min bids y.
Let B′ be Max’s updated budget. Then,

B′ = B − x+Wy ≥
{
B + (W − 1) · x if x ≤ y;
B − x if x > y.

Where the top bound is obtained since y ≥ x and the
bottom one since y ≥ 0.

Intuitively, this means that Max gains W − 1 times
more for a loss than what he pays for a win. As a
consequence, Max wins at least W − 1 times whenever
Min wins once. Formally, let µ = 1 + ε and ν = W − 1,
and for every finite play π, let B(π) denote Max’s
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budget following π and set H(π) = µ ·I+(π)−ν ·G+(π),
which intuitively keeps track of the difference between
the number of biddings Max loses and wins. The
following claim establishes an invariant between Max’s
budget and H(π). Its proof follows similar arguments
as in all-pay Richman bidding, and can be found in the
full version. Note that no luck is required since f is a
pure strategy.
Claim: For every finite play π coherent with f , we have
B(π) ≥ B0 · (1 + α)−

H(π)
N .

We use this result to prove a lower bound for H.
The claim above implies that when H(π) drops, Max’s
budget increases and will eventually be so high that his
bid will be greater than 1. Recall that Min’s budget is
set to 1. Thus, Max wins the bidding causing H to go
back up. Therefore:
Claim: There exists M ∈ R such that H(π) ≥ M for
every finite play π coherent with f .

Since ν
µ+ν = 1 − µ

µ+ν = p, we can now conclude
through the use of Corollary 2.1. For every play π
coherent with f , if for all n ∈ N we denote by πn the
prefix of π of size n, we have

payoff(π) ≥ MP(RT(G, p)) +
µ+ ν

µν
· lim inf
n→∞

H(πn)

n
≥

≥ MP(RT(G, p)).

We conclude by showing a matching lower bound,
namely we show that sMP(G, r) ≤ MP

(
RT(G, 1− C0

B0
)
)
.

Recall that our definition of payoff favors Min, thus
by proving the claim for Max, we prove a stronger
claim. Let G be a strongly-connected mean-payoff all-
pay poorman game. Lem. 3.6 below shows that for
all W < 1, for every initial budgets and every pure
strategy of Min in the W -asymmetric bidding game G̃,
Max has a strategy ensuring a payoff arbitrarily close
to MP

(
RT(G,W )

)
. Recall that Lem. 3.3 shows that

each strategy of Max in the W -asymmetric game G̃ can
be transformed into a strategy of Max in G with the
same payoff when the initial budgets B0 and C0 satisfy
W < B0

C0
. Therefore, Lem. 3.6 implies that if B0 < C0

and we fix a pure strategy of Min, Max can ensure a
payoff arbitrarily close toMP

(
RT(G, B0

C0
)
)
. By swapping

the roles of Min and Max, we obtain as a corollary that
sMP(G, r) ≤ MP

(
RT(G, 1− C0

B0
)
)
, as required.

Lemma 3.6. LetW ≤ 1. Consider a strongly-connected
mean-payoff W -asymmetric bidding game G̃. For every
strategy g of Min, for every ε > 0, Max has a pure
budget-based strategy ensuring the payoff MP

(
RT(G, (1−

ε)W )
)
against g.

Proof. Let ε > 0, and let g be a pure Min strategy in
G̃. We define Max’s strategy f in G̃ as follows. We set
p = (1−ε)W , and find the strengths of the vertices of G̃
using RT(G, p). Max fixes a threshold t(s,B) depending
on strengths and his budget. Suppose the token is
placed on a vertex with strength s and Max’s budget is
B and Min’s bid according to g is y. If y > t(s,B), Max
judges that the budget required to win the bidding is not
worth it, and stays out by bidding 0. If y ≤ t(s,B), Max
bids slightly above y, wins the bidding, and moves to
v+. Formally, let N = (1 + εW )Smax, and let α ∈ (0, 1)
satisfying λ(α) = 1

1−ε (see Lemma 2.2). Max acts as
follows:

• Max computes the bid y of Min according to the
strategy g;

1. If y > s
N α ·B, then Max bids 0;

2. If y ≤ s
N α ·B, then Max bids y + εWy.

• Upon winning, Max moves the token to v+.

We show that the infinite play π induced by f and
g satisfies payoff(π) ≥ MP(RT(G, p)). To start with,
suppose that the budget of Max is B, he bids x, and
Min bids y. By definition of the strategy f , x is either
equal to 0 or (1 + εW ) · y, hence we can express the
updated budget B′ of Max as follows:

B′ = B−x+Wy =

{
B +W · y if x ≤ y;
B − (1−W + εW ) · y if x > y.

Therefore, Max gains W
1−W+εW more for a loss than

what he pays for a win. As a consequence, we can show
that the win/loss ratio of Max is close to W

1−W+εW .
Formally, let ν = W , and let

µ = λ(α) · (1−W + εW ) =
1

1− ε
−W.

For every finite play π, let B(π) be the budget of Max
following π, and let H(π) = µ · I+(π) − ν · G+(π),
which intuitively keeps track of the difference between
the number of biddings Max loses and wins. In the full
version, we establish an invariant between Max’s budget
and H(π).
Claim: For every finite play π coherent with f and g,
B(π) ≥ B0 · (1 + α)−

H(π)
N .

In the full version, we prove a lower bound on H(π):
whenever H(π) gets too low, the claim above implies
that the budget of Max is so high that he will outbid Min
in the next bid, causing H(π) to get back up. Formally,
Claim: There exists M ∈ R such that H(π) ≥ M for
every finite play π coherent with f and g.

We can conclude by using Corollary 2.1 as ν
µ+ν =

(1− ε)W = p: Let π be the infinite play coherent with
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f and g. If for all n ∈ N we denote by πn the prefix of
π of size n, we have

payoff(π) ≥ MP(RT(G, p)) +
µ+ ν

µν
· lim inf
n→∞

H(πn)

n
≥

≥ MP(RT(G, p)).

3.4 Mean-payoff all-pay poorman games un-
der mixed strategies. Let G be a strongly-connected
mean-payoff all-pay poorman bidding game, let B0 be
the initial budget of Max and C0 be the initial budget
of Min (thus the initial ratio is r = B0

B0+C0
). In this

section we show that
(3.10)

asMP(G, r) =

{
MP
(
RT(G, 1− C0

2B0
)
)

if B0 > C0;

MP
(
RT(G, B0

2C0
)
)

if B0 ≤ C0.

As in the previous section, the proof proceeds
by studying W -asymmetric bidding games, identifying
their almost-sure values depending on W , and using
Lem. 3.3 that connects asymmetric and all-pay poorman
bidding games to obtain the almost-sure values for the
latter. Specifically, we show that for the W -asymmetric
bidding game G̃ and for every initial ratio r̃,

asMP(G̃, r̃) =

{
MP
(
RT(G, 1− 1

2W )
)

if W > 1;
MP
(
RT(G, W2 )

)
if W ≤ 1.

The following lemma addresses the case whereW >
1. The lemma shows that Max can guarantee a payoff
that is arbitrarily close toMP

(
RT(G, 2W−1

2W )
)
. To obtain

equality, we again use the fact that MP
(
RT(G, p)

)
is

continuous in p (see [14, 30]) and the advantage of Min
in the definition of payoff.

Lemma 3.7. Let W > 1, and consider a strongly-
connected mean-payoff W -asymmetric bidding game G̃.
For every initial budget B0 > 0, for all ε > 0, Max has a
mixed budget-based strategy that guarantees an almost-
sure payoff of MP

(
RT(G̃, 2W−1

2W+ε )
)
.

Proof. Let B0 > 0 be the initial budget of Max, and
let ε > 0. We set p = 2W−1

2W+ε , and find the strengths
of the vertices of G using RT(G, p). The proof is mostly
identical to the proof of Lem. 2.5, hence we will focus on
the differences. The first change comes in the definition
of the mixed strategy f of Max: instead of always
bidding uniformly at random in an interval, if Max’s
budget is high enough he deterministically bids higher
than Min’s budget and forces a bidding win.

Formally, we define the mixed strategy f as follows.
Let α ∈ (0, 1) such that λ(α) = 1 + ε (see Lemma 2.2).

When the token is on a vertex v with strength s = Stp(v)
and Max’s budget is B:

• If s > 0 and B > 2W 2Smax

αs , then Max deterministi-
cally bids s

2WSmax
αB, which is greater than W ;

• Otherwise, Max bids uniformly at random in the
interval [0, s

WSmax
αB];

• Upon winning, Max moves the token to v+.

We now fix a strategy g of Min. As in previous
sections, we assume wlog that Min never bids more
than the maximal possible bid of Max according to f .
Let dist(f, g) be the probability distribution defined
by f and g. To conclude the proof, we show that
Pη∼dist(f,g)[payoff(η) ≥ MP

(
RT(G, p)

)
] = 1.

Similar to the Richman setting, we show an invari-
ant between Max’s budget, his wins, his losses, and his
luck. Observe that contrary to all-pay Richman bid-
ding, here, it is possible for Max’s budget to increase
also when he wins a bidding. Indeed, recall that assum-
ing Max’s budget is B, he bids x, and Min bids y, then
the budget update is B′ = B − x + Wy. For example,
Max’s budget increases when x = 1 + ε > 1 = y and
W = 2. This difference leads to a more complicated def-
inition of Max’s “luck” that distinguishes between three
cases: (1) Max loses and his budget increases, or he
wins and (2a) his budget increases or (2b) his budget
decreases.

To prove the invariant we need several definitions.
Let µ = 1 + ε, ν = 2W − 1, and H(π) = µ · I+(π)− ν ·
G+(π). We define inductively the luck L over a finite
play coherent with f and g as follows. Initially the luck
is 0. Assuming Max’s budget is B, his bid is x, Min’s
bid is y, and the luck is L, then the updated luck is
L′ = L+ ∆L(x, y), where

∆L(x, y) =


2WSmax

Wy−x
αB − νs if x ≤ y;

2WSmax
Wy−x
αB + µs if y < x ≤Wy;

2WµSmax
Wy−x
αB + µs if x > Wy.

We get that for every finite play π coherent with f
and g, if Max lost many biddings along π (H(π) is low),
then either he gained a lot of budget in exchange (B(π)
is high), or he was particularly unlucky (L(π) is low):
Claim: For every finite play π coherent with f and g,

B(π) ≥ B0 · (1 + α)
L(π)−H(π)
2WSmax .

The claim above implies that if L(π)−H(π) is very
high, then the budget of Max is high enough to enable
the first option of his strategy f , which guarantees him
a win in the next round, hence causes L(π) −H(π) to
decrease. As a consequence, we get an upper bound for
L(π)−H(π):
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Claim: There exists M ∈ R such that L(π) −H(π) ≤
M for all finite play π coherent with f and g.

Therefore, given an infinite play η coherent with
f and g, if for every n ∈ N we denote by ηn the
prefix of η of size n, we get that lim infn→∞

H(ηn)
n ≥

lim infn→∞
L(ηn)
n . Moreover, we can prove that

Claim: Pπ∼dist(f,g)[lim infn→∞
L(ηn)
n ≥ 0] = 1.

Since ν
µ+ν = p, this allows us to conclude through

the use of Corollary 2.3:

payoff(η) ≥ MP(RT(G, ν

µ+ ν
)) +

µ+ ν

µν
· lim inf
n→∞

H(ηn)

n
=

= MP(RT(G, p)) +
µ+ ν

µν
· lim inf
n→∞

L(ηn)

n
a.s.
≥ MP(RT(G, p)).

The following lemma complements Lem. 3.7 and
shows optimal mixed strategies when Max’s ratio is less
than 0.5.

Lemma 3.8. Let W ∈ (0, 1], and consider a strongly-
connected mean-payoff W -asymmetric bidding game G̃.
For every initial budget B0 > 0, for all ε > 0, Max has a
mixed budget-based strategy that guarantees an almost-
sure payoff of MP

(
RT(G̃, W−ε2 )

)
.

Proof. Let B0 > 0 be Max’s initial budget, and let
ε > 0. We set p = W−ε

2 , and find the strengths
of the vertices of G using RT(G, p). The proof is
nearly identical to the proof of Lem. 3.7. The dual
complications from that lemma stem from the fact that
when Max loses a bidding, he might lose budget instead
of gaining budget. In order to state the two main
differences between the proofs, let us recall the budget
update in a W -asymmetric game: Following a play π, if
Max bids x ∈ R and Min bids y ∈ R, then the updated
budget of Max is

B(π′) = B(π)− x+Wy.

For example, when W = 1
2 and x = y = 1, thus

Min wins, Max budget decreases by 1
2 . This has two

consequences: First, in order to reduce the risk of this
unlucky event, Max cannot bid uniformly at random in
an interval, and needs to bid 0 with a higher probability.
Second, in the definition of the luck update, we have to
consider the case where Max loses the bid and his budget
decreases instead of the case where he wins the bid and
his budget increases.

We now define the mixed strategy f of Max. Let
α ∈ (0, 1) such that λ(α) = 1+ε (see Lemma 2.2). When
the token is on a vertex v with strength s = Stp(v) and
Max’s budget is B:

1. If s > 0 and B > 2Smax

αs , then Max deterministically
bids s

2Smax
αB, which is greater than 1;

2. Otherwise,
• With probability 1−W + ε, Max bids 0;
• With probability W − ε, Max picks his bid

uniformly at random in [0, s
Smax

αB].
3. Upon winning, Max moves the token to v+.

We now fix a strategy g of Min. Since Min has the
tie-breaking advantage and does not profit from bid-
ding higher than Max, we assume that, according to
g, Min never bids more in a round than the maxi-
mal possible bid of Max according to f . We con-
sider the probability distribution dist(f, g) defined by
f and g, and, to conclude the proof, we show that
Pη∼dist(f,g)[payoff(η) ≥ MP

(
RT(G, p)

)
] = 1.

As in the other proofs, we show a relation between
the budget of Max, his wins, his losses, and his luck. To
this end, we need some formal definitions. We set µ =
2−W +ε, ν = W −ε, and H(π) = µ ·I+(π)−ν ·G+(π).
We define inductively the luck L over a finite play
coherent with f and g as follows. Initially the luck is
0. Then, following a play π, if in the next round Max
bids x ∈ [0, s

WSmax
αB(π)] according to f and Min bids

y ∈ [0, s
WSmax

αB(π)] according to g, the luck L(π′) of
the updated run is defined as L(π) + ∆L(x, y), where

∆L(x, y) =


2Smax

Wy−x
αB(π) − νs if x ≤Wy;

2(1 + ε)Smax
Wy−x
αB(π) − νs if Wy < x ≤ y;

2(1 + ε)Smax
Wy−x
αB(π) + µs if x > y.

The rest of the proof is nearly identical to the one of
Lemma 3.7. We prove a relation between B, H and L:

Claim: For all finite play π coherent with f and g,
B(π) ≥ B0(1 + α)

L(π)−H(π)
2Smax .

This implies that if L(π) − H(π) gets too high,
then the budget of Max is high enough to enable the
first option of his strategy f , which guarantees him a
win in the next round, hence causes L(π) − H(π) to
decrease. As a consequence, we get an upper bound for
L(π)−H(π):

Claim: There exists M ∈ R such that L(π) −H(π) ≤
M for all finite play π coherent with f and g.

Therefore, given an infinite play η coherent with
f and g, if for every n ∈ N we denote by ηn the
prefix of η of size n, we get that lim infn→∞

H(ηn)
n ≥

lim infn→∞
L(ηn)
n . Moreover, we can prove that

Claim: Pπ∼dist(f,g)[lim infn→∞
L(ηn)
n ≥ 0] = 1.

Since ν
µ+ν = p, we can conclude by using Corollary
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2.3:

payoff(η) ≥ MP(RT(G, ν

µ+ ν
)) +

µ+ ν

µν
· lim inf
n→∞

H(ηn)

n
=

= MP(RT(G, p)) +
µ+ ν

µν
· lim inf
n→∞

L(ηn)

n
a.s.
≥ MP(RT(G, p)).

4 Parity All-Pay Bidding Games
In this section, we prove Thm. 1.3 based on the solution
to mean-payoff bidding games. Let P be a strongly-
connected parity game in which the maximal parity
index is d ∈ N. We construct a mean-payoff game G by
setting the weight of a vertex v to be 1 if the parity of v
is d, and otherwise w(v) = 0. The key property of this
weight function is that any path η with payoff(η) > 0
must visit a vertex with index d infinitely many times,
and thus satisfies the parity objective.

Lemma 4.1. Let G be a strongly-connected mean-payoff
game with non-negative weights and at least one strictly
positive weight. Then, for every p ∈ (0, 1), we have
MP
(
RT(G, p)

)
> 0.

Proof. Let v0 ∈ V be a vertex whose weight is positive.
Since G is strongly-connected, every vertex v ∈ V
admits a shortest path to v0. Fix one such path for
each v and let v′ be the successor of v along this path
(for v = v0, let v′ be any of its neighbors). Define the
strategy σ for Max via σ(v) = v′, so Max moves the
token along the edge 〈v, v′〉 upon winning the coin toss.
We show that this strategy guarantees a positive mean-
payoff with probability 1.

Let |V | = n. The length of a shortest path from any
vertex in G to v0 is at most n− 1. Thus if Max follows
the strategy σ and wins n−1 consecutive coin tosses, the
token will reach v0 at least once in those n−1 turns. As
the coin tosses are pairwise independent, the probability
of Max winning n−1 times in a row is pn−1. We will use
this observation to show that σ ensures positive mean-
payoff.

For an infinite game play π, let πm be its finite
prefix of length m. Moreover, let vi(π) denote the i-th
vertex along π. If we write m = k · (n − 1) + r with
0 ≤ r < n− 1, the expected energy of πm under σ and

any fixed strategy of the opponent is

E[πm] ≥ Eσ[πk·(n−1)] ≥ w(v0)·
E[#{1 ≤ j ≤ k · (n− 1) | vj(π) = v0}]

= w(v0) ·
k−1∑
i=0

E[#{1 ≤ j ≤ n− 1 | vi·(n−1)+j(π) = v0}]

≥ w(v0) ·
k−1∑
i=0

E[I(vi·(n−1)+j(π) = v0 for some 1 ≤ j ≤ n− 1)]

= w(v0) ·
k−1∑
i=0

P[vi·(n−1)+j(π) = v0 for some 1 ≤ j ≤ n− 1]

≥ w(v0) ·
k−1∑
i=0

bn−1 = w(v0) · k · pn−1,

where the last inequality follows from the above obser-
vation. Since k = (m − r)/(n − 1) and r < n − 1, we
have k > m/(n− 1)− 1. Thus,

lim inf
m→∞

E[πm]

m
≥ w(v0) · lim inf

m→∞

(m/(n− 1)− 1) · pn−1

m
=

=
w(v0) · pn−1

n− 1
> 0,

and σ ensures positive mean-payoff as claimed.

The proof of Thm. 1.3 follows from combining
Lem. 4.1 with Thms. 1.1 and 1.2.

5 Conclusions
We study, for the first time, infinite-duration all-pay
bidding games. In terms of applications, all-pay bid-
ding, especially combined with poorman bidding, is of-
ten more favorable than first-price bidding since it accu-
rately models settings in which bounded resources with
little or no inherent value need to be invested. Techni-
cally, however, all-pay bidding is much more challeng-
ing than first-price bidding since mixed strategies need
to be considered. Prior to this work, reachability all-
pay bidding games were only recently studied and more
questions were left open than closed. This work is thus
the first to find rich mathematical structure for all-pay
bidding in the form of equivalences with random-turn
games. We hope that the techniques we develop here
will assist in shedding light also on reachability all-pay
bidding games.

This work constitutes another step in the line of
work that studies the intriguing equivalence between
bidding games and random-turn games. Starting from
reachability first-price bidding games [22] and continu-
ing with mean-payoff first-price bidding games [5, 6, 7].
We find the results of all-pay bidding games particularly
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surprising and we believe they encourage further inves-
tigation to understand the elegant connection between
bidding games and random-turn games. See [4] for a
list of concrete open questions on bidding games.
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