
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2023

MetaFormer baselines for vision MetaFormer baselines for vision

Weihao YU

Chenyang SI

Pan ZHOU
Singapore Management University, panzhou@smu.edu.sg

Mi LUO

Yichen ZHOU

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Graphics and Human Computer Interfaces Commons

Citation Citation
YU, Weihao; SI, Chenyang; ZHOU, Pan; LUO, Mi; ZHOU, Yichen; FENG, Jiashi; YAN, Shuicheng; and WANG,
Xinchao. MetaFormer baselines for vision. (2023). IEEE Transactions on Pattern Analysis and Machine
Intelligence. 46, (2), 896-912.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9054

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9054&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9054&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Weihao YU, Chenyang SI, Pan ZHOU, Mi LUO, Yichen ZHOU, Jiashi FENG, Shuicheng YAN, and Xinchao
WANG

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/9054

https://ink.library.smu.edu.sg/sis_research/9054

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

MetaFormer Baselines for Vision
Weihao Yu, Chenyang Si, Pan Zhou, Mi Luo, Yichen Zhou, Jiashi Feng,

Shuicheng Yan, Fellow, IEEE, and Xinchao Wang, Senior Member, IEEE

Abstract—MetaFormer, the abstracted architecture of Transformer, has been found to play a significant role in achieving competitive
performance. In this paper, we further explore the capacity of MetaFormer, again, by migrating our focus away from the token mixer
design: we introduce several baseline models under MetaFormer using the most basic or common mixers, and demonstrate their
gratifying performance. We summarize our observations as follows:

(1) MetaFormer ensures solid lower bound of performance. By merely adopting identity mapping as the token mixer, the
MetaFormer model, termed IdentityFormer, achieves >80% accuracy on ImageNet-1K.

(2) MetaFormer works well with arbitrary token mixers. When specifying the token mixer as even a random matrix to mix tokens,
the resulting model RandFormer yields an accuracy of >81%, outperforming IdentityFormer. Rest assured of MetaFormer’s results
when new token mixers are adopted.

(3) MetaFormer effortlessly offers state-of-the-art results. With just conventional token mixers dated back five years ago, the
models instantiated from MetaFormer already beat state of the art.

(a) ConvFormer outperforms ConvNeXt. Taking the common depthwise separable convolutions as the token mixer, the model
termed ConvFormer, which can be regarded as pure CNNs, outperforms the strong CNN model ConvNeXt.

(b) CAFormer sets new record on ImageNet-1K. By simply applying depthwise separable convolutions as token mixer in the
bottom stages and vanilla self-attention in the top stages, the resulting model CAFormer sets a new record on ImageNet-1K: it
achieves an accuracy of 85.5% at 224× 224 resolution, under normal supervised training without external data or distillation.

In our expedition to probe MetaFormer, we also find that a new activation, StarReLU, reduces 71% FLOPs of activation compared with
commonly-used GELU yet achieves better performance. Specifically, StarReLU is a variant of Squared ReLU dedicated to alleviating
distribution shift. We expect StarReLU to find great potential in MetaFormer-like models alongside other neural networks. Code and
models are available at https://github.com/sail-sg/metaformer.

Index Terms—MetaFormer, Transformer, Neural Networks, Image Classification, Deep Learning.

✦

1 INTRODUCTION

IN recent years, Transformers [9] have demonstrated un-
precedented success in various computer vision tasks

[10], [11], [12], [13]. The competence of Transformers has
been long attributed to its attention module. As such, many
attention-based token mixers [4], [5], [14], [15], [16] have
been proposed in the aim to strengthen the Vision Trans-
formers (ViTs) [11]. Nevertheless, some work [17], [18], [19],
[20], [21] found that, by replacing the attention module in
Transformers with simple operators like spatial MLP [17],
[22], [23] or Fourier transform [18], the resultant models still
produce encouraging performance.

Along this line, the work [24] abstracts Transformer into
a general architecture termed MetaFormer, and hypothe-
sizes that it is MetaFormer that plays an essential role for
models in achieving competitive performance. To verify
this hypothesis, [24] adopts embarrassingly simple operator,
pooling, to be the token mixer, and discovers that PoolFormer
effectively outperforms the delicate ResNet/ViT/MLP-like
baselines [1], [2], [4], [11], [17], [22], [25], [26], which con-
firms the significance of MetaFormer.

• This work was partially performed when Weihao Yu was a research intern
at Sea AI Lab.

• Weihao Yu, Mi Luo and Xinchao Wang are with National University of
Singapore.
Emails: weihaoyu@u.nus.edu, xinchao@nus.edu.sg.

• Chenyang Si, Pan Zhou, Yichen Zhou, Jiashi Feng, and Shuicheng Yan
are with Sea AI Lab. Email: yansc@sea.com.

• Corresponding authors: Xinchao Wang and Shuicheng Yan.

In this paper, we make further steps exploring the
boundaries of MetaFormer, through, again, deliberately tak-
ing our eyes off the token mixers. Our goal is to push
the limits of MetaFomer, based on which we may have a
comprehensive picture of its capacity. To this end, we adopt
the most basic or common token mixers, and study the
performance of the resultant MetaFormer models on the
large-scale ImageNet-1K image classification. Specifically,
we examine the token mixers being bare operators such as
identity mapping or global random mixing, and being the
common techniques dated back years ago such as separable
convolution [6], [7], [8] and vanilla self-attention [9], as
shown in Figure 2. We summarize our key experimental
results in Figure 1, alongside our main observations are as
follows.

• MetaFormer secures solid lower bound of perfor-
mance. By specifying the token mixer to be the plainest
operator, identity mapping, we build a MetaFormer
model termed IdentityFormer to probe the performance
lower bound. This crude model, surprisingly, already
achieves gratifying accuracy. For example, with 73M
parameters and 11.5G MACs, IdentityFormer attains
top-1 accuracy of 80.4% on ImageNet-1K. Results of
IdentityFormer demonstrate that MetaFormer is indeed
a dependable architecture that ensures a favorable per-
formance, even when the lowest degree of token mixing
is involved.

ar
X

iv
:2

21
0.

13
45

2v
3

 [
cs

.C
V

]
 2

 D
ec

 2
02

3

https://github.com/sail-sg/metaformer

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

0 2 4 6 8 10 12 14
MACs (G)

(a)

74

76

78

80

82

84

Im
ag

eN
et

 To
p-

1
Ac

cu
ra

cy
 (%

)

ResNet-50's
accuracy

IdentityFormer
(Ours)

RandFormer
(Ours)

Accuracy vs. MACs vs. Model Size

0 5 10 15 20 25 30 35 40
MACs (G)

(b)

81

82

83

84

85

86

25 50 100 200(M)

Model Size
Swin

ConvNeXt

ConvFormer
(Ours)

CAFormer (Ours)

Accuracy vs. MACs vs. Model Size

Set new record

Fig. 1: Performance of MetaFormer baselines and other state-of-the-art models on ImageNet-1K at 2242 resolution. The
architectures of our proposed models are shown in Figure 2. (a) IdentityFormer/RandFormer achieve over 80%/81%
accuracy, indicating MetaFormer has solid lower bound of performance and works well on arbitrary token mixers.
The accuracy of well-trained ResNet-50 [1] is from [2]. (b) Without novel token mixers, pure CNN-based ConvFormer
outperforms ConvNeXt [3], while CAFormer sets a new record of 85.5% accuracy on ImageNet-1K at 2242 resolution
under normal supervised training without external data or distillation.

• MetaFormer works well with arbitrary token mixers.
To explore MetaFormer’s universality to token mixers,
we further cast the token mixer to be random, with
which the message passing between tokens is enabled
but largely arbitrary. Specifically, we equip the token
mixers with random mixing in the top two stages
and preserve the identity mapping in the bottom two
stages, to avoid bringing excessive computation cost
and frozen parameters. The derived model, termed
RandFormer, turns out to be efficacious and improves
IdentityFormer by 1.0%, yielding an accuracy of 81.4%.
This result validates the MetaFormer’s universal com-
patibility with token mixers. As such, please rest as-
sured of MetaFormer’s performance when exotic token
mixers are introduced.

• MetaFormer effortlessly offers state-of-the-art perfor-
mance. We make further attempts by injecting more
informative operators into MetaFormer to probe its
performance. Again, without introducing novel to-
ken mixers, MetaFormer models equipped with “old-
fashioned” token mixers invented years ago, includ-
ing inverted separable convolutions [6], [7], [8] and
vanilla self-attention [9], readily delivers state-of-the-art
results. Specifically,
– ConvFormer outperforms ConvNeXt. By instantiat-

ing the token mixer as separable depthwise convolu-
tions, the resultant model, termed ConvFormer, can
be treated as a pure-CNN model without channel
or spatial attention [9], [11], [27], [28]. Experiments
results showcase that ConvFormer consistently out-
performs the strong pure-CNN model ConvNeXt [3].

– CAFormer sets new record on ImageNet-1K. If
we are to introduce attention into ConvFormer by
even adopting the vanilla self-attention [9], the de-
rived model, termed CAFormer, readily yields record-
setting performance on ImageNet-1K. Specifically,

CAFormer replaces the token mixer of ConvFormer
in the top two stages with vanilla self-attention, and
hits a new record of 85.5% top-1 accuracy at 2242

resolution on ImageNet-1K under the normal super-
vised setting (without extra data or distillation).

These MetaFormer models, with most basic or
commonly-used token mixers, readily serve as dependable
and competitive baselines for vision applications. When
delicate token mixers or advanced training strategies are
introduced, we will not be surprised at all to see the per-
formance of MetaFormer-like models hitting new records.

Along our exploration, we also find that a new activa-
tion, StarReLU, largely reduces the activation FLOPs up to
71%, when compared with the commonly-adopted GELU.
StarReLU is a variant of Squared ReLU, but particularly de-
signed for alleviating distribution shifts. In our experiments,
specifically, StarReLU outperforms GELU by 0.3%/0.2%
accuracy on ConvFormer-S18/CAFormer-S18, respectively.
We therefore expect StarReLU to find great potential in
MetaFormer-like models alongside other neural networks.

2 METHOD

2.1 Recap the concept of MetaFormer
The concept MetaFormer [24] is a general architecture in-
stead of a specific model, which is abstracted from Trans-
former [9] by not specifying token mixer. Specifically, the
input is first embedded as a sequence of features (or called
tokens) [9], [11]:

X = InputEmbedding(I). (1)

Then the token sequence X ∈ RN×C with length N and
channel dimension C is fed into repeated MetaFormer
blocks, one of which can be expressed as

X ′ = X +TokenMixer (Norm1(X)) , (2)
X ′′ = X ′ + σ (Norm2(X

′)W1)W2, (3)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

D
ow

nsam
pling

L1 ×
IdentityFormer

block

D
ow

nsam
pling

L2 ×
IdentityFormer

block

D
ow

nsam
pling

L3 ×
IdentityFormer

block

D
ow

nsam
pling

L4 ×
IdentityFormer

block

+

+
Channel

MLP

Norm

Stage 1 Stage 2 Stage 3 Stage 4

(a) Overall IdentityFormer framework

(e) IdentityFormer
block

D
ow

nsam
pling

L1 ×
IdentityFormer

block

D
ow

nsam
pling

L2 ×
IdentityFormer

block

D
ow

nsam
pling

L3 ×
RandFormer

block

D
ow

nsam
pling

L4 ×
RandFormer

block

(b) Overall RandFormer framework

D
ow

nsam
pling

L1 ×
ConvFormer

block

D
ow

nsam
pling

L2 ×
ConvFormer

block

D
ow

nsam
pling

L3 ×
ConvFormer

block

D
ow

nsam
pling

L4 ×
ConvFormer

block

(c) Overall ConvFormer framework

D
ow

nsam
pling

L1 ×
ConvFormer

block
D

ow
nsam

pling

L2 ×
ConvFormer

block

D
ow

nsam
pling

L3 ×
TransFormer

block

D
ow

nsam
pling

L4 ×
TransFormer

block

(d) Overall CAFormer framework

Identity
Mapping

Norm

+

+
Channel

MLP

Norm

(f) RandFormer
block

Random
Mixing

Norm
Intput

+

+
Channel

MLP

Norm

(g) ConvFormer
block

Separable
Convolution

Norm

+

+
Channel

MLP

Norm

(h) Transformer
block

Attention

Norm

Fig. 2: (a-d) Overall frameworks of IdentityFormer, RandFormer, ConvFormer and CAFormer. Similar to [1], [4], [5], the
models adopt hierarchical architecture of 4 stages, and stage i has Li blocks with feature dimension Di. Each downsampling
module is implemented by a layer of convolution. The first downsampling has kernel size of 7 and stride of 4, while the
last three ones have kernel size of 3 and stride of 2. (e-h) Architectures of IdentityFormer, RandFormer, ConvFormer
and Transformer blocks, which have token mixer of identity mapping, global random mixing (Equation 5), separable
depthwise convolutions [6], [7], [8] (Equation 6) or vanilla self-attention [9], respectively.

where Norm1(·) and Norm2(·) are normalizations [29], [30];
TokenMixer(·) means token mixer mainly for propagating
information among tokens; σ(·) denotes activation function;
W1 and W2 are learnable parameters in channel MLP. By
specifying token mixers as concrete modules, MetaFormer
is then instantiated into specific models.

2.2 IdentityFormer and RandFormer

Following [24], we would like to instantiate token mixer as
basic operators, to further probe the capacity of MetaFormer.
The first one we considered is the identity mapping,

IdentityMapping(X) = X. (4)

Identity mapping does not conduct any token mixing, so
actually, it can not be regarded as token mixer. For conve-

nience, we still treat it as one type of token mixer to compare
with other ones.

Another basic token mixer we utilize is global random
mixing,

RandomMixing(X) = XWR, (5)

where X ∈ RN×C is the input with sequence length N
and channel dimension C , and WR ∈ RN×N is a matrix
that are frozen after random initialization. This token mixer
will bring extra frozen parameters and computation cost
quadratic to the token number, so it is not suitable for
large token number. The PyTorch-like code of the identity
mapping and random mixing are shown in Algorithm 1.

To build the overall framework, we simply follow the
4-stage model [1], [31] configurations of PoolFormer [24]
to build models of different sizes. Specifically, we specify

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Algorithm 1 Token mixers of identity mapping and random
mixing, PyTorch-like Code

import torch
import torch.nn as nn

Identity mapping
from torch.nn import Identity

Random mixing
class RandomMixing(nn.Module):

def __init__(self, num_tokens=196):
super().__init__()
self.random_matrix = nn.parameter.Parameter(

data=torch.softmax(torch.rand(num_tokens,
num_tokens), dim=-1),

requires_grad=False)

def forward(self, x):
B, H, W, C = x.shape
x = x.reshape(B, H*W, C)
x = torch.einsum(’mn, bnc -> bmc’, self.

random_matrix, x)
x = x.reshape(B, H, W, C)
return x

token mixer as identity mapping in all four stages and name
the derived model IdentityFormer. To build RandFormer,
considering that the token mixer of random mixing will
bring much extra frozen parameters and computation cost
for long token length, we thus remain identity mapping in
the first two stages but set global random mixing as token
mixer in the last two stages.

To compare IdentityFormer/RandFormer with Pool-
Former [24] fairly, we also apply the techniques mentioned
above to PoolFormer and name the new model Pool-
FormerV2. The model configurations are shown in Table 1
and the overall frameworks are shown in Figure 2.

2.3 ConvFormer and CAFormer

The above section utilizes basic token mixers to probe the
lower bound of performance and model universality in
terms of token mixers. In this section, without designing
novel token mixers, we just specify the token mixer as
commonly-used operators to probe the model potential
for achieving state-of-the-art performance. The first token
mixer we choose is depthwise separable convolution [6], [7].
Specifically, we follow the inverted separable convolution
module in MobileNetV2 [8],

Convolutions(X) = Convpw2(Convdw(σ(Convpw1(X)))),
(6)

where Convpw1(·) and Convpw2(·) are pointwise convolu-
tions, Convdw(·) is the depthwise convolution, and σ(·)
means the non-linear activation function. In practice, we
set the kernel size as 7 following [3] and the expansion
ratio as 2. We instantiate the MetaFormer as ConvFormer by
specifying the token mixers as the above separable convo-
lutions. ConvFormer also adopts 4-stage framework [1], [4],
[5] (Figure 2) and the model configurations of different sizes
are shown in the Table 2.

Besides convolutions, another common token mixer is
vanilla self-attention [9] used in Transformer. This global
operator is expected to have better ability to capture long-
range dependency. However, since the computational com-
plexity of self-attention is quadratic to the number of tokens,
it will be cumbersome to adopt vanilla self-attention in the

first two stages that have many tokens. As a comparison,
convolution is a local operator with computational com-
plexity linear to token length. Inspired by [11], [12], [24],
[32], we adopt 4-stage framework and specify token mixer
as convolutions in the first two stages and attention in the
last two stages to build CAFormer, as shown in Figure 2. See
Table 2 for model configurations of different sizes.

2.4 Techniques to improve MetaFormer
This paper does not introduce complicated token mixers.
Instead, we introduce a new activation StarReLU and other
two modifications [33], [34], [35] to improve MetaFormer.

2.4.1 StarReLU
In vanilla Transformer [9], ReLU [36] is chosen as the acti-
vation function that can be expressed as

ReLU(x) = max(0, x), (7)

where x denotes any one neural unit of the input. This acti-
vation costs 1 FLOP for each unit. Later, GPT [37] uses GELU
[38] as activation and then many subsequent Transformer
models (e.g., BERT [39], GPT-3 [40] and ViT [11]) employ
this activation by default. GELU can be approximated as,

GELU(x) = xΦ(x) (8)

≈ 0.5× x(1 + tanh(
√
2/π(x+ 0.044715× x3))), (9)

where Φ(·) is the Cumulative Distribution Function for
Gaussian Distribution (CDFGD). Although revealing better
performance than ReLU [24], [41], GELU approximately
brings 14 FLOPs 1, much larger then ReLU’s 1 FLOP of cost.
To simplify GELU, [41] finds that CDFGD can be replaced
by ReLU,

SquaredReLU(x) = xReLU(x) = (ReLU(x))2. (10)

This activation is called Squared ReLU [41], only costing 2
FLOPs for each input unit. Despite the simplicity of Squared
ReLU, we find its performance can not match that of GELU
for some models on image classification task as shown in
Section 3.4. We hypothesize the worse performance may
be resulted from the distribution shift of the output [43].
Assuming input x follows normal distribution with mean 0
and variance 1, i.e.x ∼ N(0, 1), we have:

E
(
(ReLU(x))2

)
= 0.5, Var

(
(ReLU(x))2

)
= 1.25. (11)

See the appendix for the derivation process of Equation 11.
Therefore the distribution shift can be solved by

StarReLU(x) =
(ReLU(x))

2 − E
(
(ReLU(x))2

)√
Var ((ReLU(x))2)

(12)

=
(ReLU(x))

2 − 0.5√
1.25

(13)

≈ 0.8944 · (ReLU(x))
2 − 0.4472. (14)

We name the above activation StarReLU as multiplications
(*) is heavily used. However, the assumption of standard
normal distribution for input is strong [43]. To make the

1. tanh is counted 6 FLOPs for simplicity [42].

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

TABLE 1: Model configurations of IdentityFormer, RandFormer and PoolFormerV2. “C”, “L” and “T” means channel
number, block number and token mixer type, respectively. “Id”, ”Rand” and “Pool” denotes token mixer of identity
mapping, random mixing and pooling, respectively. The contents in the tuples represent the configurations in the four
stages of the models.

Model IdentityFormer RandFormer PoolFormerV2

Size

S12 C = (64, 128, 320, 512), L = (2, 2, 6, 2)

S24 C = (64, 128, 320, 512), L = (4, 4, 12, 4)

S36 C = (64, 128, 320, 512), L = (6, 6, 18, 6)

M36 C = (96, 192, 384, 768), L = (6, 6, 18, 6)

M48 C = (96, 192, 384, 768), L = (8, 8, 24, 8)

Token Mixer T = (Id, Id, Id, Id) T = (Id, Id,Rand,Rand) T = (Pool,Pool,Pool,Pool)

Classifier Head Global average pooling, Norm, FC

TABLE 2: Model configurations of ConvFormer and CAFormer. “C”, “L” and “T” means channel number, block number
and token mixer type. “Conv” and “Attn” denotes token mixer of separable convolution and vanilla self-attention,
respectively. The contents in the tuples represent the configurations in the four stages of the models.

Model ConvFormer CAFormer

Size

S18 C = (64, 128, 320, 512), L = (3, 3, 9, 3)

S36 C = (64, 128, 320, 512), L = (3, 12, 18, 3)

M36 C = (96, 192, 384, 576), L = (3, 12, 18, 3)

B36 C = (128, 256, 512, 768), L = (3, 12, 18, 3)

Token Mixer T = (Conv,Conv,Conv,Conv) T = (Conv,Conv,Attn,Attn)

Classifier Head Global average pooling, Norm, MLP

activation adaptable to different situations, like different
models or initialization, scale and bias can be set to be
learnable [44], [45]. We uniformly re-write the activation as

StarReLU(x) = s · (ReLU(x))2 + b, (15)

where s ∈ R and b ∈ R are scalars of scale and bias
respectively, which are shared for all channels and can be
set to be constant or learnable to attain different StarReLU
variants. StarReLU only costs 4 FLOPs (or 3 FLOPs with
only s or b), much fewer than GELU’s 14 FLOPs but
achieving better performance as shown in Section 3.4. For
convenience, we utilize StarReLU with learnable scale and bias
as default activation in this paper as intuitively this variant
can more widely adapt to different situations [44], [45]. We
leave the study of StarReLU variant selection for different
situations in the future.

2.4.2 Other modifications

Scaling branch output. To scale up Transformer model size
from depth, [46] proposes LayerScale that multiplies layer
output by a learnable vector:

X ′ = X + λl ⊙F(Norm(X)), (16)

where X ∈ RN×C denotes the input features with se-
quence length N and channel dimension C , Norm(·) is
the normalization, F(·) means the token mixer or channel
MLP module, λl ∈ RC represents the learnable LayerScale
parameters initialized by a small value like 1e-5, and ⊙
means element multiplication. Similar to LayerScale, [33],
[47], [48] attempt to stabilize architectures by scaling the
residual branch (ResScale [33]):

X ′ = λr ⊙X + F(Norm(X)), (17)

where λr ∈ RC denotes learnable parameters initialized as
1. Apparently, we can merge the above two techniques into
BranchScale by scaling all branches:

X ′ = λr ⊙X + λl ⊙F(Norm(X)). (18)

Among these three scaling techniques, we find ResScale
performs best according to our experiments in Section 3.4.
Thus, we adopt ResScale [33] by default in this paper.

Disabling biases. Following [34], [35], we disable the bi-
ases of fully-connected layers, convolutions (if have) and
normalization in the MetaFormer blocks, finding it does not
hurt performance and even can bring slight improvement
for specific models as shown in the ablation study. For
simplicity, we disable biases in MetaFormer blocks by default.

3 EXPERIMENTS

3.1 Image Classification

3.1.1 Setup

ImageNet-1K [59] image classification is utilized to bench-
mark these baseline models. ImageNet-1K is one of the most
widely-used datasets in computer vision which contains
about 1.3M images of 1K classes on training set, and 50K im-
ages on validation set. For ConvFormer-B36 and CAFormer-
B36, we also conduct pre-training on ImageNet-21K [59],
[60], a much larger dataset containing ∼14M images of
21841 classes, and then fine-tune the pretrained model on
ImageNet-1K for evaluation. Our implementation is based
on PyTorch library [61] and Timm codebase [62] and the
experiments are run on TPUs.

Training and fine-tuning on ImageNet-1K. We mainly fol-
low the hyper-parameters of DeiT [25]. Specifically, models

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

TABLE 3: Performance on ImageNet-1K of RSB-ResNet
and MetaFormer models with basic tokens of identity
mapping, random maxing and pooling. The underlined
numbers mean the numbers of parameters that are frozen
after random initialization.

Model Params (M) MACs (G) Top-1 (%)

RSB-ResNet-18 [1], [2] 11.7 1.8 70.6
IdentityFormer-S12 11.9 1.8 74.6
RandFormer-S12 11.9 + 0.2 1.9 76.6
PoolFormerV2-S12 [24] 11.9 1.8 78.0
RSB-ResNet-34 [1], [2] 21.8 3.7 75.5
IdentityFormer-S24 21.3 3.4 78.2
RandFormer-S24 21.3 + 0.5 3.5 78.8
PoolFormerV2-S24 [24] 21.3 3.4 80.7
RSB-ResNet-50 [1], [2] 25.6 4.1 79.8
IdentityFormer-S36 30.8 5.0 79.3
RandFormer-S36 30.8 + 0.7 5.2 79.5
PoolFormerV2-S36 [24] 30.8 5.0 81.6
RSB-ResNet-101 [1], [2] 44.5 7.9 81.3
IdentityFormer-M36 56.1 8.8 80.0
RandFormer-M36 56.1 + 0.7 9.0 81.2
PoolFormerV2-M36 [24] 56.1 8.8 82.2
RSB-ResNet-152 [1], [2] 60.2 11.6 81.8
IdentityFormer-M48 73.3 11.5 80.4
RandFormer-M48 73.3 + 0.9 11.9 81.4
PoolFormerV2-M48 [24] 73.3 11.5 82.6

TABLE 4: Comparison among ViT (DeiT), isotropic Iden-
tityFormer and isotropic IdentityFormer with stem of 4
convolutional layers with stride of 2 and kernel size of 72,
32, 32, and 32 respectively.

Model Params
(M)

MACs
(G)

Top-1
(%)

DeiT-S [25] 22 4.6 79.8
IdentityFormer-S (iso.) 22 4.2 68.2
IdentityFormer-S (iso., conv stem) 23 4.6 75.4

are trained for 300 epochs at 2242 resolution. Data augmen-
tation and regularization techniques include RandAugment
[63], Mixup [64], CutMix [65], Random Erasing [66], weight
decay, Label Smoothing [67] and Stochastic Depth [68]. We
do not use repeated augmentation [69], [70] and LayerScale
[46], but use ResScale [33] for the last two stages. We adopt
AdamW [71], [72] optimizer with batch size of 4096 for
most models except CAFormer since we found it suffers
a slight performance drop compared with that with batch
size of 1024. The problem may be caused by the large
batch size, so we use a large-batch-size-friendly optimizer
LAMB [73] for CAFormer. For 3842 resolution, we fine-
tune the models trained at 2242 resolution for 30 epochs
with Exponential Moving Average (EMA) [74]. The details
of hyper-parameters are shown in the appendix.

Pre-training on ImageNet-21K and fine-tuning on
ImageNet-1K. To probe the scaling capacity with a larger
dataset, we pre-train ConvFormer and CAFormer on
ImageNet-21K for 90 epochs at the resolution of 2242. Then
the pre-trained models are fine-tuned on ImageNet-1K at
the resolution of 2242 and 3842 for 30 epochs with EMA

[74]. See the appendix for more details of hyper-parameters.

Robustness evaluation. Following ConvNeXt [3], we also
directly evaluate our ImageNet models on several robust-
ness benchmarks, i.e. ImageNet-C [75], ImageNet-A [76],
ImageNet-R [77] and ImageNet-Sketch [78]. Note that we
do not adopt additional fine-tuning or any specialized
modules. Mean corruption error (mCE) is reported for
ImageNet-C and top-1 accuracy is for all other datasets.

3.1.2 Results of Models with basic token mixers

Table 3 shows the performance of models with basic to-
ken mixers on ImageNet-1K. Surprisingly, with bare iden-
tity mapping as token mixer, IdentityFormer already per-
forms very well, especially for small model sizes. For ex-
ample, IdentityFormer-S12/S24 outperforms RSB-ResNet-
18/34 [1], [2] by 4.0%/2.7%, respectively. We further scale
up the model size of IdentityFormer to see what accuracy it
can achieve. By scaling up model size to ∼73M parameters
and ∼12G MACs, IdentityFormer-M48 can achieve accuracy
of 80.4%. Without considering the comparability of model
size, this accuracy already surpasses 79.8% of RSB-ResNet-
50. The results of IdentityFormer indicate that MetaFormer
ensures solid lower bound of performance. That is to say,
if you adopt MetaFormer as general framework to develop
your own models, the accuracy will not be below 80% with
similar parameter numbers and MACs of IdentityFormer-
M48.

To see whether the amazing performance of Identity-
Former is from hierarchical structure, we follow ViT-S (DeiT-
S) to build isotropic IdentityFormer, and the results are
shown in Table 4. IdentityFormer-S (iso.) can achieve 68.2%
accuracy and IdentityFormer-S (iso.) with the stem of 4
convolutional layers can even obtain an accuracy of 75.4%.
These results show that isotropic IdentityFormer also works
well, demonstrating the performance of IdentityFormer is
not from hierarchical structure. An important factor for
model performance is the receptive field of the stem or
downsampling layers, based on the large improvement of
IdentityFormer-S (iso., conv stem) over IdentityFormer-S
(iso.).

Another surprising finding is that by replacing token
mixer of IdentityFormer with random mixing in the top
two stages, RandFormer can consistently improve Identity-
Former. For example, RandFormer-S12/M48 obtains accu-
racy of 76.6%/81.4%, surpassing IdentityFormer-S12/M48
by 2.0%/1.0%, respectively. For medium and large model
sizes, RandFormer can also achieve accuracy comparable to
RSB-ResNet, like RandFormer-M36’s 81.2% vs.RSB-ResNet-
101’s 81.3%. The promising performance of RandFormer,
especially its consistent improvement over IdentityFormer,
demonstrates MetaFormer can work well with arbitrary
token mixers and validates MetaFormer’s universal com-
patibility with token mixers. Therefore, rest assured of
MetaFormer’s performance when exotic token mixers are
equipped.

Compared with PoolFormerV2 [24] with basic token
mixer of pooling, neither of IdentityFormer nor RandFormer
can match its performance. The worse performance of
IdentityFormer makes sense as identity mapping does not
conduct any token mixing. The performance gap between

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

TABLE 5: Performance of models trained on ImageNet-1K at the resolution of 2242 and finetuned at 3842. Model
highlighted with gray background are proposed in this paper. The column “MetaFormer” denotes whether models adopt
MetaFormer architecture (partially). * To the best of our knowledge, the model sets a new record on ImageNet-1K with
the accuracy of 85.5% at 2242 resolution under normal supervised setting (without external data or distillation), surpassing
the previous best record of 85.3% set by MViTv2-L [49] with 55% fewer parameters and 45% fewer MACs.

Model MetaFormer Mixing Type Params (M)
Testing at resolution

@224 ↑384
MACs (G) Top-1 (%) MACs (G) Top-1 (%)

RSB-ResNet-50 [1], [2] ✗ Conv 26 4.1 79.8 - -
RegNetY-4G [2], [50] ✗ Conv 21 4.0 81.3 - -
ConvNeXt-T [3] ✗ Conv 29 4.5 82.1 - -
VAN-B2 [51] ✓ Conv 27 5.0 82.8 - -
ConvFormer-S18 ✓ Conv 27 3.9 83.0 11.6 84.4
DeiT-S [25] ✓ Attn 22 4.6 79.8 - -
T2T-ViT-14 [14] ✓ Attn 22 4.8 81.5 17.1 83.3
Swin-T [5] ✓ Attn 29 4.5 81.3 - -
CSWin-T [52] ✓ Attn 23 4.3 82.7 - -
MViTv2-T [49] ✓ Attn 24 4.7 82.3 - -
Dual-ViT-S [53] ✓ Attn 25 4.8 83.4 - -
CoAtNet-0 [32] ✓ Conv + Attn 25 4.2 81.6 13.4 83.9
UniFormer-S [54] ✓ Conv + Attn 22 3.6 82.9 - -
iFormer-S [55] ✓ Conv + Attn 20 4.8 83.4 16.1 84.6
CAFormer-S18 ✓ Conv + Attn 26 4.1 83.6 13.4 85.0

RSB-ResNet-101 [1], [2] ✗ Conv 45 7.9 81.3 - -
RegNetY-8G [2], [50] ✗ Conv 39 8.0 82.1 - -
ConvNeXt-S [3] ✗ Conv 50 8.7 83.1 - -
VAN-B3 [51] ✓ Conv 45 9.0 83.9 - -
ConvFormer-S36 ✓ Conv 40 7.6 84.1 22.4 85.4
T2T-ViT-19 [14] ✓ Attn 39 8.5 81.9 - -
Swin-S [5] ✓ Attn 50 8.7 83.0 - -
CSWin-S [52] ✓ Attn 35 6.9 83.6 - -
MViTv2-S [49] ✓ Attn 35 7.0 83.6 - -
CoAtNet-1 [32] ✓ Conv + Attn 42 8.4 83.3 27.4 85.1
UniFormer-B [54] ✓ Conv + Attn 50 8.3 83.9 - -
CAFormer-S36 ✓ Conv + Attn 39 8.0 84.5 26.0 85.7

RSB-ResNet-152 [1], [2] ✗ Conv 60 11.6 81.8 - -
RegNetY-16G [2], [50] ✗ Conv 84 15.9 82.2 - -
ConvNeXt-B [3] ✗ Conv 89 15.4 83.8 45.0 85.1
RepLKNet-31B [56] ✓ Conv 79 15.3 83.5 45.1 84.8
VAN-B4 [51] ✓ Conv 60 12.2 84.2 - -
SLaK-B [57] ✓ Conv 95 17.1 84.0 50.3 85.5
ConvFormer-M36 ✓ Conv 57 12.8 84.5 37.7 85.6
DeiT-B [25] ✓ Attn 86 17.5 81.8 55.4 83.1
T2T-ViT-24 [14] ✓ Attn 64 13.8 82.3 - -
Swin-B [5] ✓ Attn 88 15.4 83.5 47.1 84.5
CSwin-B [52] ✓ Attn 78 15.0 84.2 47.0 85.4
MViTv2-B [49] ✓ Attn 52 10.2 84.4 36.7 85.6
CoAtNet-2 [32] ✓ Conv + Attn 75 15.7 84.1 49.8 85.7
MaxViT-S [58] ✓ Conv + Attn 69 11.7 84.5 36.1 85.2
iFormer-L [55] ✓ Conv + Attn 87 14.0 84.8 45.3 85.8
CAFormer-M36 ✓ Conv + Attn 56 13.2 85.2 42.0 86.2

RegNetY-32G [2], [50] ✗ Conv 145 32.3 82.4 - -
ConvNeXt-L [3] ✗ Conv 198 34.4 84.3 101.0 85.5
ConvFormer-B36 ✓ Conv 100 22.6 84.8 66.5 85.7
MViTv2-L [49] ✓ Attn 218 42.1 85.3 140.2 86.3
CoAtNet-3 [32] ✓ Conv + Attn 168 34.7 84.5 107.4 85.8
MaxViT-B [58] ✓ Conv + Attn 120 23.4 85.0 74.2 86.3
CAFormer-B36 ✓ Conv + Attn 99 23.2 85.5* 72.2 86.4

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

RandFormer and PoolFormerV2 may result from the local
inductive bias of pooling.

3.1.3 Results of models with commonly-used token mixers
We build ConvFormer by specifying the token mixer in
MetaFormer as separable convolutions [6], [7] used in Mo-
bileNetV2 [8]. Meanwhile, CAFormer is built with token
mixers of separable convolutions in the bottom two stages
and vanilla self-attention in the top two stages. The results
of models trained on ImageNet-1K are shown in Table 5.

ConvFormer actually can be regarded as pure CNN-
based model without any attention mechanism [9], [11],
[27], [28]. It can be observed that ConvFormer outperforms
strong CNN model ConvNeXt [3] significantly. For example,
at the resolution of 2242, ConvFomer-B36 (100M parameters
and 22.6G MACs) surpasses ConvNeXt-B (198M parame-
ters and 34.4G MACs) by 0.5% top-1 accuracy while only
requiring 51% parameters and 66% MACs. Compared with
another stong CNN model EfficientNetV2-L [79] with input
size of 4802 (120M parameters, 53.0G MACs, 85.7% top-
1 accuracy), ConvFormer-B36 with input size of 3842 can
match its accuracy.

Also, ConvFormer outperforms various strong attention-
based or hybrid models. For instance, ConvFormer-M36
outperforms Swin-B [5]/CoAtNet-2 [32] by 1.0%/0.4% with
35%/24% fewer parameters and 17%/18% fewer MACs.

Besides ConvFormer, CAFormer achieves more remark-
able performance. Although CAFormer is just built by
equipping token mixers of separable convolutions [6], [7],
[8] in bottom stages and vanilla self-attention [9] in top
stages, it already consistently outperforms other models in
different sizes, as clearly shown in Figure 3. Remarkably, to
the best of our knowledge, CAFormer sets new record on
ImageNet-1K with top-1 accuracy of 85.5% at 2242 resolu-
tion under normal supervised setting (without external data
or distillation models).

When pre-trained on ImageNet-21K (Table 7), the model
performance is further improved. For instance, the perfor-
mance of ConvFormer-B36 and CAFormer-B36 surges to
87.0% and 87.4%, with 2.2% and 1.9% accuracy improve-
ment compared with the results of ImageNet-1K training
only. Both models keep superior to Swin-L [5]/ConvNeXt-
L [3], showing the promising scaling capacity with a larger
pre-training dataset. For example, ConvFormer-B36 outper-
forms ConvNeXt-L by 0.2% with 49% fewer parameters and
34% fewer MACs. Compared with another strong model
EfficientNetV2-XL (input size of 4802, 94.0G MACs, 208M
parameters, 87.3% top-1 accuracy), ConvFormer-B36 and
CAForemer-B36 surpass it by 0.3% and 0.8% with only half
of the parameters and 71%/77% MACs, respectively.

Just equipped with “old-fashioned” token mixers, Con-
vFormer and CAFormer instantiated from MetaFormer
already can achieve remarkable performance, especially
CAFormer sets a new record on ImageNet-1K. These re-
sults demonstrate MetaFormer can offer high potential for
achieving state-of-the-art performance. When advanced to-
ken mixers or training strategies are introduced, we will
not be surprised to see the performance of MetaFormer-
like models setting new records. We expect ConvFormer and
CAFormer as well as IdentityFormer and RandFormer to be
dependable baselines for future neural architecture design.

3.1.4 Robustness of models with commonly-used token
mixers

The robustness results of ConvFormer, CAFormer and other
SOTA models are shown in Table 6. Compared with Swin
[5] and ConvNeXt [3], ConvFormer exhibits better or com-
petitive performance. For example, for models trained on
ImageNet-1K, ConvFormer-S18 obtains 25.3% and 48.7%
on ImageNet-A [76] and ImageNet-R [77], outperforming
ConvNeXt-T by 1.1% and 1.5%, respectively. CAFormer at-
tains more impressive performance: It not only consistently
outperforms Swin and ConvNeXt, but also surpasses SOTA
robust method FAN [80]. For instance, for models trained on
ImageNet-1K, CAFormer-M36/CAFormer-B36 obtain 45.6%
and 48.5% on ImageNet-A [76], surpassing FAN [80] by
8.4%/11.3%, respectively.

3.2 Object detection and instance segmentation

3.2.1 Setup

We evaluate ConvFormer and CAFormer on COCO [83]
which contains 118K training images and 5K validation
images. Following Swin [5] and ConvNeXt [3], we adopt
ConvFormer and CAFormer pretrained on ImageNet-1K as
the backbones for Mask R-CNN [84] and Cascade Mask
R-CNN [85]. Due to the large image resolution, we find
adopting CAFormer will result in out-of-memory. To solve
it, we limit attention of CAFormer in sliding window [86],
[87]. We also adopt AdamW multi-scale and 3× schedule
training setting, following Swin and ConvNeXt.

3.2.2 Results

Table 9 shows the results of ConvFormer, CAFormer, and
other two strong backbones Swin and ConvNeXt for COCO
object detection and instance segmentation. The models
with backbones of ConvFormer and CAFormer consistently
outperform Swin and ConvNeXt. For example, Cascade
Mask R-CNN with CAFormer-S18 as backbone largely sur-
passes that with Swin-T/ConvNeXt-T, i.e., 52.3 vs.50.4/50.4
for box AP, and 45.2 vs.43.7/43.7 for mask AP.

3.3 Semantic segmentation

3.3.1 Setup

We also evaluate ConvFormer and CAFormer on the
ADE20K [88] for semantic segmentation task. ADE20K
consists of 20K/2K images on the training/validation set,
including 150 semantic categories. Following Swin and Con-
vNeXt, we equip ConvFormer and CAFormer as backbones
for UperNet [89]. All models are trained with AdamW
optimizer [71], [72] and batch size of 16 for 160K iterations.

3.3.2 Results

Table 10 shows the results of UperNet with different back-
bones. ConvFormer and CAFormer as backbones obtain
better performance compared with Swin and ConvNeXt. For
instance, the model with CAFormer-S18 obtains 48.9 mIoU,
higher than those with Swin-T/ConvNeXt-T by 3.1/2.2.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

TABLE 6: Model evaluation of robustness. Model highlighted with gray background are proposed in this paper. Note
that we do not adopt additional fine-tuning or any specialized modules.

Model Params
(M)

Testing at resolution
@224 ↑384

MACs
(G)

Clean
(%)

C (↓)
(mCE)

A
(%)

R
(%)

SK
(%)

MACs
(G)

Clean
(%)

C (↓)
(mCE)

A
(%)

R
(%)

SK
(%)

Trained on ImageNet-1K
Swin-T [5] 29 4.5 81.3 62.0 21.6 41.3 29.1 - - - - - -
RVT-S* [81] 23 4.7 81.9 49.4 25.7 47.7 34.7 - - - - - -
ConvNeXt-T [3] 29 4.5 82.1 53.2 24.2 47.2 33.8 - - - - - -
FAN-S [80] 28 5.3 82.5 47.7 29.1 50.4 - - - - - - -
ConvFormer-S18 27 3.9 83.0 51.7 25.3 48.7 35.2 11.6 84.4 51.0 42.0 50.7 36.2
CAFormer-S18 26 4.1 83.6 47.4 33.5 48.7 36.6 13.4 85.0 46.1 48.9 51.3 37.7
Swin-S [5] 50 8.7 83.0 52.7 32.3 45.1 32.4 - - - - - -
ConvNeXt-S [3] 50 8.7 83.1 51.2 31.2 49.5 37.1 - - - - - -
FAN-B [80] 54 10.4 83.6 44.4 35.4 51.8 - - - - - - -
ConvFormer-S36 40 7.6 84.1 47.1 33.2 50.8 38.4 22.4 85.4 47.7 49.9 51.9 37.8
CAFormer-S36 39 8.0 84.5 44.7 40.9 51.7 39.5 26.0 85.7 42.7 57.1 54.5 41.7
Swin-B [5] 88 15.4 83.5 54.4 35.8 46.6 32.4 47.1 84.5 49.4 45.3 47.0 32.9
RVT-B* [81] 92 17.7 82.6 46.8 28.5 48.7 36.0 - - - - - -
ConvNeXt-B [3] 89 15.4 83.8 46.8 36.7 51.3 38.2 45.0 85.1 48.6 47.6 52.2 38.5
FAN-L [80] 81 15.8 83.9 43.3 37.2 53.1 - - - - - - -
Robust-ResNet [82] - 17.3 81.6 34.9 - 51.1 38.1 - - - - - -
ConvFormer-M36 57 12.8 84.5 46.5 37.6 51.0 39.2 37.7 85.6 48.4 53.5 52.2 38.5
CAFormer-M36 56 13.2 85.2 42.6 45.6 51.7 39.6 42.0 86.2 41.7 60.2 55.0 41.5
ConvNeXt-L [3] 198 34.4 84.3 46.6 41.1 53.4 40.1 101.0 85.5 46.8 52.5 53.6 39.9
ConvFormer-B36 100 22.6 84.8 46.3 40.1 51.1 39.5 66.5 85.7 48.1 55.3 52.2 38.9
CAFormer-B36 99 23.2 85.5 42.6 48.5 53.9 42.5 72.2 86.4 42.8 61.9 55.0 42.5

Pretrained on ImageNet-21K
ConvNeXt-T [3] 29 4.5 82.9 52.3 36.6 51.0 38.5 13.1 84.1 51.5 45.8 51.3 38.9
ConvFormer-S18 27 3.9 83.7 47.5 33.4 53.4 40.3 11.6 85.0 47.2 50.1 55.0 41.6
CAFormer-S18 26 4.1 84.1 44.8 43.3 54.1 41.2 13.4 85.4 43.3 58.3 55.9 42.0
ConvNeXt-S [3] 50 8.7 84.6 45.6 45.1 57.3 43.6 25.5 85.8 44.2 57.0 59.1 45.8
ConvFormer-S36 40 7.6 85.4 41.0 47.3 58.9 46.9 22.4 86.4 41.3 62.9 59.9 47.1
CAFormer-S36 39 8.0 85.8 38.5 55.5 60.7 46.7 26.0 86.9 36.8 70.6 63 48.5
Swin-B [5] 88 15.4 85.2 42.0 51.7 59.3 45.5 47.1 86.4 37.8 65.3 63.0 48.5
ConvNeXt-B [3] 89 15.4 85.8 41.9 54.8 61.8 49.8 45.0 86.8 43.1 62.3 64.9 51.6
ConvFormer-M36 57 12.8 86.1 38.4 56.1 60.9 49.1 37.7 86.9 39.0 68.5 61.8 49.1
CAFormer-M36 56 13.2 86.6 35.2 60.9 63.4 49.7 42.0 87.5 33.9 73.9 65.3 51.0
Swin-L [5] 197 34.5 86.3 38.0 61.2 63.7 49.0 103.9 87.3 34.5 70.7 66.0 50.4
ConvNeXt-L [3] 198 34.4 86.8 38.3 60.5 63.9 49.9 101.0 87.5 40.2 65.5 66.7 52.8
ConvFormer-B36 100 22.6 87.0 35.0 63.3 65.3 52.7 66.5 87.6 35.8 73.5 66.5 52.9
CAFormer-B36 99 23.2 87.4 31.8 69.4 68.3 52.8 72.2 88.1 30.8 79.5 70.4 54.5

3.4 Ablation

This paper does not design novel token mixers but utilizes
three techniques to MetaFormer. Therefore, we conduct
ablation study for them, respectively. ConvFormer-S18 and
CAFormer-S18 on ImageNet-1K are taken as the baselines.
The results are shown in Table 8. When the StarReLU is
replaced with ReLU [36], the performance of ConvFormer-
S18/CAFormer significantly drops from 83.0%/83.6% to
82.1%/82.9%, respectively. When the activation is Squared
ReLU [41], the performance is already satisfied. But for
ConvFormer-18, it can not match that of GELU [38]. As
for the StarReLU, it not only can reduce 71% activation
FLOPs compared with GELU, but also achieves better
performance with 0.3%/0.2% accuracy improvement for

ConvFormer-S18/CAForemr-S18, respectively. This result
expresses the promising application potential of StarReLU
in MetaFormer-like models and other neural networks. We
further observe the performance of different StarReLU vari-
ants on ConvFormer-S18. We adopt StarReLU with learn-
able scale and bias by default because it does not need to
meet the assumption of standard normal distribution for
input [43] and can be conveniently applied for different
models and initialization [44], [45]. But for specific model
ConvFormer-18, StarReLU with learnable or frozen bias
is enough since it can already match the accuracy of the
default StarReLU version. We leave the study of StarReLU
variant selection in the future.

For other techniques, we find ResScale [33] performs best

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

0 10 20 30 40
MACs (G)

81

82

83

84

85

86
Im

ag
eN

et
 T

op
-1

 A
cc

 (%
)

0 50 100 150 200 250
Model Size (M)

81

82

83

84

85

86
CAFormer (Ours)
ConvFormer (Ours)
iFormer
MViTv2
CSWin
VAN
CoAtNet
ConvNeXt
Swin

Fig. 3: ImageNet-1K validation accuracy vs.MACs/Model Size at the resolution of 2242. Models with token (feature)
mixing based on convolution, attention or hybrid are presented by □, △ or ⃝ respectively.

TABLE 7: Performance of models pre-trained on ImageNet-21K and fine-tuned on ImageNet-1K for evaluation. Model
highlighted with gray background are proposed in this paper.

Model MetaFormer Mixing Type Params (M)
Testing at resolution

@224 ↑384
MACs (G) Top-1 (%) MACs (G) Top-1 (%)

ConvNeXt-T [3] ✗ Conv 29 4.5 82.9 13.1 84.1
ConvFormer-S18 ✓ Conv 27 3.9 83.7 11.6 85.0
CAFormer-S18 ✓ Conv + Attn 26 4.1 84.1 13.4 85.4
ConvNeXt-S [3] ✗ Conv 50 8.7 84.6 25.5 85.8
ConvFormer-S36 ✓ Conv 40 7.6 85.4 22.4 86.4
CAFormer-S36 ✓ Conv + Attn 39 8.0 85.8 26.0 86.9
ConvNeXt-B [3] ✗ Conv 89 15.4 85.8 45.1 86.8
ConvFormer-M36 ✓ Conv 57 12.8 86.1 37.7 86.9
Swin-B [5] ✓ Attn 88 15.4 85.2 47.1 86.4
CAFormer-M36 ✓ Conv + Attn 56 13.2 86.6 42.0 87.5
ConvNeXt-L [3] ✗ Conv 198 34.4 86.8 101.0 87.5
ConvFormer-B36 ✓ Conv 100 22.6 87.0 66.5 87.6
Swin-L [5] ✓ Attn 197 34.5 86.3 103.9 87.3
CAFormer-B36 ✓ Conv + Attn 99 23.2 87.4 72.2 88.1

among the branch output scaling techniques; disabling bi-
ases [34], [35] in each block does not affect the performance
for ConvFormer-S18 and can bring improvement of 0.1%
for CAFormer-S18. We thus employ ResScale and disabling
biases of each block by default.

3.5 Benchmark speed
We first benchmark the speed of the proposed StarReLU
and the commonly-used GELU [38] on NVIDIA A100 GPU
that is shown in Table 11. It can be seen that compared with
GELU (Equation 9), StarReLU enjoys significant speedup,
with 1.7× speedup on NVIDIA A100 GPU. We also note
that StarReLU is slower than GELU (PyTorch API) because
the current implementation of StarReLU is not CUDA-
optimized. Once optimized, we expect a further speedup
for StarReLU, likely a significant one.

Then we further benchmark the ConvFormer,
CAFormer, and other strong models (Swin [5] and
ConvNeXt [3]). For fair comparison, we replace StarReLU
in ConvFormer and CAFormer with GELU. The results are

shown in Table 12. We can see that for similar model sizes
and MACs, ConvNeXt has the highest throughput. This is
because ConvNeXt block has only one residual connection
while MetaFormer block has two. However, ConvFormer
and CAFormer obtain higher accuracy among these models
and also achieve relatively higher throughputs than Swin
and MaxViT, resulting in better trade-off between accuracy
and throughput, as shown in Figure 4.

4 RELATED WORK

Transformer, since being introduced in [9], has become a
popular backbone for various tasks in NLP [34], [37], [40],
[90], [91], computer vision [4], [5], [10], [11], [14], [25] and
other domains [92], [93], [94], [95], [96], [97], [98]. In com-
puter vision, iGPT [10] and ViT [11] introduce pure Trans-
former for self-supervised learning and supervised learning,
attracting great attention in the research community to
further improve Transformers. The success of Transformers
had long been attributed to the attention module, and thus
many research endeavors have been focused on improving

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

TABLE 8: Ablation for ConvFormer-S18/CAFormer-S18 on ImageNet-1K. ∗ α and β denote learnable scalars shared for
all channels.

Ablation Variant
Top-1 (%)

ConvFormer-S18 CAFormer-S18

– Baseline 83.0 83.6

Activation
types

StarReLU → ReLU [36] 82.1 (-0.9) 82.9 (-0.7)
StarReLU → Squared ReLU [41] 82.6 (-0.4) 83.4 (-0.2)
StarReLU → GELU [38] 82.7 (-0.3) 83.4 (-0.2)

StarReLU
variants

α · (ReLU(x))2 + β∗

→ α · (ReLU(x))2 82.6 (-0.4) 83.6 (-0.0)
→ (ReLU(x))2 + β 83.0 (-0.0) 83.5 (-0.1)
→ 1/

√
1.25 · (ReLU(x))2 − 0.5/

√
1.25 83.0 (-0.0) 83.5 (-0.1)

→ 1/
√
1.25 · (ReLU(x))2 82.6 (-0.4) 83.4 (-0.2)

→ (ReLU(x))2 − 0.5 83.0 (-0.0) 83.3 (-0.3)

Branch output
scaling

ResScale [33] → None 82.8 (-0.2) 83.2 (-0.4)
ResScale [33] → LayerScale [46] 82.8 (-0.2) 83.0 (-0.6)
ResScale [33] → BranchScale 82.9 (-0.1) 83.3 (-0.3)

Biases in
each block

Disable biases of Norm, FC and Conv
→ Enable biases

83.0 (-0.0) 83.5 (-0.1)

TABLE 9: Performance of object detection and instance
segmentation on COCO with Mask R-CNN and Cascade
Mask R-CNN. The MACs are measured with input size of
800 × 1333 (∗ except 896 × 896 of MaxViT). The FPS are
measured on NVIDIA V100 GPU.

Backbone MACs (G) FPS APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

Mask R-CNN 3× schedule
Swin-T 267 19.0 46.0 68.1 50.3 41.6 65.1 44.9
ConvNeXt-T 262 22.1 46.2 67.9 50.8 41.7 65.0 44.9
ConvFormer-S18 251 18.3 47.7 69.6 52.3 42.6 66.3 45.9
CAFormer-S18 254 18.0 48.6 70.5 53.4 43.7 67.5 47.4

Cascade Mask R-CNN 3× schedule
MaxViT-T 475∗ - 52.1 71.9 56.8 44.6 69.1 48.4
MaxViT-S 595∗ - 53.1 72.5 58.1 45.4 69.8 49.5
MaxViT-B 856∗ - 53.4 72.9 58.1 45.7 70.3 50.0
Swin-T 745 8.5 50.4 69.2 54.7 43.7 66.6 47.3
ConvNeXt-T 741 9.4 50.4 69.1 54.8 43.7 66.5 47.3
ConvFormer-S18 729 8.7 51.5 70.7 55.8 44.6 67.8 48.2
CAFormer-S18 733 8.7 52.3 71.3 56.9 45.2 68.6 48.8
Swin-S 838 7.8 51.9 70.7 56.3 45.0 68.2 48.8
ConvNeXt-S 827 8.6 51.9 70.8 56.5 45.0 68.4 49.1
ConvFormer-S36 805 7.4 52.5 71.1 57.0 45.2 68.6 48.8
CAFormer-S36 811 7.1 53.2 72.1 57.7 46.0 69.5 49.8
Swin-B 982 7.7 51.9 70.5 56.4 45.0 68.1 48.9
ConvNeXt-B 964 8.2 52.7 71.3 57.2 45.6 68.9 49.5
ConvFormer-M36 912 6.7 53.0 71.4 57.4 45.7 69.2 49.5
CAFormer-M36 920 6.4 53.8 72.5 58.3 46.5 70.1 50.7

attention-based token mixers [4], [5], [14]. However, it is
shown in MLP-Mixer [17] and FNet [18] that, by replacing
attention in Transformer with spatial MLP [23] and Fourier
transform, the resulting models still deliver competitive
results. Along this line, [24] abstracts the Transformer into
a general architecture termed MetaFormer, and meanwhile
proposes the hypothesis that, it is the MetaFormer that
really plays a critical role in achieving promising perfor-
mance. To this end, [24] specifies the token mixer to be
as embarrassingly simple as pooling, and observes that
the resultant model PoolFormer surpasses the well-tuned
ResNet/ViT/MLP-like baselines [1], [2], [4], [11], [17], [22],

TABLE 10: Performance of Semantic segmentation with
UperNet [89] on ADE20K [88] validation set. Images are
cropped to 512× 512 for training. The MACs are measured
with input size of 512 × 2048. The FPS are measured on
NVIDIA V100 GPU.

Backbone UperNet
Params (M) MACs (G) FPS mIoU (%)

Swin-T [5] 60 945 21.3 45.8
ConvNeXt-T [3] 60 939 21.3 46.7
ConvFormer-S18 54 925 23.7 48.6
CAFormer-S18 54 1024 21.4 48.9
Swin-S [5] 81 1038 14.7 49.5
ConvNeXt-S [3] 82 1027 15.7 49.6
ConvFormer-S36 67 1003 11.9 50.7
CAFormer-S36 67 1197 10.8 50.8
Swin-B [5] 121 1188 14.6 49.7
ConvNeXt-B [3] 122 1170 15.0 49.9
ConvFormer-M36 85 1113 11.5 51.3
CAFormer-M36 84 1346 9.8 51.7

TABLE 11: Benchmarking speed of activations. We bench-
mark the speed by 10K runs with input shape of 1× 1M in
PyTorch [61] on an NVIDIA A100 GPU. Note that it is unfair
to directly compare GELU (PyTorch API) and StarReLU
because the former is CUDA optimized while the last is not.

Activation Speed (runs/s)
GELU (PyTorch API) 145,067 (CUDA optimized)
GELU (Equation 9) 20,273
StarReLU 35,257 (1.7x)

[25], [26]. The power of MetaFormer can also be verified by
the recent models adopting MetaFormer as the general ar-
chitecture but with different attention-based [49], [99], [100],
MLP-based [17], [22], [101], [102], [103], convolution-based
[51], [56], [104], [105], [106], hybrid [32], [54], [55], [58] or
other types of [107], [108] token mixers. Unlike these works,
we do not attempt to introduce novel token mixers, but
merely specify token mixers as the most basic or commonly-
used operators to probe the capacity of MetaFormer.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

TABLE 12: Inference throughputs of different models.
Models are trained and tested on resolution of 2242. We
benchmark the throughputs on an NVIDIA A100 GPU with
batch size of 128 and TF32.

Models Params (M) MACs (G) Top-1 (%) Throughput (img/s)
Swin-T 29 4.5 81.3 1768
ConvNeXt-T 29 4.5 82.1 2413
ConvFormer-S18 27 3.9 83.0 2213
CAFormer-S18 26 4.1 83.6 2093
Swin-S 50 8.7 83.0 1131
ConvNeXt-S 50 8.7 83.1 1535
MaxViT-T 31 5.6 83.6 904
ConvFormer-S36 40 7.6 84.1 1205
CAFormer-S36 39 8.0 84.5 1138
Swin-B 88 15.4 83.5 843
ConvNeXt-B 89 15.4 83.8 1122
MaxViT-S 69 11.7 84.5 616
ConvFormer-M36 57 12.8 84.5 899
CAFormer-M36 56 13.2 85.2 852
ConvNeXt-L 198 34.4 84.3 681
MaxViT-B 120 23.4 85.0 345
ConvFormer-B36 100 22.6 84.8 677
CAFormer-B36 99 23.2 85.5 644

0 500 1000 1500 2000 2500 3000
Throughput (img/s)

81

82

83

84

85

86

Im
ag

eN
et

 To
p-

1
Ac

c
(%

) CAFormer (Ours)
ConvFormer (Ours)
ConvNeXt
MaxViT
Swin

Fig. 4: Trade-off between accuracy and inference through-
put. The throughputs are measured on an NVIDIA A100
GPU with batch size of 128 and TF32.

5 CONCLUSION

In this paper, we make our exploration to study the capacity
of MetaFormer, the abstracted architecture of Transformer.
We take our eyes off the token-mixer design, and merely rely
on the most basic or “old-fashioned” token mixers dated
back years ago to build the MetaFormer models, namely
IdentityFormer, RandFormer, ConvFormer, and CAFormer.
The former two models, built upon identify mapping and
randomized mixing, demonstrate the solid lower bound
of MetaFormer and its universality to token mixers; the
latter two models, built upon conventional separable con-
volutions and vanilla self-attention, readily offer recording-
setting results. In our investigation, we also discover that
a new activation, StarReLU, not only achieves better perfor-
mance but also greatly reduces FLOPs of the activation func-
tion when compared with GELU. We expect MetaFormer to
find its even broader domain of vision applications in future
work, and cheerfully invite readers to try out the proposed
MetaFormer baselines.

ACKNOWLEDGMENTS

This project is supported by the Advanced Research and
Technology Innovation Centre (ARTIC), the National Uni-
versity of Singapore (project number: A-0005947-21-00,
project reference: ECT-RP2), the Singapore Ministry of Edu-
cation Academic Research Fund Tier 1 (WBS: A-0009440-01-
00), and the National Research Foundation Singapore un-
der its AI Singapore Programme (Award Number: AISG2-
RP-2021-023). Weihao Yu and Xinchao Wang would like
to thank TRC program and GCP research credits for the
support of partial computational resources. We would like
to thank Fredo Guan (independent researcher) and Ross
Wightman (Hugging Face) for merging MetaFormer code
into pytorch-image-models codebase.

APPENDIX A
EXPECTATION AND VARIANCE OF SQUARED RELU
Assuming the input x of Squared ReLU [41] follows normal
distribution with mean 0 and variance 1, i.e.x ∼ N(0, 1), we
have:

E(x2) = Var(x) = 1 (19)

E
(
(ReLU(x))2

)
=

1

2
E(x2) = 0.5 (20)

E(x4) =
1√
2π

∫ +∞

−∞
z4 exp

(
−z2

2

)
dz (21)

= − 1√
2π

∫ +∞

−∞
z3d

(
exp

(
−z2

2

))
(22)

=

(
−z3

1√
2π

exp

(
−z2

2

)) ∣∣∣∣+∞

−∞
+ (23)

3

∫ +∞

−∞
z2

1√
2π

exp

(
−z2

2

)
dz (24)

= 0 + 3E(x2) = 3 (25)

E
(
(ReLU(x))4

)
=

1

2
E(x4) = 1.5 (26)

Var
(
(ReLU(x))2

)
= E

(
(ReLU(x))4

)
−

(
E
(
(ReLU(x))2

))2
(27)

= 1.5− 0.52 = 1.25 (28)

where E(·) and Var(·) denote expectation and vari-
ance, respectively. Thus, we can obtain the expectation
E
(
(ReLU(x))2

)
= 0.5 and variance Var

(
(ReLU(x))2

)
=

1.25.

APPENDIX B
CODE OF SEPARABLE CONVOLUTION

Algorithm 2 shows the PyTorch-like code of inverted sepa-
rable convolution from MobileNetV2 [8].

APPENDIX C
HYPER-PARAMETERS
The hyper-parameters of IdentityFormer, RandFormer and
PoolFormerV2 trained on ImageNet-1K [59] are shown in
Table 13, while those of ConvFormer and CAFormer are
shown in Table 14 for training on ImageNet-1K and Table
15 for pre-training on ImageNet-1K and fine-tuning on
ImageNet-1K.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

TABLE 13: Hyper-parameters of IdentityFormer, RandFormer, PoolFormerV2 trained on ImageNet-1K.

Hyper-parameter IdentityFormer RandFormer PoolFormerV2

Model size S12/S24/S36/M36/M48
Epochs 300
Resolution 2242

Batch size 4096
Optimizer AdamW
Learning rate 4e-3
Learning rate decay Cosine
Warmup epochs 5
Weight decay 0.05
Rand Augment 9/0.5
Mixup 0.8
Cutmix 1.0
Erasing prob 0.25
Peak stochastic depth rate 0.1/0.1/0.2/0.3/0.4 0.1/0.1/0.2/0.3/0.3 0.1/0.1/0.2/0.3/0.4
Label smoothing 0.1

TABLE 14: Hyper-parameters of ConvFormer and CAFormer trained on ImageNet-1K and finetuned at larger resolution
of 3842.

Hyper-parameter
ConvFormer CAFormer

Train Finetune Train Finetune

Model size S18/S36/M36/B36
Epochs 300 30 300 30
Resolution 2242 3842 2242 3842

Batch size 4096 1024 4096 1024
Optimizer AdamW AdamW LAMB LAMB
Learning rate 4e-3 5e-5 8e-3 1e-4
Learning rate decay Cosine None Cosine None
Warmup epochs 20 None 20 None
Weight decay 0.05
Rand Augment 9/0.5
Mixup 0.8 None 0.8 None
Cutmix 1.0 None 1.0 None
Erasing prob 0.25
Peak stochastic depth rate 0.2/0.3/0.4/0.6 0.3/0.5/0.8/0.8 0.15/0.3/0.4/0.6 0.3/0.5/0.7/0.8
MLP head dropout rate 0/0/0/0 0.4/0.4/0.5/0.5 0/0.4/0.4/0.5 0.4/0.4/0.4/0.5
Label smoothing 0.1
EMA decay rate None 0.9999 None 0.9999

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[2] R. Wightman, H. Touvron, and H. Jégou, “Resnet strikes
back: An improved training procedure in timm,” arXiv preprint
arXiv:2110.00476, 2021.

[3] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie,
“A convnet for the 2020s,” arXiv preprint arXiv:2201.03545, 2022.

[4] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo,
and L. Shao, “Pyramid vision transformer: A versatile backbone
for dense prediction without convolutions,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp.
568–578.

[5] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 10 012–10 022.

[6] F. Chollet, “Xception: Deep learning with depthwise separable
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 1251–1258.

[7] F. Mamalet and C. Garcia, “Simplifying convnets for fast learn-
ing,” in International Conference on Artificial Neural Networks.
Springer, 2012, pp. 58–65.

[8] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 4510–4520.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[10] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and
I. Sutskever, “Generative pretraining from pixels,” in International
Conference on Machine Learning. PMLR, 2020, pp. 1691–1703.

[11] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly
et al., “An image is worth 16x16 words: Transformers for image
recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[12] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,”
in European conference on computer vision. Springer, 2020, pp.
213–229.

[13] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng,
T. Xiang, P. H. Torr et al., “Rethinking semantic segmentation

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

TABLE 15: Hyper-parameters of ConvFormer and CAFormer pre-trained on ImageNet-21K and fine-tuned on ImageNet-1K
at resolution of 2242 and 3842.

Hyper-parameter
ConvFormer CAFormer

Pretrain Finetune Pretrain Finetune

Model size S18/S36/M36/B36
Epochs 90 30 90 30
Resolution 2242 2242/3842 2242 2242/3842

Batch size 4096 1024 4096 1024
Optimizer AdamW AdamW LAMB LAMB
Learning rate 1e-3 5e-5 2e-3 1e-4
Learning rate decay Cosine None Cosine None
Warmup epochs 5 None 5 None
Weight decay 0.05
Rand Augment 9/0.5
Mixup 0.8 None 0.8 None
Cutmix 1.0 None 1.0 None
Erasing prob 0.25
Peak stochastic depth rate 0/0/0.1/0.2 0.1/0.1/0.1/0.3 0.1/0.1/0.1/0.3 0.1/0.1/0.1/0.3
MLP head dropout rate 0.2/0.2/0.2/0.3 0.2/0.2/0.2/0.5 0.2/0.2/0.2/0.4 0.2/0.2/0.2/0.5
Label smoothing 0.1
EMA decay rate None 0.9999 None 0.9999

Algorithm 2 Token mixer of separable convolution,
PyTorch-like Code

import torch
import torch.nn as nn

Separable convolution
class SepConv(nn.Module):

"Inverted separable convolution from MobileNetV2"
def __init__(self, dim, kernel_size=7, padding=3,

expansion_ratio=2, act1=nn.ReLU, act2=nn.
Identity,

bias=False):
super().__init__()
med_channels = int(expansion_ratio * dim)
self.pwconv1 = nn.Linear(dim, med_channels, bias=

bias) # pointwise conv implemented by FC
self.act1 = act1()
self.dwconv = nn.Conv2d(med_channels, med_channels

, kernel_size=kernel_size,
padding=padding, groups=med_channels, bias=bias

) # depthwise conv
self.act2 = act2()
self.pwconv2 = nn.Linear(med_channels, dim, bias=

bias) # pointwise conv implemented by FC

def forward(self, x):
[B, H, W, C] = x.shape
x = self.pwconv1(x)
x = self.act1(x)
x = x.permute(0, 3, 1, 2) # [B, H, W, D] -> [B, D,

H, W]
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1) # [B, D, H, W] -> [B, H,

W, D]
x = self.act2(x)
x = self.pwconv2(x)
return x

from a sequence-to-sequence perspective with transformers,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 6881–6890.

[14] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F. E.
Tay, J. Feng, and S. Yan, “Tokens-to-token vit: Training vision
transformers from scratch on imagenet,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp.
558–567.

[15] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, “Transformer
in transformer,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[16] D. Zhou, Y. Shi, B. Kang, W. Yu, Z. Jiang, Y. Li, X. Jin, Q. Hou, and
J. Feng, “Refiner: Refining self-attention for vision transformers,”
arXiv preprint arXiv:2106.03714, 2021.

[17] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai,
T. Unterthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit et al.,
“Mlp-mixer: An all-mlp architecture for vision,” Advances in
Neural Information Processing Systems, vol. 34, 2021.

[18] J. Lee-Thorp, J. Ainslie, I. Eckstein, and S. Ontanon, “Fnet: Mixing
tokens with fourier transforms,” arXiv preprint arXiv:2105.03824,
2021.

[19] Y. Zhao, G. Wang, C. Tang, C. Luo, W. Zeng, and Z.-J. Zha,
“A battle of network structures: An empirical study of cnn,
transformer, and mlp,” arXiv preprint arXiv:2108.13002, 2021.

[20] Q. Han, Z. Fan, Q. Dai, L. Sun, M.-M. Cheng, J. Liu, and
J. Wang, “On the connection between local attention and dynamic
depth-wise convolution,” in International Conference on Learning
Representations, 2021.

[21] Y. Rao, W. Zhao, Z. Zhu, J. Lu, and J. Zhou, “Global filter
networks for image classification,” Advances in Neural Information
Processing Systems, vol. 34, pp. 980–993, 2021.

[22] H. Touvron, P. Bojanowski, M. Caron, M. Cord, A. El-Nouby,
E. Grave, G. Izacard, A. Joulin, G. Synnaeve, J. Verbeek et al.,
“Resmlp: Feedforward networks for image classification with
data-efficient training,” arXiv preprint arXiv:2105.03404, 2021.

[23] Y. Tay, D. Bahri, D. Metzler, D.-C. Juan, Z. Zhao, and C. Zheng,
“Synthesizer: Rethinking self-attention for transformer models,”
in International conference on machine learning. PMLR, 2021, pp.
10 183–10 192.

[24] W. Yu, M. Luo, P. Zhou, C. Si, Y. Zhou, X. Wang, J. Feng, and
S. Yan, “Metaformer is actually what you need for vision,” arXiv
preprint arXiv:2111.11418, 2021.

[25] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distil-
lation through attention,” in International Conference on Machine
Learning. PMLR, 2021, pp. 10 347–10 357.

[26] H. Liu, Z. Dai, D. So, and Q. V. Le, “Pay attention to mlps,”
Advances in Neural Information Processing Systems, vol. 34, pp.
9204–9215, 2021.

[27] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

[28] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional
block attention module,” in Proceedings of the European conference
on computer vision (ECCV), 2018, pp. 3–19.

[29] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Interna-
tional conference on machine learning. PMLR, 2015, pp. 448–456.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

[30] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
arXiv preprint arXiv:1607.06450, 2016.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks,” Advances in
neural information processing systems, vol. 25, 2012.

[32] Z. Dai, H. Liu, Q. V. Le, and M. Tan, “Coatnet: Marrying con-
volution and attention for all data sizes,” Advances in Neural
Information Processing Systems, vol. 34, pp. 3965–3977, 2021.

[33] S. Shleifer, J. Weston, and M. Ott, “Normformer: Improved
transformer pretraining with extra normalization,” arXiv preprint
arXiv:2110.09456, 2021.

[34] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, P. J. Liu et al., “Exploring the limits of transfer
learning with a unified text-to-text transformer.” J. Mach. Learn.
Res., vol. 21, no. 140, pp. 1–67, 2020.

[35] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra,
A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann
et al., “Palm: Scaling language modeling with pathways,” arXiv
preprint arXiv:2204.02311, 2022.

[36] V. Nair and G. E. Hinton, “Rectified linear units improve re-
stricted boltzmann machines,” in Icml, 2010.

[37] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al.,
“Improving language understanding by generative pre-training,”
2018.

[38] D. Hendrycks and K. Gimpel, “Gaussian error linear units
(gelus),” arXiv preprint arXiv:1606.08415, 2016.

[39] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[40] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al.,
“Language models are few-shot learners,” Advances in neural
information processing systems, vol. 33, pp. 1877–1901, 2020.

[41] D. R. So, W. Mańke, H. Liu, Z. Dai, N. Shazeer, and Q. V.
Le, “Primer: Searching for efficient transformers for language
modeling,” arXiv preprint arXiv:2109.08668, 2021.

[42] S. O. users, “How many flops does tanh need?”
https://stackoverflow.com/questions/41251698/
how-many-flops-does-tanh-need, 2017, accessed: 2022-03-01.

[43] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
normalizing neural networks,” Advances in neural information
processing systems, vol. 30, 2017.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rec-
tifiers: Surpassing human-level performance on imagenet clas-
sification,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 1026–1034.

[45] Y. Chen, X. Dai, M. Liu, D. Chen, L. Yuan, and Z. Liu, “Dynamic
relu,” in European Conference on Computer Vision. Springer, 2020,
pp. 351–367.

[46] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and H. Jégou,
“Going deeper with image transformers,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp.
32–42.

[47] C. Zhu, R. Ni, Z. Xu, K. Kong, W. R. Huang, and T. Goldstein,
“Gradinit: Learning to initialize neural networks for stable and
efficient training,” Advances in Neural Information Processing Sys-
tems, vol. 34, pp. 16 410–16 422, 2021.

[48] L. Liu, X. Liu, J. Gao, W. Chen, and J. Han, “Understand-
ing the difficulty of training transformers,” arXiv preprint
arXiv:2004.08249, 2020.

[49] Y. Li, C.-Y. Wu, H. Fan, K. Mangalam, B. Xiong, J. Malik, and
C. Feichtenhofer, “Mvitv2: Improved multiscale vision trans-
formers for classification and detection,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 4804–4814.

[50] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and
P. Dollár, “Designing network design spaces,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 10 428–10 436.

[51] M.-H. Guo, C.-Z. Lu, Z.-N. Liu, M.-M. Cheng, and S.-M. Hu,
“Visual attention network,” arXiv preprint arXiv:2202.09741, 2022.

[52] X. Dong, J. Bao, D. Chen, W. Zhang, N. Yu, L. Yuan, D. Chen, and
B. Guo, “Cswin transformer: A general vision transformer back-
bone with cross-shaped windows,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
12 124–12 134.

[53] T. Yao, Y. Li, Y. Pan, Y. Wang, X.-P. Zhang, and T. Mei, “Dual
vision transformer,” arXiv preprint arXiv:2207.04976, 2022.

[54] K. Li, Y. Wang, P. Gao, G. Song, Y. Liu, H. Li, and Y. Qiao,
“Uniformer: Unified transformer for efficient spatiotemporal rep-
resentation learning,” arXiv preprint arXiv:2201.04676, 2022.

[55] C. Si, W. Yu, P. Zhou, Y. Zhou, X. Wang, and S. Yan, “Inception
transformer,” arXiv preprint arXiv:2205.12956, 2022.

[56] X. Ding, X. Zhang, J. Han, and G. Ding, “Scaling up your kernels
to 31x31: Revisiting large kernel design in cnns,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2022, pp. 11 963–11 975.

[57] S. Liu, T. Chen, X. Chen, X. Chen, Q. Xiao, B. Wu, T. Kärkkäinen,
M. Pechenizkiy, D. C. Mocanu, and Z. Wang, “More convnets in
the 2020s: Scaling up kernels beyond 51x51 using sparsity,” in The
Eleventh International Conference on Learning Representations, 2022.

[58] Z. Tu, H. Talebi, H. Zhang, F. Yang, P. Milanfar, A. Bovik, and
Y. Li, “Maxvit: Multi-axis vision transformer,” arXiv preprint
arXiv:2204.01697, 2022.

[59] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in 2009
IEEE conference on computer vision and pattern recognition. Ieee,
2009, pp. 248–255.

[60] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet
large scale visual recognition challenge,” International journal of
computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[61] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch:
An imperative style, high-performance deep learning library,”
Advances in neural information processing systems, vol. 32, 2019.

[62] R. Wightman, “Pytorch image models,” https://github.com/
rwightman/pytorch-image-models, 2019.

[63] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment:
Practical automated data augmentation with a reduced search
space,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition workshops, 2020, pp. 702–703.

[64] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond empirical risk minimization,” arXiv preprint
arXiv:1710.09412, 2017.

[65] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix:
Regularization strategy to train strong classifiers with localizable
features,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2019, pp. 6023–6032.

[66] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random
erasing data augmentation,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 34, no. 07, 2020, pp. 13 001–13 008.

[67] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 2818–2826.

[68] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger,
“Deep networks with stochastic depth,” in European conference
on computer vision. Springer, 2016, pp. 646–661.

[69] M. Berman, H. Jégou, A. Vedaldi, I. Kokkinos, and M. Douze,
“Multigrain: a unified image embedding for classes and in-
stances,” arXiv preprint arXiv:1902.05509, 2019.

[70] E. Hoffer, T. Ben-Nun, I. Hubara, N. Giladi, T. Hoefler, and
D. Soudry, “Augment your batch: Improving generalization
through instance repetition,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2020, pp. 8129–
8138.

[71] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[72] I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” arXiv preprint arXiv:1711.05101, 2017.

[73] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song,
J. Demmel, K. Keutzer, and C.-J. Hsieh, “Large batch optimization
for deep learning: Training bert in 76 minutes,” arXiv preprint
arXiv:1904.00962, 2019.

[74] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic
approximation by averaging,” SIAM journal on control and opti-
mization, vol. 30, no. 4, pp. 838–855, 1992.

[75] D. Hendrycks and T. Dietterich, “Benchmarking neural network
robustness to common corruptions and perturbations,” arXiv
preprint arXiv:1903.12261, 2019.

[76] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song,
“Natural adversarial examples,” in Proceedings of the IEEE/CVF

https://stackoverflow.com/questions/41251698/how-many-flops-does-tanh-need
https://stackoverflow.com/questions/41251698/how-many-flops-does-tanh-need
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

Conference on Computer Vision and Pattern Recognition, 2021, pp.
15 262–15 271.

[77] D. Hendrycks, S. Basart, N. Mu, S. Kadavath, F. Wang,
E. Dorundo, R. Desai, T. Zhu, S. Parajuli, M. Guo et al., “The
many faces of robustness: A critical analysis of out-of-distribution
generalization,” in Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 2021, pp. 8340–8349.

[78] H. Wang, S. Ge, Z. Lipton, and E. P. Xing, “Learning robust global
representations by penalizing local predictive power,” Advances
in Neural Information Processing Systems, vol. 32, 2019.

[79] M. Tan and Q. Le, “Efficientnetv2: Smaller models and faster
training,” in International conference on machine learning. PMLR,
2021, pp. 10 096–10 106.

[80] D. Zhou, Z. Yu, E. Xie, C. Xiao, A. Anandkumar, J. Feng, and J. M.
Alvarez, “Understanding the robustness in vision transformers,”
in International Conference on Machine Learning. PMLR, 2022, pp.
27 378–27 394.

[81] X. Mao, G. Qi, Y. Chen, X. Li, R. Duan, S. Ye, Y. He, and
H. Xue, “Towards robust vision transformer,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 12 042–12 051.

[82] Z. Wang, Y. Bai, Y. Zhou, and C. Xie, “Can cnns be more robust
than transformers?” in The Eleventh International Conference on
Learning Representations, 2023.

[83] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision–ECCV 2014: 13th European Confer-
ence, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V
13. Springer, 2014, pp. 740–755.

[84] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[85] Z. Cai and N. Vasconcelos, “Cascade r-cnn: Delving into high
quality object detection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 6154–6162.

[86] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-
document transformer,” arXiv preprint arXiv:2004.05150, 2020.

[87] A. Hassani, S. Walton, J. Li, S. Li, and H. Shi, “Neighborhood
attention transformer,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023, pp. 6185–6194.

[88] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba,
“Scene parsing through ade20k dataset,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 633–
641.

[89] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun, “Unified perceptual
parsing for scene understanding,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 418–434.

[90] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A ro-
bustly optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692, 2019.

[91] H. Yan, B. Deng, X. Li, and X. Qiu, “Tener: adapting trans-
former encoder for named entity recognition,” arXiv preprint
arXiv:1911.04474, 2019.

[92] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu et al., “Conformer: Convolution-
augmented transformer for speech recognition,” arXiv preprint
arXiv:2005.08100, 2020.

[93] N.-Q. Pham, T.-S. Nguyen, J. Niehues, M. Müller, S. Stüker, and
A. Waibel, “Very deep self-attention networks for end-to-end
speech recognition,” arXiv preprint arXiv:1904.13377, 2019.

[94] N. Li, S. Liu, Y. Liu, S. Zhao, and M. Liu, “Neural speech synthesis
with transformer network,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 6706–6713.

[95] J. Kim, M. El-Khamy, and J. Lee, “T-gsa: Transformer with
gaussian-weighted self-attention for speech enhancement,” in
ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 6649–6653.

[96] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer, I. Simon,
C. Hawthorne, A. M. Dai, M. D. Hoffman, M. Dinculescu, and
D. Eck, “Music transformer,” arXiv preprint arXiv:1809.04281,
2018.

[97] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, and K.-W. Chang,
“Visualbert: A simple and performant baseline for vision and
language,” arXiv preprint arXiv:1908.03557, 2019.

[98] Y.-C. Chen, L. Li, L. Yu, A. El Kholy, F. Ahmed, Z. Gan, Y. Cheng,
and J. Liu, “Uniter: Universal image-text representation learn-

ing,” in European conference on computer vision. Springer, 2020,
pp. 104–120.

[99] S. Ren, D. Zhou, S. He, J. Feng, and X. Wang, “Shunted self-
attention via multi-scale token aggregation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 10 853–10 862.

[100] J. Yang, C. Li, P. Zhang, X. Dai, B. Xiao, L. Yuan, and J. Gao, “Focal
attention for long-range interactions in vision transformers,”
Advances in Neural Information Processing Systems, vol. 34, pp.
30 008–30 022, 2021.

[101] Q. Hou, Z. Jiang, L. Yuan, M.-M. Cheng, S. Yan, and J. Feng, “Vi-
sion permutator: A permutable mlp-like architecture for visual
recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022.

[102] S. Chen, E. Xie, C. Ge, D. Liang, and P. Luo, “Cyclemlp:
A mlp-like architecture for dense prediction,” arXiv preprint
arXiv:2107.10224, 2021.

[103] D. Lian, Z. Yu, X. Sun, and S. Gao, “As-mlp: An axial shifted mlp
architecture for vision,” arXiv preprint arXiv:2107.08391, 2021.

[104] J. Yang, C. Li, and J. Gao, “Focal modulation networks,” arXiv
preprint arXiv:2203.11926, 2022.

[105] Y. Rao, W. Zhao, Y. Tang, J. Zhou, S.-N. Lim, and J. Lu, “Hor-
net: Efficient high-order spatial interactions with recursive gated
convolutions,” arXiv preprint arXiv:2207.14284, 2022.

[106] F. Wu, A. Fan, A. Baevski, Y. N. Dauphin, and M. Auli, “Pay
less attention with lightweight and dynamic convolutions,” arXiv
preprint arXiv:1901.10430, 2019.

[107] Y. Tatsunami and M. Taki, “Sequencer: Deep lstm for image
classification,” arXiv preprint arXiv:2205.01972, 2022.

[108] K. Han, Y. Wang, J. Guo, Y. Tang, and E. Wu, “Vision gnn: An
image is worth graph of nodes,” arXiv preprint arXiv:2206.00272,
2022.

	MetaFormer baselines for vision
	Citation
	Author

	Introduction
	Method
	Recap the concept of MetaFormer
	IdentityFormer and RandFormer
	ConvFormer and CAFormer
	Techniques to improve MetaFormer
	StarReLU
	Other modifications

	Experiments
	Image Classification
	Setup
	Results of Models with basic token mixers
	Results of models with commonly-used token mixers
	Robustness of models with commonly-used token mixers

	Object detection and instance segmentation
	Setup
	Results

	Semantic segmentation
	Setup
	Results

	Ablation
	Benchmark speed

	Related work
	Conclusion
	Appendix A: Expectation and variance of Squared ReLU
	Appendix B: Code of separable convolution
	Appendix C: Hyper-parameters
	References

