
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Centre for Computational Law Yong Pung How School of Law 

6-2021 

Constraint answer set programming as a tool to improve Constraint answer set programming as a tool to improve 

legislative drafting legislative drafting 

Jason MORRIS 
Singapore Management University, jmorris@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/cclaw 

 Part of the Artificial Intelligence and Robotics Commons, and the Law Commons 

Citation Citation 
MORRIS, Jason. Constraint answer set programming as a tool to improve legislative drafting. (2021). 
Proceedings of the 18th International Conference on Artificial Intelligence and Law, São Paulo, Brazil, 
2021 June 21-25. 262-263. 
Available at:Available at: https://ink.library.smu.edu.sg/cclaw/7 

This Conference Paper is brought to you for free and open access by the Yong Pung How School of Law at 
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Centre for 
Computational Law by an authorized administrator of Institutional Knowledge at Singapore Management 
University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/cclaw
https://ink.library.smu.edu.sg/sol
https://ink.library.smu.edu.sg/cclaw?utm_source=ink.library.smu.edu.sg%2Fcclaw%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fcclaw%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/578?utm_source=ink.library.smu.edu.sg%2Fcclaw%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Constraint Answer Set Programming as a Tool to Improve
Legislative Drafting
A Rules as Code Experiment

Jason Morris
jmorris@smu.edu.sg

Singapore Management University Centre for Computational Law
Singapore

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
legal knowledge representation and reasoning, constraint answer
set programming, rules as code

ACM Reference Format:
Jason Morris. 2021. Constraint Answer Set Programming as a Tool to Im-
prove Legislative Drafting: A Rules as Code Experiment. In Eighteenth
International Conference for Artificial Intelligence and Law (ICAIL’21), June
21–25, 2021, São Paulo, Brazil. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3462757.3466084

1 RULES AS CODE
"Rules as Code" in this paper is used to refer to a proposed method-
ology of legislative and regulatory drafting.1 That legislation can
be represented in declarative code for automation has long been
recognized [6], as has the opportunity for improving the quality of
legal drafting with the techniques of formal representation [1].

Rules as Code further proposes that both drafting and automation
would be improved by initially co-drafting statute law in both
natural and computer languages simultaneously [4].

Knowledge acquisition bottlenecks and roadblocks associated
with statutory interpretation are largely avoided. The co-drafted
encoding need only reflect what the legislation says, and not what
the legislators meant. Legislative intent is instead encoded as tests
by people with authoritative knowledge of the intent, the drafters.
In this way, failed tests can be used in the drafting process to signal
issues with the natural language draft. When the drafting process is
complete an authoritative encoding consistent with the legislative
intent already exist. This encoding can be used by regulators and
regulated entities to automate services and compliance tasks.

1The phrase "Rules as Code" is also often used to refer to legal knowledge representation
and reasoning generally.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICAIL’21, June 21–25, 2021, São Paulo, Brazil
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8526-8/21/06.
https://doi.org/10.1145/3462757.3466084

2 S(CASP)
s(CASP) is a stable-model constraint answer set programming lan-
guage, implemented in the Ciao programming language [3]. s(CASP)
was selected for use in this experiment because of its ability to gen-
erate natural language explanations for answer sets [2], and its
ability to perform both deductive and abductive reasoning from
the same encoding with minor adjustments [3]. Justifications for
automated conclusions have long been recognized as useful in legal
applications both for end-users and as a development tool [5].

3 RULE 34, LEGAL PROFESSION
(PROFESSIONAL CONDUCT) RULES OF
SINGAPORE, 2015

Singapore’s Legal Profession Act, (Cap. 161) (the “Act”) governs the
legal profession in Singapore. Part VI of the Act establishes the
Professional Conduct Council, which in section 71(2) of the Act
is given broad authority for drafting rules governing the practice,
conduct, etiquette, and discipline of legal practitioners in Singapore.
The Professional Conduct Council has enacted the Legal Profession
(Professional Conduct) Rules (S 706/2015) ("the Rules"). In 2015 the
Rules were significantly amended with a new Rule 34 setting out
restrictions on lawyers accepting executive appointments outside
of their legal practice.

4 EXPERIMENTAL DESIGN
Our interdisciplinary team undertook to assess the strengths and
weaknesses of s(CASP) as a tool for improving legislative drafting
in a Rules as Code approach. The author encoded a literal interpre-
tation of Rule 34 in s(CASP), and separately encoded the author’s
expectations of the behaviour of Rule 34 as a set of tests. Test fail-
ures that the author attributed only or primarily to issues with
the natural language drafting of Rule 34 were raised with legally-
trained team members to confirm whether the expected behaviour
was reasonable, and whether the cause of the test failure was a legal
drafting issue.

The discovery of such issues would demonstrate the feasibility of
using s(CASP) to detect legislative drafting issues. Any issues aris-
ing would be in the context of non-authoritative opinions as to the
expected behaviour of the text. The experiment cannot, therefore,
be used to diagnose issues with the Rule as enacted.

5 EXPERIMENTAL RESULTS
The code written to implement this experiment is available at https:
//github.com/smucclaw/r34_scasp.

262



ICAIL’21, June 21–25, 2021, São Paulo, Brazil Jason Morris

A set of 25 tests were encoded, and there were 4 test failures
not explained by errors encoding the Rule or the tests. These four
failures were investigated by the author by performing ’why not’
queries and reviewing the justifications provided by s(CASP).

This process revealed that the failing tests were encoded on the
basis of an expectation that the word "business" in Rule 34(1)(b)
referred to a legal practitioner’s activities. But Rule 34(9) defines
"business" to refer to a general category of undertaking. Setting out
a test in which Rule 34(1)(b) applied, while also using the defined
meaning of "business", required making statements that did not
have clearly meaningful real world equivalents. This suggested
that Rule 34(1)(b) might also use the word "business" in a way
inconsistent with the defined meaning, which would be a drafting
issue.

That issue was raised with the rest of the research team, who
confirmed that Rule 34(1)(b) had been faithfully encoded, that the
expectations of the failing tests were reasonable, and that Rule
34(1)(b) required the use of an interpretations of the word "business"
that is inconsistent with the defined meaning of the word in order
to give effect to that expectation, or to give it any clear meaning at
all.

The research team seriously considered the possibility that there
might be a different interpretation of other aspects of the Rule that
would make Rule 34(1)(b) more clearly meaningful. The team was
unable to find an interpretation that would have had that effect and
would not also make Rule 34(1)(b) redundant to other portions of
the Rule. The research team therefore concluded that it would be
more correct if Rule 34(1)(b) referred not to businesses but to the
holding of an executive appointment.

The researchers agreed on the following proposed replacement
for Rule 34(1)(b):

(1A) A legal practitioner must not accept any execu-
tive appointment that materially interferes with —
(i) the legal practitioner’s primary occupation of
practising as a lawyer;
(ii) the legal practitioner’s availability to those
who may seek the legal practitioner’s services as
a lawyer; or
(iii) the representation of the legal practitioner’s
clients.

The proposed amendment was encoded, and the tests re-run. All
25 tests passed.

6 CONCLUSIONS
Our experiment demonstrates the use of the Rules as Code method-
ology to detect a drafting issue in a proposed statutory text, and to
verify the effect of a proposed amendment. The issue discovered in
this experiment is the type of issue that Rules as Code is intended
to address early: one that if left unaddressed negatively affects the
degree to which the statutory text can be automated.

With regard to s(CASP)’s strengths and weaknesses for this task,
the access to "why not" queries and natural language justifications
was extremely valuable both in the encoding of the Rule, and in
the analysis of test failures. s(CASP)’s abductive reasoning over
constraints, and the fact that it returned answer sets rather than
bindings, allowed the author to test the encoding against a wide

variety of fact scenarios simultaneously, quickly providing a deep
level of insight into the behaviour of the encoding. s(CASP) also
facilitated the use of a version of defeasibility that allowed defeating
relations of both the "subject to" and "despite" types to be encoded
where they appear in the text, enhancing maintainability of the
code [7].

s(CASP)’s abductive queries slow down considerably with the
complexity of the code, and so it may not be an appropriate ap-
proach for real-time applications of abductive reasoning. However,
its performance on deductive reasoning tasks was very efficient,
completing the 25 tests in this experiment in an average of less
than 1 second each, which suggests it can also be used to answer
legal questions with complicated fact scenarios and complicated
rules in a user-facing application.

ACKNOWLEDGMENTS
I owe a debt of gratitude to all my colleagues at the SMU Centre
for Computational Law, and in particular our Principal Investigator
Meng Weng Wong, Industry Director Alexis Chun, and Professors
Lim How Khang and Jerrold Soh, all of whom contributed greatly to
the legal analysis. Professors Gopal Gupta of University of Texas at
Dallas and Joaquín Arias at Universidad Rey Juan Carlos provided
valuable assistance on the effective use of s(CASP). The feedback
of the reviewers has also improved the paper and is gratefully
acknowledged.

This research is supported by the National Research Founda-
tion (NRF), Singapore, under its Industry Alignment Fund – Pre-
Positioning Programme, as the Research Programme in Computa-
tional Law. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s) and do
not reflect the views of National Research Foundation, Singapore.

REFERENCES
[1] L. Allen and C. R. Engholm. 1978. Normalized Legal Drafting and the Query

Method. Journal of Legal Education 29 (1978), 380–412.
[2] Joaquín Arias, Manuel Carro, Zhuo Chen, and Gopal Gupta. 2020. Justifica-

tions for Goal-Directed Constraint Answer Set Programming. arXiv preprint
arXiv:2009.10238 (2020).

[3] Joaquin Arias, Manuel Carro, Elmer Salazar, Kyle Marple, and Gopal Gupta. 2018.
Constraint answer set programming without grounding. Theory and Practice of
Logic Programming 18, 3-4 (2018), 337–354.

[4] Organization for Economic Cooperation and Development Observatory for Public
Sector Innovation. [n.d.]. Cracking the Code: Rulemaking for humans and ma-
chines. Accessed February 28, 2021, at https://oecd-opsi.org/wp-content/uploads/
2020/10/Rules-as-Code_Highlights_Final_HighRes.pdf.

[5] D. Merritt. 2017. Expert Systems in Prolog. Independently Published. https:
//books.google.com.sg/books?id=6IQGyQEACAAJ

[6] Marek J. Sergot, Fariba Sadri, Robert A. Kowalski, Frank Kriwaczek, Peter Ham-
mond, and H. Terese Cory. 1986. The British Nationality Act as a logic program.
Commun. ACM 29, 5 (1986), 370–386.

[7] HuiWan, Benjamin Grosof, Michael Kifer, Paul Fodor, and Senlin Liang. 2009. Logic
Programming with Defaults and Argumentation Theories. In Logic Programming,
Patricia M. Hill and David S. Warren (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 432–448.

263


	Constraint answer set programming as a tool to improve legislative drafting
	Citation

	tmp.1679469577.pdf.MrQb0

