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Abstract

The log realized volatility of financial assets is often modeled as an autoregressive fractionally
integrated moving average model (ARFIMA) process, denoted by ARFIMA(p, d, q), with p = 1 and
q = 0. Two conflicting results have been found in the literature regarding the dynamics. One stream
shows that the data series has a long memory (i.e., the fractional parameter d > 0) with strong mean
reversion (i.e., the autoregressive coefficient |α1| ≈ 0). The other stream suggests that the volatil-
ity is rough (i.e., d < 0) with highly persistent dynamic (i.e., α1 → 1). To consolidate the findings,
this paper first examines the finite sample properties of alternative estimation methods employed
in the literature for the ARFIMA(1, d, 0) model and then applies the outperforming techniques to
a wide range of financial assets. The candidate methods include two parametric maximum likeli-
hood (ML) methods (the maximum time-domain modified profile likelihood (MPL) and maximum
frequency-domain likelihood) and two semiparametric methods (the local Whittle method and log
periodogram estimation method). The two parametric methods work well across all parameter set-
tings, with the MPL method outperforming. In contrast, the two semiparametric methods have a
very large upward bias for d and an equally large downward bias for α1 when α1 is close to unity. The
poor performance of the semiparametric methods in the presence of a highly persistent dynamic
might lead to a false conclusion of long memory. In the empirical applications, we find that the
log realized volatilities of exchange rate futures over the past decade have a long memory, where
the point estimate of d is between 0.4 and 0.5 and the estimate of α1 is near zero. For other finan-
cial assets considered (including stock indices and industry indices), we find that they have rough
volatility, with the point estimate of d being negative and the point estimates of α1 close to unity.
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1 Introduction

The availability of intraday prices of financial assets fosters the development of high-frequency finan-

cial econometrics, making an accurate measurement of daily ‘realized’ volatility possible. The esti-

mated daily realized volatility (RV) has been shown helpful for various purposes, including forecast-

ing macroeconomic fundamentals (Andersen, Bollerslev, Diebold, and Wu, 2005), making investment

decisions (Fleming, Kirby, and Ostdiek, 2003), pricing options (Christoffersen, Feunou, Jacobs, and

Meddahi, 2014), managing financial risk (Christoffersen and Diebold, 2000), and estimating model

parameters (Tao, Phillips, and Yu, 2019).

It is now well known that the log realized volatility of financial assets exhibits long-range depen-

dence, with its autocorrelation function (ACF) delaying slowly. A class of autoregressive fractionally

integrated moving average (ARFIMA) models, particularly ARFIMA(p, d, q) with p = 1 and q = 0, has

gained much prominence in modeling daily log realized volatility. Suppose the first-order autoregres-

sive coefficient α1 = 0 (i.e., ARFIMA(0, d, 0)). When d > 0, its ACF decays hyperbolically and is not

absolutely summable. On the other hand, when d < 0, the process is anti-persistent, and sample paths

generated from the model are rougher than that when d > 0. The value of the fractional parameter has

important implications for both theoretical and empirical analysis of realized volatility. As such, the

main focus of the literature has been on the estimation of d.

Several estimation techniques for the fractional parameter have been proposed, including the lo-

cal Whittle method (Künsch, 1987; Robinson, 1995a) and the log periodogram estimation method

(Geweke and Porter-Hudak, 1983; Robinson, 1995b). These two methods rely on the asymptotic be-

havior of the spectral density at frequencies near zero (ignoring short-run dynamics) and hence are

often referred to as semiparametric methods. When the semiparametric methods are applied to log

realized volatilities, it is often found that the point estimate of d is around 0.4. See, for example, An-

dersen and Bollerslev (1997), Andersen, Bollerslev, Diebold, and Labys (2001), Andersen, Bollerslev,

Diebold, and Ebens (2001), Andersen, Bollerslev, Diebold, and Labys (2003). Such an estimate implies

that the log realized volatility has a long memory. Further, one could compute the short-run parame-

ter from the prefiltered data (based on the estimated d). The estimated short-run parameter typically

suggests strong mean reversion or weak short-run behavior. For example, if an AR(1) model is fitted to

the filtered data, the estimated AR(1) parameter is often close to zero.

One advantage of the semiparametric methods is their asymptotic robustness to short-run dynam-

ics, as short-run behavior does not change the asymptotic spectral density at near-zero frequencies.

This insensitive relationship, however, does not necessarily hold in finite samples. In particular, when

the autoregressive coefficient α1 is close to unity, the spectral density that ignores the near-unity be-

havior is expected to approximate the actual spectral density poorly, even with a large sample size and

at frequencies near zero. This concern might have important empirical implications.

The ARFIMA(0, d, 0) model is asymptotically equivalent to the fractional Gaussian noise (fGn) with

the Hurst parameter H . In particular, when H = d + 0.5, the ACF of the two models has the same

order as the lag length goes to infinity. It is well known that the fGn is the increment of the fractional

Brownian motion (fBm) whose sample path is (locally) Hölder continuous up to order H . The sample
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path of fBm is rough when H < 0.5 and smooth when H > 0.5. Interestingly, Gatheral, Jaisson, and

Rosenbaum (2018) have found strong evidence of H < 0.5 (i.e., roughness) in the implied volatility

surface obtained from options prices. In the same paper, the fBm with H = 0.14 is used to forecast

RVs and log RVs. It is found that the rough fBm can generate very accurate forecasts out-of-sample.

Evidence of roughness in volatility is also found in Bayer, Friz, and Gatheral (2016) using variance

swaps.

Wang, Xiao, and Yu (2019) consider a fractional Ornstein-Uhlenbeck (fOU) process. Under the in-

fill asymptotic scheme, the exact discrete-time representation of the fOU process is a local-to-unity

(Phillips, 1987) process with fGn.1 A two-stage estimation method is proposed to estimate parameters

in the fOU. The estimated H from several well known daily realized volatility time series is similar to

what Gatheral, Jaisson, and Rosenbaum (2018) find in the risk-neutral measure, i.e.,H < 0.5. The (pre-

imposed) local-to-unity dynamic generates strong persistency that is attenuated by the anti-persistent

error. The fOU process can generate rough sample paths and produce ACF that decays slowly at small

and moderate lags.

Clearly, the empirical evidence for RV found in the discrete-time literature by semiparametric ap-

proaches is at odds with that in the risk-neutral measure with the fBm model and the physical mea-

sure with the fOU model. While the semiparametric methods suggest a process with weak short-run

behavior and long memory errors (referred to as Model 1) for log realized volatilities, the empirical ev-

idence obtained from the fOU model reveals near-unity short-run behavior and anti-persistent errors

(referred to as Model 2).

The main goal of this paper is to consolidate these conflicting empirical findings. To achieve this

goal, we first examine the finite sample properties of different estimation techniques for the ARFIMA(1, d, 0)

model under a wide range of parameter settings. The methods include two parametric maximum like-

lihood (ML) methods (modified profile time-domain likelihood (MPL) and frequency domain or Whit-

tle likelihood) and the two aforementioned semiparametric methods. Importantly, when there is a

near-unity behavior in the short-run dynamics (i.e., α1 is close to 1), the two semiparametric methods

estimate d with a severe upward bias. In particular, if d is negative, the two semiparametric methods

tend to find a positive estimate for d and a near-zero estimate for α1. On the contrary, the two ML

methods can always estimate d and α1 accurately with no noticeable bias and small standard error,

regardless of the value of α1. We provide the theoretical reasons why the two semiparametric methods

estimate d and α1 with severe bias when α1 takes a value close to 1.

The alternative methods are employed to estimate the ARFIMA(1, d, 0) model for the log realized

volatilities of thirteen financial assets for the maximum available sample period in the past decade.

The realized volatilities are computed using the novel quasi-ML (QML) technique proposed by Da and

Xiu (2021), accounting for market microstructure noise and using the highest sampling frequency. The

application reveals very interesting empirical results. The ML methods suggest near-unity short-run

behavior and anti-persistent errors for the log RVs of the five market index futures or ETFs and five

1Similar models have been considered in other papers. For example, Magdalinos (2012) proposes a mildly explosive
autoregressive process with a long memory error (i.e., d ∈ (0, 0.5)). Yu (2021) considers a latent local-to-unity model with
fractionally integrated process.
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industry index ETFs. Specifically, the point estimates of the fractional parameter d are negative (be-

tween−0.482 and−0.262), and the point estimates of the autoregressive coefficient α1 are close to one

(between 0.988 and 0.998). In sharp contrast, from the ML methods, the log RVs of the three exchange

rate futures have a long memory with strong mean-reversion. The point estimates of d are positive,

in the range of (0.438, 0.473), and the estimates of α1 are close to 0, in the range of (−0.075,−0.057).

Regardless of the log RV series, the two semiparametric methods always lead to similar estimates of d

(greater than zero) and α1 (close to zero). These estimation results are consistent with our findings in

the Monte Carlo studies.

Our paper contributes to the literature in two aspects. First, our results help to understand the finite

sample properties of alternative methods in a wide range of parameter values for d and α1. Existing

Monte Carlo studies in the context of ARFIMA(1, d, 0) model set the maximum value of α to 0.8 or

0.9 and the sample size (T ) to 96, 256, 512, or 576; see Smith, Taylor, and Yadav (1997), Nielsen and

Frederiksen (2005), Nadarajah, Martin, and Poskitt (2021). The existing studies found that when α1 =

0.8 or 0.9, there is a substantial upward bias in d with the semiparametric methods. An empirically

more relevant case is when α1 is much closer to unity and the sample size is much larger. We consider

the case of α1 = 0.99 and T = 1024, 2048, in addition to the existing parameter settings. Our simulation

results show that a substantial upward bias in d continues to exist in the semiparametric methods in

these more empirically relevant cases. For example, when α1 = 0.99, the semiparametric methods

yield a positive estimate for d, even when the true value of d is negative. Moreover, we show that the

second-stage estimate of α1 is substantially downward biased. For example, when the true value of

α1 is near unity, the semiparametric methods yield a near-zero estimate for α1. As in Smith, Taylor,

and Yadav (1997) and Nielsen and Frederiksen (2005), we find that the two ML methods can estimate

all parameters accurately with the small standard error and negligible bias. This result holds even

when α1 is closer to unity. Unlike Nielsen and Frederiksen (2005) where the Whittle method is shown

to produce the most accurate estimate for d, we find the MPL works slightly better than the Whittle

method. This difference is likely due to how we calculate the variance-covariance matrix of the model

when implementing the MPL method.

Second, our empirical results help to make sense of the conflicting empirical findings in the RV

literature. Whether the log RV should be captured by Model 1 (i.e., d > 0 and α1 ≈ 0) or Model 2

(i.e., d < 0 and α1 → 1) depends on the asset class at hand. These two models represent the two

local maxima of the likelihood function of the ARFIMA(1, d, 0) model. We find that Model 2 provides

a better fit for the log RVs of market index futures and industry index ETF. This finding is consistent

with what Gatheral, Jaisson, and Rosenbaum (2018) find in the risk-neutral measure and what Wang,

Xiao, and Yu (2019) find in the physical measure. Meanwhile, Model 1 captures the dynamics of the

log RV of exchange rate futures better than Model 2. This result is consistent with what Andersen and

Bollerslev (1997), Andersen, Bollerslev, Diebold, and Labys (2001), Andersen, Bollerslev, Diebold, and

Labys (2003) find for the log RVs of exchange rates.

The paper is organized as follows. Section 2 introduces the realized volatility estimators. Section

3 presents the model specification and reviews some statistical properties of the model. Section 4
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introduces alternative estimation methods. Section 5 presents the simulation designs and reports the

finite sample properties of alternative estimation approaches. Section 6 reports empirical results when

the ARFIMA(1, d, 0) model is fitted to the log RVs of a wide range of financial assets over the past decade.

Section 7 concludes. The Appendix reviews a technique, known as tapering, for the Whittle and the

local Whittle methods and examines their finite sample performance.

2 Realized Volatility

Suppose the observed log asset prices consist of two components:

Xo
t = Xt + Ut,

where Xt is the underlying log efficient price and Ut is the noise component. The underlying price is

assumed to be an Itó-semimartingale process defined on some filtered probability space (Ω,F , (Ft) ,P)

and satisfies

Xt = X0 +

∫ t

0
µsds+

∫ t

0
σsdWs +

(
δ1{|δ|≤1} ∗ (η − υ)

)
t
+
(
δ1{|δ|>1}

)
µt, (1)

where µt and σt are adapted and locally bounded, W is a standard Brownian motion, η is a Poisson

random measure on R+×E with a non-random intensity measure υ (dt, ds) = dt⊗λ (ds), and λ is a σ-

finite measure on (E, ξ) which is a Polish space. The last two components of (1) capture the dynamics

of jumps. The noise process Ut is assumed to have flexible serial correlations, modeled as an MA(∞)

process. See, for example, Jacod, Li, and Zheng (2017) or Da and Xiu (2021) for more details of the

assumptions.

Assume data are observed at a regular frequency. Let t = 1, · · · , T and n = T/δ be the total number

of intra-day observations available within sample period, where δ is the distance between two consec-

utive observations. The traditional realized volatility is constructed as

RVt =

1/δ∑
i=2

(
∆Xo

t,i

)2
, with ∆Xo

t,i = Xo
t,i −Xo

t,i−1, (2)

where Xo
t,i is the observed ith log prices at period t. In the absence of noise Ut and jumps, the realized

volatility is shown to be a consistent estimator of the integrated volatility and converges to a normal

distribution such that

δ−1/2

(
RVt −

∫ t

t−1
σ2
sds

)
→d N

(
0,

∫ t

t−1
σ4
sds

)
. (3)

It is well known that the realized volatility estimator is inconsistent when the data is contaminated

by market microstructure noises and jumps. The literature on noise-robust volatility estimators is

enormous. See Da and Xiu (2021) for a brief review.

One of the most recent contribution in this literature is made by Da and Xiu (2021), who develop a
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quasi-ML (QML) approach providing uniform valid inference on volatility under the extremely general

model setting (1). The likelihood function is taken from a much simplified process, assuming the effi-

cient price follows a Brownian motion with constant volatility and a Gaussian MA(q) noise component.

The QML estimator of the volatility, denoted by σ̂2 (q̂) with q̂ obtained from the Akaike information cri-

terion, is shown to converges to the following quantity

Ct = δ

∫ t

t−1
σ2
sds+

1/δ∑
i=2

(∆Xt,i)
2

 ,
which comprises both continuous (integrated variance) and discontinuous (jump) components. The

QML realized volatility estimator has an asymptotically normal distribution. The convergence rate

depends on the magnitude of the noise component. Further, the QML estimator is shown to pro-

vide more accurate estimation results than other noise-robust volatility estimators (including the tra-

ditional RV obtained from returns sampled at the 5-minute frequency, the pre-averaging method of

Jacod, Li, and Zheng (2019), and the flat-top realized kernel estimator of Varneskov (2017)) in finite

samples.

The aim of this paper is to investigate the dynamics of the QML realized volatility estimates of

various financial assets. For convenience, we refer to the QML volatility estimator as realized volatility

subsequently and, with a slight abuse of notation, we denote the log QML volatility estimator log σ̂2 (q̂)

by yt.

3 Model Specification

Consider the ARFIMA(p, d, q) model

α (L) (yt − µ) = σuβ (L)ut, (4)

where α (L) = 1 − α1L − . . . − αpL
p, β (L) = 1 − β1L − . . . − βqL

q, L is the lag operator, and ut is

the error term. We assume the roots of α (L) = 0 and β (L) = 0 lie outside of the unit circle. We are

particularly interested in the case where one root of α (L) is very close to the unit circle. The error term

is a fractionally integrated process (Granger and Joyeux, 1980) such that

ut = (1− L)−d εt with εt ∼iid N (0, 1) , (5)

where d ∈ (−1/2, 1/2) is the memory parameter. The fractional integrated process can be rewritten as

ut =

∞∑
k=0

Γ (k + d)

Γ (d) Γ (k + 1)
εt−k,

where Γ (·) is the gamma function. The process {ut} is stationary and invertible (Bloomfield, 1985).

The instantaneous variance of ut is E
(
u2
t

)
= Γ(1−2d)

(Γ(1−d))2 . The long-run variance of ut is 1 when d = 0,∞
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when d > 1/2, and 0 when d < 1/2.

3.1 Spectral density

Under the model assumption, the process is covariance stationary and hence we can writeCov (yt, ys) :=

γy (k) with k = |t − s|. The spectral density of yt is the Fourier transformation of the autocovariance

such that

fy (λ) =
1

2π

∞∑
k=−∞

e−ikλγy (k) ,

where−π ≤ λ ≤ π. Under the specification of (4) and (5), the spectral density of yt is

fy (λ) =
σ2
u

2π
|1− exp (−iλ)|−2d |β (exp (−iλ))|2

|α (exp (−iλ))|2
.

See, for example, Robinson (2003). Using Euler’s formula and trigonometric identities, the spectral

density can be rewritten as

fy (λ) =
σ2
u

2π

(√
2− 2 cos (λ)

)−2d

(
1 +

∑q
j=1 βj cos (jλ)

)2
+
(∑q

j=1 sin (jλ)
)2

(
1−

∑p
j=1 αj cos (jλ)

)2
+
(∑p

j=1 αj sin (jλ)
)2 . (6)

For the special case of p = 0 and q = 0, the spectral density becomes

fy (λ) = fu (λ) =
σ2
u

2π

(√
2− 2 cos (λ)

)−2d
.

The spectral density is infinite at the origin (λ = 0) for d > 0 and zero for d < 0.

3.2 Variance-covariance matrix of ut

Let γu (k) := Cov (ut, ut−k) be the kth order autocovariance of ut. Under the specification of (5), the

autocovariance function of ut is (Hosking, 1981)

γu (k) =
(−1)k (−2d)!

(k − d)! (−k − d)!
=

(−1)k Γ (1− 2d)

Γ (k − d+ 1) Γ (1− k − d)
, (7)

where (·)! is the factorial of the argument.

When k →∞, Hosking (1981) obtains the kth order ACF of ut as

ρu (k) =
(−d)! (k + d− 1)!

(d− 1)! (k − d)!
∼ (−d)!

(d− 1)!
k2d−1.

The correlation coefficient ρu (k) decays at a hyperbolic rate as k goes to infinity. This is in contrast to

the exponential decaying rate of an ARMA(p, q) model.
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4 Estimation Methods

In this section, we review the time-domain ML, the approximate frequency domain ML, the local Whit-

tle estimation (LWE) method, and the log periodogram estimation (LPE) method.

4.1 Time-domain ML estimation

Let y = (y1, y2, · · · , yT )′ and θ = (α1, . . . , αp, β1, . . . , βq, d). Under the model specification of (4) with ut
specified as (5), yt − µ follows a normal distribution with mean zero and variance-covariance matrix,

denoted by Σy. The objective function of the ML estimator is given by

(θ̂, σ̂u) = arg max
θ,σu

logLN (µ, σu, θ) ,

where

logLN (µ, σu, θ) =
1

2T
log |Σy|+

1

2T
(y − µl)′Σ−1

y (y − µl) , (8)

and l = (1, . . . , 1)′.

For the case of known mean value µ, the limiting properties of θ̂ was derived by Hannan (1973)

for short memory processes and Yajima (1985) for long memory processes. That is, under some mild

regularity conditions, √
T
(
θ̂ − θ0

)
→d N

(
0,Ξ−1

θ0

)
,

where θ0 is the true parameter vector and Ξθ0 is the Fisher information matrix.

4.1.1 Modified profile likelihood

Dahlhaus (1989) extends the results of Yajima (1985) to the case with unknown mean. In case of un-

known µ, a plug-in method is required. The plug-in method substitutes µ by a consistent estimator of

the mean (e.g., the sample mean). Although the method provides a
√
T consistent and asymptotically

normal estimator, it is contaminated by an additional second order negative bias (Lieberman, 2005)

due to the need of estimating µ.

An alternative solution is the modified profile likelihood (MPL) estimator proposed by Cox and

Reid (1987). The idea of the MPL estimator is to use a linear transformation of parameters of interest

to make them orthogonal to nuisance parameters (µ and σu). The modified profile likelihood is given

by

logLM (y, µ̂, θ) =

(
1

T
− 1

2

)
log |R| − 1

2
log
(
l′R−1l

)
+

3− T
2

log
[
T−1 (y − µ̂l)′R−1 (y − µ̂l)

]
, (9)

where R = Σy/σ
2
u and µ̂ =

(
l′R−1l

)−1
l′R−1Y . The asymptotic distribution of the MPL estimator is

unchanged compared with the exact ML but eliminates some degree of bias in the exact ML (An and

Bloomfield, 1993; Hauser, 1999).
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4.1.2 Variance-covariance matrix Σy

The variance-covariance matrix Σy is of dimension T × T and its (t, s)th element is γy(k), where t, s =

1, · · · , T and k = |t−s|. The covariance function of the ARFIMA(p, d, q) process was derived by Hosking

(1981, Lemma 1(c)) and Sowell (1992, eq. (8)-(9)) and approximated to improve computational speed

by Chung (1994). In the special case of p = 1 and q = 0, the covariance function is

γy (k) =
σ2
u

α1

(
1− α2

1

)γu (k)A (k, α1) . (10)

where A (k, α1) = C (k, α1) + C (−k, α1) − 1, C (k, α1) = F (d+ k, 1; 1− d+ k;α1), and F (·) is the hy-

pergeometric function.

As noted in Liu, Shi, and Yu (2020), the hypergeometric function is computational costly and ex-

tremely large when diverges k is large and α1 is far from unity. As such, we employ the splitting method

(Bertelli and Caporin, 2002) which is based on the following property of the covariance function for

stationary processes (Brockwell and Davis, 2009):

γy (k) =
∞∑

s=−∞
γ̃ (s) γu (k − s) ,

where γ̃ (s) is the autocovariance of the pure ARMA component. The summand is truncated at m,

which takes a larger value when α1 is close to unity.2

4.2 Approximate frequency-domain ML: Whittle estimator

To avoid inverting Σy that is required in calculating the time-domain likelihood function, following

Whittle (1953, 1954), one can approximate Σ−1
y by (2π)−2 ∫ π

−π fy (λ)−1 cos ((i− j)λ) dλ and log |Σy| by

T (2π)−1 ∫ π
−π log fy (λ) dλ. The discrete-time version of the Whittle likelihood function (up to a scale

multiplication) is

logLW
(
θ, σ2

u

)
= −

m∑
j=1

log f
(
λj |θ, σ2

u

)
−

m∑
j=1

I (λj)

f (λj |θ, σ2
u)
, (11)

where I (λj) denotes the periodogram at the jth Fourier frequency λj = 2πj/T with j = 1, 2, . . . ,m and

m being the largest integer contained in (T − 1) /2. Specifically, we have

I (λj) =
1

2πT

∣∣∣∣∣
T∑
t=0

yt exp (−itλj)

∣∣∣∣∣
2

with λj = 2πj/T, (12)

which is a nonparameteric estimate of the density.

The Whittle likelihood function was presented in Künsch (1987) and Dahlhaus (1988). Fox and

Taqqu (1986) show that the asymptotic properties of the estimators remain the same if we simplify the

2Specifically, we set m = 1, 000 for α1 < 0.9, m = 2, 000 for 0.9 ≤ α1 < 0.99, m = 4, 000 for 0.99 ≤ α1 < 0.995, and
m = 7, 000 for α1 ≥ 0.995.
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objective function to the following:

logLW
(
θ, σ2

u

)′
= −

m∑
j=1

I (λj)

f (λj |θ, σ2
u)
, (13)

where the distance between the spectrum density f
(
λj |θ, σ2

u

)
and I (λj) is minimized. We employ

the simplified objective function for the estimation.3 Like MPL, the parameter µ does not enter the

objective function of the Whittle method as the zero frequency is not included. The spectral density

of the ARFIMA(p, d, q) model is given in (6). The Whittle estimation method yields
√
T -consistent,

asymptotically normal and efficient parameter estimates (Hannan, 1973; Fox and Taqqu, 1986; Giraitis

and Surgailis, 1990) when d ∈ (0, 1/2).

4.3 Local Whittle estimator

Instead of considering a parametric model, Künsch (1987) and Robinson (1995a) investigate a class of

models whose spectral densities satisfy the following property:

fy (λ) ∼ Cλ−2d as λ→ 0+ (14)

with C being a positive constant and d ∈ (−1/2, 1/2). The property concerns only frequencies ap-

proaching zero. When d ≥ 1/2, a function behaving like λ−2d as λ → 0+ is not integrable so that

covariance stationarity cannot be obtained. d > −1/2 corresponds to an invertibility condition in

parametric models with the above property. The model given by (4) and (5) is a special case in the class

with C being a function of θ and σu.

The local Whittle likelihood estimator of Künsch (1987) and Robinson (1995a) is defined as

(Ĉ, d̂) = arg max
C,d

1

m

m∑
j=1

[
− log f

(
λj |θ, σ2

u

)
− I (λj)

f (λj |θ;σ2
u)

]
(15)

= arg max
C,d

1

m

m∑
j=1

[
− logC + 2d log λj −

1

C
λ2dI (λj)

]
. (16)

with the solution

d̂ = arg max
d

− log Ĉ (d) + 2d
1

m

m∑
j=1

log λj

 with Ĉ (d) =
1

m

m∑
j=1

λ2d
j I (λj) , (17)

where m satisfies the condition m ≤ (T − 1)/2 and diverges to infinity at a rate that is slower than T as

T →∞. We set m = T 0.65 in applications.

Robinson (1995a) shows that the local Whittle estimator is consistent at the
√
m rate and asymp-

3Coursol and Dacunha-Castelle (1982) study the approximation error logLN − logLW .
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totically normal with variance 1/ (4m), that is,

√
m
(
d̂− d

)
→d N (0, 1/4) ,

when d ∈ (−1/2, 1/2).4

As the local Whittle method only uses information near zero frequency, when a model is parametri-

cally correctly specified, it is expected to be less efficient than the MPL and Whittle methods. However,

it is robust against model misspecification asymptotically as long as the misspecification does not vi-

olate the assumption in (14).

4.4 Log periodogram estimation

Another alternative is the log periodogram estimation method proposed by Geweke and Porter-Hudak

(1983). The proposed regression model is

log I (λj) = α+ βzj + vj ,

where I (λj) is the periodogram of yt as defined in (12), zj = − log
(
4 sin2 (λj/2)

)
, and vj is the error

term. The fractional parameter is estimated as

d̂ = β̂ =

∑m
j=l+1 (zj − z̄) log I (λj)∑m

j=l+1 (zj − z̄)2 ,

where z̄ = (m− l)−1∑m
j=l+1 zj and 0 ≤ l < m < T. The weakest possible upper bound for m is

m/T 0.9 → 0 (Robinson, 1995b). We set l = 1 and m = T 0.65 in applications.

The rationale is as follows. The spectral density in (14) can be approximated by C
(
4 sin2 (λ/2)

)−d
(Geweke and Porter-Hudak, 1983). The log spectral dentisy of yt is therefore

log f (λ) ∼ log (C)− d log

{
4 sin2

(
λ

2

)}
,

4Velasco (1999) investigates the possibility of using the LW estimator for some non-stationary situations (i.e., 1/2 ≤ d <
3/2), showing that the consistency of the LW estimator holds for d ∈ (−1/2, 1) and the asymptotic normality holds for
d < 3/4 with the same variance as in the stationary situation. Shimotsu and Phillips (2006) propose an exact local Whit-
tle estimation method, which can be applied to both stationary and non-stationary variables. Unlike the conventional local
Whittle estimator, which approximates Iu (λj) by λ2d

j Iy (λj), the exact local Whittle method is based on the relationship that
Iu (λj) = I∆dy (λj), where I∆dy (λj) is the periodogram of ∆dy = (1− L)d yt. While the approximation Iu (λj) ∼ λ2d

j Iy (λj)
holds for |d| < 1/2, it becomes less accurate when d becomes larger. In contrast, the equivalence between Iu (λj) and
I∆dy (λj) is valid for all value of d. Further, Shimotsu (2010) proposes a two-stage approach, which uses a tapered Local
Whittle estimator (Velasco, 1999) in the first stage and a modified ELW objective function in the second stage. The 2-stage
ELW method is designed to improve the performance of ELW when the mean (initial value) of the process is unknown. Un-
reported simulations show that both the ELW and the 2-stage ELW perform similar to the LWE method under our model
setting.
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and the log periodogram can be written as

log I (λj) = log f (λj) + log

(
I (λj)

f (λj)

)
∼ logC − d log

{
4 sin2

(
λj
2

)}
+ log

(
I (λj)

C
(
4 sin2 (λ/2)

)−d
)
.

In the proposed regression, α = logC − η and vj = log

(
I(λj)

C(4 sin2(λ/2))
−d

)
+ η, where η is the Euler con-

stant (= 0.5772...). The error term vj becomes negligible when the attention is confined to frequencies

near zero. The log periodogram estimator is shown to be
√
m-consistent and asymptotically normal

(Geweke and Porter-Hudak, 1983; Robinson, 1995b), that is,

√
m
(
d̂− d

)
→d N

(
0, s2

d

)
,

with sd being the usual OLS standard error of d̂.

5 Monte Carlo Simulations

We examine the estimation accuracy of the fractional parameter d (long-run dynamic) and the autore-

gressive parameter α1 (short-run dynamic) with various techniques. The data generating process is

the ARFIMA(1, d, 0) model.5 We assume α1 takes one of the values in {−0.2, 0, 0.3, 0.7, 0.9, 0.99} and d

takes one of the values in {−0.4,−0.2, 0, 0.2, 0.4}. We set σu = 1 and the intercept µ to zero. The initial

value of each simulated sample path is set to the long-run mean (i.e., µ/(1− α1)), which is zero under

this setting. The first 5, 000 observations are discarded from each simulated sample path to minimize

the impact of initial value. The number of replications is 1, 000.

The log likelihoods of the two parametric ML methods are optimized using the fmincon function

in MATLAB with the sequential quadratic programming algorithm. The lower bound of both d and α1

is −1 and the upper bound is 1. The objective function of the local Whittle method is optimized with

the command fminbnd in MATLAB, as there is only one model parameter. The initial values of the

optimization algorithms are the true model parameters.

Similar simulation studies have been conducted in Smith, Taylor, and Yadav (1997), Nielsen and

Frederiksen (2005), and Nadarajah, Martin, and Poskitt (2021). See Table 1 for a brief summary of their

Monte Carlo designs. Our Monte Carlo design extends those in the existing studies by considering

more empirically relevant parameter settings. We (1) allow maximum value of α1 to be much closer

to the unit circle (i.e. 0.99 versus 0.8 in Smith, Taylor, and Yadav (1997) and Nielsen and Frederiksen

(2005) and 0.9 in Nadarajah, Martin, and Poskitt (2021)), (2) choose larger sample sizes (i.e. T = 1024

as well as T = 512 and 2048 in the case of α1 = 0.99). We also examine the finite sample performance

of α̂1.

5The fractionally integrated process in (5) is simulated with the fracdiff function provided by Katsumi Shimotsu.

12



5.1 Long-run dynamic parameter d

Table 2 shows the biases and standard errors of d̂ of the four alternative methods from 1, 000 replica-

tions. We first set the sample size to T = 1, 024.6 We highlight (in bold) the two cases that are most

relevant to our empirical applications. There are several interesting observations. First, when α1 takes

a value close to zero, both the local Whittle and the log periodogram estimators can estimate d accu-

rately. The biases are close to zero and the standard errors are small. Together with their asymptotic

robustness property against short-run dynamics, the good finite sample property may be the reason

why they have been popular in estimating d for log RVs.

However, strikingly, the two semiparametric methods have significant upward biases when the pro-

cess is persistent (i.e., α1 ≥ 0.7). The substantial upward bias in d of the semiparametric methods when

α1 = 0.8 or 0.9 and T = {96, 256, 512, 576} has been documented in Smith, Taylor, and Yadav (1997),

Nielsen and Frederiksen (2005), and Nadarajah, Martin, and Poskitt (2021). Our results indicate that

this upward bias problem continues to hold when α = 0.99 and T = 1, 028. The bias magnitudes of

the local Whittle estimator are similar to that of the log periodogram estimator. The bias increases to-

wards one as α1 gets closer to unity. When α1 = 0.9 and d = −0.4, the two semiparametric methods

tend to yield a positive estimate of d (with the average value of d̂ being 0.18), implying spurious long

memory. When α1 = 0.99, these estimators cannot distinguish between the non-stationary behavior

from the long memory feature. The bias of d̂ is close to one across all value of d, and the standard error

is much larger when d increases. Further, we report simulation results for the case of α1 = 0.99 with

T = {512, 1024, 2048} in Table 3. The results suggest that the bias becomes only slightly smaller as the

sample size increases from 512 to 2048. Our studies suggest that one should be cautious with using the

two semiparametric methods, especially when there is a possibility of having persistent dynamics.

On the contrary, the two ML methods work well across all parameter settings. The performance of

the Whittle method follows closely of MPL. One exception is when α1 = 0.99 and d = 0.4 where the bias

of the Whittle estimation is suddenly much larger with a much greater standard error. In general, the

two ML methods have smaller bias than the two semiparametric methods, especially for large values

of α1 (i.e., α1 ≥ 0.7). Moreover, the standard error of the two ML methods varies slightly with the true

value of α1. This feature is also observed by Smith, Taylor, and Yadav (1997) and Nielsen and Frederik-

sen (2005). In addition, one can see from Table 3 that the standard error changes approximately by the

factor of
√
T , as predicted by the asymptotic theory.

Tapering has been shown capable of removing deterministic time trends (e.g., Žurbenko (1979);

Robinson (1986); Dahlhaus (1988); Hurvich and Ray (1995); Velasco (1999); Hurvich and Chen (2000)).

Tables 4 investigates the effect of tapering on the Whittle and local Whittle estimators. The tapering

methods are detailed in the Appendix. One can see from Table 4 that tapering improves the estimation

accuracy of the Whittle estimator when the process is highly persistent with a strong pattern of long

memory. Specifically, with the Tukey-Hanning tapering, the bias of the Whittle estimator d̂− d reduces

from −0.206 to 0.004 when α1 = 0.99 and d = 0.4, while the performance of the Whittle estimator

under other parameter settings remains roughly unchanged. In contrast, tapering does not improve

6We set the sample size to be the power of two to ensure the accuracy of Fourier transformation.
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the estimation accuracy of the local Whittle estimator. Indeed, both biases and standard errors of the

estimator increase when the parameter is estimated from tapered data.

Our Monte Carlo results are different from those in Smith, Taylor, and Yadav (1997) and Nielsen and

Frederiksen (2005) in two aspects. First, we find the finite sample performance of MPL is almost always

slightly better than that of the Whittle method, while Nielsen and Frederiksen (2005) find the opposite.

Since the Whittle method approximates logLN by logLW , it is reasonable to believe that the exact ML

method outperforms the approximate method. Second, Smith, Taylor, and Yadav (1997) and Nielsen

and Frederiksen (2005) report negative bias in d̂ for the ML estimators in all cases they considered.

While we observe negative bias when α1 < 0.7, we find the bias can be either negative or positive when

α1 > 0.7.

In conclusion, as far as parameter d is concerned, when the model is correctly specified, the pre-

ferred estimation method is MPL according to our simulation studies. While the two semiparametric

methods can estimate d accurately when α1 is close to zero, they can lead to a very substantial upward

bias in d̂when α1 takes a value greater than 0.7. The closer α1 to the unit circle is, the bigger the bias in

d̂.

5.2 Short-run dynamic parameter α1

The two ML methods can not only estimate the long-run parameter d but also the short-run dynamic

parameter α1. Unlike the parametric ML methods, the semiparametric methods only estimate d. To

obtain an estimate of α1, we fit an AR(1) model to prefiltered data series using d̂ obtained from the

semiparametric methods. This two-stage approach has been used in the literature; see, for example,

Andersen, Bollerslev, Diebold, and Labys (2003).

Table 5 reports the biases and standard errors of α̂1 of the four alternative methods from 1, 000

replications. Evidently, the two parametric ML methods provide very accurate estimation results for

α1 across all parameter settings. For the semiparametric methods, when α1 ≥ 0.7, the substantially

upward biases in d̂ lead to equally significant downward biases in α̂1. For data simulated from a near-

unity model with anti-persistent errors (for example, when α1 = 0.9 and d = −0.4), the two semipara-

metric methods tend to conclude that the model is ARFIMA(1, d, 0) with α1 close to 0 and d > 0. From

Table 6, we see that when using the parametric ML methods, the estimation accuracy of α1 improves

further as the sample size expands. This is, however, not the case for the two semiparametric methods.

From Table 7, tapering does not improve the estimation accuracy of α1 for both the Whittle and local

Whittle methods.

In conclusion, the two ML methods can estimate not only d but also α1 accurately. The two semi-

parametric can lead to a very substantial downward bias in α̂1 when α1 takes a value greater than 0.7.

The closer α1 is to the unit circle, the bigger the bias in α̂1.
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5.3 Discussions

To understand further the difference between the parametric ML methods and the semiparametric

methods, we show the gaps between the theoretical spectral densities of yt and the approximate spec-

tral densities Cλ−2d (used by the semiparametric methods) under various parameter settings. The

larger the distance between f(λ) and Cλ−2d is, the less accurate estimated results are expected from

the semiparametric methods. Figure 1 plots the quantity log(f(λ))− log(Cλ−2d) against the frequency

λ. We choose the value ofC such that the quantity takes value zero at frequency zero. It is obvious that

the distances at frequencies close to zero are affected substantially by the autoregressive coefficient

but not so much by d. This is consistent with our findings in Table 2 that the semiparametric estima-

tors have significant biases when α1 is close to unity, while the biases are similar across various d for a

given value of α1.

When the autoregressive coefficient α1 is close to one, the ARFIMA(1, d, 0) model can be written as

a local-to-unity AR(1) model with fractionally integrated errors, that is,

xt =
(

1− c

T

)
xt−1 + υt, , with c > 0, υt = σ (1− L)−d εt and εt ∼iid N (0, 1) . (18)

It can be rewritten as

(1− L)xt = − c
T
xt−1 + σ (1− L)−d εt ,

xt = − c
T

(1− L)−1 xt−1 + σ (1− L)−1−d εt. (19)

Denote the second quantity of (19) by zt = σ (1− L)−1−d εt, which is a fractionally integrated process

with fractional parameter 1 + d. The first quantity, which is a function of c and xt−1, represents devia-

tions of xt from zt. When c = 0, it disappears and xt = zt. It is, therefore, not surprising that in finite

samples the estimated memory parameter is close to 1 + d (the fractional parameter of zt) instead of d

and the bias is close to one when c→ 0 or when α1 of the ARFIMA(1, d, 0) model is close to unity.

Next, we analyze the limiting properties of the two quantities on the right-hand side of (19). From

Tanaka (2013), as T →∞, we have

δHΓ (H + 0.5)

THσ
xbTrc ⇒ JHc (r) , (20)

where H = d + 0.5, δH =
√

2HΓ(3/2−H)
Γ(H+0.5)Γ(2−2H) , JHc (r) := exp (cr)

∫ r
0 exp (−cs) dBH (s) is an fOU process,

BH (s) is the fBm with Hurst parameter H , b.c denotes the integer part of the argument, and r ∈ [0, 1].

The zt process can be rewritten as,

zt = zt−1 + σ (1− L)−d εt,

15



which can be viewed as a special case of (18) with c = 0. Therefore,

δHΓ (H + 1/2)

THσ
zbTrc ⇒ BH (r) . (21)

Combining the above two results, we know that the first quantity of (19) has the following limiting

property:

−cδHΓ (H + 1/2)

T 1+Hσ
(1− L)−1 xt−1 ⇒ JHc (r)−BH (r) .

That is, − c
T (1− L)−1 xt−1 = Op

(
TH
)

which is of the same order of magnitude as the second quantity.

This result implies that the impact of the first quantity will not disappear as the sample size increases

and one cannot obtain a consistent estimate of d from ∆xt (by taking first difference) when c 6= 0.

5.4 Distributions of α̂1 − α1

It is well known that the least squares estimator of the autoregressive parameter of an AR(1) model does

not have the standard asymptotics (i.e., it does not converge to a normal distribution) when the process

is local-to-unity; see for example Phillips (1987). Wang, Xiao, and Yu (2020) and Yu (2021) extend the

asymptotic theory from the case of the weakly dependent errors to the cases of the strongly dependent

errors with and without normality, respectively. To get some ideas on the finite sample distributions

of the ML estimators of α1 when the data are simulated from ARFIMA(1, d, 0), we plot in Figure 2 the

kernel density of α̂1 − α1 for the MPL and Whittle methods obtained from 1, 000 replications. When

simulating data, we assume α1 takes one of the values in {−0.2, 0, 0.3, 0.7, 0.9, 0.99} and d takes one of

the values in {−0.4, 0, 0.4}. The sample size is 1, 024. Note that the ARFIMA(1, d, 0) model reduces to a

local-to-unity AR(1) model when d = 0.

It is obvious from the graphs that the distribution of α̂1−α1 deviates substantially from the normal

distribution whenα1 is close to unity. In this case, the distribution of α̂1 becomes quite asymmetric and

is not centered at 0. This observation applies to both parametric ML methods and is consistent across

different values of d. To the best of our knowledge, the asymptotic of α̂1 for any of the two ML methods

in the context of local-to-unity ARFIMA(1, d, 0) model has not been developed in the literature. Our

conjecture is that the asymptotic theory of α̂1 is nonstandard.

6 Empirical Applications to RV

In this section, we investigate the dynamics of log RVs across a broad set of financial assets, including

five market index futures or ETFs, five industry index ETFs, and three exchange rate futures, over the

past decade. We consider the maximum available sample period after 5 January 2010. The end date is

25 May 2021.
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6.1 Data

The QML realized volatility data are provided by the Risk Lab7 and computed using transaction prices

sampled at the highest available frequency. In total, thirteen assets are considered. The assets under

consideration are listed in Table 8, along with the starting date, number of observations, and summary

statistics (such as the sample mean, sample standard deviation, sample skewness, and sample kurto-

sis) of RV and log RV of each data series. Most of the data series start from 5 January 2010. The sample

size ranges from 1305 to 2757. Figure 3 displays the dynamics of each log RV series. It is obvious from

both Table 8 and Figure 3 that exchange rate futures are in generally less volatile. While the sample

skewness and sample kurtosis suggest that the distributions of RV are very far away from the normal

distribution, the distributions of log RV are much closer. This finding is well known in the literature;

see Andersen, Bollerslev, Diebold, and Labys (2001), Andersen, Bollerslev, Diebold, and Ebens (2001),

Andersen, Bollerslev, Diebold, and Labys (2003).

Figure 5 presents the ACFs of the log RVs. As expected, the log RV series are highly persistent. The

ACF remains sizable at the 100th lag in all cases. Interestingly, the ACFs of the log RV of the exchange

rate futures (Figure 5(k)-(m)) seem to decay more slowly than the other financial assets.

6.2 Estimation results

We apply the parametric and semiparametric methods to estimate an ARFIMA(1, d, 0) model for the

log RVs. The setting of initial values is crucial for the parametric methods as the likelihood surfaces

are not concave. Between the two ML methods, we first implement the Whittle method, where we

use a grid searching method to choose the ‘optimal’ initial values of d and α1. For d the grids range

from −0.499 to 0.499 with an increment of 0.005. For α1 the grids range from −0.999 to 0.999 with an

increment of 0.001. We evaluate the Whittle log-likelihood for all possible combinations of d and α1.

The pair that produces the highest log-likelihood value is taken as our initial values for the Whittle

method. The estimated parameter values from the Whittle method are taken as the initial values of the

MPL method. The optimization algorithms and settings are the same as those in the simulations.

Figure 4 shows two examples of the Whittle log-likelihood surface. We remove log-likelihood values

that are smaller than certain thresholds to obtain better visualization of the surface at the peak. Inter-

estingly, the log-likelihood surface is bi-modal for all the log RV series examined in this paper, with

one at the left corner (α1 → 1 and d < 0) and one at the right corner (|α1| → 0 and d > 0.35). One

would conclude that the data series is persistent and rough if the left modal is higher than the right

one; otherwise, it has a long memory with strong mean-reversion. We have seen both conclusions in

the RV literature. For example, with the LPE method, Andersen, Bollerslev, Diebold, and Labys (2001)

finds the log RV of 30 Dow Jones Industrial Average firms over the period from 1993 to 1998 have a long

memory, with the maximum estimate of d being 0.416 and minimum being 0.263. Using LPE again,

Andersen, Bollerslev, Diebold, and Labys (2003) concludes that the estimated d for the log RVs of three

exchange rates (US dollar, Deutsche Mark, and Japanese Yen) over the period 1986-1996 are between

7https://dachxiu.chicagobooth.edu/#risklab.
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0.38 and 0.43. On the other hand, Wang, Xiao, and Yu (2019), Fukasawa, Takabatake, and Westphal

(2021), and Bolko, Christensen, Pakkanen, and Veliyev (2021) examine the log RVs of stock indices over

more recent periods using, respectively, a change of frequency approach, a QML estimation method,

and GMM. All three studies conclude that RVs are rough (i.e., d < 0) instead of long memory.

Here, we consider the most recent sample period spanning over a decade. The ARFIMA(1, d, 0) is

fitted to each log RV series using the two parametric methods and two semiparametric methods. While

simulation studies conclude that the ML methods are preferred, we also report estimation results from

the semiparametric methods for comparison. The estimated parameters are reported in Table 9. Inter-

estingly, the parameter methods suggest that log RVs of the market index futures or EFTs and industry

EFTs are highly persistent and rough, with a close-to-unity α̂1 and a negative d̂. This result is consistent

with the findings of Liu, Shi, and Yu (2020); Fukasawa, Takabatake, and Westphal (2021); Bolko, Chris-

tensen, Pakkanen, and Veliyev (2021) where volatility is treated as latent but assumed to follow an AR

process with fractionally integrated errors or fGns.

On the contrary, the semiparametric methods suggest that the memory parameter is between 0.52

and 0.64, implying that the log RV series has a long memory. The contradicted results between the

parametric and semiparametric methods are consistent with our findings from the simulations. The

semiparametric methods tend to significantly overestimate the memory parameter when the autore-

gressive coefficient is close to unity.

Interestingly, unlike the other assets, the parametric methods suggest that the log RVs of exchange

rate futures have long memory with d̂ between 0.437 and 0.472 and α̂1 being a small negative number.

This result is consistent with the finding of Andersen, Bollerslev, Diebold, and Labys (2003) for the log

RV of three exchange rates. The estimated fractional parameters from the semiparametric methods

are around 0.6.

7 Conclusion

In this paper, we first examine the finite sample properties of four alternative methods in estimat-

ing the ARFIMA(1, d, 0) model, including the two parametric ML (MPL and Whittle) methods and two

semiparametric (local Whittle and log periodogram regression) methods. Special attention is paid to

the part of the parameter space where the fractional differencing parameter d is negative and the short-

run parameter α1 is close to the unit circle. This choice of parameter setting is motivated by the em-

pirical finding in the recent literature that documents evidence of rough volatility; for example, see

Gatheral, Jaisson, and Rosenbaum (2018) and Bayer, Friz, and Gatheral (2016) for evidence in the risk-

neutral measure, and Wang, Xiao, and Yu (2019), Liu, Shi, and Yu (2020), Fukasawa, Takabatake, and

Westphal (2021), Bolko, Christensen, Pakkanen, and Veliyev (2021) for evidence in the physical mea-

sure. Via simulations, we find that the two ML methods have better finite sample performances than

the two semiparametric methods. This is not surprising as when the model is correctly specified, the

ML methods use more information than the two semiparametric methods. Moreover, when data are

simulated from the ARFIMA(1, d, 0) model with a negative d and a near-unity α1, the two semiparamet-
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ric methods lead to a false conclusion of a long memory error term.

When we apply the two ML methods to the log RVs of thirteen financial assets, interesting empir-

ical results are revealed. For the log RVs of the market indices (futures or EFTs) and industry indices

(EFTs), the two ML methods find evidence of a near-unity short-run dynamic and an anti-persistent

error term, consistent with the recent literature on rough volatility. In contrast, the two semiparamet-

ric methods always lead to the conclusion of long memory for the log volatilities. The estimated d is

positive, and the autoregressive coefficient is near zero. When we examine the log-likelihood surface

of the Whittle estimator, we find the log-likelihood value at the left corner (α1 → 1 and d < 0) is higher

than at the right corner (|α1| → 0 and d > 0.35) for those assets.

For the log RVs of the exchange rate futures, the two ML methods find evidence of a weak short-run

behavior and a long memory error term, consistent with the finding of Andersen, Bollerslev, Diebold,

and Labys (2003). The log-likelihood value at the left corner (α1 → 1 and d < 0) of the Whittle log-

likelihood surface is lower than that at the right corner (|α1| → 0 and d > 0.35). In sum, the log volatili-

ties of exchange rate futures display a different dynamic from the other financial assets considered.

Should one use a long memory model or a rough model for log realized volatility? The answer to

this important question is found in the title of our article. That is which candidate model should be

used depends on assets at hand and a careful analysis is needed before a choice is made.
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A Tapering

One pitfall of the periodogram I (λj) is that there is leakage effect. In finite samples, when there are

high peaks in the spectrum, the nonparametric estimator I (λj) might significantly overestimate the

spectrum at other frequencies and fail to discover spectrums with low peaks.

A.1 Whittle Estimator with Tapering

Dahlhaus (1988) proposes using tappering adapted from nonparametric spectral density estimation

(Tukey, 1967) for the Whittle estimator. A tapered series is define as

yTt = htyt,

where ht is the data taper satisfying certain time series properties (Dahlhaus, 1988). The taperred

periodogram is

IT (λj) =
1

2π
∑T−1

t=0 h2
t

∣∣∣∣∣
T∑
t=0

htyt exp (−itλj)

∣∣∣∣∣
2

.

Replacing I (λj) in the Whittle estimator (13) by IT (λj) yields the tappered Whittle estimator. Dahlhaus

(1988) show that the tappered Whittle estimator is
√
T -consistent and asymptotically normal.

There are many tapers satisfying the conditions outlined in Dahlhaus (1988). One example is the

Tukey-Hanning taper specified as

hρ (x) =


1
2 [1− cos (2πx/ρ)] x ∈ [0, ρ/2)

1 x ∈ [ρ/2, 1/2]

hρ (1− x) x ∈ (1/2, 1]

and ht = hρ (t/T ). For practical implementation, one could set ρ = T−κ/3 with κ ∈ [0, 1/2). Here, we

set κ = 1/4.

A.2 Local Whittle Estimator with Tapering

One popular tapering method in the local Whittle content is proposed by Velasco (1999). For each

positive integer p, there is a Kolmogorov taper which is of order p in the sense of Velasco (1999). A taper

with order p, if applied to the raw data, yields a tapered periodogram that is invariant to polynomial

trends of order p−1, provided that the periodogram is evaluated on the grid λip with i = 1, 2, . . . , bm/pc.
The objective function of the tapered LW estimator becomes

(Ĉp, d̂p) = arg max
C,d

p

m

bm/pc∑
i=1

[
− logC + 2d log λip −

1

C
λ2d
ip I

T (λip)

]
, (22)
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where

d̂p = arg max

− log Ĉp (d) + 2d
p

m

bm/pc∑
i=1

log λip

 ,

Ĉp (d) =
p

m

bm/pc∑
i=1

λ2d
ip IT (λip) .

The discrete sums include only frequencies λip with i = 1, 2, . . . , bm/pc.
The tapered LW estimator is asymptotic normal with a variance of pΦ/(4m), where

Φ = lim
T→∞

(
T∑
t=1

h2
t

)−2 n−p∑
k=0,p,2p,...

{
n∑
t=1

h2
t cos (tλk)

}2

.

Suppose we employ the full cosine bell taper (Tukey, 1967)

ht = 0.5

[
1− cos

(
2πt

T

)]
and regard this taper as of order p = 3, the tapered LW estimator is asymptotic normal with variance

pmΦ/4 with Φ = 1, when µ = 0 and d < 1.5, . However, if we use all the Fourier frequencies from λ2

to λm (i.e., p = 1), then Φ = 35/18. In the simulation studies, we use the cosine bell taper with p = 3.

While the tapered local Whittle methods are invariant to trends and asymptotically normal, they lead

to inflated asymptotic variance of the estimator.

B Tables and Figures

Table 1: Existing Monte Carlo Studies

Paper Relevant Tables Relevant Estimation Methods Sample Size

Smith, Taylor, and Yadav (1997) Tables I and VI ML and LPE (m = T 0.5, T 0.6,T 0.7) 256

Nielsen and Frederiksen (2005) Tables 8 and 9 Exact ML, MPL, Whittle, Conditional ML 128, 256, 512

LWE and LPE (m = T 0.5, T 0.65)

Nadarajah, Martin, and Poskitt (2021) Tables 6 and 7 ML and LPE (m = T 0.65) 96, 576
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Table 2: Biases and standard errors (in brackets) of d̂ when T = 1, 024.

MPL Whittle LWE LPE

α1 = −0.2

d=-0.4 -0.002 (0.04) -0.003 (0.04) 0.001 (0.06) 0.006 (0.08)

d=-0.2 -0.004 (0.04) -0.010 (0.04) -0.010 (0.06) -0.006 (0.07)

d=0 -0.005 (0.05) -0.012 (0.05) -0.012 (0.06) -0.008 (0.07)

d=0.2 -0.003 (0.04) -0.022 (0.13) -0.007 (0.06) 0.000 (0.07)

d=0.4 -0.004 (0.04) -0.011 (0.08) -0.008 (0.06) 0.000 (0.08)

α1 = 0

d=-0.4 -0.003 (0.04) -0.007 (0.04) 0.005 (0.06) 0.011 (0.08)

d=-0.2 -0.005 (0.04) -0.013 (0.04) -0.004 (0.06) -0.001 (0.07)

d=0 -0.005 (0.04) -0.015 (0.04) -0.006 (0.06) -0.002 (0.07)

d=0.2 -0.004 (0.04) -0.013 (0.04) -0.002 (0.06) 0.006 (0.07)

d=0.4 -0.006 (0.06) -0.010 (0.04) -0.003 (0.06) 0.005 (0.08)

α1 = 0.3

d=-0.4 -0.015 (0.09) -0.025 (0.09) 0.026 (0.06) 0.032 (0.08)

d=-0.2 -0.012 (0.07) -0.036 (0.10) 0.018 (0.06) 0.022 (0.07)

d=0 -0.014 (0.07) -0.037 (0.09) 0.017 (0.06) 0.020 (0.07)

d=0.2 -0.010 (0.07) -0.029 (0.08) 0.021 (0.06) 0.028 (0.07)

d=0.4 -0.014 (0.07) -0.033 (0.10) 0.020 (0.06) 0.028 (0.07)

α1 = 0.7

d=-0.4 0.005 (0.08) -0.029 (0.09) 0.189 (0.06) 0.185 (0.07)

d=-0.2 -0.002 (0.09) -0.035 (0.09) 0.185 (0.06) 0.180 (0.07)

d=0 0.001 (0.09) -0.033 (0.09) 0.183 (0.06) 0.179 (0.07)

d=0.2 -0.003 (0.10) -0.038 (0.09) 0.182 (0.06) 0.180 (0.07)

d=0.4 -0.001 (0.09) -0.033 (0.09) 0.187 (0.06) 0.184 (0.07)

α1 = 0.9

d=-0.4 0.008 (0.06) 0.000 (0.05) 0.577 (0.07) 0.528 (0.07)

d=-0.2 0.007 (0.06) 0.000 (0.05) 0.578 (0.07) 0.529 (0.07)

d=0 0.006 (0.06) -0.002 (0.05) 0.571 (0.07) 0.523 (0.07)

d=0.2 0.004 (0.05) -0.007 (0.05) 0.576 (0.07) 0.526 (0.07)

d=0.4 0.005 (0.05) -0.037 (0.06) 0.567 (0.07) 0.520 (0.08)

α1 = 0.99

d=-0.4 0.003 (0.03) 0.006 (0.03) 0.950 (0.06) 0.946 (0.08)

d=-0.2 0.001 (0.03) 0.006 (0.03) 0.950 (0.06) 0.944 (0.07)

d=0 0.002 (0.03) 0.004 (0.03) 0.948 (0.06) 0.940 (0.07)

d=0.2 0.003 (0.03) -0.045 (0.05) 0.918 (0.07) 0.911 (0.08)

d=0.4 0.000 (0.03) -0.206 (0.12) 0.810 (0.11) 0.785 (0.13)
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Table 3: Biases and standard errors of the estimated memory parameter d̂: T = {512, 1024, 2048} and
α = 0.99

Parametric Methods Semi-parametric Methods

MPL Whittle LWE LPE

T = 512

d=-0.4 0.009 (0.06) 0.014 (0.04) 0.967 (0.08) 0.971 (0.09)

d=-0.2 0.004 (0.04) 0.015 (0.04) 0.970 (0.08) 0.980 (0.10)

d=0 0.004 (0.04) 0.007 (0.04) 0.959 (0.08) 0.964 (0.10)

d=0.2 0.003 (0.04) -0.063 (0.06) 0.912 (0.08) 0.910 (0.11)

d=0.4 0.007 (0.05) -0.229 (0.12) 0.787 (0.12) 0.765 (0.15)

T = 1024

d=-0.4 0.003 (0.03) 0.006 (0.03) 0.950 (0.06) 0.946 (0.08)

d=-0.2 0.001 (0.03) 0.006 (0.03) 0.950 (0.06) 0.944 (0.07)

d=0 0.002 (0.03) 0.004 (0.03) 0.948 (0.06) 0.940 (0.07)

d=0.2 0.003 (0.03) -0.045 (0.05) 0.918 (0.07) 0.911 (0.08)

d=0.4 0.000 (0.03) -0.206 (0.12) 0.810 (0.11) 0.785 (0.13)

T = 2048

d=-0.4 0.001 (0.02) 0.002 (0.02) 0.933 (0.05) 0.915 (0.06)

d=-0.2 0.001 (0.02) 0.003 (0.02) 0.934 (0.05) 0.913 (0.06)

d=0 0.001 (0.02) 0.001 (0.02) 0.932 (0.05) 0.912 (0.06)

d=0.2 0.001 (0.02) -0.031 (0.04) 0.913 (0.05) 0.893 (0.06)

d=0.4 0.002 (0.02) -0.171 (0.11) 0.840 (0.09) 0.809 (0.11)
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Table 4: Biases and standard errors of the estimated memory parameter d̂ − d: the effect of tapering
T = 1024 and α = {−0.2, 0, 0.3, 0.7, 0, 0.9, 0.99}

d̂− d Whittle Whittle (taper) LWE LWE (taper)

α = −0.2

d=-0.4 -0.003 (0.04) -0.012 (0.04) 0.001 (0.06) -0.014 (0.12)

d=-0.2 -0.010 (0.04) -0.013 (0.04) -0.010 (0.06) -0.019 (0.12)

d=0 -0.012 (0.05) -0.015 (0.06) -0.012 (0.06) -0.018 (0.12)

d=0.2 -0.022 (0.13) -0.023 (0.13) -0.007 (0.06) -0.021 (0.12)

d=0.4 -0.011 (0.08) -0.019 (0.12) -0.008 (0.06) -0.023 (0.11)

α = 0

d=-0.4 -0.007 (0.04) -0.016 (0.05) 0.005 (0.06) -0.007 (0.12)

d=-0.2 -0.013 (0.04) -0.017 (0.05) -0.004 (0.06) -0.013 (0.12)

d=0 -0.015 (0.04) -0.021 (0.08) -0.006 (0.06) -0.011 (0.12)

d=0.2 -0.013 (0.04) -0.013 (0.05) -0.002 (0.06) -0.015 (0.12)

d=0.4 -0.010 (0.04) -0.009 (0.05) -0.003 (0.06) -0.017 (0.11)

α = 0.3

d=-0.4 -0.025 (0.09) -0.045 (0.12) 0.026 (0.06) 0.019 (0.12)

d=-0.2 -0.036 (0.10) -0.047 (0.12) 0.018 (0.06) 0.014 (0.12)

d=0 -0.037 (0.09) -0.045 (0.11) 0.017 (0.06) 0.015 (0.12)

d=0.2 -0.029 (0.08) -0.033 (0.10) 0.021 (0.06) 0.011 (0.12)

d=0.4 -0.033 (0.10) -0.024 (0.10) 0.020 (0.06) 0.009 (0.11)

α = 0.7

d=-0.4 -0.029 (0.09) -0.036 (0.10) 0.189 (0.06) 0.203 (0.12)

d=-0.2 -0.035 (0.09) -0.037 (0.10) 0.185 (0.06) 0.197 (0.11)

d=0 -0.033 (0.09) -0.035 (0.10) 0.183 (0.06) 0.197 (0.12)

d=0.2 -0.038 (0.09) -0.032 (0.10) 0.182 (0.06) 0.194 (0.12)

d=0.4 -0.033 (0.09) -0.020 (0.11) 0.187 (0.06) 0.200 (0.12)

α = 0.9

d=-0.4 0.000 (0.05) 0.002 (0.06) 0.577 (0.07) 0.615 (0.12)

d=-0.2 0.000 (0.05) 0.004 (0.07) 0.578 (0.07) 0.609 (0.12)

d=0 -0.002 (0.05) 0.000 (0.06) 0.571 (0.07) 0.605 (0.13)

d=0.2 -0.007 (0.05) -0.003 (0.06) 0.576 (0.07) 0.616 (0.13)

d=0.4 -0.037 (0.06) 0.003 (0.06) 0.567 (0.07) 0.605 (0.13)

α = 0.99

d=-0.4 0.006 (0.03) 0.005 (0.03) 0.950 (0.06) 0.971 (0.12)

d=-0.2 0.006 (0.03) 0.004 (0.03) 0.950 (0.06) 0.968 (0.12)

d=0 0.004 (0.03) 0.006 (0.03) 0.948 (0.06) 0.971 (0.12)

d=0.2 -0.045 (0.05) 0.006 (0.03) 0.918 (0.07) 0.969 (0.12)

d=0.4 -0.206 (0.12) 0.004 (0.03) 0.810 (0.11) 0.971 (0.11)
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Table 5: Biases and standard errors (in brackets) of α̂1 when T = 1, 024.

MPL Whittle LWE LPE

α = −0.2

d=-0.4 0.002 (0.04) 0.002 (0.05) 0.002 (0.06) -0.001 (0.07)

d=-0.2 0.002 (0.05) 0.006 (0.05) 0.008 (0.06) 0.007 (0.07)

d=0 0.004 (0.06) 0.009 (0.06) 0.011 (0.06) 0.010 (0.07)

d=0.2 0.004 (0.04) 0.022 (0.14) 0.009 (0.06) 0.005 (0.07)

d=0.4 0.003 (0.04) 0.010 (0.09) 0.008 (0.06) 0.003 (0.07)

α = 0

d=-0.4 0.003 (0.05) 0.006 (0.05) -0.003 (0.07) -0.007 (0.08)

d=-0.2 0.003 (0.05) 0.010 (0.06) 0.003 (0.07) 0.001 (0.08)

d=0 0.004 (0.05) 0.012 (0.05) 0.006 (0.06) 0.004 (0.08)

d=0.2 0.005 (0.05) 0.012 (0.05) 0.004 (0.06) -0.002 (0.08)

d=0.4 0.005 (0.06) 0.009 (0.05) 0.003 (0.07) -0.003 (0.08)

α = 0.3

d=-0.4 0.014 (0.09) 0.023 (0.10) -0.028 (0.07) -0.033 (0.08)

d=-0.2 0.009 (0.08) 0.032 (0.10) -0.022 (0.07) -0.025 (0.08)

d=0 0.012 (0.08) 0.034 (0.10) -0.019 (0.07) -0.022 (0.08)

d=0.2 0.010 (0.07) 0.028 (0.08) -0.022 (0.07) -0.028 (0.08)

d=0.4 0.012 (0.08) 0.031 (0.11) -0.022 (0.07) -0.029 (0.08)

α = 0.7

d=-0.4 -0.010 (0.08) 0.017 (0.08) -0.180 (0.06) -0.176 (0.07)

d=-0.2 -0.005 (0.09) 0.022 (0.08) -0.175 (0.06) -0.171 (0.07)

d=0 -0.005 (0.08) 0.021 (0.07) -0.171 (0.06) -0.168 (0.07)

d=0.2 -0.004 (0.09) 0.023 (0.08) -0.172 (0.06) -0.171 (0.07)

d=0.4 -0.004 (0.08) 0.018 (0.08) -0.174 (0.06) -0.172 (0.07)

α = 0.9

d=-0.4 -0.008 (0.04) -0.005 (0.04) -0.536 (0.08) -0.479 (0.09)

d=-0.2 -0.007 (0.04) -0.005 (0.03) -0.535 (0.08) -0.479 (0.09)

d=0 -0.007 (0.04) -0.005 (0.03) -0.528 (0.08) -0.474 (0.09)

d=0.2 -0.005 (0.03) -0.003 (0.03) -0.530 (0.08) -0.472 (0.09)

d=0.4 -0.006 (0.03) 0.005 (0.03) -0.509 (0.08) -0.455 (0.09)

α = 0.99

d=-0.4 -0.003 (0.01) -0.006 (0.01) -0.943 (0.07) -0.937 (0.09)

d=-0.2 -0.003 (0.01) -0.006 (0.01) -0.943 (0.07) -0.935 (0.09)

d=0 -0.003 (0.01) -0.006 (0.01) -0.937 (0.08) -0.926 (0.09)

d=0.2 -0.002 (0.01) -0.004 (0.01) -0.931 (0.19) -0.914 (0.21)

d=0.4 -0.002 (0.01) 0.001 (0.01) -1.011 (0.46) -0.912 (0.48)
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Table 6: Biases and standard errors of the estimated autoregressive parameter α̂1: T = {512, 1024, 2048}
and α = 0.99

Parametric Methods Semi-parametric Methods

MPL Whittle LWE LPE

T = 512

d=-0.4 -0.007 (0.04) -0.013 (0.01) -0.958 (0.09) -0.960 (0.10)

d=-0.2 -0.005 (0.01) -0.014 (0.01) -0.961 (0.09) -0.968 (0.11)

d=0 -0.005 (0.01) -0.013 (0.01) -0.949 (0.11) -0.952 (0.13)

d=0.2 -0.005 (0.01) -0.010 (0.01) -0.938 (0.27) -0.920 (0.29)

d=0.4 -0.005 (0.01) -0.005 (0.01) -1.010 (0.51) -0.896 (0.52)

T = 1024

d=-0.4 -0.003 (0.01) -0.006 (0.01) -0.943 (0.07) -0.937 (0.09)

d=-0.2 -0.003 (0.01) -0.006 (0.01) -0.943 (0.07) -0.935 (0.09)

d=0 -0.003 (0.01) -0.006 (0.01) -0.937 (0.08) -0.926 (0.09)

d=0.2 -0.002 (0.01) -0.004 (0.01) -0.931 (0.19) -0.914 (0.21)

d=0.4 -0.002 (0.01) 0.001 (0.01) -1.011 (0.46) -0.912 (0.48)

T = 2048

d=-0.4 -0.001 (0.00) -0.003 (0.00) -0.926 (0.06) -0.906 (0.07)

d=-0.2 -0.001 (0.00) -0.003 (0.00) -0.926 (0.06) -0.902 (0.07)

d=0 -0.001 (0.00) -0.003 (0.00) -0.920 (0.06) -0.898 (0.07)

d=0.2 -0.001 (0.00) -0.002 (0.00) -0.906 (0.10) -0.872 (0.11)

d=0.4 -0.001 (0.00) 0.003 (0.00) -1.031 (0.40) -0.935 (0.42)
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Table 7: Biases and standard errors of the estimated memory parameter α̂1 − α1: the effect of tapering
T = 1024 and α = {−0.2, 0, 0.3, 0.7, 0, 0.9, 0.99}

Whittle Whittle (taper) LWE LWE (taper)

α = −0.2

d=-0.4 0.002 (0.05) 0.008 (0.05) 0.002 (0.06) 0.025 (0.12)

d=-0.2 0.006 (0.05) 0.009 (0.05) 0.008 (0.06) 0.027 (0.12)

d=0 0.009 (0.06) 0.012 (0.08) 0.011 (0.06) 0.027 (0.11)

d=0.2 0.022 (0.14) 0.023 (0.14) 0.009 (0.06) 0.033 (0.12)

d=0.4 0.010 (0.09) 0.017 (0.14) 0.008 (0.06) 0.032 (0.11)

α = 0

d=-0.4 0.006 (0.05) 0.013 (0.07) -0.003 (0.07) 0.018 (0.13)

d=-0.2 0.010 (0.06) 0.014 (0.06) 0.003 (0.07) 0.020 (0.12)

d=0 0.012 (0.05) 0.019 (0.09) 0.006 (0.06) 0.020 (0.12)

d=0.2 0.012 (0.05) 0.013 (0.06) 0.004 (0.06) 0.026 (0.13)

d=0.4 0.009 (0.05) 0.006 (0.06) 0.003 (0.07) 0.026 (0.12)

α = 0.3

d=-0.4 0.023 (0.10) 0.042 (0.13) -0.028 (0.07) -0.015 (0.13)

d=-0.2 0.032 (0.10) 0.043 (0.13) -0.022 (0.07) -0.013 (0.12)

d=0 0.034 (0.10) 0.042 (0.12) -0.019 (0.07) -0.013 (0.12)

d=0.2 0.028 (0.08) 0.032 (0.11) -0.022 (0.07) -0.008 (0.13)

d=0.4 0.031 (0.11) 0.021 (0.10) -0.022 (0.07) -0.006 (0.12)

α = 0.7

d=-0.4 0.017 (0.08) 0.021 (0.09) -0.180 (0.06) -0.195 (0.11)

d=-0.2 0.022 (0.08) 0.021 (0.09) -0.175 (0.06) -0.188 (0.11)

d=0 0.021 (0.07) 0.022 (0.09) -0.171 (0.06) -0.186 (0.11)

d=0.2 0.023 (0.08) 0.017 (0.09) -0.172 (0.06) -0.186 (0.11)

d=0.4 0.018 (0.08) 0.009 (0.10) -0.174 (0.06) -0.188 (0.11)

α = 0.9

d=-0.4 -0.005 (0.04) -0.008 (0.04) -0.536 (0.08) -0.576 (0.14)

d=-0.2 -0.005 (0.03) -0.010 (0.04) -0.535 (0.08) -0.568 (0.14)

d=0 -0.005 (0.03) -0.007 (0.04) -0.528 (0.08) -0.564 (0.14)

d=0.2 -0.003 (0.03) -0.004 (0.04) -0.530 (0.08) -0.573 (0.14)

d=0.4 0.005 (0.03) -0.006 (0.04) -0.509 (0.08) -0.553 (0.14)

α = 0.99

d=-0.4 -0.006 (0.01) -0.007 (0.01) -0.943 (0.07) -0.957 (0.13)

d=-0.2 -0.006 (0.01) -0.006 (0.01) -0.943 (0.07) -0.954 (0.12)

d=0 -0.006 (0.01) -0.006 (0.01) -0.937 (0.08) -0.956 (0.13)

d=0.2 -0.004 (0.01) -0.004 (0.01) -0.931 (0.19) -1.019 (0.24)

d=0.4 0.001 (0.01) -0.002 (0.01) -1.011 (0.46) -1.350 (0.35)
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Table 8: Summary statistics of the log RVs of various financial assets

RV log RV

Name Start date Obs. Mean Std. Skew. Kurto. Mean Std. Skew. Kurto.

Market Futures or ETFs

S&P 500 ETF (SPY) 05-Jan-2010 2757 0.10 0.07 4.07 30.67 -2.40 0.50 0.66 4.04

S&P 500 E-min Futures (ES) 05-Jan-2010 2671 0.14 0.08 3.00 19.17 -2.11 0.49 0.47 3.52

Nikkei 225 Futures CME (NK) 28-Jul-2015 1383 0.18 0.12 3.68 24.04 -1.85 0.48 0.74 4.31

NASDAQ 100 E-min Futures (NQ) 28-Jul-2015 1305 0.16 0.10 3.49 24.99 -1.94 0.48 0.58 3.66

Dow Jones E-mini Futures (YM) 05-Jan-2010 2627 0.13 0.09 4.68 42.64 -2.16 0.49 0.70 4.16

Industry ETFs

Financial (XLF) 05-Jan-2010 2724 0.14 0.10 10.98 268.32 -2.04 0.43 0.95 5.31

Industrial (XLI) 05-Jan-2010 2724 0.13 0.08 3.78 26.27 -2.18 0.45 0.75 4.32

Technology (XLK) 05-Jan-2010 2723 0.13 0.08 5.70 70.26 -2.18 0.46 0.78 4.65

Health Care (XLV) 05-Jan-2010 2723 0.12 0.07 6.20 81.80 -2.25 0.41 0.98 5.27

Consumer Discretionary (XLY) 05-Jan-2010 2722 0.12 0.07 3.60 25.11 -2.22 0.46 0.73 4.01

Exchange rate futures

New Zealand Dollar Futures (NE) 05-Jan-2010 2733 0.11 0.05 2.57 18.72 -2.26 0.36 0.22 3.74

Swiss Franc Futures (SF) 05-Jan-2010 2733 0.09 0.06 23.09 884.61 -2.51 0.40 0.53 5.34

Euro FX E-mini Futures (UROM) 28-Jul-2015 1381 0.07 0.03 3.53 30.49 -2.69 0.35 0.37 4.56

Table 9: Model estimation results

Name (Ticker) MPL Whittle LWE LPE

d̂ α d̂ α d̂ α d̂ α

Market Indexes: 01/01/2010 to 21/05/2021

S&P 500 ETF (SPY) -0.382 0.995 -0.382 0.995 0.602 -0.006 0.622 -0.027

S&P 500 E-mini Futures (ES) -0.339 0.994 -0.339 0.994 0.586 0.072 0.616 0.039

Nikkei 225 Futures CME (NK) -0.393 0.994 -0.391 0.992 0.623 -0.040 0.639 -0.055

NASDAQ 100 E-mini Futures (NQ) -0.264 0.985 -0.262 0.984 0.571 0.190 0.529 0.237

Dow Jones E-mini Futures (YM) -0.304 0.992 -0.304 0.992 0.582 0.114 0.607 0.085

Industry ETF: 01/01/2010 to 21/05/202

Financial (XLF) -0.427 0.998 -0.427 0.997 0.607 -0.053 0.599 -0.046

Industrial (XLI) -0.422 0.998 -0.423 0.997 0.611 -0.056 0.625 -0.070

Technology (XLK) -0.440 0.998 -0.439 0.997 0.540 0.004 0.543 0.001

Health Care (XLV) -0.426 0.995 -0.426 0.994 0.601 -0.061 0.553 -0.012

Consumer Discretionary (XLY) -0.434 0.998 -0.434 0.997 0.607 -0.070 0.586 -0.050

Exchange Rate Futures: 01/01/2010 to 21/05/2021

New Zealand Dollar Futures (NE) 0.469 -0.076 0.474 -0.077 0.610 -0.186 0.607 -0.184

Swiss Franc Futures (SF) 0.472 -0.057 0.482 -0.061 0.635 -0.182 0.635 -0.183

Euro FX E-Mini Futures (UROM) 0.437 -0.059 0.444 -0.059 0.625 -0.200 0.664 -0.223
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Figure 1: The theoretical spectral densities of ARFIMA models: log(f(λ))− log(Cλ−2d)

(a) d = −0.4 (b) d = 0 (c) d = 0.4

(d) α = 0 (e) α = 0.3 (f) α = 0.9
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Figure 2: The kernel densities of the MPL and Whittle estimates of α̂1 − α1

(a) MPL: d = −0.4 (b) MPL: d = 0 (c) MPL: d = 0.4

(d) Whittle: d = −0.4 (e) Whittle: d = 0 (f) Whittle: d = 0.4
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Figure 3: The log RV of various financial assets

(a) Markets (b) Industry ETF

(c) FX

Figure 4: The Whittle log likelihood surface of log RVs

(a) SPY (b) UROM
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Figure 5: The autocorrelation functions of the logarithmic volatility of the thirteen financial assets

(a) SPY (b) ES (c) NK (d) NQ

(e) YM (f) XLF (g) XLI (h) XLK

(i) XLV (j) XLY (k) NE (l) SF

(m) UROM
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