
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2020

Algorithms and hardness results for computing cores of Markov Algorithms and hardness results for computing cores of Markov

chains chains

Ali AHMADI

Krishnendu CHATTERJEE

Amir KAFSHDAR GOHARSHADY

Tobias MEGGENDORFER

Roodabeh SAFAVI

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons, and the Theory and Algorithms Commons

Citation Citation
AHMADI, Ali; CHATTERJEE, Krishnendu; KAFSHDAR GOHARSHADY, Amir; MEGGENDORFER, Tobias;
SAFAVI, Roodabeh; and ZIKELIC, Dorde. Algorithms and hardness results for computing cores of Markov
chains. (2020). Proceedings of the 42nd IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2022), Chennai, India, December 18-20. 250,
1-20.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9059

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9059&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Ali AHMADI, Krishnendu CHATTERJEE, Amir KAFSHDAR GOHARSHADY, Tobias MEGGENDORFER,
Roodabeh SAFAVI, and Dorde ZIKELIC

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/9059

https://ink.library.smu.edu.sg/sis_research/9059

Algorithms and Hardness Results for Computing
Cores of Markov Chains
Ali Ahmadi !

Hong Kong University of Science and Technology (HKUST), China

Krishnendu Chatterjee !

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Amir Kafshdar Goharshady !

Hong Kong University of Science and Technology (HKUST), China

Tobias Meggendorfer !

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Roodabeh Safavi !

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
Hong Kong University of Science and Technology (HKUST), China

Ðorđe Žikelić !

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Abstract
Given a Markov chain M = (V, v0, δ), with state space V and a starting state v0, and a probability
threshold ϵ, an ϵ-core is a subset C of states that is left with probability at most ϵ. More formally,
C ⊆ V is an ϵ-core, iff P

[
reach (V \C)

]
≤ ϵ. Cores have been applied in a wide variety of verification

problems over Markov chains, Markov decision processes, and probabilistic programs, as a means of
discarding uninteresting and low-probability parts of a probabilistic system and instead being able
to focus on the states that are likely to be encountered in a real-world run. In this work, we focus
on the problem of computing a minimal ϵ-core in a Markov chain. Our contributions include both
negative and positive results: (i) We show that the decision problem on the existence of an ϵ-core
of a given size is NP-complete. This solves an open problem posed in [26]. We additionally show
that the problem remains NP-complete even when limited to acyclic Markov chains with bounded
maximal vertex degree; (ii) We provide a polynomial time algorithm for computing a minimal ϵ-core
on Markov chains over control-flow graphs of structured programs. A straightforward combination
of our algorithm with standard branch prediction techniques allows one to apply the idea of cores to
find a subset of program lines that are left with low probability and then focus any desired static
analysis on this core subset.

2012 ACM Subject Classification Software and its engineering → Formal software verification;
Theory of computation → Graph algorithms analysis

Keywords and phrases Markov Chains, Cores, Complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.29

Funding The research was partially supported by the Hong Kong Research Grants Council ECS
Project No. 26208122, ERC CoG 863818 (FoRM-SMArt), the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385, HKUST–
Kaisa Joint Research Institute Project Grant HKJRI3A-055 and HKUST Startup Grant R9272. Ali
Ahmadi and Roodabeh Safavi were interns at HKUST. Author names appear in alphabetical order.

© Ali Ahmadi, Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer,
Roodabeh Safavi, and Ðorđe Žikelić;
licensed under Creative Commons License CC-BY 4.0

42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 29; pp. 29:1–29:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ali.ahmadi.star27@gmail.com
https://orcid.org/0000-0002-5074-5014
mailto:krishnendu.chatterjee@ist.ac.at
https://orcid.org/0000-0002-4561-241X
mailto:goharshady@cse.ust.hk
https://orcid.org/0000-0003-1702-6584
mailto:tobias.meggendorfer@ist.ac.at
https://orcid.org/0000-0002-1712-2165
mailto:roodabehsafavi@gmail.com
https://orcid.org/0000-0003-4516-4212
mailto:djordje.zikelic@ist.ac.at
https://orcid.org/0000-0002-4681-1699
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Algorithms and Hardness Results for Computing Cores of Markov Chains

1 Introduction

Markov Chains. Discrete-time Markov chains (MCs) are arguably the most classical and
standard mathematical formalism for modelling randomness in discrete-time probabilistic
systems [19]. In a nutshell, Markov chains comprise a set of states and a transition function,
assigning to each state a distribution over successors. The system evolves by repeatedly
drawing a successor state from the transition distribution of the current state. This can,
for example, model communication over a lossy channel, a queuing network, or populations
of predator and prey which grow and interact randomly. Indeed, Markov chains are an
important tool in many areas, such as computer science [4], biology [30], epidemiology [21],
and chemistry [20], to name a few. As such, analyzing MCs is an important question, and a
central component of many modern model checkers, such as Prism [27] and Storm [17].

Markov Chains over Control-flow Graphs. An interesting family of MCs in verification
are those that are defined over the control-flow graph (CFG) of a program [1], i.e. MCs in
which the underlying graph, ignoring the probabilities, is a CFG. Such MCs can serve as
formal semantics for simple probabilistic programs. They also appear naturally as a result of
applying (statistical) branch prediction to a non-probabilistic program [33].

Markov Decision Processes. Extending MCs with non-determinism leads to the standard
notion of Markov decision processes (MDPs) [31], which is the most common formalism for
systems that exhibit both probabilistic and non-deterministic behavior. The non-determinism
can model a wide variety of real-world phenomena such as the behavior of a controller, an
unknown set of inputs, or simply abstractions made to ease the verification of the underlying
system. Analysis of MDPs is a central topic in formal verification and model checking, see
e.g. [2, 3, 4, 6, 10, 26].

Probabilistic Programs. Extending classical programs with the ability of generating random
numbers by sampling from pre-defined distributions leads to the framework of probabil-
istic programs. Such programs have a wide variety of use-cases including in randomized
algorithms [18, 29], stochastic network protocols [34], blockchain protocols and smart con-
tracts [11, 13, 14], and robotics [23, 25]. Hence, they have been widely studied by the
programming languages and verification communities [5, 24, 28, 7, 8, 22, 35, 15]. Probab-
ilistic programs often have variables that can take integer or real values and their formal
semantics are usually defined by an infinite-state MC, in absence of non-determinism, or an
infinite-state MDP, in its presence [7, 36, 9].

Cores. Fixing a probability threshold ϵ ∈ (0, 1), an ϵ-core of a probabilistic system is a set
of states that is left by a random run of the system with probability at most ϵ. Intuitively,
when analyzing a large probabilistic system, one is interested in finding a core that is left
with very low probability and then ignore the set of states that are outside this core, since it
is unlikely that a real-world run of the system visits them. If the core happens to be much
smaller than the original system, this simple idea can lead to huge improvements in the
runtime of formal analyses. For example, suppose that we have applied branch prediction to
a huge program and hence have probabilities associated to every transition in its CFG. By

A. Ahmadi et al. 29:3

finding a small core, we can focus any static analysis on a set of lines of the program that
actually matter, i.e. a set of lines that is left with low probability, and ignore the lines that
are rarely or never encountered.

The concept of cores was introduced in [26] for the quantitative analysis of MCs and
MDPs. Considering classical objectives such as mean-payoff, discounted sums of rewards, and
hitting probabilities, [26] provided a partial-exploration framework that efficiently finds cores
in large MDPs and then uses them to obtain not only a faster analysis, but also rigorous
error bounds. An equivalent notion, called stochastic invariants, was introduced in [16] in
the context of probabilistic programs and used in [12] to obtain quantitative bounds on their
probability of termination.

Hardness of Computing a Core. Based on the discussion above, it is natural to aim for
algorithms that find the smallest possible core in a probabilistic system, be it an MC, an MDP
or a probabilistic program. In the case of probabilistic programs, any non-trivial formalization
of this problem is undecidable as a direct result of the well-known Rice’s theorem [32]. In the
case of finite-state MDPs, given a threshold ϵ ∈ (0, 1) and an integer k, deciding whether the
MDP has an ϵ-core of size k is an NP-complete problem [26]. However, the same problem was
open when it comes to MCs [26], with neither efficient PTIME algorithms nor NP-hardness
results provided so far.

Our Contribution. In this work, we consider the problem of finding an optimal ϵ-core in
a finite-state discrete-time Markov chain and its decision variant, i.e. deciding whether an
ϵ-core of size k exists. We obtain both hardness results and efficient algorithms:

In Section 3, we prove that the decision problem is NP-complete. This settles the
complexity for MCs and answers the open problem posed in [26]. We also show that the
problem remains NP-hard even when limited to acyclic MCs with bounded degree.
We then focus on positive results and provide a PTIME algorithm in Section 4 that is
applicable to MCs over control-flow graphs.

In summary, our results show that computing cores in MCs is NP-hard in general and even
over the very limited family of acyclic MCs with bounded degrees. Hence, in practice, cores
should be computed using partial-exploration algorithms, as in [26], or other heuristics with
no theoretical guarantees. However, in certain important use-cases, such as MCs over CFGs,
we can compute an optimal core in PTIME. Notably, this is applicable to the problem of
finding the core lines of a program given branch prediction data.

2 Preliminaries

We start by recalling the definitions of Markov chains and cores and fixing the notation that
is used throughout this work.

Discrete Probability Distributions. Given a finite set X, a probability distribution over X

is a function δ : X → [0, 1] which satisfies the condition
∑

x∈X δ(x) = 1. We use D(X) to
denote the set of all probability distributions over X.

FSTTCS 2022

29:4 Algorithms and Hardness Results for Computing Cores of Markov Chains

Markov Chains (MCs). A finite state Markov chain M = (V, v0, δ) is an ordered triple
consisting of a finite set of states/vertices V , a designated initial state v0 ∈ V and a
probabilistic transition function δ : V → D(V), which, to each state in V assigns a probability
distribution over its successor states. We define the set of edges of M as

E = {(v, v′) ∈ V × V | δ(v)(v′) > 0}.

Paths in Markov Chains. An infinite path in a Markov chain M = (V, v0, δ) is an infinite
sequence of states ρ = (v0, v1, v2, . . .) such that δ(vi)(vi+1) > 0 holds for each i ∈ N. Note
that we require each infinite path to start in the initial state v0 of the chain.

A Markov chain M admits a probability measure PM over the set of all infinite paths
in the Markov chain [31]. For each measurable set O ⊆ V ω of infinite paths in M , we use
PM [O] to denote the probability of a random infinite path in the Markov chain being an
element of the set O. In particular, if T ⊆ V is a set of states, we use reach T to denote
the set of all infinite paths in the Markov chain that visit at least one state in T , and use
PM [reach T] to denote the probability of a random infinite path in the Markov chain reaching
a vertex in T . When the Markov chain is clear from the context, we abbreviate the notation
to P, P[O] and P[reach T].

Cores in Markov Chains. We now define the concept of cores in Markov chains which are
the central object of study in this work. The notion of a core was originally defined in [26].
Given a probability threshold ϵ ∈ [0, 1], an ϵ-core in a Markov chain M = (V, v0, δ) is a set of
states C ⊆ V such that a random infinite path in the Markov chain exits C with probability
at most ϵ. More formally,

P
[
reach (V \C)

]
≤ ϵ.

For a natural number k ∈ N, we say that C ⊆ V is an (ϵ, k)-core if it is an ϵ-core of size at
most k, i.e. |C| ≤ k.

While the main negative result of this work is a proof of NP-completeness of the decision
problem on whether a Markov chain contains an ϵ-core of at most a given size for ϵ ∈ (0, 1),
we also strengthen this result by showing that the problem remains NP-complete even on a
restricted class of Markov chains. We now formally define these restrictions.

Acyclic Markov Chains with Bounded Degree. A Markov chain M = (V, v0, δ) naturally
induces a directed graph GM = (V, E), where the vertex and the edge sets of the graph are
defined by the set of states and the set of edges of the Markov chain. A Markov chain M

is said to be acyclic if its induced graph GM is acyclic, with the exception of a self-loop
at one vertex. Note that the graph GV cannot be completely acyclic, since it is a finite,
directed graph and every state in a Markov chain must have at least one successor state for
the probabilities of its outgoing edges to sum up to 1. Thus, a Markov chain must contain a
proper cycle or a probability 1 self-loop. Therefore, acyclic Markov chains can be viewed as
Markov chains whose induced graphs are “closest” to being acyclic, with the exception of a
single probability 1 self-loop.

For a vertex/state v ∈ V , we define its outdegree to be the number of edges whose source
vertex is v, i.e. out(v) = |{u ∈ V | (v, u) ∈ E}|. Similarly, the indegree of v is defined as the
number of edges whose target vertex is v, i.e. in(v) = |{u ∈ V | (u, v) ∈ E}|. Together, we

A. Ahmadi et al. 29:5

define the degree of a vertex v to be the total number of edges that are incident to v, i.e.
deg(v) = out(v) + in(v). Finally, the maximal vertex degree of a Markov chain M is defined
to be maximal degree of all its vertices, i.e. maxv∈V deg(v).

In this work, we consider Markov chains which are both acyclic and have their maximal
degree bounded by a constant.

3 Hardness Results

In this section, we show that the problem of computing the size of a minimal ϵ-core in a
Markov chain is NP-hard for any non-trivial value of the probability threshold ϵ, i.e. any
ϵ that is not equal to 0 or 1. Formally, given ϵ ∈ (0, 1), we prove in Theorem 1 that the
problem of deciding whether a Markov chain M contains an (ϵ, k)-core for a given Markov
chain M and a core size k is NP-complete. This implies that the problem of deciding whether
a Markov chain contains an ϵ-core of size exactly k is also NP-complete, since one may
always enlarge an (ϵ, k)-core in order to obtain an ϵ-core that contains exactly k states and
so the two problems are immediately reducible to each other.

In [26], the authors proved NP-completeness of the problem for MDPs. However, it was
hitherto not known whether computing cores of given size could be made more efficient in the
case of Markov chains. This was left as an open problem in [26, Remark 3.7]. Our Theorem 1
solves the open problem of [26] and answers the posed question negatively. We conclude this
section with Theorem 8, which shows that the problem of deciding the existence of a core
of at most given size remains NP-complete even if we restrict it to acyclic Markov chains
whose maximal vertex degree is at most 3.

▶ Theorem 1 (Hardness of Finding a Core in an MC). For an ϵ ∈ (0, 1), let Coreϵ be the
language defined as{

(M, k) | M is a Markov chain that contains an (ϵ, k)-core
}

.

Then, Coreϵ is NP-complete for any ϵ ∈ (0, 1).

Proof. To prove that Coreϵ is contained in NP, note that the probability of reaching a
given set of states in a Markov chain can be computed in polynomial time by reduction to a
system of linear equations [4]. Hence, an (ϵ, k)-core can serve as its own witness of linear
size. Thus, Coreϵ is in NP.

To prove that Coreϵ is NP-hard, we show a reduction from the Vertex-Coverproblem
which is a classical example of an NP-complete problem. Recall that, given an undirected
graph G = (V, E) and k ∈ N, the Vertex-Coverproblem is concerned with deciding if
there exists a set of vertices K ⊆ V of size k such that each edge in E is incident to at least
one vertex in K.

Fix ϵ ∈ (0, 1) and consider an instance (G = (V, E), k) of the Vertex-Coverproblem
where n = |V | > 1

ϵ and n ≥ 4. In order to obtain our reduction, we construct an instance
(MG,k, kG,k) of the Coreϵ problem where the Markov chain MG,k and natural number kG,k

are both polynomial in the size of G and k and such that (G, k) ∈ Vertex-Coverif and
only if (MG,k, kG,k) ∈ Coreϵ.

In the sequel, we say that a sequence of vertices u1, . . . , us in a Markov chain (M, v, δ)
form a chain of length s, if δ(ui)(ui+1) = 1 for each 1 ≤ i ≤ s − 1.

FSTTCS 2022

29:6 Algorithms and Hardness Results for Computing Cores of Markov Chains

Figure 1 The figure depicts an example of a Markov chain VG,k constructed in the proof of
Theorem 1 for a graph G = (V, E) with V = {v1, v2, v3} and E = {(v1, v2), (v2, v3)}, and for an
arbitrary value of k. Let n = |V | = 3. The states of the Markov chain VG,k are visually ordered
in four layers. The first layer consists of the initial state vG,k and a chain of length n3 = 27. The
second layer consists of n = 3 chains, each of length 3 · n = 9. The third layer also consists of n = 3
chains, each of length 3 · n + 1 = 10. Finally, the fourth layer consists of a single state t. Edges
induced by the probabilistic transition function are indicated by directed lines between states. Chain
edges and all other edges of probability 1 are colored in black. Edges of probability p1 = 1

n3 are
colored in red, edges of probability p2 = 1

n10 in green and edges of probability p3 = 1
n50 in blue.

The edge of probability ϵ − ϵM from the initial state vG,k to the first state v1
1 of the chain in the

first layer is colored in purple. Finally, dotted edges depict the remaining edges to the state t in the
fourth layer, which are introduced in order to ensure the probabilities of outgoing edges from each
state sum up to 1.

Construction of kG,k. We set kG,k := 2 + 3 · n2 + k.

Construction of MG,k. Fix an enumeration V = {v1, . . . , vn} of vertices in G. We construct
the Markov chain MG,k = (VG,k, vG,k, δG,k) as follows: The state set VG,k consists of 4
disjoint subsets which we refer to as layers (see Figure 1 for a visualization of layers):

The first layer consists of the initial state vG,k of the Markov chain MG,k, as well as of
n3 states v1

1 , . . . , v1
n3 that form a chain of length n3.

The second layer consists of n chains where each chain has length 3 ·n. For each 1 ≤ i ≤ n

and 1 ≤ j ≤ 3 · n, we use v2
i,j to denote the j-th state along the i-th chain.

The third layer also consists of n chains where each chain has length 3 · n + 1. For each
1 ≤ i ≤ n and 1 ≤ j ≤ 3 · n + 1, we use v3

i,j to denote the j-th state along the i-th chain.
The fourth layer consists of a single state t.

A. Ahmadi et al. 29:7

In addition to transition probabilities defined by the chains specified above, the probabilistic
transition relation δG,k is defined as follows:

The last vertex in the chain in the first layer is connected to the vertex t in the fourth
layer by an edge of probability 1, i.e. δG,k(v1

n3)(t) = 1.
The initial state vG,k is connected to the first state of each chain in the second layer and
each chain in the third layer by an edge of probability p1 = 1

n3 , i.e. δG,k(vG,k)(v2
i,1) =

δG,k(vG,k)(v3
i,1) = 1

n3 for each 1 ≤ i ≤ n.
For each 1 ≤ i ≤ n, the last state in the i-th chain in the second layer is connected to the
first states of all but the i-th chain in the third layer by an edge of probability p2 = 1

n10 ,
i.e. δG,k(v2

i,3·n)(v3
j,1) = 1

n10 for each j ̸= i.
For each edge (vi, vj) in graph G with i < j, the last state of the i-th chain in the second
layer and the first state of the j-th chain in the third layer are connected by an edge of
probability p3 = 1

n50 , i.e. δG,k(v2
i,3·n)(v3

j,1) = 1
n50 .

The initial state vG,k is connected to the first state v1
1 of the chain of length n3 in the first

layer by an edge of probability ϵ − ϵM where ϵM = n · p1 + (n − k) · (n − k − 1) · p1 · p2, i.e.
δG,k(vG,k)(v1

1) = ϵ − ϵM . By our choices of p1 and p2, one can see that ϵM ≤ 2
n2 ≤ 1

n < ϵ

since we assume that n > 1
ϵ > 1.

Vertex t in the fourth layer has a probability 1 self-loop, i.e. δG,k(t)(t) = 1.
Finally, for each vertex for which the probabilities of outgoing edges do not sum up to 1,
we introduce an additional edge to t of the probability needed to make this sum equal to
1. This ensures that our construction of MG,k indeed yields a Markov chain.

MG,k contains n3 + 6 · n2 + n + 2 vertices and transition probabilities are of size polynomial
in n, hence the size of MG,k is polynomial in the size of G and k.

Correctness of reduction. To prove correctness of the reduction, it remains to show that
(G, k) ∈ Vertex-Coverif and only if (MG,k, kG,k) ∈ Coreϵ.

First, suppose that (G, k) ∈ Vertex-Coverand let K ⊆ V be a vertex cover of size k in
G. Then, letting

C = {vG,k, t} ∪ {v3
i,1, . . . , v2

i,3n+1 | vi ∈ K} ∪ {v2
i,1, . . . , v3

i,3n | vi ̸∈ K}

defines an (ϵ, kG,k)-core in MG,k. Indeed, we have that |C| = 2+k · (3 ·n+1)+(n−k) ·3 ·n =
2 + 3 · n2 + k = kG,k and due to our choice of ϵM one can verify by inspection that the
probability of leaving C in MG,k is exactly equal to ϵ.

Second, we prove that (MG,k, kG,k) ∈ Coreϵ implies (G, k) ∈ Vertex-Coverby making
a series of observations which will together imply the claim. Define a Markov chain M̄G,k from
MG,k by removing the chain v1

1 , . . . , v1
n3 from the first layer and increasing the probability of

the transition from the initial state vG,k to the state t in the fourth layer by ϵ − ϵM .

▶ Observation 2. MG,k contains an (ϵ, kG,k)-core if and only if M̄G,k contains an (ϵM , kG,k)-
core. Thus, it suffices to show that (M̄G,k, kG,k) ∈ CoreϵM

implies (G, k) ∈ Vertex-Cover.

To see this, note that n3 > kG,k = 2 + 3 · n2 + k as we assume that n ≥ 4 and k ≤ n.
Hence, no (ϵ, kG,k)-core in MG,k can contain the whole chain v1

1 , . . . , v1
n3 and the probability

of visiting a state in v1
1 , . . . , v1

n3 that is not contained in a (ϵ, kG,k)-core is always equal to
ϵ − ϵM . Hence, any (ϵ, kG,k)-core in MG,k can be modified into an (ϵ, kG,k)-core that contains

FSTTCS 2022

29:8 Algorithms and Hardness Results for Computing Cores of Markov Chains

no state in the chain v1
1 , . . . , v1

n3 by removing all states from the chain. The set of states
contained in this new core would give rise to an (ϵM , kG,k)-core in M̄G,k. Conversely, a set of
states that form an (ϵM , kG,k)-core in M̄G,k also form an (ϵ, kG,k)-core in MG,k. This proves
Observation 2.

▶ Observation 3. If C is an (ϵM , kG,k)-core in M̄G,k, then removing states of all chains in
the second and all chains in the third layer that are not entirely contained in C also gives
rise to an (ϵM , kG,k)-core.

To see this, observe that each edge between two successive states in a chain has probability
1, therefore if the whole chain is not contained in C then one may remove all states of that
chain from C without increasing the probability of a random infinite path in M̄G,k leaving
C. Hence, removal of such states from C gives rise to an (ϵM , kG,k)-core.

▶ Observation 4. If M̄G,k contains an (ϵM , kG,k)-core, then it also contains an (ϵM , kG,k)-
core that consists of the initial state vG,k, the state t and all states of exactly n chains.
Furthermore, at most k of these chains are contained in the third layer.

Consider an (ϵM , kG,k)-core in M̄G,k. The initial state vG,k is contained in the core as
otherwise the probability of leaving the core would be 1 > ϵM . Moreover, a random infinite
path in M̄G,k reaches t with probability 1 so as ϵM < 1 the state t must also be in the
core. Hence, there are at most kG,k − 2 = 3 · n2 + k remaining states in the core. Now,
by Observation 3, we may remove states of chains that are not fully contained in the
core to obtain an (ϵM , kG,k)-core whose remainder consists only of whole chains. Since
chains have length 3 · n or 3 · n + 1 and 3 · n · (n + 1) > 3 · n2 + k, the core must contain
states of at most n chains. On the other hand, a random infinite path in M̄G,k leaves the
core with probability at least p1 for every chain not fully contained in the core. So as
(n + 1) · p1 > n · p1 + (n − k) · (n − k − 1) · p1 · p2 = ϵM due to p2 = 1

n10 , we may conclude
that the core must contain all states from at least n chains as otherwise the probability of
leaving the core via an edge of probability p1 would be at least (n + 1) · p1. Thus, the core
must consist of vG,k, t and all states in exactly n chains. Finally, since the core is of size at
most kG,k = 3 · n2 + k + 2 and it must contain vG,k and t, we conclude that at most k of
these chains are from the third layer. This proves Observation 4.

▶ Observation 5. If M̄G,k contains an (ϵM , kG,k)-core, then it also contains an (ϵM , kG,k)-
core such that, for each 1 ≤ i ≤ n, the core contains either all states from the i-th chain in
the second layer or all states from the i-th chain in the third layer.

Let C be a set of states in M̄G,k that contains vG,k, t and all states of exactly n chains where
at most k chains are in the third layer. Observation 4implies that at least one core of such
form exists whenever M̄G,k contains an (ϵM , kG,k)-core. We show that, if C did not satisfy
the property in Observation 5, then the probability of leaving C would strictly exceed ϵM

and thus it would not be an (ϵM , kG,k)-core in M̄G,k. First, by our constructions of MG,k

and M̄G,k, for each chain in M̄G,k the probability of an edge from the initial state vG,k to
the first state in the chain is equal to p1. Hence, since we assume that C contains exactly n

chains and does not contain any states in the remaining n chains, the probability of leaving
the core in exactly one step is n · p1. On the other hand, for each 1 ≤ i ≤ n, the probability
of first entering the i-th chain in the second layer and then moving to a chain in the third
layer that is not contained in C is at least:

A. Ahmadi et al. 29:9

(n − k) · p1 · p2, if the i-th chain in the third layer is also contained in C;
(n − k − 1) · p1 · p2, otherwise.

This is because C contains at most k chains in the third layer, and the last state in the i-th
chain in the second layer is connected to the first states of all but the i-th chains in the third
layer by an edge of probability p2. Therefore, as C contains at least n−k chains in the second
layer, we conclude that the probability of leaving C is at least n·p1+(n−k)·(n−k−1)·p1 ·p2 =
ϵM , with the equality attained if and only if there is no 1 ≤ i ≤ n for which both the i-th
chain in the second layer and the i-th chain in the third layer are contained in C. Due to the
assumption that C contains all states of exactly n chains, it follows that for each 1 ≤ i ≤ n

the set C should contain either the i-th chain in the second layer or the i-th chain in the
third layer for the probability of leaving C not to exceed ϵM . This concludes the proof of
Observation 5.

▶ Observation 6. If M̄G,k contains an (ϵM , kG,k)-core, then it also contains an (ϵM , kG,k)-
core C for which there does not exist an edge in M̄G,k of probability p3 whose source state is
in C but target state is not in C.

Suppose that M̄G,k contains an (ϵM , kG,k)-core. Let C be an (ϵM , kG,k)-core in M̄G,k which
satisfies the properties in Observation 5. It follows from the proof of Observation 5that the
probability of a random infinite path in M̄G,k leaving C must be exactly ϵM and that this
probability is attained solely by taking edges of probabilities p1 and p2. Hence, there may
not exist an edge in M̄G,k of probability p3 whose source state is in C but target state is not
in C, which proves Observation 6.

▶ Observation 7. If M̄G,k contains an (ϵM , kG,k)-core then G has a vertex cover of size k.
Hence, from Observation 1 we may conclude that (MG,k, kG,k) ∈ Coreϵ implies (G, k) ∈
Vertex-Cover.

Let C be an (ϵM , kG,k)-core in M̄G,k that satisfies the properties in the previous observations.
We use it to construct a vertex cover of size at most k in G and therefore prove Observation 7.
Observations 4and 5imply that C must contain vG,k, t and all states of exactly n chains
of which at most k are in the third layer, such that for each 1 ≤ i ≤ n, C contains either
the i-th chain in the second layer or the i-th chain in the third layer. Furthermore, by
Observation 6there does not exist an edge in M̄G,k of probability p3 whose source state is in
C but target state is not in C. But, by our construction of MG,k and M̄G,k, recall that we
have an edge of probability p3 from the last state in the i-th chain in the second layer to the
first state of the j-th chain in the third layer if and only if i < j and (vi, vj) is an edge in
G. For this not to be an edge whose source state is contained in C but target state is not
contained in C, we must either have that the i-th chain in the second layer is not contained
in C and therefore the i-th chain in the third layer is contained in C, or that the i-th chain
in the second layer and the j-th chain in the third layer are both contained in C. Thus, for
each edge (vi, vj) in G with i < j, the core C should contain at least one of the i-th chain in
the third layer or the j-th chain in the third layer. Therefore, as a core must contain at most
k chains in the third layer, defining

K = {i ∈ {1, . . . , n} | C contains the i-th chain in the third layer}.

gives rise to a vertex cover of size at most k in G. This concludes the proof. ◀

FSTTCS 2022

29:10 Algorithms and Hardness Results for Computing Cores of Markov Chains

Theorem 1 shows that the problem of deciding whether a Markov chain contains an ϵ-core
of at most the given size k is NP-complete. Furthermore, Markov chains MG,k constructed
in the proof of Theorem 1 are acyclic. This is because edges in MG,k only connect states
from lower indexed layers to states in upper indexed layers, and the only cycle contained
within a layer is a probability 1 self-loop at the state t in the fourth layer.

In the following theorem, we show that the Coreϵ problem remains NP-complete even
if we restrict it to acyclic Markov chains that furthermore have maximal vertex degree of
at most 3. Hence, even parametrizing Markov chains by the maximal vertex degree would
not make the problem solvable in polynomial time, which indicates that the problem of
computing cores of at most a given size is computationally a very challenging problem. While
Theorem 8 generalizes the result of Theorem 1, the reason why we present them separately is
that the construction in the proof of Theorem 8 is more complicated than that in Theorem 1.
To that end, we only note that the proof of Theorem 8 modifies the construction of Theorem 1
in a way which bounds the maximal vertex degree of MG,k, and we defer the details of this
modification to Appendix A.

▶ Theorem 8 (Proof in Appendix A). For an ϵ ∈ (0, 1), let Core∗
ϵ be the language defined as{

(M, k) | M is an acyclic Markov chain of maximal

vertex degree ≤ 3 that contains an (ϵ, k)-core
}

.

Then, Core∗
ϵ is NP-complete for any ϵ ∈ (0, 1).

4 A PTIME Algorithm for Optimal Cores in MCs over CFGs

In this section, we provide a PTIME algorithm that, given a threshold ϵ ∈ (0, 1) and a
Markov chain M over the control-flow graph of a program P , outputs an optimal ϵ-core of
M, i.e. an ϵ-core of minimum possible size. As mentioned in Section 1, MCs over CFGs are
naturally obtained whenever (statistical) branch prediction is applied to a program. As such,
finding a core in such MCs can directly help find a set of lines in the program that covers the
vast majority of the runs and is left with very low probability. Any desired static analysis
can then be limited to the lines in the core, leading to rigorous probabilistic bounds for the
desired property. MCs over CFGs have also been studied in [1].

Before presenting our algorithm, in Section 4.1 we first formally present a grammar for
an imperative probabilistic programming language that can define both P and M at the
same time. We then present our PTIME algorithm in Section 4.2.

4.1 Markov Chains Induced by Probabilistic Programs
Syntax Grammar. We consider a fragment of finite state first-order imperative probabilistic
programs defined by the following grammar:

⟨prog⟩ = atomic
| if prob(p) ⟨prog⟩ else ⟨prog⟩
| while prob(p) do ⟨prog⟩
| ⟨prog⟩ ; ⟨prog⟩

(1)

A. Ahmadi et al. 29:11

In both the second and the third case, p ∈ (0, 1) is a probability parameter. The first
case considers trivial programs that execute a single statement and immediately terminate.
The second case considers probabilistic if-branching, where the control-flow follows the
if-branch and executes the first program with probability p, and it follows the else-branch and
executes the second program with probability 1 − p. The third case considers a construct for
probabilistic loops, where, in each iteration, the control-flow enters the loop and executes the
inner-nested program with probability p upon which it returns to the loop entry, and it leaves
the loop and terminates with probability 1 − p. Finally, the fourth case considers sequential
composition of two programs, where the second program is executed upon termination of the
first program.

In Markov chains induced by probabilistic programs, in addition to the initial state we
also assume the existence of a designated terminal state. Thus, for the rest of this section,
we slightly modify our definition of Markov chains in Section 2 and define them as tuples
M = (V, s, δ, t), where the last element t ∈ V denotes the terminal state.

MCs induced by Probabilistic Programs. We now formally define how a probabilistic pro-
gram generated by the above syntax grammar induces a Markov chain. Given a probabilistic
program P , consider its parse tree according to the grammar. In order to define the Markov
chain MP that is induced by P , we start by constructing a Markov chain associated to each
leaf node in the parse tree and traverse the parse tree bottom-up in order to construct Markov
chains associated to parent programs. The Markov chain MP associated to the probabilistic
program P is then defined to be the Markov chain associated to the root program in the
parse tree.

MCs for Leaves. The leaves of the parse tree are trivial atomic statements. A Markov
chain associated to an atomic statement is defined via Matomic = (Vatomic, s, δatomic, t), where

The state space consists of two states Vatomic = {s, t}, and
the probabilistic transition function is defined via δatomic(s)(t) = δatomic(t)(t) = 1.

Non-leaf nodes in the parse tree correspond to subprograms that are obtained either
by probabilistic if-branching, probabilistic loops or sequential composition constructs. We
consider each of the three cases and describe how a Markov chain associated to a parent
node program is constructed from Markov chains associated to the children node programs.

Branching Nodes. Suppose that a parent node program is given by

if prob(p) prog1 else prog2,

and let M1 = (V1, s1, δ1, t1) and M2 = (V2, s2, δ2, t2) be the Markov chains associated to
prog1 and prog2, respectively. To construct the Markov chain associated to the parent
node program, we introduce two new states s and t and consider M = (V, s, δ, t), where
V = {s, t} ∪ V1 ∪ V2 and δ : V → D(V) is defined via

δ(s)(s1) = p, δ(s)(s2) = 1 − p,
δ(v) = δ1(v) for each v ∈ V1\{t1},
δ(v) = δ2(v) for each v ∈ V2\{t2},
δ(t1)(t) = δ(t2)(t) = 1, and
δ(t)(t) = 1.

FSTTCS 2022

29:12 Algorithms and Hardness Results for Computing Cores of Markov Chains

Intuitively, the Markov chain M has initial state s from which a random infinite path either
moves to the initial state s1 of M1 with probability p, or to the initial state s2 of M2 with
probability 1−p. Then, upon reaching terminal states t1 of M1 or t2 of M2, a random infinite
path moves to the terminal state t of M and stays there indefinitely due to the probability 1
self-loop.

Loop Nodes. Suppose that a parent node program is given by

while prob(p) do prog1 ,

and let M1 = (V1, s1, δ1, t1) be the Markov chains associated to prog1. To construct the
Markov chain associated to the parent node program, we introduce two new states s and t

and consider M = (V, s, δ, t), where V = {s, t} ∪ V1 and δ : V → D(V) is defined via
δ(s)(s1) = p, δ(s)(t) = 1 − p,
δ(v) = δ1(v) for each v ∈ V1\{t1},
δ(t1)(s) = 1, and
δ(t)(t) = 1.

Intuitively, the Markov chain M has initial state s from which a random infinite path either
moves to the initial state s1 of M1 with probability p, or to the terminal state t of M with
probability 1 − p where it stays indefinitely due to the probability 1 self-loop. Then, upon
reaching terminal states t1 of M1, a random infinite path moves to the initial state s of M

with probability 1.

Sequential Composition Nodes. Finally, suppose that a parent node program is

prog1 ; prog2,

and let M1 = (V1, s1, δ1, t1) and M2 = (V2, s2, δ2, t2) be the Markov chains associated to
prog1 and prog2, respectively. To construct the Markov chain associated to the parent
node program, we introduce two new states s and t and consider M = (V, s, δ, t), where
V = {s, t} ∪ V1 ∪ V2 and δ : V → D(V) is defined via

δ(s)(s1) = 1, δ(t1)(s2) = 1, δ(t2)(t) = 1,
δ(v) = δ1(v) for each v ∈ V1\{t1},
δ(v) = δ2(v) for each v ∈ V2\{t2}, and
δ(t)(t) = 1.

Intuitively, the Markov chain M has initial state s from which a random infinite path with
probability 1 moves to the initial state s1 of M1. Then, upon reaching the terminal state t1

of M1, it with probability 1 moves to the initial state s2 of M2. Finally, upon reaching the
terminal state t2 of M2, it with probability 1 moves to the terminal state t of M where it
stays indefinitely due to the probability 1 self-loop.

It is easy to see that the Markov chains obtained above are over the CFG of their
corresponding program and that, conversely, any MC over a CFG can be obtained by a
probabilistic program generated by our grammar.

A. Ahmadi et al. 29:13

4.2 PTIME Algorithm for Optimal Core Computation
We now present our polynomial time algorithm for computing the size of a smallest ϵ-core in
a Markov chain induced by a probabilistic program generated by the syntax grammar in
Equation (1). Given ϵ ∈ [0, 1] and a probabilistic program P that can be generated by the
grammar in Equation (1), our algorithm first constructs its parse tree TP . It then performs
dynamic programming on the parse tree. In particular, it traverses the parse tree bottom-up
and for each subprogram P ′ with associated Markov chain MP ′ it computes a sequence of
non-negative real numbers (aP ′ [0], aP ′ [1], . . . , aP ′ [|VP ′ |]), where |VP ′ | is the number of states
in MP ′ and

aP ′ [k] = min
{

ϵ′ ≥ 0 | MP ′ contains an (ϵ′, k)-core
}

for each 0 ≤ k ≤ |VP ′ |. In other words, the k-th entry in the sequence is the minimal
probability threshold ϵ′ ≥ 0 with which a set of k states in the Markov chain MP ′ may be left.
Then, once it has computed the sequence (aP [0], . . . , aP [|VP |]) for the root node program P ,
the algorithm can immediately conclude that the minimal size of an ϵ-core in P is

kmin = min
{

1 ≤ k ≤ |VP | | aP [k] ≤ ϵ
}

.

In what follows, we describe how our algorithm computes such a sequence for each program
in the parse tree TP of P . We then prove the correctness of our algorithm and that it runs
in polynomial time.

Dynamic Programming on the Parse Tree. The algorithm starts by computing the sequence
(aP ′ [0], aP ′ [1], . . . , aP ′ [|VP ′ |]) from each leaf node program P ′ in the parse tree, upon which
it traverses the parse tree bottom-up in order to compute the sequence for each node in the
tree. We now describe the dynamic programming steps for each construct type in the syntax
grammar:

Atomic statement at a leaf node. Recall that the Markov chain associated to an
atomic statement is defined via Matomic = (Vatomic, s, δatomic, t) with Vatomic = {s, t} and
δatomic(s)(t) = δatomic(t)(t) = 1. Hence, its state space consists of 2 states and its sequence
(aatomic[0], aatomic[1], aatomic[2]) is defined via

aatomic[k] =

1, k = 0, 1
0, k = 2

One can easily verify by inspection that each aatomic[k] is indeed the minimal probability
with which a set of k states in Matomic may be left.
Probabilistic if-branching node. Consider now the parse tree node that corresponds to the
probabilistic if-branching

prog = if prob(p) prog1 else prog2,

and let (aprog1 [0], . . . , aprog1 [|V1|]) and (aprog2 [0], . . . , aprog2 [|V2|]) be the sequences that
the algorithm has computed for the child node programs prog1 and prog2 in the parse
tree TP . The algorithm then sets

aprog[k] =

1, k = 0, 1
minj1,j2≥0,j1+j2=k−2

(
p · aprog1 [j1] + (1 − p) · aprog2 [j2]

)
, k ≥ 2

FSTTCS 2022

29:14 Algorithms and Hardness Results for Computing Cores of Markov Chains

To see that this formula indeed defines the minimal probability with which a set of k states
in the Markov chain Mprog of prog may be left, note that for any positive probability
threshold ϵ′ > 0, an ϵ′-core in Mprog must contain the source state, the terminal state and
the total of k − 2 states in the Markov chains Mprog1 of prog1 and Mprog2 of prog2. Thus,
if we denote by j1 and j2 the number of these k − 2 states that are contained in Mprog1

and Mprog2 , by the correctness of the algorithm for child node programs we conclude that
the above formula minimizes the probability with which a set of k states in the Markov
chain Mprog of prog may be left.
Probabilistic loop node. Next, consider the parse tree node that corresponds to the
probabilistic loop

prog = while prob(p) do prog1 ,

and let (aprog1 [0], . . . , aprog1 [|V1|]) be the sequence that the algorithm has computed for
the child node program prog1 in the parse tree TP . The algorithm sets

aprog[k] =

1, k = 0, 1
p·aprog1 [k−2]

1−p·(1−aprog1 [k−2]) , k ≥ 2

To see that this formula defines the minimal probability with which a set of k states
in the Markov chain Mprog of prog may be left, note that for any positive probability
threshold ϵ′ > 0, an ϵ′-core in Mprog must contain the source state, the terminal state
and the total of k − 2 states in the Markov chain Mprog1 of prog1. The algorithm starts
each new loop iteration with probability p, and by the correctness of the algorithm for
the root node program we know that in each loop iteration it leaves the set of k − 2 states
in Mprog1 with probability at most aprog1 [k − 2]. Hence, by summing up the geometric
series, we conclude that a set of k states in the Markov chain Mprog of prog may be left
with probability at most

p · aprog1 [k − 2] ·
∞∑

i=0

(
p · (1 − aprog1 [k − 2])

)i

=
p · aprog1 [k − 2]

1 − p · (1 − aprog1 [k − 2]) .

Sequential decomposition node. Finally, consider the parse tree node that corresponds to
the sequential composition

prog = prog1 ; prog2,

and let (aprog1 [0], . . . , aprog1 [|V1|]) and (aprog2 [0], . . . , aprog2 [|V2|]) be the sequences that
the algorithm has computed for the child node programs prog1 and prog1 in the parse
tree TP . The algorithm sets

aprog[k] =

1, k = 0, 1
minj1,j2≥0,j1+j2=k−2

(
aprog1 [j1] + (1 − aprog1 [j1]) · aprog2 [j2]

)
, k ≥ 2

To see that this formula indeed defines the minimal probability with which a set of k states
in the Markov chain Mprog of prog may be left, note that for any positive probability
threshold ϵ′ > 0, an ϵ′-core in Mprog must contain the source state, the terminal state and
the total of k − 2 states in the Markov chains Mprog1 of prog1 and Mprog2 of prog2. Thus,

A. Ahmadi et al. 29:15

if we denote by j1 and j2 the number of these k − 2 states that are contained in Mprog1

and Mprog2 , by the correctness of the algorithm for child node programs we conclude that
the above formula minimizes the probability with which a set of k states in the Markov
chain Mprog of prog may be left.

Analysis of each case above and induction on the depth of the parse tree TP allows us to
conclude the following theorem.

▶ Theorem 9. Let P be a probabilistic program generated by the syntax grammar in
Equation (1) and let MP be the Markov chain induced by P with state space VP . Let
(aP [0], . . . , aP [|VP |]) be the sequence that the algorithm computes for the program P . Then,
for each 0 ≤ k ≤ |VP |, it holds that

aP [k] = min
{

ϵ′ ≥ 0 | MP contains an (ϵ′, k)-core
}

.

Note that this immediately shows the correctness of our algorithm.

Runtime Analysis. Let n = |MP | be the size of the Markov chain induced by a probabilistic
program P . Note that our dynamic programming algorithm processes each node in the parse
tree TP in O(n2) time. Hence, as the size of the parse tree is linear in n, we conclude that
the algorithm runs in O(n3) time and therefore has polynomial runtime in the size of the
underlying Markov chain. Moreover, note that the n in turn is linear in the size of the parse
tree which is linear in the size of the program code.

5 Conclusion

An ϵ-core in a Markov chain is a set of states that is left by a random run with probability
at most ϵ. In this work, we considered the problem of finding an optimal (smallest) ϵ-core
in a given Markov chain M . For every ϵ ̸∈ {0, 1}, we proved that the problem is NP-hard.
Moreover, this NP-hardness is preserved even when we limit our instances to acyclic MCs
with bounded degree 3. Our NP-hardness result answered an open problem posed by [26].
We then showed that for Markov chains over control-flow graphs of structured programs,
the problem can be solved in PTIME. In summary, our results demonstrate that there is no
efficient algorithm for the general case of the problem unless P=NP, and hence practitioners
should use sampling and partial-exploration algorithms with no theoretical guarantees of
optimality, such as the one provided by [26]. However, in the important special case of MCs
over CFGs, a PTIME algorithm exists.

References
1 Ali Asadi, Krishnendu Chatterjee, Amir Kafshdar Goharshady, Kiarash Mohammadi, and

Andreas Pavlogiannis. Faster algorithms for quantitative analysis of MCs and MDPs with
small treewidth. In ATVA, pages 253–270, 2020.

2 Pranav Ashok, Yuliya Butkova, Holger Hermanns, and Jan Kretínský. Continuous-time
Markov decisions based on partial exploration. In ATVA, pages 317–334, 2018.

3 Pranav Ashok, Krishnendu Chatterjee, Przemyslaw Daca, Jan Kretínský, and Tobias Meggen-
dorfer. Value iteration for long-run average reward in Markov decision processes. In CAV,
pages 201–221, 2017.

4 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.

FSTTCS 2022

29:16 Algorithms and Hardness Results for Computing Cores of Markov Chains

5 Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. Relat-
ively complete verification of probabilistic programs: an expressive language for expectation-
based reasoning. In POPL, 2021.

6 Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt, Jan Kretínský,
Marta Z. Kwiatkowska, David Parker, and Mateusz Ujma. Verification of Markov decision
processes using learning algorithms. In ATVA, pages 98–114, 2014.

7 Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. Termination analysis of
probabilistic programs through positivstellensatz’s. In CAV, pages 3–22, 2016.

8 Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. Non-polynomial worst-
case analysis of recursive programs. In CAV, pages 41–63, 2017.

9 Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. Non-polynomial worst-
case analysis of recursive programs. ACM Trans. Program. Lang. Syst., 41(4):20:1–20:52,
2019.

10 Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Nastaran Okati. Compu-
tational approaches for stochastic shortest path on succinct MDPs. In IJCAI, pages 4700–4707,
2018.

11 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, and Yaron Velner.
Ergodic mean-payoff games for the analysis of attacks in crypto-currencies. In CONCUR,
pages 11:1–11:17, 2018.

12 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić.
Sound and complete certificates for quantitative termination analysis of probabilistic programs.
In CAV, 2022.

13 Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Arash Pourdamghani. Probabilistic
smart contracts: Secure randomness on the blockchain. In ICBC, pages 403–412, 2019.

14 Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Yaron Velner. Quantitative analysis
of smart contracts. In ESOP, volume 10801, pages 739–767, 2018.

15 Krishnendu Chatterjee, Ehsan Kafshdar Goharshady, Petr Novotný, Jiri Zárevúcky, and Ðorđe
Žikelić. On lexicographic proof rules for probabilistic termination. In FM, volume 13047 of
Lecture Notes in Computer Science, pages 619–639. Springer, 2021.

16 Krishnendu Chatterjee, Petr Novotný, and Ðorđe Žikelić. Stochastic invariants for probabilistic
termination. In POPL, pages 145–160, 2017.

17 Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A storm is
coming: A modern probabilistic model checker. In CAV, pages 592–600, 2017.

18 Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, 2009.

19 Paul A Gagniuc. Markov chains: from theory to implementation and experimentation. Wiley,
2017.

20 Daniel T Gillespie. A general method for numerically simulating the stochastic time evolution
of coupled chemical reactions. Journal of computational physics, 22(4):403–434, 1976.

21 S. Gómez, A. Arenas, J. Borge-Holthoefer, S. Meloni, and Y. Moreno. Discrete-time Markov
chain approach to contact-based disease spreading in complex networks. EPL, 89(3), 2010.

22 Mingzhang Huang, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady.
Modular verification for almost-sure termination of probabilistic programs. In OOPSLA, pages
129:1–129:29, 2019.

23 Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting
in partially observable stochastic domains. Artif. Intell., 101(1-2):99–134, 1998.

24 Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. On the hardness of
analyzing probabilistic programs. Acta Informatica, 56(3):255–285, 2019.

A. Ahmadi et al. 29:17

25 Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Temporal-logic-based reactive
mission and motion planning. IEEE Trans. Robotics, 25(6):1370–1381, 2009.

26 Jan Kretínský and Tobias Meggendorfer. Of cores: A partial-exploration framework for Markov
decision processes. Log. Methods Comput. Sci., 16(4), 2020.

27 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In CAV, pages 585–591, 2011.

28 Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof for Probabilistic
Systems. Monographs in Computer Science. Springer, 2005.

29 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. CRC Press, 1999.
30 Johan Paulsson. Summing up the noise in gene networks. Nature, 427(6973):415–418, 2004.
31 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley, 1994.
32 Henry Gordon Rice. Classes of recursively enumerable sets and their decision problems.

Transactions of the American Mathematical society, 74(2):358–366, 1953.
33 James E. Smith. A study of branch prediction strategies. In ISCA, pages 202–215, 1998.
34 Jana Wagemaker, Nate Foster, Tobias Kappé, Dexter Kozen, Jurriaan Rot, and Alexandra

Silva. Concurrent NetKAT – modeling and analyzing stateful, concurrent networks. In ESOP,
pages 575–602, 2022.

35 Jinyi Wang, Yican Sun, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady.
Quantitative analysis of assertion violations in probabilistic programs. In PLDI, pages 1171–
1186. ACM, 2021.

36 Peixin Wang, Hongfei Fu, Amir Kafshdar Goharshady, Krishnendu Chatterjee, Xudong Qin,
and Wenjun Shi. Cost analysis of nondeterministic probabilistic programs. In PLDI, pages
204–220. ACM, 2019.

A Proof of Theorem 8

In Theorem 1, we showed that Coreϵ is contained in NP. Hence, as acyclic and the maximal
vertex degree conditions may be checked in linear time, we conclude that Core∗

ϵ is also
in NP.

To prove that Core∗
ϵ is NP-hard, we again show a reduction from the Vertex-

Coverproblem. Fix ϵ ∈ (0, 1) and consider an instance (G = (V, E), k) of the Vertex-
Coverproblem where n = |V | > 1

ϵ , n > 20 and n > 1√
1−ϵ

(these assumptions are required
as some inequalities below will only hold for sufficiently large values of n). The reduction is
obtained by modifying our construction of (MG,k, kG,k) in the proof of Theorem 1 in a way
that makes MG,k have the maximal vertex degree of 3 while keeping it acyclic. We denote by
(M∗

G,k, k∗
G,k) the newly constructed Markov chain. In what follows, we outline the differences

in the construction:
Core size. We set k∗

G,k = 4n2 + 4n + k, which is polynomial in the sizes of G and k.
Splitting of the initial state. The initial state vG,k in MG,k is replaced by 2n states
v1,∗

1 , . . . , v1,∗
2n , where the first state v1,∗

1 in the ordering is designated as the initial state of
M∗

G,k. This is done in order to ensure that the maximal vertex degree of each state in
the first layer of the Markov chain M∗

G,k is at most 3. Note, v1,∗
1 , . . . , v1,∗

2n do not form a
chain as the probabilities of transitions between successive states will not be 1.
Then, for each 1 ≤ i ≤ n, we set δG,k(v1,∗

i)(v2
i,1) = p1,i and δG,k(v1,∗

n+i)(v3
i,1) = p1,n+i,

where p1,i and p1,n+i are probabilities that are defined inductively as follows. For i = 1,
we set p1,1 = p1 = 1

n3 . For 2 ≤ i ≤ 2n, we set

FSTTCS 2022

29:18 Algorithms and Hardness Results for Computing Cores of Markov Chains

p1,i = p1∏i−1
j=1(1 − p1,j)

.

Then, connect the last state v1,∗
2n to the first state v1

1 of the chain v1
1 , . . . , v1

n3 of length n3

by an edge with probability

δG,k(v1,∗
2n , v1

1) = ϵ − ϵM∏2n−1
j=1 (1 − p1,j)

so that the probability of reaching the chain of length n3 from the initial state v1,∗
1 is

equal to ϵ − ϵM as in the proof of Theorem 1.
Finally, for each 1 ≤ i < 2n, we set δG,k(v1,∗

i)(v1,∗
i+1) = 1 − p1,i and we set δG,k(v1,∗

2n)(t∗
1) =

1 − p1,2n − ϵ−ϵM∏2n−1
j=1

(1−p1,j)
, where t∗

1 is the first state in the fourth layer that will be defined

in what follows.
To prove that each p1,i ∈ [0, 1], we show by induction on i that p1,i < 1

n2 . Indeed,
p1,1 = 1

n3 < 1
n2 and for i > 1 by induction hypothesis we have

p1,i = p1∏i−1
j=1(1 − p1,j)

≤ p1

(1 − 1/n2)2n
≤ p1

(1 − 1/n)2n

= 1/n3

(1 − 1/n)2n−2(1 − 1/n)2 <
e2

n(n − 1)2 <
1
n2 ,

for n ≥ 20, where we use that (1 − 1/x)−x+1 < e for x > 0.
The choices of probabilities ensure that a random infinite path in M∗

G,k is equally likely to
traverse an edge from a state in the first layer to the first state of each chain in the second
or the third layer and that this happens with probability p1 for each chain. Furthermore,
this construction ensures that each state in the first layer has a vertex degree of at most 3.
Finally, due to the assumption that n > 1√

1−ϵ
which is equivalent to ϵ < 1 − 1

n2 , we have
that the probability of reaching v1,∗

2n from the initial state v1,∗
1 is at least

2n−1∏
i=1

(1 − p1,i) > (1 − 1
n2)2n−1 ≥ 1 − 1

n2 > ϵ,

therefore an ϵ-core in MG,k must contain all states in the sequence v1,∗
1 , . . . , v1,∗

2n .
Extension of sequence lengths. Sequences in the second layer of M∗

G,k have length 4n,
instead of length 3n as was the case in our construction of MG,k. As in the proof of
Theorem 1, for each 1 ≤ i ≤ n and 1 ≤ j ≤ 4n, we use v2

i,j to denote the j-th state
along the i-th sequence. We note that in M∗

G,k these sequences do not form chains as the
probabilities of transitions between successive states will not be 1, as we specify below.
Similarly, sequences in the third layer of M∗

G,k have length 4n + 1 instead of length 3n + 1
as was the case in MG,k and again they do not form chains. For each 1 ≤ i ≤ n and
1 ≤ j ≤ 4n + 1, we use v3

i,j to denote the j-th state along the i-th sequence.
Redistributing transition probabilities p2 in order to bound degrees. Recall, for each 1 ≤
i ≤ n and each j ̸= i, in MG,k we had an edge from v2

i,3n to v3
j,1 with δG,k(v2

i,3n)(v3
j,1) = p2.

We now remove each such edge, and replace it with a new edge from v2
i,j to v3

j,i which
has probability p2,i,j . The new probabilities are defined as follows. For i = j, we set
p2,i,i = 0. Otherwise, we set p2,i,1 = p2 = 1

n10 for each i > 1 and then for j ̸= i and j > 1
we inductively define

A. Ahmadi et al. 29:19

p2,i,j = p2∏j−1
l=1 (1 − p2,i,l)

.

For each 1 ≤ i ≤ n, we prove that each p2,i,j ∈ [0, 1] by showing that each p2,i,j < 1
n9 by

induction on j. Indeed, p2,i,1 = 0 if i = 1 and p2,i,1 = 1
n10 < 1

n9 if i > 1, as n ≥ 20. Then,
for j > 1, by induction hypothesis we have

p2,i,j = p2∏j−1
l=1 (1 − p2,i,l)

≤ p2

(1 − 1/n)n
= 1/n10

(1 − 1/n)n

<
1/n10

(1 − 1/n)n−1(1 − 1/n) <
e

n9(n − 1) <
1
n9 .

Finally, for each v3
i,j with j ≤ n, we set δG,k(v3

i,j)(v3
i,j+1) = 1 − p2,i,j .

This construction ensures that, once a random infinite path in MG,k reaches the first
state v2

i,1 of the i-th chain in the second layer, it is then equally likely to traverse the
sequence v2

i,1, . . . , v2
i,4n up to the j-th state v2

i,j and then to move to the state v3
j,i of the

j-th chain in the third layer and that this happens with probability p2 for each 1 ≤ j ≤ n

with j ̸= i. Furthermore, it ensures that the vertex degrees due to edges of probability p2

from the second to the third layer do not exceed 3.
Redistributing transition probabilities p3 in order to bound degrees. Recall, for each
edge (vi, vj) in G with i < j, in MG,k we had an edge from v2

i,3n to v3
j,1 of probability

δG,k(v2
i,3n)(v3

j,1) = p3 where p3 = 1
n50 .

We now remove this edge and replace them with a new edge from v2
i,n+j to v3

j,n+i of
probability δG,k(v2

i,n+i)(v3
j,n+i) = p3,i,j . These probabilities are defined inductively via

p3,i,j = p3∏n
l=1(1 − p2,i,l)

∏j−1
l=1 (1 − p3,i,l)

for each i < j for which (vi, vj) is an edge in G, with p3,i,j = 0 whenever i ≥ j or when
(vi, vj) is not an edge in G.
For each 1 ≤ i ≤ n, we prove that each p3,i,j ∈ [0, 1] by showing that p3,i,j < 1

n49 by
induction on j. Indeed, p3,i,1 = 0 if (vi, vj) is not an edge in G and p3,i,1 = p3 = 1

n50 < 1
n49

if (vi, vj) is an edge in G as n ≥ 20. Then, for j > 1, by induction hypothesis we have

p3,i,j = p3∏n
l=1(1 − p2,i,l)

∏j−1
l=1 (1 − p3,i,l)

≤ 1/n50

(1 − 1/n)2n

= 1/n50

(1 − 1/n)2n−2(1 − 1/n)2 <
e2

n48(n − 1)2 <
1

n49 .

Together with the splitting of edges of probability p2 that we constructed above, this
construction ensures that, once a random infinite path in MG,k reaches the first state v2

i,1
of the i-th chain in the second layer, it either

traverses the sequence v2
i,1, . . . , v2

i,4n up to the j-th state v2
i,j and then to move to the

state v3
j,i of the j-th chain in the third layer with probability p2 for each j ̸= i, or

it traverses the sequence v2
i,1, . . . , v2

i,4n up to the (n + j)-th state v2
i,n+j and then to

move to the state v3
j,n+i of the j-th chain in the third layer with probability p3 for

each i < j such that (vi, vj) is an edge in G, or

FSTTCS 2022

29:20 Algorithms and Hardness Results for Computing Cores of Markov Chains

it traverses the sequence v2
i,1, . . . , v2

i,4n up to the last state v2
i,4n and then moves to the

first state t∗
n+i in the fourth layer with remaining probability, as specified below.

Furthermore, the construction ensures that the vertex degrees due to edges of probability
p2 and p3 from the second to the third layer do not exceed 3.
The single state t in the fourth layer of MG,k is replaced by a chain of 2n states t∗

1, . . . , t∗
2n,

with a probability 1 self-loop at t∗
2n. For each 1 ≤ i ≤ n, the last state v3

i,4n+1 of the i-th
chain in the third layer is connected to t∗

i by an edge of probability 1. For each 1 ≤ i ≤ n,
the last state v2

i,4n of the i-th chain in the second layer is connected to t∗
n+i by an edge of

probability 1.
Note that M∗

G,k contains n3+8n2+5n states and transition probabilities are of size polynomial
in n, therefore M∗

G,k is polynomial in the size of G and k.

Correctness of reduction. While our modified construction ensures that the maximal vertex
degree in the constructed Markov chain M∗

G,k is equal to 3 and that M∗
G,k remains acyclic,

it preserves the key properties of MG,k about probabilities of moving between different
chains. Therefore, one can follow the sequence of observations in the proof of Theorem 1 and
analogously prove correctness of this modified reduction. Due to the proofs being analogous,
we omit the details.

	Algorithms and hardness results for computing cores of Markov chains
	Citation
	Author

	/var/tmp/StampPDF/2QyC71jrkV/tmp.1722526459.pdf.j44vy

