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Abstract

In deep learning, different kinds of deep networks typically need different opti-
mizers, which have to be chosen after multiple trials, making the training process
inefficient. To relieve this issue and consistently improve the model training speed
across deep networks, we propose the ADAptive Nesterov momentum algorithm,
Adan for short. Adan first reformulates the vanilla Nesterov acceleration to develop
a new Nesterov momentum estimation (NME) method, which avoids the extra
overhead of computing gradient at the extrapolation point. Then Adan adopts NME
to estimate the gradient’s first- and second-order moments in adaptive gradient
algorithms for convergence acceleration. Besides, we prove that Adan finds an
ε-approximate first-order stationary point withinO

(
ε−3.5

)
stochastic gradient com-

plexity on the non-convex stochastic problems (e.g. deep learning problems), match-
ing the best-known lower bound. Extensive experimental results show that Adan
consistently surpasses the corresponding SoTA optimizers on vision, language,
and RL tasks and sets new SoTAs for many popular networks and frameworks,
e.g. ResNet, ConvNext, ViT, Swin, MAE, DETR, GPT-2, Transformer-XL, and
BERT. More surprisingly, Adan can use half of the training cost (epochs) of SoTA
optimizers to achieve higher or comparable performance on ViT, GPT-2, MAE,
etc, and also shows great tolerance to a large range of minibatch size, e.g. from 1k
to 32k. Code is released at https://github.com/sail-sg/Adan, and has been
used in multiple popular deep learning frameworks or projects.

1 Introduction

Deep neural networks (DNNs) have made remarkable success in many fields, e.g. computer vision [1–
4] and natural language processing [5, 6]. A noticeable part of such success is contributed by the
stochastic gradient-based optimizers, which find satisfactory solutions with high efficiency. Among
current deep optimizers, SGD [7, 8] is the earliest and also the most representative stochastic
optimizer, with dominant popularity for its simplicity and effectiveness. It adopts a single common
learning rate for all gradient coordinates but often suffers unsatisfactory convergence speed on sparse
data or ill-conditioned problems. In recent years, adaptive gradient algorithms [9–17] have been
proposed, which adjusts the learning rate for each gradient coordinate according to the current
geometry curvature of the loss objective. These adaptive algorithms often offer a faster convergence
speed than SGD in practice across many DNN frameworks.

However, none of the above optimizers can always stay undefeated among all its competitors across
different DNN architectures and applications. For instance, for vanilla ResNets [2], SGD often
achieves better generalization performance than adaptive gradient algorithms such as Adam [18],
whereas on vision transformers (ViTs) [19–21], SGD often fails, and AdamW [22] is the dominant
optimizer with higher and more stable performance. Moreover, these commonly used optimizers
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Table 1: Comparison of different adaptive gradient algorithms on nonconvex stochastic problems.
“Separated Reg.” refers to whether the `2 regularizer (weight decay) can be separated from the loss
objective like AdamW. “Complexity" denotes stochastic gradient complexity to find an ε-approximate
first-order stationary point. Adam-type methods [31] includes Adam, AdaMomentum [32], and
AdaGrad [9], AdaBound [13] and AMSGrad [11], etc. AdamW has no available convergence result.
For SAM [33], A-NIGT [34] and Adam+ [35], we compare their adaptive versions. d is the variable
dimension. The lower bound is proven in [36] and please see Sec. A in Appendix for the discussion
on why the lower bound is Ω

(
ε−3.5

)
.

Smoothness
Condition Optimizer Separated

Reg.
Batch Size
Condition.

Grad.
Bound Complexity Lower

Bound

Adam-type [31] % % `∞ ≤ c∞ O
(
c2∞dε

−4
)

Ω
(
ε−4

)
RMSProp [10, 37] % % `∞ ≤ c∞ O

(√
c∞dε−4

)
Ω
(
ε−4

)
Lipschitz AdamW [22] " — — — —

Adabelief [15] % % `2 ≤ c2 O
(
c62ε
−4

)
Ω
(
ε−4

)
Gradient Padam [38] % % `∞ ≤ c∞ O

(√
c∞dε−4

)
Ω
(
ε−4

)
LAMB [25] % O

(
ε−4

)
`2 ≤ c2 O

(
c22dε

−4
)

Ω
(
ε−4

)
Adan (ours) " % `∞ ≤ c∞ O

(
c2.5∞ ε−4

)
Ω
(
ε−4

)
Lipschitz

Hessian

A-NIGT [34] % % `2 ≤ c2 O
(
ε−3.5 log c2

ε

)
Ω
(
ε−3.5

)
Adam+ [35] % O

(
ε−1.625

)
`2 ≤ c2 O

(
ε−3.625

)
Ω
(
ε−3.5

)
Adan (ours) " % `∞ ≤ c∞ O

(
c1.25∞ ε−3.5

)
Ω
(
ε−3.5

)

usually fail for large-batch training, which is a default setting of the prevalent distributed training.
Although there is some performance degradation, we still tend to choose the large-batch setting for
large-scale deep learning training tasks due to the unaffordable training time. For example, training
the ViT-B with the batch size of 512 usually takes several days, but when the batch size comes to
32K, we may finish the training within three hours [23]. Although some methods, e.g. LARS [24]
and LAMB [25], have been proposed to handle large batch sizes, their performance may varies
significantly across DNN architectures. This performance inconsistency increases the training cost
and engineering burden since one has to try various optimizers for different architectures or training
settings. This paper aims at relieving this issue.

When we rethink the current adaptive gradient algorithms, we find that they mainly combine the
moving average idea with the heavy ball acceleration technique to estimate the first- and second-
order moments of the gradient [15, 18, 22, 25]. However, previous studies [26–28] have revealed
that Nesterov acceleration can theoretically achieve a faster convergence speed than heavy ball
acceleration, as it uses gradient at an extrapolation point of the current solution and sees a slight
“future". The ability to see the “future" may help optimizers better utilize the curve information of
the dynamic training trajectory and show better robustness to DNN architectures. Moreover, recent
works [29, 30] have shown the potential of Nesterov acceleration for large-batch training. Thus we
are inspired to consider efficiently integrating Nesterov acceleration with adaptive algorithms.

The contributions of our work include: 1) We propose an efficient DNN optimizer, named Adan.
Adan develops a Nesterov momentum estimation method to estimate stable and accurate first- and
second-order moments of the gradient in adaptive gradient algorithms for acceleration. 2) Moreover,
Adan enjoys a provably faster convergence speed than previous adaptive gradient algorithms such
as Adam. 3) Empirically, Adan shows superior performance over the SoTA deep optimizers across
vision, language, and reinforcement learning (RL) tasks. So it is possible that the effort on trying
different optimizers for different deep network architectures can be greatly reduced. Our detailed
contributions are highlighted below.

Firstly, we propose an efficient Nesterov-acceleration-induced deep learning optimizer termed
Adan. Given a function f and the current solution θk, Nesterov acceleration [26–28] estimates
the gradient gk = ∇f(θ′k) at the extrapolation point θ′k = θk − η(1− β1)mk−1 with the learn-
ing rate η and momentum coefficient β1 ∈ (0, 1), and updates the moving gradient average as
mk = (1− β1)mk−1 + gk. Then it runs a step by θk+1 = θk − ηmk. However, the inconsistency
of the positions for parameter updating at θk and gradient estimation at θ′k leads to the additional cost
of manual extrapolation and inconsistent interface with other optimizers during back-propagation
(BP), which is inconvenient to use especially for large DNNs. To resolve the issues, we propose an
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alternative Nesterov momentum estimation (NME). We compute the gradient gk = ∇f(θk) at the
current solution θk, and estimate the moving gradient average as mk = (1− β1)mk−1 + g′k, where
g′k = gk + (1− β1)(gk − gk−1). Our NME is provably equivalent to the vanilla one yet can avoid
the extra cost. Then by regarding g′k as the current stochastic gradient in adaptive gradient algorithms,
e.g. Adam, we accordingly estimate the first- and second-moments as mk = (1− β1)mk−1 + β1g

′
k

and nk = (1− β2)nk−1 + β2(g′k)
2, respectively. Finally, we update θk+1 = θk − ηmk/(

√
nk + ε).

In this way, Adan enjoys the merit of Nesterov acceleration, namely faster convergence speed and
tolerance to large mini-batch size [39], which is verified in our experiments in Sec. 5.

Secondly, as shown in Table 1, we theoretically justify the advantages of Adan over previous SoTA
adaptive gradient algorithms on nonconvex stochastic problems.

• Given the Lipschitz gradient condition, to find an ε-approximate first-order stationary point,
Adan has the stochastic gradient complexity O

(
c2.5∞ ε−4

)
which accords with the lower

bound Ω(ε−4) (up to a constant factor) [40]. This complexity is lower than O
(
c62ε
−4)

of Adabelief [15] and O
(
c22dε

−4) of LAMB, especially on over-parameterized networks.
Specifically, for the d-dimensional gradient, compared with its `2 norm c2, its `∞ norm c∞
is usually much smaller, and can be

√
d× smaller for the best case. Moreover, Adan’s results

still hold when the loss and the `2 regularizer are separated, which could significantly benefit
the generalization [19] but the convergence analysis for Adam-type optimizers remains
open.

• Given the Lipschitz Hessian condition, Adan has a complexity O
(
c1.25∞ ε−3.5

)
which also

matches the lower bound Ω(ε−3.5) in [36]. This complexity is superior to O
(
ε−3.5 log c2

ε

)
of A-NIGT [34] and also O

(
ε−3.625

)
of Adam+ [35]. Indeed, Adam+ needs the minibatch

size of order O
(
ε−1.625

)
which is prohibitive in practice. For other optimizers, e.g. Adam,

their convergence has not been provided yet under the Lipschitz Hessian condition.

Finally, Adan simultaneously surpasses the corresponding SoTA optimizers across vision, language,
and RL tasks, and establishes new SoTAs for many networks and settings, e.g. ResNet, ConvNext [4],
ViT [19], Swin [20], MAE [41], LSTM [42], Transformer-XL [43], BERT [44], and GPT-2 [45].
More importantly, with half of the training cost (epochs) of SoTA optimizers, Adan can achieve higher
or comparable performance on ViT, Swin, ResNet, etc. Besides, Adan works well in a large range of
minibatch sizes, e.g. from 1k to 32k on ViTs. The improvement of Adan for various architectures
and settings can greatly relieve the engineering burden by avoiding trying different optimizers and
allowing users to accumulate consistent optimization experience.

2 Related Work

Here we mainly review deep optimizers due to limited space. Current deep optimizers can be
grouped into two families: SGD and its accelerated variants, and adaptive gradient algorithms. SGD
computes stochastic gradient and updates the variable along the gradient direction. Later, heavy-ball
acceleration [46] movingly averages stochastic gradient in SGD for faster convergence. Nesterov
acceleration [28] runs a step along the moving gradient average and then computes gradient at the new
point to look ahead for correction. Typically, Nesterov acceleration converges faster both empirically
and theoretically at least on convex problems, and also has superior generalization on DNNs [33, 47].

Unlike SGD, adaptive gradient algorithms, e.g. AdaGrad [9], RMSProp [10] and Adam, view the
second momentum of gradient as a precontioner and also use moving gradient average to update the
variable. Later, many variants have been proposed to estimate more accurate and stable first momen-
tum of gradient or its second momentum, e.g. AMSGrad [11], Adabound [13], and Adabelief [15].
To avoid gradient collapse, AdamP [16] proposes to adaptively clip gradient. Radam [14] reduces
gradient variance to stabilize training. To improve generalization, AdamW [22] splits the objective
and trivial regularization, and its effectiveness is validated across many applications; SAM [33] and
its variants [23, 47, 48] aim to find flat minima but need forward and backward twice per iteration.
LARS [24] and LAMB [25] train DNNs with a large batch but suffer unsatisfactory performance
on small batch. Padam [38] provides a simple but effective way to improve the generalization
performance of Adam by adjusting the second-order moment in Adam. The most related work to
ours is NAdam [49]. It simplifies Nesterov acceleration to estimating the first moment of gradient in
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Adam. But its acceleration does not use any gradient from the extrapolation points and thus does
not look ahead for correction. Moreover, there is no theoretical result to ensure its convergence. See
more difference discussion in Sec. 3.2, especially for Eqn. (3).

3 Methodology

In this work, we study the following regularized nonconvex optimization problem:

minθ F (θ) := Eζ∼D [f(θ, ζ)] +
λ

2
‖θ‖22, (1)

where loss f(·, ·) is differentiable and possibly nonconvex, data ζ is drawn from an unknown
distribution D, θ is learnable parameters, and ‖·‖ is the classical `2 norm. Here we consider the
`2 regularizer as it can improve generalization performance and is widely used in practice [22].
The formulation (1) encapsulates a large body of machine learning problems, e.g. network training
problems, and least square regression. Below, we first introduce the key motivation of Adan in
Sec. 3.1, and then give detailed algorithmic steps in Sec. 3.2.

3.1 Preliminaries

Adaptive gradient algorithms, Adam [18] and AdamW [22], have become the default choice to train
CNNs and ViTs. Unlike SGD which uses one learning rate for all gradient coordinates, adaptive
algorithms adjust the learning rate for each gradient coordinate according to the current geometry
curvature of the objective function, and thus converge faster. Take RMSProp [10] and Adam [18] as
examples. Given stochastic gradient estimator gk := Eζ∼D[∇f(θk, ζ)] +ξk, e.g. minibatch gradient,
where ξk is the gradient noise, RMSProp updates the variable θ as follows:

RMSProp:
{
nk = (1− β)nk−1 + βg2

k

θk+1 = θk − ηk ◦ gk,
Adam:


mk = (1− β1)mk−1 + β1gk

nk = (1− β2)nk−1 + β2g
2
k

θk+1 = θk − ηk ◦mk,

where ηk := η/
(√

nk + ε
)
,m0 = g0, n0 = g2

0, the scalar η is the base learning rate, ◦ denotes the
element-wise product, and the vector square and the vector-to-vector or scalar-to-vector root in this
paper are both element-wise.

Based on RMSProp, Adam (for presentation convenience, we omit the de-bias term in adaptive
gradient methods), replaces the estimated gradient gk with a moving average mk of all previous
gradient gk. By inspection, one can easily observe that the moving average idea in Adam is similar
to the classical (stochastic) heavy-ball acceleration (HBA) technique [46]:

HBA:


gk = ∇f(θk) + ξk
mk = (1− β1)mk−1 + gk
θk+1 = θk − ηmk,

AGD:


gk = ∇f(θk − η(1− β1)mk−1) + ξk
mk = (1− β1)mk−1 + gk
θk+1 = θk − ηmk.

(2)

Both Adam and HBA share the spirit of moving gradient average, though HBA does not have the
factor β1 on the gradient gk. That is, given one gradient coordinate, if its gradient directions are more
consistent along the optimization trajectory, Adam/HBA accumulates a larger gradient value in this
direction and thus goes ahead for a bigger gradient step, which accelerates convergence.

In addition to HBA, Nesterov’s accelerated (stochastic) gradient descent (AGD) [26–28] is another
popular acceleration technique in the optimization community, see Eqn.(2). Unlike HBA, AGD
uses the gradient at the extrapolation point θ′k = θk − η(1− β1)mk−1. Hence when the adjacent
iterates share consistent gradient directions, AGD sees a slight future to converge faster. Indeed, AGD
theoretically converges faster than HBA and achieves optimal convergence rate among first-order
optimization methods on the general smooth convex problems [28]. It also relaxes the convergence
conditions of HBA on the strongly convex problems [27]. Meanwhile, since the over-parameterized
DNNs have been observed/proved to have many convex-alike local basins [50–58], AGD seems to be
more suitable than HBA for DNNs. For large-batch training, [29] showed that AGD has the potential
to achieve comparable performance to some specifically designed optimizers, e.g. LARS and LAMB.
With its advantage and potential in convergence and large-batch training, we consider applying AGD
to improve adaptive algorithms.
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3.2 Adaptive Nesterov Momentum Algorithm

Main Iteration. We temporarily set λ = 0 in Eqn. (1). As aforementioned, AGD computes gradient
at an extrapolation point θ′k instead of the current iterate θk, which however brings extra computation
and memory overhead for computing θ′k and preserving both θk and θ′k. To solve the issue, Lemma 1
with proof in Appendix Sec. B.2 reformulates AGD (2) into its equivalent but more efficient version.

Lemma 1. Assume E(ξk) = 0, Cov(ξi, ξj) = 0 for any k, i, j > 0, θ̄k and m̄k be the iterate and
momentum of the vanilla AGD in Eqn. (2), respectively. Let θk+1 := θ̄k+1 − η(1− β1)m̄k and
mk := (1− β1)

2
m̄k−1 + (2− β1)(∇f(θk) + ξk). The vanilla AGD in Eqn. (2) becomes AGD-II:

AGD II:


gk = Eζ∼D[∇f(θk, ζ)] + ξk

mk = (1− β1)mk−1 + g′k
θk+1 = θk − ηmk

,

where g′k := gk + (1− β1)(gk − gk−1). Moreover, if vanilla AGD in Eqn. (2) converges, so does
AGD-II: E(θ∞) = E(θ̄∞).

The main idea in Lemma 1 is that we maintain (θk − η(1− β1)mk−1) rather than θk in vanilla AGD
at each iteration since there is no difference between them when the algorithm converges. Like other
adaptive optimizers, by regarding g′k as the current stochastic gradient and movingly averaging g′k to
estimate the first- and second-moments of gradient, we obtain:

Vanilla Adan:


mk = (1− β1)mk−1 + β1g

′
k

nk = (1− β3)nk−1 + β3(g′k)
2

θk+1 = θk − ηk ◦mk

,

where g′k := gk + (1− β1)(gk − gk−1) and the vector square in the second line is element-wisely.
The main difference of Adan with Adam-type methods and Nadam [49] is that, as compared in
Eqn. (3), the first-order moment mk of Adan is the average of {gt + (1− β1)(gt − gt−1)}kt=1 while
those of Adam-type and Nadam are the average of {gt}kt=1. So is their second-order term nk,

mk=


∑k
t=0 ck,t[gt + (1− β1)(gt − gt−1)], Adan,∑k
t=0 ck,tgt, Adam,

µk+1

µ′
k+1

(∑k
t=0 ck,tgt

)
+ 1−µk

µ′
k

gk, Nadam,
ck,t=


β1(1− β1)

k−t
t > 0,

(1− β1)
k

t = 0,

(3)

where {µt}∞t=1 is a predefined exponentially decaying sequence, µ′k = 1−
∏k
t=1 µt. Nadam is more

like Adam than Adan, as their mk averages the historical gradients instead of gradient differences in
Adan. For the large k (i.e. small µk), mk in Nadam and Adam are almost the same.

As shown in Eqn. (3), the moment mk in Adan consists of two terms, i.e. gradient term gt and
gradient difference term (gt − gt−1), which actually have different physic meanings. So here we
decouple them for greater flexibility and also better trade-off between them. Specifically, we estimate:

(θk+1−θk)/ηk =

k∑
t=0

[
ck,tgt+(1−β2)c′k,t(gt−gt−1)

]
= mk + (1− β2)vk, (4)

where c′k,t = β2(1− β2)
k−t for t > 0, c′k,t = (1− β2)

k for t = 0, and and, with a little abuse of
notation on mk, we let mk and vk be:

mk = (1− β1)mk−1 + β1gk, vk = (1− β2)vk−1 + β2(gk − gk−1)

This change for a flexible estimation does not impair convergence speed. As shown in Theorem 1,
Adan’s convergence complexity still matches the best-known lower bound. We do not separate the
gradients and their difference in the second-order moment nk, since E(nk) contains the correlation
term Cov(gk,gk−1) 6= 0 which may have statistical significance.

Decay Weight by Proximation. As observed in AdamW, decoupling the optimization objective and
simple-type regularization (e.g. `2 regularizer) can largely improve the generalization performance.
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Algorithm 1: Adan (Adaptive Nesterov Momentum Algorithm)

Input: initialization θ0, step size η, momentum (β1, β2, β3) ∈ [0, 1]3, stable parameter ε > 0,
weight decay λk > 0, restart condition.

Output: some average of {θk}Kk=1.
1 while k < K do
2 estimate the stochastic gradient gk at θk;
3 mk = (1− β1)mk−1 + β1gk;
4 vk = (1− β2)vk−1 + β2(gk − gk−1);
5 nk = (1−β3)nk−1+β3[gk+(1−β2)(gk−gk−1)]

2;
6 ηk = η/

(√
nk + ε

)
;

7 θk+1 =(1+λkη)
−1

[θk−ηk ◦ (mk + (1− β2)vk)];
8 if restart condition holds then
9 estimate stochastic gradient g0 at θk+1;

10 set k = 1 and update θ1 by Line 6;
11 end if
12 end while

we set m0 = g0 , v0 = 0, v1 = g1 − g0, and n0 = g2
0.

Here we follow this idea but from a rigorous optimization perspective. Intuitively, at each iteration
θk+1 = θk − ηk ◦ m̄k, we minimize the first-order approximation of F (·) at the point θk:

θk+1 =argmin
θ

(
F (θk)+〈m̄k,θ − θk〉+

1

2η
‖θ − θk‖2√nk

)
,

where ‖x‖2√nk
:=
〈
x,
(√

nk + ε
)
◦ x
〉

and m̄k := mk + (1− β2)vk is the first-order derivative
of F (·) in some sense. Follow the idea of proximal gradient descent [59, 60], we decouple the `2
regularizer from F (·) and only linearize the loss function f(·):

θk+1 = argmin
θ

(
F ′k(θ) + 〈m̄k,θ − θk〉+

1

2η
‖θ − θk‖2√nk

)
=

θk − ηk ◦ m̄k

1 + λkη
, (5)

where F ′k(θ) := Eζ∼D [f(θk, ζ)] + λk

2 ‖θ‖
2√
nk

, and λk > 0 is the weight decay at the k-th iteration.
Interestingly, we can easily reveal the updating rule θk+1 = (1− λη)θk − ηk ◦ m̄k of AdamW by
using the first-order approximation of Eqn. (5) around η = 0: 1) (1 + λη)−1 = (1− λη) +O

(
η2
)
;

2) ληηk = O
(
η2
)
/
(√

nk + ε
)
.

One can find that the optimization objective of Separated Regularization at the k-th iteration is
changed from the vanilla “static" function F (·) in Eqn. (1) to a “dynamic" function Fk(·) in Eqn. (6),
which adaptively regularizes the coordinates with larger gradient more:

Fk(θ) := Eζ∼D [f(θ, ζ)] +
λk
2
‖θ‖2√nk

. (6)

We summarize our Adan in Algorithm 1. We reset the momentum term properly by the restart
condition, a common trick to stabilize optimization and benefit convergence [61, 62]. But to make
Adan simple, in all experiments except Table 13, we do not use this restart strategy although it can
improve performance as shown in Table 13.

4 Convergence Analysis

For analysis, we make several mild assumptions used in many works, e.g. [15, 31–35, 37, 38, 47].
Assumption 1 (L-smoothness). The function f(·, ·) is L-smooth:

‖∇Eζ [f(x, ζ)]−∇Eζ [f(y, ζ)]‖ ≤ L‖x− y‖, ∀x, y.
Assumption 2 (Unbiased and bounded gradient oracle). The stochastic gradient oracle gk =
Eζ [∇f(θk, ζ)] + ξk is unbiased, and its magnitude and variance are bounded with probability 1:

E (ξk) = 0, ‖gk‖∞ ≤ c∞/3, E
(
‖ξk‖2

)
≤ σ2, ∀k ∈ [T ].

6



Assumption 3 (ρ-Lipschitz continuous Hessian). The function f(·, ·) has ρ-Lipschitz Hessian:∥∥∇2 Eζ [f(x, ζ)]−∇2 Eζ [f(x, ζ)]
∥∥ ≤ ρ‖x− y‖, ∀x, y,

where ‖·‖ is the spectral norm for matrix and `2 norm for vector.

For a general nonconvex problem, if Assumptions 1 and 2 hold, the lower bound of the stochastic
gradient complexity (a.k.a. IFO complexity) to find an ε-approximate first-order stationary point
(ε-ASP) is Ω(ε−4) [40]. Moreover, if Assumption 3 further holds, the lower complexity bound
becomes Ω(ε−3.5) for a non-variance-reduction algorithm [36].

Lipschitz Gradient. Theorem 1 with proof in Appendix Sec. B.3 proves the convergence of Adan
on problem (6) with Lipschitz gradient condition.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Let max {β1, β2} = O
(
ε2
)
, µ :=√

2β3c∞/ε � 1, η = O
(
ε2
)
, and λk = λ(1− µ)

k. Algorithm 1 runs at most K = Ω
(
c2.5∞ ε−4

)
iterations to achieve:

1

K + 1

∑K

k=0
E
(
‖∇Fk(θk)‖2

)
≤ 4ε2.

That is, to find an ε-ASP, the stochastic gradient complexity of Adan on problem (6) is O
(
c2.5∞ ε−4

)
.

Theorem 1 shows that under Assumptions 1 and 2, Adan can converge to an ε-ASP of a nonconvex
stochastic problem with stochastic gradient complexity O

(
c2.5∞ ε−4

)
which accords with the lower

bound Ω(ε−4) in [40]. For this convergence, Adan has no requirement on minibatch size and only
assumes gradient estimation to be unbiased and bounded. Moreover, as shown in Table 1 in Sec. 1, the
complexity of Adan is superior to those of previous adaptive gradient algorithms. For Adabelief and
LAMB, Adan always has lower complexity and respectively enjoys d3× and d2× lower complexity
for the worst case. Adam-type optimizers (e.g. Adam and AMSGrad) enjoy the same complexity as
Adan. But they cannot separate the `2 regularizer with the objective like AdamW and Adan. Namely,
they always solve a static loss F (·) rather than a dynamic loss Fk(·). The regularizer separation can
boost generalization performance [19, 20] and already helps AdamW dominate training of ViT-alike
architectures. Besides, some previous analyses [13, 14, 63, 64] need the momentum coefficient
(i.e. βs) to be close or increased to one, which contradicts with the practice that βs are close to zero.
In contrast, Theorem 1 assumes that all βs are very small, which is more consistent with the practice.
Note that when µ = c/T , we have λk/λ ∈ [(1− c), 1] during training. Hence we could choose the
λk as a fixed constant in the experiment for convenience.

Lipschitz Hessian. To further improve the theoretical convergence speed, we introduce Assumption
3, and set a proper restart condition to reset the momentum during training. Consider an extension
point yk+1 := θk+1 + ηk ◦ [mk + (1− β2)vk − βgk], and the restart condition is:

(k + 1)
∑k

t=0
‖yt+1 − yt‖2√nt

> R2, (7)

where the constantR controls the restart frequency. Intuitively, when the parameters have accumulated
enough updates, the iterate may reach a new local basin. Resetting the momentum at this moment
helps Adan to better use the local geometric information. Besides, we change ηk from η/

(√
nk + ε

)
to η/

(√
nk−1 + ε

)
to ensure ηk to be independent of noise ζk. See its proof in Appendix B.4.

Theorem 2. Suppose that Assumptions 1-3 hold. Let R = O
(
ε0.5
)
, max {β1, β2} = O

(
ε2
)
,

β3 = O
(
ε4
)
, η = O

(
ε1.5
)
, K = O

(
ε−2
)
, λ = 0. Then Algorithm 1 with restart condition Eqn. (7)

satisfies:

E
(∥∥∇Fk(θ̄)

∥∥) = O
(
c0.5∞ ε

)
, where θ̄ :=

1

K0

K0∑
k=1

θk,

and K0 = argminbK2 c≤k≤K−1
‖yt+1 − yt‖2√nt

. Moreover, to find an ε-ASP, Algorithm 1 restarts
at most O

(
c0.5∞ ε−1.5

)
times in which each restarting cycle has at most K = O

(
ε−2
)

iterations, and
hence needs at most O

(
c1.25∞ ε−3.5

)
stochastic gradient complexity.

From Theorem 2, one can observe that with an extra Hessian condition, Assumption 3, Adan
improves its stochastic gradient complexity from O

(
c2.5∞ ε−4

)
to O

(
c1.25∞ ε−3.5

)
, which also matches
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Table 2: Top-1 Acc. (%) of ResNet and ConvNext on ImageNet under the official settings. ∗ and �
are from [4, 65].

ResNet-50 ResNet-101
Epoch 100 200 300 100 200 300

SAM [33] 77.3 78.7 79.4 79.5 81.1 81.6
SGD-M [26–28] 77.0 78.6 79.3 79.3 81.0 81.4
Adam [18] 76.9 78.4 78.8 78.4 80.2 80.6
AdamW [22] 77.0 78.9 79.3 78.9 79.9 80.4
LAMB [25, 65] 77.0 79.2 79.8∗ 79.4 81.1 81.3∗

Adan (ours) 78.1 79.7 80.2 79.9 81.6 81.8

ConvNext Tiny
Epoch 150 300

AdamW [4, 22] 81.2 82.1�
Adan (ours) 81.7 82.4

ConvNext Small
Epoch 150 300

AdamW [4, 22] 82.2 83.1�
Adan (ours) 82.5 83.3

Table 3: Top-1 accuracy (%) of ResNet18 under the official setting in [2]. ∗ are reported in [15].

Adan SGD [7] Nadam [49] Adam [18] Radam [14] Padam [38] LAMB [25] AdamW [22] AdaBlief [15] Adai [66]

70.90 70.23∗ 68.82 63.79∗ 67.62∗ 70.07 68.46 67.93∗ 70.08∗ 69.68

the corresponding lower bound Ω(ε−3.5) [36]. This complexity is lower than O
(
ε−3.5 log c2

ε

)
of A-

NIGT [34] andO
(
ε−3.625

)
of Adam+ [35]. For other DNN optimizers, e.g. Adam, their convergence

under Lipschitz Hessian condition has not been proved yet.

Moreover, Theorem 2 still holds for the large batch size. For example, by using minibatch size
b = O

(
ε−1.5

)
, our results still hold when R = O

(
ε0.5
)
, max {β1, β2} = O

(
ε0.5
)
, β3 = O(ε),

η = O(1), K = O
(
ε−0.5

)
, and λ = 0. In this case, our η is of the order O(1), and is much larger

than O(ploy(ε)) of other optimizers (e.g., LAMB [25] and Adam+) for handling large minibatch.
This large step size often boosts convergence speed in practice, which is actually desired.

5 Experimental Results

We evaluate Adan on vision tasks, natural language processing (NLP) tasks and reinforcement learning
(RL) tasks. For vision classification tasks, we test Adan on several representative SoTA backbones
under the conventional supervised settings, including 1) CNN-type architectures (ResNets [2] and
ConvNexts [4]) and 2) ViTs (ViTs [3, 19] and Swins [20]). We also investigate Adan via the self-
supervised pretraining by using it to train MAE-ViT [41]. Moreover, we test Adan on the vision
object detection and instance segmentation tasks with two frameworks Deformable-DETR [67] and
Mask-RCNN[68] (choosing ConvNext [4] as the backbone). For NLP tasks, we train LSTM [42],
Transformer-XL [43], and BERT [44] for sequence modeling. We also provide the Adan’s results
on large language models, like GPT-2 [45], on the code generation tasks. On RL tasks, we evaluate
Adan on four games in MuJoCo [69].

We compare Adan with the model’s default/SoTA optimizer in all the experiments but may miss some
representative optimizers, e.g., Adai, Padam, and AdaBlief in some cases. This is because they report
few results for larger-scale experiments. For instance, Adablief only tests ResNet-18 performance on
ImageNet and actually does not test any other networks. So it is really hard for us to compare them
on ViTs, Swins, ConvNext, MAEs, etc, due to the challenges for hyper-parameter tuning and limited
GPU resources. The other reason is that some optimizers may fail or achieve poor performance on
transformers. For example, SGD and Adam achieve much lower accuracy than AdamW. See Table 5.

5.1 Experiments for Vision Classification Tasks

5.1.1 Training Setting

Besides the vanilla supervised training setting used in ResNets [2], we further consider the following
two prevalent training settings on ImageNet [70].

Training Setting I. The recently proposed “A2 training recipe” in [65] has pushed the performance
limits of many SoTA CNN-type architectures by using stronger data augmentation and more training
iterations. For example, on ResNet50, it sets new SoTA 80.4%, and improves the accuracy 76.1%
under vanilla setting in [2]. Specifically, for data augmentation, this setting uses random crop,
horizontal flipping, Mixup (0.1) [71]/CutMix (1.0) [72] with probability 0.5, and RandAugment [73]
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Table 4: Top-1 ACC. (%) of ViT and Swin on ImageNet. We use their official Training Setting II to
train them. ∗ and � are respectively reported in [19, 20]

ViT Small ViT Base Swin Tiny Swin small Swin Base
Epoch 150 300 150 300 150 300 150 300 150 300

AdamW [19, 20, 22] 78.3 79.9∗ 79.5 81.8∗ 79.9 81.2� 82.1 83.2� 82.6 83.5�
Adan (ours) 79.6 80.9 81.7 82.6 81.3 81.6 82.9 83.7 83.3 83.8

with M = 7, N = 2 and MSTD = 0.5. It sets stochastic depth (0.05) [74], and adopts cosine
learning rate decay and binary cross-entropy (BCE) loss. For Adan, we use batch size 2048 for
ResNet and ViT.

Training Setting II. We follow the same official training procedure of ViT/Swin/ConvNext. For this
setting, data augmentation includes random crop, horizontal flipping, Mixup (0.8), CutMix (1.0),
RandAugment (M = 9, MSTD = 0.5) and Random Erasing (p = 0.25). We use CE loss, the cosine
decay for base learning rate, the stochastic depth (with official parameters), and weight decay. For
Adan, we set batch size 2048 for Swin/ViT/ConvNext and 4096 for MAE. We follow MAE and tune
β3 as 0.1.

5.1.2 Results on CNN-type Architectures

To train ResNet and ConvNext, we respectively use their official Training Setting I and II. For
ResNet/ConvNext, its default official optimizer is LAMB/AdamW. From Table 2, one can observe
that on ResNet, 1) in most cases, Adan only running 200 epochs can achieve higher or comparable
top-1 accuracy on ImageNet [70] compared with the official SoTA result trained by LAMB with
300 epochs; 2) Adan gets more improvements over other optimizers, when training is insufficient,
e.g. 100 epochs. The possible reason for observation 1) is the regularizer separation, which can
dynamically adjust the weight decay for each coordinate instead of sharing a common one like
LAMB. For observation 2), this can be explained by the faster convergence speed of Adan than other
optimizers. As shown in Table 1, Adan converges faster than many adaptive gradient optimizers.
This faster speed partially comes from its large learning rate guaranteed by Theorem 2, almost 3×
larger than that of LAMB, since the same as Nestrov acceleration, Adan also looks ahead for possible
correction. Note, we have tried to adjust learning rate and warmup-epoch for Adam and LAMB,
but observed unstable training behaviors. On ConvNext (tiny and small), one can observe similar
comparison results on ResNet.

Since some well-known deep optimizers test ResNet18 for 90 epochs under the official vanilla
training setting [2], we also run Adan 90 epochs under this setting for more comparison. Table 3
shows that Adan consistently outperforms SGD and all compared adaptive optimizers. Note for this
setting, it is not easy for adaptive optimizers to surpass SGD due to the absence of heavy-tailed noise,
which is the crucial factor helping adaptive optimizers beat AGD [75].

5.1.3 Results on ViTs

Supervised Training. We train ViT and Swin under their official training setting, i.e. Training
Setting II. Table 4 shows that across different model sizes of ViT and Swin, Adan outperforms the
official AdamW optimizer by a large margin. For ViTs, their gradient per iteration differs much from
the previous one due to the much sharper loss landscape than CNNs [76] and the strong random
augmentations for training. So it is hard to train ViTs to converge within a few epochs. Thanks to
its faster convergence, as shown in Figure 1, Adan is very suitable for this situation. Moreover, the
direction correction term from the gradient difference vk of Adan can also better correct the first-
and second-order moments. One piece of evidence is that the first-order moment decay coefficient
β1 = 0.02 of Adan is much smaller than 0.1 used in other deep optimizers.

Besides AdamW, we also compare Adan with several other popular optimizers, including Adam,
SGD-M, and LAMB, on ViT-S. Table 5 shows that SGD, Adam, and LAMB perform poorly on ViT-S,
which is also observed in the works [29, 77]. These results demonstrate that the decoupled weight
decay in Adan and AdamW is much more effective than 1) the vanilla weight decay, namely the
commonly used `2 regularization in SGD, and 2) the one without any weight decay, since as shown
in Eqn. (6), the decoupled weight decay is a dynamic regularization along the training trajectory and
could better regularize the loss. Compared with AdamW, the advantages of Adan mainly come from
its faster convergence shown in Figure 1 (b). We will discuss this below.
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Table 5: Top-1 accuracy (%) of different opti-
mizers when training ViT-S on ImageNet trained
under training setting II. * is reported in [19].

Epoch 100 150 200 300

AdamW [19, 22] (default) 76.1 78.9 79.2 79.9∗

Adam [18] 62.0 64.0 64.5 66.7
SGD-M [26–28] (AGD) 64.3 68.7 71.4 73.9
LAMB [25] 69.4 73.8 75.9 77.7
Adan (ours) 77.5 79.6 80.0 80.9

Table 6: Top-1 accuracy (%) of ViT-B and ViT-L
trained by self-supervised MAE on ImageNet.
We use the official Training Setting II of MAE to
train ViT-B and ViT-L. ∗ and � are respectively
reported in [78], [41].

MAE-ViT-B MAE-ViT-L
Epoch 300 800 1600 800 1600

AdamW [22, 41] 82.9∗ — 83.6� 85.4� 85.9�

Adan 83.4 83.8 — 85.9 —

Self-supervised MAE Training (pre-train + finetune). We follow the MAE training framework
to pre-train and finetune ViT-B on ImageNet, i.e. 300/800 pretraining epochs and 100 fine-tuning
epochs. Table 6 shows that 1) with 300 pre-training epochs, Adan makes 0.5% improvement over
AdamW; 2) Adan pre-trained 800 epochs surpasses AdamW pre-trained 1,600 epochs by non-trial
0.2%. All these results show the superior convergence and generalization performance of Adan.

Large-Batch Training. Although large batch size can increase computation parallelism to reduce
training time and is heavily desired, optimizers often suffer performance degradation, or even fail.
For instance, AdamW fails to train ViTs when batch size is beyond 4,096. How to solve the problem
remains open [30]. At present, LAMB is the most effective optimizer for large batch size. Table 7
reveals that Adan is robust to batch sizes from 2k to 32k, and shows higher performance and
robustness than LAMB.

Table 7: Top-1 accuracy (%) of ViT-S on ImageNet under the Training Setting I.
Batch Size 1k 2k 4k 8k 16k 32k

LAMB [25, 30] 78.9 79.2 79.8 79.7 79.5 78.4
Adan (ours) 80.9 81.1 81.1 80.8 80.5 80.2

5.1.4 Comparison of Convergence Speed

In Figure 1 (a), we plot the curve of training and test loss along with the training epochs on ResNet50.
One can observe that Adan converges faster than the compared baselines and enjoys the smallest
training and test losses. This demonstrates its fast convergence property and good generalization
ability. To sufficiently investigate the fast convergence of Adan, we further plot the curve of training
and test loss on the ViT-Small in Figure 1 (b). From the results, we can see that Adan consistently
shows faster convergence behaviors than other baselines in terms of both training loss and test loss.
This also partly explains the good performance of Adan.

5.2 Experiments for Language Processing Tasks

Table 8: Test perplexity (the lower, the better) on Penn Treebank for one-, two- and three-layered
LSTMs. All results except Adan and Padam in the table are reported by AdaBelief [15].

LSTM Adan AdaBelief [15] SGD [7] AdaBound [13] Adam [18] AdamW [22] Padam [38] RAdam [14] Yogi [63]

1 layer 83.6 84.2 85.0 84.3 85.9 84.7 84.2 86.5 86.5
2 layers 65.2 66.3 67.4 67.5 67.3 72.8 67.2 72.3 71.3
3 layers 59.8 61.2 63.7 63.6 64.3 69.9 63.2 70.0 67.5

5.2.1 Results on LSTM

To begin with, we test our Adan on LSTM [42] by using the Penn TreeBank dataset [79], and report
the perplexity (the lower, the better) on the test set in Table 8. We follow the exact experimental
setting in Adablief [15]. Indeed, all our implementations are also based on the code provided by
Adablief [15]1. We use the default setting for all the hyper-parameters provide by Adablief, since it
provides more baselines for fair comparison. For Adan, we utilize its default weight decay (0.02) and
βs (β1 = 0.02, β2 = 0.08, and β3 = 0.01). We choose learning rate as 0.01 for Adan.

1The reported results in [15] slightly differ from the those in [38] because of their different settings for LSTM
and training hyper-parameters.
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(a) Training and test curves on ResNet-50 under Training Setting I.
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(b) Training and test curves on ViT-S under Training Setting II.

Figure 1: Training and test curves of various optimizers on ImageNet dataset. Training loss is larger
due to its stronger data argumentation.
Table 9: Correlation or ACC. (%) (the higher, the better) of BERT-base model on the development set
of GLUE.

BERT-base MNLI QNLI QQP RTE SST-2 CoLA STS-B Average

Adam [18] (from [80]) 83.7/84.8 89.3 90.8 71.4 91.7 48.9 91.3 81.5
Adam [18] (reproduced) 84.9/84.9 90.8 90.9 69.3 92.6 58.5 88.7 82.5
Adan (ours) 85.7/85.6 91.3 91.2 73.3 93.2 64.6 89.3 84.3 (+1.8)

Table 8 shows that on the three LSTM models, Adan always achieves the lowest perplexity, making
about 1.0 overall average perplexity improvement over the runner-up. Moreover, when the LSTM
depth increases, the advantage of Adan becomes more remarkable.

5.2.2 Results on BERT

Similar to the pretraining experiments of MAE which is also a self-supervised learning framework
on vision tasks, we utilize Adan to train BERT [44] from scratch, which is one of the most widely
used pretraining models/frameworks for NLP tasks. We employ the exact BERT training setting
in the widely used codebase—Fairseq [81]. We replace the default Adam optimizer in BERT with
our Adan for both pretraining and fune-tuning. Specifically, we first pretrain BERT-base on the
Bookcorpus and Wikipedia datasets, and then finetune BERT-base separately for each GLUE task
on the corresponding training data. Note, GLUE is a collection of 9 tasks/datasets to evaluate
natural language understanding systems, in which the tasks are organized as either single-sentence
classification or sentence-pair classification.

Here we simply replace the Adam optimizer in BERT with our Adan and do not make other changes,
e.g. random seed, warmup steps and learning rate decay strategy, dropout probability, etc. For
pretraining, we use Adan with its default weight decay (0.02) and βs (β1 = 0.02, β2 = 0.08, and
β3 = 0.01), and choose learning rate as 0.001. For fine-tuning, we consider a limited hyper-parameter
sweep for each task, with a batch size of 16, and learning rates ∈ {2e − 5, 4e − 5} and use Adan
with β1 = 0.02, β2 = 0.01, and β3 = 0.01 and weight decay 0.01.
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Table 10: Pass@k metric (the higher, the better),
evaluating functional correctness, for GPT-2
(345M) model on the HumanEval dataset pre-
trained with different steps.

GPT-2 (345m) Steps pass@1 pass@10 pass@100

Adam 300k 0.0840 0.209 0.360
Adan 150k 0.0843 0.221 0.377

Table 11: Test PPL (the lower, the better) for
Transformer-XL-base model on the WikiText-
103 dataset with different training steps. * is
reported in the official implementation.

Transformer-XL-base Training Steps
50k 100k 200k

Adam [18] 28.5 25.5 24.2∗
Adan (ours) 26.2 24.2 23.5

Following the conventional setting, we run each fine-tuning experiment three times and report the
median performance in Table 9. On MNLI, we report the mismatched and matched accuracy. And we
report Matthew’s Correlation and Person Correlation on the task of CoLA and STS-B, respectively.
The performance on the other tasks is measured by classification accuracy. The performance of
our reproduced one (second row) is slightly better than the vanilla results of BERT reported in
Huggingface-transformer [80] (widely used codebase for transformers in NLP), since the vanilla
Bookcorpus data in [80] is not available and thus we train on the latest Bookcorpus data version.

From Table 9, one can see that in the most commonly used BERT training experiment, Adan reveals
a much better advantage over Adam. Specifically, in all GLUE tasks, on the BERT-base model,
Adan achieves higher performance than Adam and makes 1.8 average improvements on all tasks. In
addition, on some tasks of Adan, the BERT-base trained by Adan can outperform some large models.
e.g., BERT-large which achieves 70.4% on RTE, 93.2% on SST-2, and 60.6 correlation on CoLA,
and XLNet-large which has 63.6 correlation on CoLA. See [82] for more results.

5.2.3 Results on GPT-2

We evaluate Adan on the large language models (LLMs), GPT-2 [45], for code generalization tasks,
which enables the completion and synthesis of code, both from other code snippets and natural lan-
guage descriptions. LLMs work across a wide range of domains, tasks, and programming languages,
and can, for example, assist professional and citizen developers with building new applications. We
pre-train GPT-2 on The-Stack dataset (Python only) [83] from BigCode2 and evaluated on the Hu-
manEval dataset [84] by zero-shot learning. HumanEval is used to measure functional correctness for
synthesizing programs from docstrings. It consists of 164 original programming problems, assessing
language comprehension, algorithms, and simple mathematics, with some comparable to simple
software interview questions. We set the temperature to 0.8 during the evaluation.

We report pass@k [85] in Table 10 to evaluate the functional correctness, where k code samples are
generated per problem, a problem is considered solved if any sample passes the unit tests and the total
fraction of problems solved is reported. We can observe that on GPT-2, Adan surpasses its default
Adam optimizer in terms of pass@k within only half pre-training steps, which implies that Adan has
a much large potential in training LLMs with fewer computational costs.

5.2.4 Results on Transformer-XL

Here we investigate the performance of Adan on Transformer-XL [43] which is often used to model
long sequences. We follow the exact official setting to train Transformer-XL-base on the WikiText-
103 dataset that is the largest available word-level language modeling benchmark with long-term
dependency. We only replace the default Adam optimizer of Transformer-XL-base by our Adan,
and do not make other changes for the hyper-parameter. For Adan, we set β1 = 0.1, β2 = 0.1, and
β3 = 0.001, and choose learning rate as 0.001. We test Adan and Adam with several training steps,
including 50k, 100k, and 200k (official), and report the results in Table 11.

From Table 11, one can observe that on Transformer-XL-base, Adan surpasses its default Adam
optimizer in terms of test PPL (the lower, the better) under all training steps. Surprisingly, Adan
using 100k training steps can even achieve comparable results to Adam with 200k training steps.
All these results demonstrate the superiority of Adan over the default SoTA Adam optimizer in
Transformer-XL.

2https://www.bigcode-project.org
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Figure 2: Comparison of PPO and our PPO-Adan on several RL games simulated by MuJoCo. Here
PPO-Adan simply replaces the Adam optimizer in PPO with our Adan and does not change others.

5.3 Results on Reinforcement Learning Tasks

Here we evaluate Adan on reinforcement learning tasks. Specifically, we replace the default Adam
optimizer in PPO [86] which is one of the most popular policy gradient method, and do not many any
other change in PPO. For brevity, we call this new PPO version “PPO-Adan". Then we test PPO and
PPO-Adan on several games which are actually continuous control environments simulated by the
standard and widely-used engine, MuJoCo [69]. For these test games, their agents receive a reward
at each step. Following standard evaluation, we run each game under 10 different and independent
random seeds (i.e. 1 ∼ 10), and test the performance for 10 episodes every 30,000 steps. All these
experiments are based on the widely used codebase Tianshou [87]. For fairness, we use the default
hyper-parameters in Tianshou, e.g. batch size, discount, and GAE parameter. We use Adan with its
default βs (β1 = 0.02, β2 = 0.08, and β3 = 0.01). Following the default setting, we do not adopt
the weight decay and choose the learning rate as 3e-4.

We report the results on four test games in Figure 2, in which the solid line denotes the averaged
episodes rewards in evaluation and the shaded region is its 75% confidence intervals. From Figure 2,
one can observe that on the four test games, PPO-Adan achieves much higher rewards than vanilla
PPO which uses Adam as its optimizer. These results demonstrate the advantages of Adan over Adam
since PPO-Adan simply replaces the Adam in PPO with our Adan and does not make other changes.

5.4 Ablation Study

5.4.1 Robustness to in momentum coefficients

Here we choose MAE to investigate the effects of the momentum coefficients (βs) to Adan, since as
shown in MAE, its pre-training is actually sensitive to momentum coefficients of AdamW. To this end,
following MAE, we pretrain and fine tune ViT-B on ImageNet for 800 pretraining and 100 fine-tuning
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Figure 3: Effects of momentum coefficients (β1, β2, β3) to top-1 accuracy (%) of Adan on ViT-B
under MAE training framework (800 pretraining and 100 fine-tuning epochs on ImageNet).
Table 12: Top-1 accuracy (%) of ViT-S on Ima-
geNet trained under Training Setting I and II. ∗
is reported in [19].

Training Training Setting I Training Setting II
epochs AdamW [22] Adan AdamW [22] Adan

150 76.4 80.2 78.3 79.6
300 77.9 81.1 79.9∗ 80.7

Table 13: Top-1 accuracy (%) of ViT-S and
ConvNext-T on ImageNet under Training
Setting II trained by 300 epochs.

ViT Small ConvNext Tiny

Adan w/o restart 80.71 81.38
Adan w/ restart 80.87 81.62

epochs. We also fix one of (β1, β2, β3) and tune others. Figure 3 shows that by only pretraining 800
epochs, Adan achieves 83.7%+ in most cases and outperforms the official accuracy 83.6% obtained
by AdamW with 1600 pretraining epochs, indicating the robustness of Adan to βs. We also observe
1) Adan is not sensitive to β2; 2) β1 has a certain impact on Adan, namely the smaller the (1.0− β1),
the worse the accuracy; 3) similar to findings of MAE, a small second-order coefficient (1.0− β3)
can improve the accuracy. The smaller the (1.0− β3), the more current landscape information the
optimizer would utilize to adjust the coordinate-wise learning rate. Maybe the complex pre-training
task of MAE is more preferred to the local geometric information.

5.4.2 Robustness to Training Settings

Many works [4, 19, 20, 65, 88] often preferably chose LAMB/Adam/SGD for Training Setting I
and AdamW for Training Setting II. Table 12 investigates Adan under both settings and shows its
consistent improvement. Moreover, one can also observe that Adan under Setting I largely improves
the accuracy of Adan under Setting II. It actually surpasses the best-known accuracy 80.4% on
ViT-small in [88] trained by advanced layer scale strategy and stronger data augmentation.

5.4.3 Discussion on Restart Strategy

Here we investigate the performance Adan with and without restart strategy on ViT and ConvNext
under 300 training epochs. From the results in Table 13, one can observe that restart strategy slightly
improves the test performance of Adan. Thus, to make our Adan simple and avoid hyper-parameter
tuning of the restart strategy (e.g., restart frequency), in all experiments except Table 13, we do not
use this restart strategy.

6 Conclusion

In this paper, to relieve the plague of trying different optimizers for different deep network architec-
tures, we propose a new deep optimizer, Adan. We reformulate the vanilla AGD to a more efficient
version and use it to estimate the first- and second-order moments in adaptive optimization algorithms.
We prove that the complexity of Adan matches the lower bounds and is superior to those of other
adaptive optimizers. Finally, extensive experimental results demonstrate that Adan consistently sur-
passes other optimizers on many popular backbones and frameworks, including ResNet, ConvNext,
ViT, Swin, MAE-ViT, LSTM, Transformer-XL, BERT, and GPT-2.
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Appendix

The appendix contains the technical proofs of convergence results of the paper entitled “Adan:
Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models”. It is structured as
follows. Sec. A discuss why the lower bound for the convergence complexity is Ω(ε−3.5) instead
of Ω(ε−3.0). And we also compare more about the constants in the convergence bounds of various
optimizers in this section. After Sec. B.1, which summarizes the notations throughout this document,
we provide the technical proofs of convergence results. Then Sec. B.2 provides the proof of the
equivalence between AGD and reformulated AGD, i.e., the proof of Lemma 1. And then, given
Lipschitz gradient condition, Sec. B.3 provides the convergence analysis in Theorem 1. Next, we show
Adan’s faster convergence speed with Lipschitz Hessian condition in Sec. B.4, by first reformulating
our Algorithm 1 and introducing some auxiliary bounds. Finally, we present some auxiliary lemmas
in Sec. B.5.

Implementation Details of Adan For fairness, in all experiments, we only replace the optimizer
with Adan and tune the step size, warm-up epochs, and weight decay while fixing the other hyper-
parameters, e.g. data augmentation, ε for adaptive optimizers, and model parameters. Moreover,
to make Adan simple, in all experiments except Table 13 in Sec. 5.4.3, we do not use the restart
strategy. For the large-batch training experiment, we use the sqrt rule to scale the learning rate:

lr=
√

batch size
256 × 6.25e-3, and respectively set warmup epochs {20, 40, 60, 100, 160, 200} for batch

size bs = {1k, 2k, 4k, 8k, 16k, 32k}. For other remaining experiments, we use the hyper-parameters:
learning rate 1.5e-2 for ViT/Swin/ResNet/ConvNext and MAE fine-tuning, and 2.0e-3 for MAE
pre-training according to the official settings. We set β1 = 0.02, β2 = 0.08 and β3 = 0.01, and
let weight decay be 0.02 unless noted otherwise. We clip the global gradient norm to 5 for ResNet
and do not clip the gradient for ViT, Swin, ConvNext, and MAE. In the implementation, to keep
consistent with Adam-type optimizers, we utilize the de-bias strategy for Adan.

A Discussion on Convergence Results

A.1 Discussion about Lower Bound

For the lower bound, as proven in [36], on the nonconvex problems with Lipschitz gradient and
Hessian, for stochastic gradient-based methods with 1) unbiased and variance-bounded stochastic
gradient and 2) stochastic gradient queried on the same point per iteration, their complexity lower
bound is Ω(ε−3.5) to find an ε-accurate first-order stationary point. For condition 2), it means that per
iteration, the algorithm only queries the stochastic gradient at one point (e.g. SGD, Adam, Adan)
instead of multiple points (variance-reduced algorithms, e.g. SVRG [89]). Otherwise, the complexity
lower bound becomes Ω(ε−3.0) [36].

For the nonconvex problems with Lipschitz gradient but without Lipschitz Hessian, the complexity
lower bound is Θ(ε−4) as shown in [40]. Note, the above Lipschitz gradient and Hessian assumption
are defined on the training loss w.r.t. the variable/parameter instead of w.r.t. each datum/input ζ.
We would like to clarify that our proofs are only based on the above Lipschitz gradient and Hessian
assumptions and do not require the Lipschitz gradient and Hessian w.r.t. the datum/input ζ.

A.2 Discussion about Convergence Complexity

The constant-level difference among the complexities of compared optimizers is not incremental.
Firstly, under the corresponding assumptions, most compared optimizers already achieve the optimal
complexity in terms of the dependence on optimization accuracy ε, and their complexities only differ
from their constant factors, e.g.c2, c∞ and d. For instance, with Lipschitz gradient but without
Lipschitz Hessian, most optimizers have complexity O

(
x
ε4

)
which matches the lower bound O

(
1
ε4

)
in [40], where the constant factor x varies from different optimizers, e.g.x = c2∞d in Adam-type
optimizer, x = c62 in Adabelief, x = c22d in LAMB, and x = c2.5∞ in Adan. So under the same
conditions, one cannot improve the complexity dependence on ε but can improve the constant factors
which, as discussed below, is still significant, especially for DNNs.

Secondly, the constant-level difference may cause very different complexity whose magnitudes vary
by several orders on networks. This is because 1) the modern network is often large, e.g. 11 M
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parameters in the small ReNet18, leading a very large d; 2) for network gradient, its `2-norm upper
bound c2 is often much larger than its `∞-norm upper bound c∞ as observed and proved in some
work [90], because the stochastic algorithms can probably adaptively adjust the parameter magnitude
at different layers so that these parameter magnitudes are balanced.

Actually, we also empirically find c∞ = O(8.2), c2 = O(430), d = 2.2 × 107 in the ViT-small
across different optimizers, e.g., AdamW, Adam, Adan, LAMB. In the extreme case, under the widely
used Lipschitz gradient assumption, the complexity bound of Adan is 7.6× 106 smaller than the one
of Adam, 3.3× 1013 smaller than the one of AdaBlief, 2.1× 1010 smaller than the one of LAMB,
etc. For ResNet50, we also observe c∞ = O(78), c2 = O(970), d = 2.5× 107 which also means a
large big improvement of Adan over other optimizers.

B Technical Proofs

B.1 Notation

We provide some notations that are frequently used throughout the paper. The scale c is in normal
font. And the vector is in bold lowercase. Give two vectors x and y, x ≥ y means that (x− y)
is a non-negative vector. x/y or x

y represents the element-wise vector division. x ◦ y means the

element-wise multiplication, and (x)
2

= x◦x. 〈·, ·〉 is the inner product. Given a non-negative vector
n ≥ 0, we let ‖x‖2√n :=

〈
x,
(√

n + ε
)
◦ x
〉
. Unless otherwise specified, ‖x‖ is the vector `2 norm.

Note that E(x) is the expectation of random vector x. For the functions f(·) and g(·), the notation
f(ε) = O(g(ε)) means that ∃a > 0, such that f(ε)g(ε) ≤ a,∀ε > 0. The notation f(ε) = Ω(g(ε)) means

that ∃a > 0, such that f(ε)g(ε) ≥ a,∀ε > 0. And f(ε) = Θ(g(ε)) means that ∃b ≥ a > 0, such that

a ≤ f(ε)
g(ε) ≤ b,∀ε > 0.

B.2 Proof of Lemma 1: equivalence between the AGD and AGD II

In this section, we show how to get AGD II from AGD. For convenience, we omit the noise term ζk.
Note that, let α := 1− β1:

AGD:


gk = ∇f(θk − ηαmk−1)

mk = αmk−1 + gk
θk+1 = θk − ηmk

.

We can get:

θk+1 − ηαmk =θk − ηmk − ηαmk = θk − η(1 + α)(αmk−1 +∇f(θk − ηαmk−1))

=θk − ηαmk−1 − ηα2mk−1 − η(1 + α)(∇f(θk − ηαmk−1)).
(8)

Let {
θ̄k+1 := θk+1 − ηαmk,

m̄k := α2mk−1 + (1 + α)∇f(θk − ηαmk−1) = α2mk−1 + (1 + α)∇f(θ̄k)

Then, by Eq.(8), we have:
θ̄k+1 = θ̄k − ηm̄k. (9)

On the other hand, we have m̄k−1 = α2mk−2 + (1 + α)∇f(θ̄k−1) and :

m̄k − αm̄k−1 = α2mk−1 + (1 + α)∇f(θ̄k)− αm̄k−1

= (1 + α)∇f(θ̄k) + α2
(
αmk−2 +∇f(θ̄k−1)

)
− αm̄k−1

= (1 + α)∇f(θ̄k) + α
(
α2mk−2 + α∇f(θ̄k−1)− m̄k−1

)
= (1 + α)∇f(θ̄k) + α

(
α2mk−2 + α∇f(θ̄k−1)

)
− αm̄k−1

= (1 + α)∇f(θ̄k)− α∇f(θ̄k−1)

= ∇f(θ̄k) + α
(
∇f(θ̄k)−∇f(θ̄k−1)

)
.

(10)
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Finally, due to Eq.(9) and Eq.(10), we have:m̄k = αm̄k−1 +
(
∇f(θ̄k) + α

(
∇f(θ̄k)−∇f(θ̄k−1)

))
θ̄k+1 = θ̄k − ηm̄k

B.3 Convergence Analysis with Lipschitz Gradient

Before starting the proof, we first provide several notations. Let Fk(θ) := Eζ [f(θ, ζ)] + λk

2 ‖θ‖
2√
nk

and µ :=
√

2β3c∞/ε,

‖x‖2√nk
:= 〈x, (

√
nk + ε) ◦ x〉 , λk = λ(1− µ)

k
, θ̃k := (

√
nk + ε) ◦ θk.

Lemma 2. Assume f(·) is L-smooth. For

θk+1 = argmin
θ

(
λk
2
‖θ‖2√nk

+ f(θk) + 〈uk,θ − θk〉+
1

2η
‖(θ − θk)‖2√nk

)
.

With η ≤ min{ ε3L ,
1

10λ}, define gk := ∇f(θk), then we have:

Fk+1(θk+1) ≤ Fk(θk)− η

4c∞

∥∥∥uk + λkθ̃k

∥∥∥2 +
η

2ε
‖gk − uk‖2.

Proof. We denote pk := uk/
(√

nk + ε
)
. By the optimality condition of θk+1, we have

λkθk + pk =
λkθ̃k + uk√

nk + ε
=

1 + ηλk
η

(θk − θk+1). (11)

Then for η ≤ ε
3L , we have:

Fk+1(θk+1) ≤ f(θk) + 〈∇f(θk),θk+1 − θk〉+
L

2
‖θk+1 − θk‖2 +

λk+1

2
‖θk+1‖2√nk+1

(a)

≤f(θk) + 〈∇f(θk),θk+1 − θk〉+
L

2
‖θk+1 − θk‖2 +

λk
2
‖θk+1‖2√nk

(b)

≤Fk(θk) +

〈
θk+1 − θk, λkθk +

gk√
nk + ε

〉
√
nk

+
L/ε+ λk

2
‖θk+1 − θk‖2√nk

=Fk(θk) +
L/ε+ λk

2
‖θk+1 − θk‖2√nk

+

〈
θk+1 − θk, λkθk + pk +

gk − uk√
nk + ε

〉
√
nk

(c)
=Fk(θk) +

(
L/ε+ λk

2
− 1 + ηλk

η

)
‖θk+1 − θk‖2√nk

+

〈
θk+1 − θk,

gk − uk√
nk + ε

〉
√
nk

(d)

≤Fk(θk) +

(
L/ε

2
− 1

η

)
‖θk+1 − θk‖2√nk

+
1

2η
‖θk+1 − θk‖2√nk

+
η

2ε
‖gk − uk‖2

≤Fk(θk)− 1

3η
‖θk+1 − θk‖2√nk

+
η

2ε
‖gk − uk‖2

≤Fk(θk)− η

4c∞

∥∥∥uk + λkθ̃k

∥∥∥2 +
η

2ε
‖gk − uk‖2,

where (a) comes from the fact λk+1(1−µ)−1 = λk and Proposition 3:
( √

nk+ε√
nk+1+ε

)
i
≥ 1−µ, which

implies:

λk+1‖θk+1‖2√nk+1
≤ λk+1

1− µ
‖θk+1‖2√nk

= λk‖θk+1‖2√nk
,

and (b) is from:

‖θk+1‖2√nk
=
(
‖θk‖2√nk

+ 2 〈θk+1 − θk,θk〉√nk
+ ‖θk+1 − θk‖2√nk

)
,
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(c) is due to Eqn. (11), and for (d), we utilize:〈
θk+1 − θk,

gk − uk√
nk + ε

〉
√
nk

≤ 1

2η
‖θk+1 − θk‖2√nk

+
η

2ε
‖gk − uk‖2,

the last inequality comes from the fact in Eqn. (11) and η ≤ 1
10λ , such that:

1

3η
‖(θk+1 − θk)‖2√nk

=
η

3
(√

nk + ε
)
(1 + ηλk)

∥∥∥uk + λkθ̃k

∥∥∥2 ≥ η

4c∞

∥∥∥uk + λkθ̃k

∥∥∥2.
Theorem 1. Suppose Assumptions 1 and 2 hold. Let cl := 1

c∞
and cu := 1

ε . With β3c∞/ε� 1,

η2 ≤ clβ
2
1

8c3uL
2
, max {β1, β2} ≤

clε
2

96cuσ2
, T ≥ max

{
24∆0

ηclε2
,

24cuσ
2

β1clε2

}
,

where ∆0 := F (θ0)− f∗ and f∗ := minθ Eζ [∇f(θk, ζ)], then we let uk := mk + (1− β1)vk and
have:

1

T + 1

T∑
k=0

E
(∥∥∥uk + λkθ̃k

∥∥∥2) ≤ ε2,
and

1

T + 1

T∑
k=0

E
(∥∥∥mk − gfullk

∥∥∥2) ≤ ε2

4
,

1

T + 1

T∑
k=0

E
(
‖vk‖2

)
≤ ε2

4
.

Hence, we have:

1

T + 1

T∑
k=0

E

(∥∥∥∥∇θk

(
λk
2
‖θ‖2√nk

+ Eζ [∇f(θk, ζ)]

)∥∥∥∥2
)
≤ 4ε2.

Proof. For convince, we let uk := mk + (1− β1)vk and gfullk := Eζ [∇f(θk, ζ)]. We have:∥∥∥uk − gfullk

∥∥∥2 ≤ 2
∥∥∥mk − gfullk

∥∥∥2 + 2(1− β1)
2‖vk‖2.

By Lemma 2, Lemma 5, and Lemma 6, we already have:

Fk+1(θk+1) ≤ Fk(θk)− ηcl
4

∥∥∥uk + λkθ̃k

∥∥∥2 + ηcu

∥∥∥gfullk −mk

∥∥∥2 + ηcu(1− β1)
2‖vk‖2, (12)

E
(∥∥∥mk+1−gfullk+1

∥∥∥2) ≤ (1−β1)E
(∥∥∥mk − gfullk

∥∥∥2)+
(1−β1)

2
L2

β1
E
(
‖θk+1−θk‖2

)
+β2

1σ
2

(13)

E
(
‖vk+1‖2

)
≤ (1− β2)E

(
‖vk‖2

)
+ 2β2E

(∥∥∥gfullk+1 − gfullk

∥∥∥2)+ 3β2
2σ

2 (14)

Then by adding Eq.(12) with ηcu
β1
× Eq.(13) and ηcu(1−β1)

2

β2
× Eq.(14), we can get:

E(Φk+1) ≤ E

(
Φk −

ηcl
4

∥∥∥uk + λkθ̃k

∥∥∥2 +
ηcu
β1

(
(1− β1)

2
L2

β1
‖θk+1 − θk‖2 + β2

1σ
2

))

+
ηcu(1− β1)

2

β2
E
(

2β2L
2‖θk+1 − θk‖2 + 3β2

2σ
2
)

≤E

(
Φk −

ηcl
4

∥∥∥uk + λkθ̃k

∥∥∥2 + ηcuL
2

(
(1− β1)

2

β2
1

+ 2(1− β1)
2

)
‖θk+1 − θk‖2

)
+ (β1 + 3β2)ηcuσ

2

(a)

≤E
(

Φk −
ηcl
4

∥∥∥uk + λkθ̃k

∥∥∥2 +
ηcuL

2

β2
1

‖θk+1 − θk‖2
)

+ 4βmηcuσ
2

(b)

≤E
(

Φk +

(
(ηcu)3L2

β2
1

− ηcl
4

)∥∥∥uk + λkθ̃k

∥∥∥2)+ 4βmηcuσ
2

≤E
(

Φk −
ηcl
8

∥∥∥uk + λkθ̃k

∥∥∥2)+ 4βmηcuσ
2,
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where we let:

Φk := Fk(θk)− f∗ +
ηcu
β1

∥∥∥mk − gfullk

∥∥∥2 +
ηcu(1− β1)

2

β2
‖vk‖2,

βm = max {β1, β2} ≤
2

3
, η ≤ clβ

2
1

8c3uL
2
,

and for (a), when β1 ≤ 2
3 , we have:

(1− β1)
2

β2
1

+ 2(1− β1)
2
<

1

β2
1

,

and (b) is due to Eq.(11) from Lemma 2. And hence, we have:

T∑
k=0

E(Φk+1) ≤
T∑
k=0

E(Φk)− ηcl
8

T∑
k=0

∥∥∥uk + λkθ̃k

∥∥∥2 + (T + 1)4ηcuβmσ
2.

Hence, we can get:

1

T + 1

T∑
k=0

E
(∥∥∥uk + λkθ̃k

∥∥∥2) ≤ 8Φ0

ηclT
+

32cuβσ
2

cl
=

8∆0

ηclT
+

8cuσ
2

β1clT
+

32cuβmσ
2

cl
≤ ε2,

where

∆0 := F (θ0)− f∗, βm ≤
clε

2

96cuσ2
, T ≥ max

{
24∆0

ηclε2
,

24cuσ
2

β1clε2

}
.

We finish the first part of the theorem. From Eq.(13), we can conclude that:

1

T + 1

T∑
k=0

E
(∥∥∥mk − gfullk

∥∥∥2) ≤ σ2

βT
+
L2η2c2uε

2

β2
1

+ β1σ
2 <

ε2

4
.

From Eq.(14), we can conclude that:

1

T + 1

T∑
k=0

E
(
‖vk‖2

)
≤ 2L2η2c2uε

2 + 3β2σ
2 <

ε2

4
.

Finally we have:

1

T + 1

T∑
k=0

E

(∥∥∥∥∇θk

(
λk
2
‖θ‖2√nk

+ Eζ [f(θk, ζ)]

)∥∥∥∥2
)

≤ 1

T + 1

(
T∑
k=0

E
(

2
∥∥∥uk + λkθ̃k

∥∥∥2 + 4
∥∥∥mk − gfullk

∥∥∥2 + 4‖vk‖2
))
≤ 4ε2.

Now, we have finished the proof.

B.4 Faster Convergence with Lipschitz Hessian

For convince, we let λ = 0, β1 = β2 = β and β3 = β2 in the following proof. To consider the
weight decay term in the proof, we refer to the previous section for more details. For the ease of
notation, we denote x instead of θ the variable needed to be optimized in the proof, and abbreviate
Eζ [f(θk, ζ)] as f(θk).

B.4.1 Reformulation

We first prove the equivalent form between Algorithm 1 and Algorithm 2. The main iteration in
Algorithm 1 is: 

mk = (1− β)mk−1 + βgk,

vk = (1− β)vk−1 + β((gk − gk−1)),

xk+1 = xk − ηk ◦ (mk + (1− β)vk).
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Algorithm 2: Nesterov Adaptive Momentum Estimation Reformulation
Input: initial point θ0, stepsize η, average coefficients β, and ε.

1 begin
2 while k < K do
3 get stochastic gradient estimator gk at xk;
4 m̂k = (1− β)m̂k−1 + β(gk + (1− β)(gk − gk−1));
5 nk =

(
1− β2

)
nk−1 + β2(gk−1 + (1− β)(gk−1 − gk−2))

2;
6 ηk = η/

(√
nk + ε

)
;

7 yk+1 = xk − ηkβgk;
8 xk+1 = yk+1 + (1− β)[(yk+1 − yk) + (ηk−1 − ηk)(m̂k−1 − βgk−1)];

9 if (k + 1)
∑k
t=0

∥∥∥(√nt + ε
)1/2 ◦ (yt+1 − yt)

∥∥∥2 ≥ R2 then
10 get stochastic gradient estimator g0 at xk+1;
11 m̂0 = g0, n0 = g2

0, x0 = y0 = xk+1, x1 = y1 = x0 − η m̂0√
n0+ε

, k = 1;
12 end if
13 end while
14 K0 = argminbK

2 c≤k≤K−1
∥∥∥(√nk + ε

)1/2 ◦ (yk+1 − yk)
∥∥∥;

15 end
Output: x̄ := 1

K0

∑K0

k=1 xk

Let m̂k := (mk + (1− β)vk), we can simplify the variable:{
m̂k = (1− β)m̂k−1 + β(gk + (1− β)(gk − gk−1)),

xk+1 = xk − ηk ◦ m̂k.

We let yk+1 := xk+1 + ηk(m̂k − βgk), then we can get:

yk+1 = xk+1 + ηkm̂k − βηkgk = xk+1 + xk − xk+1 − βηkgk = xk − βηkgk.

On one hand, we have: xk+1 = xk − ηkm̂k = yk+1 − ηk(m̂k − βgk). On the other hand:

ηk(m̂k − βgk) =(1− β)ηk(m̂k−1 + β(gk − gk−1))

=(1− β)ηk(m̂k−1 + β(gk − gk−1))

=(1− β)ηk

(
xk−1 − xk

ηk−1
+ β(gk − gk−1)

)
=(1− β)

ηk
ηk−1

(xk−1 − xk + βηk−1(gk − gk−1))

=(1− β)
ηk

ηk−1
(yk − xk + βηk−1gk)

=(1− β)

[
ηk

ηk−1
(yk − yk+1 − β(ηk − ηk−1)gk)

]
=(1− β)

[
(yk − yk+1) +

ηk − ηk−1
ηk−1

(yk − yk+1 − βηkgk)

]
=(1− β)

[
(yk − yk+1) +

ηk − ηk−1
ηk−1

(yk − xk)

]
=(1− β)[(yk − yk+1) + (ηk − ηk−1)(mk−1 − βgk−1)].

Hence, we can conclude that:

xk+1 = yk+1 + (1− β)[(yk+1 − yk) + (ηk−1 − ηk)(m̂k−1 − βgk−1)].

The main iteration in Algorithm 1 becomes:
yk+1 = xk − βηkgk,

xk+1 = yk+1 + (1− β)

[
(yk+1 − yk) +

ηk−1 − ηk
ηk−1

(yk − xk)

]
.

(15)
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B.4.2 Auxiliary Bounds

We first show some interesting property. Define K to be the iteration number when the ’if condition’
triggers, that is,

K := min
k

{
k

∣∣∣∣∣k
k−1∑
t=0

∥∥∥(
√
nt + ε)1/2 ◦ (yt+1 − yt)

∥∥∥2 > R2

}
.

Proposition 1. Given k ≤ K and β ≤ ε/
(√

2c∞ + ε
)
, we have:∥∥∥(

√
nk + ε)

1/2 ◦ (xk − yk)
∥∥∥ ≤ R.

Proof. First of all, we let n̂k :=
(√

nk + ε
)1/2

. Due to Proposition 3, we have:(√
nk−1 + ε
√
nk + ε

)
i

∈

[
1−
√

2β2c∞
ε

, 1 +

√
2β2c∞
ε

]
,

then, we get:

n̂k ≤

(
1−
√

2β2c∞
ε

)−1/2
n̂k−1 ≤ (1− β)

−1/4
n̂k−1,

where we use the fact β ≤ ε/
(
2
√

2c∞ + ε
)
.For any 1 ≤ k ≤ K, we have:

‖n̂k ◦ (yk − yk−1)‖2 ≤ (1− β)
−1/2‖n̂k−1 ◦ (yk − yk−1)‖2

≤(1− β)
−1

k−1∑
t=1

‖n̂t ◦ (yt+1 − yt)‖2 ≤
R2

k(1− β)
,

hence, we can conclude that:

‖n̂k ◦ (yk − yk−1)‖2 ≤ R2

k(1− β)
. (16)

On the other hand, by Eq.(15), we have:

xk+1 − yk+1 = (1− β)

[
(yk+1 − yk) +

ηk − ηk−1
ηk−1

(xk − yk)

]
,

and hence,

‖n̂k ◦ (xk − yk)‖ ≤ (1− β)

[
‖n̂k ◦ (yk − yk−1)‖+

∥∥∥∥ηk−1 − ηk−2
ηk−2

∥∥∥∥
∞
‖n̂k ◦ (xk−1 − yk−1)‖

]
(a)

≤
√

1− β R√
k

+ (1− β)

√
2β2c∞
ε

(
1−
√

2β2c∞
ε

)−1/2
‖n̂k−1 ◦ (xk−1 − yk−1)‖

≤
√

1− β R√
k

+ β(1− β)
3/4‖n̂k−1 ◦ (xk−1 − yk−1)‖

≤
√

1− βR

(
1√
k

+
β(1− β)

3/4

√
k − 1

+ · · ·+
(
β(1− β)

3/4
)k−1)

(b)

≤
√

1− βR

(
k−1∑
t=1

1

t2

)1/4( k∑
t=0

(
β(1− β)

3/4
)4t/3)3/4

(c)
< R,

where (a) comes from Eq.(16) and the proposition 3, (b) is the application of Hölder’s inequality and
(c) comes from the facts when β ≤ 1/2:

∞∑
t=1

1

t2
=
π2

6
,
√

1− β

(
k∑
t=0

(
β(1− β)

3/4
)4t/3)3/4

≤
(

(1− β)2/3

1− β4/3(1− β)

)3/4

.

26



B.4.3 Decrease of One Restart Cycle

Lemma 3. Suppose that Assumptions 1-2 hold. Let R = O
(
ε0.5
)
, β = O

(
ε2
)
, η = O

(
ε1.5
)
,

K ≤ K = O
(
ε−2
)
. Then we have:

E (f(yK)− f(x0)) = −O
(
ε1.5
)
. (17)

Proof. Recall Eq.(15) and denote gfullk := ∇f(θk) for convenience:
yk+1 = xk − βηk ◦

(
gfullk + ξk

)
xk+1 − yk+1 = (1− β)

[
(yk+1 − yk) +

(
ηk − ηk−1

ηk−1
◦ (xk − yk)

)]
,

(18)

In this proof, we let n̂k :=
(√

nk + ε
)1/2

, and hence ηk = η/n̂2
k. On one hand, we have:

E(f(xk)− f(yk)) ≤ E
(
〈∇f(yk),xk − yk〉+

L

2
‖xk − yk‖2

)
=E

(
〈gk,xk − yk〉+ 〈∇f(yk)−∇f(xk),xk − yk〉+

L

2
‖xk − yk‖2

)
≤E

(
〈gk,xk − yk〉+

1

2L
‖∇f(yk)−∇f(xk)‖2 +

L

2
‖xk − yk‖2 +

L

2
‖xk − yk‖2

)
≤E

(
〈gk,xk − yk〉+

3L

2
‖xk − yk‖2

)
=E

(
−
〈
yk+1 − xk

βηk
+ ξk,xk − yk

〉
+

3L

2
‖xk − yk‖2

)
=E

(
1

ηβ

〈
n̂2
k ◦ (yk+1 − xk),yk − xk

〉
+

3L

2
‖xk − yk‖2

)
(a)

≤ E
(

1

2ηβ

(
‖n̂k ◦ (yk+1 − xk)‖2 + ‖n̂k ◦ (yk − xk)‖2 − ‖n̂k ◦ (yk+1 − yk)‖2

)
+

3L

2
‖xk − yk‖2

)
(b)

≤ E
(

1

2ηβ

(
‖n̂k ◦ (yk+1 − xk)‖2 − ‖n̂k ◦ (yk+1 − yk)‖2

)
+

1 + β/2

2ηβ
‖n̂k ◦ (yk − xk)‖2

)
(19)

where (a) comes from the following facts, and in (b), we use 3Lη ≤ ε
2 :

2
〈
n̂2
k ◦ (yk+1 − xk),yk − xk

〉
= ‖n̂k ◦ (yk+1 − xk)‖2+‖n̂k ◦ (yk − xk)‖2−‖n̂k ◦ (yk+1 − yk)‖2.

On the other hand, by the L-smoothness condition, for 1 ≤ k ≤ K, we have:

E (f(yk+1)− f(xk)) ≤E
(
〈gk,yk+1 − xk〉+

L

2
‖yk+1 − xk‖2

)
=E

(
−
〈
yk+1 − xk

βηk
+ ξk,yk+1 − xk

〉
+
L

2
‖yk+1 − xk‖2

)
(a)

≤ E
(
− 1

ηβ
‖n̂k ◦ (yk+1 − xk)‖2 +

L

2
‖yk+1 − xk‖2

)
+
ηβσ2

ε

≤E
(
− 1

ηβ
‖n̂k ◦ (yk+1 − xk)‖2 +

L

2ε
‖n̂k ◦ (yk+1 − xk)‖2

)
+
ηβσ2

ε

≤E
(
− 1

2ηβ
‖n̂k ◦ (yk+1 − xk)‖2

)
+
ηβσ2

ε
,

(20)
where (a) comes from the facts: E (〈ξk,yk+1 − xk〉) = E (〈ξk,xk − βηk ◦ (gk + ξk)〉) =

E (〈ξk, βηk ◦ ξk〉) ≤ ηβσ2

ε . and the last inequality is due to Lη ≤ ε. By combing Eq.(19) and
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Eq.(20), we have:

E (f(yk+1)− f(yk)) ≤ E
(
− 1

2ηβ
‖n̂k ◦ (yk+1 − yk)‖2 +

1 + β/2

2ηβ
‖n̂k ◦ (yk − xk)‖2

)
+
ηβσ2

ε

(a)

≤ E
(
− 1

2ηβ
‖n̂k ◦ (yk+1 − yk)‖2 +

1− β/2− β2/2

2ηβ
‖n̂k−1 ◦ (yk − yk−1)‖2

)
+

4β2R2c2∞
ηε2

+
ηβσ2

ε
,

where (a) comes from the following fact, and note that by Proposition 1 we already have n̂k ≤
(1− β)

−1/4
n̂k−1:

‖n̂k ◦ (xk − yk)‖2

≤(1− β)
2

[
(1 + α)‖n̂k ◦ (yk − yk−1)‖2 + (1 +

1

α
)β̂2‖n̂k ◦ (xk−1 − yk−1)‖2

]
≤(1− β)

3/2

[
(1 + α)‖n̂k−1 ◦ (yk − yk−1)‖2 + (1 +

1

α
)β̂2‖n̂k−1 ◦ (xk−1 − yk−1)‖2

]
≤(1− β)‖n̂k−1 ◦ (yk − yk−1)‖2 +

β̂2(1− β)3/2

1− (1− β)1/2
‖n̂k−1 ◦ (xk−1 − yk−1)‖2

≤(1− β)‖n̂k−1 ◦ (yk − yk−1)‖2 +
2β̂2

β
‖n̂k−1 ◦ (xk−1 − yk−1)‖2

≤(1− β)‖n̂k−1 ◦ (yk − yk−1)‖2 + 4β3R2c2∞/ε
2,

(21)

where we let β̂ :=
√

2β2c∞/ε, α = (1 − β)−1/2 − 1, and the last inequality we use the results
in Proposition 1. Summing over k = 2, · · · ,K − 1, and note that y1 = x1, and hence we have
E (f(y2)− f(x1)) = E (f(y2)− f(y1)) ≤ ηβσc∞/

√
ε due to Eq. (20), then we get:

E (f(yK)− f(y1)) ≤ E

(
− 1

4η

K−1∑
t=1

‖n̂k ◦ (yt+1 − yt)‖2
)

+
4Kβ2R2c2∞

ηε2
+
Kηβσ2

ε
.

On the other hand, similar to the results given in Eq.(20), we have:

E (f(y1)− f(y0)) = E (f(x1)− f(x0)) ≤ E
(
− 1

2η
‖n̂k ◦ (y1 − y0)‖2

)
+
ησ2

ε
.

Therefore, using βK = O(1) and the restart condition K
∑K−1
t=0

∥∥(
√
nt + ε)1/2 ◦ (yt+1 − yt)

∥∥2 ≥
R2, we can get:

E (f(yK)− f(y0)) ≤ E

(
− 1

4η

K−1∑
t=0

‖n̂k ◦ (yk+1 − yk)‖2
)

+
4Kβ2R2c2∞

ηε2
+

(Kβ + 1)ησ2

ε

≤− R2

4Kη
+

4Kβ2R2c2∞
ηε2

+
(Kβ + 1)ησ2

ε
= −O

(
R2

Kη
− βR2

η
− η
)

= −O
(
ε1.5
)
.

Now, we finish the proof of this claim.

B.4.4 Gradient in the last Restart Cycle

Before showing the main results, we first provide several definitions. Note that, for any k < K we
already have:

(ε)1/2‖yk − y0‖ ≤ (ε)1/2

√√√√k

k−1∑
t=0

‖yt+1 − yt‖2 ≤ R.

and we have:

E (‖xk − x0‖) ≤ E (‖yk − xk‖+ ‖yk − x0‖) ≤
2R

ε1/2
, (22)

where we utilize the results from Proposition 1. For each epoch, denote H := ∇2f(x0). We then
define:

h(y) :=
〈
gfull0 ,y − x0

〉
+

1

2
(y − x0)

>
H(y − x0).
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Recall the Eq. (15):


yk+1 = xk − βηk ◦

(
gfullk + ξk

)
= xk − βηk ◦ (∇h(xk) + δk + ξk)

xk+1 − yk+1 = (1− β)

[
(yk+1 − yk) +

(
ηk − ηk−1

ηk−1
◦ (xk − yk)

)]
,

(23)

where we let δk := gfullk −∇h(xk), and we can get that:

E (‖δk‖) = E
(∥∥∥gfullk − gfull0 −H(xk − x0)

∥∥∥)
=E

(∥∥∥∥(∫ 1

0

∇2h(x0 + t(xk − x0))−H

)
(xk − x0)dt

∥∥∥∥) ≤ ρ

2
E
(
‖xk − x0‖2

)
≤ 2ρR2

ε
.

(24)
Iterations in Eq.(23) can be viewed as applying the proposed optimizer to the quadratic approximation
h(x) with the gradient error δk, which is in the order of O

(
ρR2/ε

)
.

Lemma 4. Suppose that Assumptions 1-3 hold. Let B = O
(
ε0.5
)
, β = O

(
ε2
)
, η = O

(
ε1.5
)
,

K ≤ K = O
(
ε−2
)
. Then we have:

E (‖∇f(x̄)‖) = O(ε), where x̄ :=
1

K0 − 1

K0∑
k=1

xk.
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Proof. Since h(·) is quadratic, then we have:

E (‖∇h(x̄)‖) = E

(∥∥∥∥∥ 1

K0 − 1

K0∑
k=1

∇h(xk)

∥∥∥∥∥
)

=
1

K0 − 1
E

∥∥∥∥∥
K0∑
k=1

(βηk)−1 ◦ (yk+1 − xk) + ξk + δk

∥∥∥∥∥
≤ 1

(K0 − 1)β
E

∥∥∥∥∥
K0∑
k=1

(βηk)−1 ◦ (yk+1 − xk)

∥∥∥∥∥+
1

(K0 − 1)
E

∥∥∥∥∥
K0∑
k=1

ξk

∥∥∥∥∥+
1

(K0 − 1)
E

∥∥∥∥∥
K0∑
k=1

δk

∥∥∥∥∥
(a)

≤ 1

(K0 − 1)β
E

∥∥∥∥∥
K0∑
k=1

(ηk)−1 ◦ (yk+1 − xk)

∥∥∥∥∥+
σ√

K0 − 1
+

2ρR2

ε

=
1

(K0 − 1)β
E

∥∥∥∥∥
K0∑
k=1

yk+1 − yk − (1− β)(yk − yk−1)

ηk
−(1−β)

ηk−1 − ηk−2
ηk−2ηk

(xk−1 − yk−1)

∥∥∥∥∥
+

σ√
K0 − 1

+
2ρR2

ε

(b)

≤ 1

(K0 − 1)β
E

∥∥∥∥∥
K0∑
k=1

yk+1 − yk − (1− β)(yk − yk−1)

ηk

∥∥∥∥∥+
2βc1.5∞ R

ηε
+

σ√
K0 − 1

+
2ρR2

ε

(c)

≤ 1

(K0 − 1)β
E

∥∥∥∥∥
K0∑
k=1

(
yk+1 − yk

ηk
− (1− β)(yk − yk−1)

ηk−1

)∥∥∥∥∥+
4βc1.5∞ R

ηε
+

σ√
K0 − 1

+
2ρR2

ε

≤ 1

(K0 − 1)β
E
∥∥∥∥yK0 − yK0−1

ηK0

∥∥∥∥+
1

(K0 − 1)
E

∥∥∥∥∥
K0−1∑
k=1

yk+1 − yk
ηk

∥∥∥∥∥+
4βc1.5∞ R

ηε

+
σ√

K0 − 1
+

2ρR2

ε

(d)

≤ 1

(K0 − 1)
E

∥∥∥∥∥
K0∑
k=1

yk+1 − yk
ηk

∥∥∥∥∥+
4R
√
c∞

βηK2
+

4βc1.5∞ R

ηε
+

σ√
K0 − 1

+
2ρR2

ε

≤
√

2c∞
ηK

E

∥∥∥∥∥
K0∑
k=1

(
√
nk + ε)

1/2 ◦ (yk+1 − yk)

∥∥∥∥∥+
4R
√
c∞

βηK2
+

4βc1.5∞ B

ηε
+

σ√
K0 − 1

+
2ρR2

ε

≤
√

2c∞R

ηK
+

4R
√
c∞

βηK2
+

4βc1.5∞ R

ηε
+

σ√
K0 − 1

+
2ρR2

ε
= O

(
R

ηK
+
βR

η
+

1√
K

+R2

)
= O(ε),

where (a) is due to the independence of ξk’s and Eq.(24), (b) comes from Propositions 1 and 2:

∥∥∥∥ηk−1 − ηk−2
ηk−2ηk

(xk−1 − yk−1)

∥∥∥∥ ≤ √
nk + ε

η
(√

nk−1 + ε
)1/2 ∥∥∥∥ηk−1 − ηk−2

ηk−2

∥∥∥∥
∞
‖n̂k−1 ◦ (xk−1 − yk−1)‖

≤
(√

nk + ε
)1/2

η

√
2β2c∞
ε

(
1−
√

2β2c∞
ε

)−1/2
R

≤ (c∞ + ε)
1/2

η

√
2β2c∞
ε

R

(1− β)1/4
≤
(

1

1− β

)1/4
2β2c1.5∞ R

ηε
,
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we use the following bounds in (c):∥∥∥∥ (yk − yk−1)

ηk−1
− (yk − yk−1)

ηk

∥∥∥∥ =

∥∥∥∥ηk − ηk−1
ηk−1ηk

(yk − yk−1)

∥∥∥∥
≤
(√

nk−1 + ε
)1/2

η

∥∥∥∥ηk − ηk−1
ηk

∥∥∥∥
∞

∥∥∥(
√
nk−1 + ε)

1/2 ◦ (yk − yk−1)
∥∥∥

≤
(√

nk−1 + ε
)1/2

η

√
2β2c∞
ε

R

k
≤ (c∞ + ε)

1/2

η

√
2β2c∞
ε

R

k
≤ 2β2c1.5∞ R

ηεk
,

(d) is implied by K0 = argminbK
2 c≤k≤K−1

∥∥∥(√nk + ε
)1/2 ◦ (yk+1 − yk)

∥∥∥ and restart condition:∥∥∥∥yK0 − yK0−1

ηK0

∥∥∥∥2 ≤ √nK0 + ε

η2

∥∥∥(√nK0 + ε
)1/2 ◦ (yK0 − yK0−1)

∥∥∥2
∥∥∥(√nK0

+ ε
)1/2 ◦ (yK0

− yK0−1)
∥∥∥2 ≤ 1

K − bK/2c

K−1∑
k=bK/2c

∥∥∥(
√
nk + ε)

1/2 ◦ (yk+1 − yk)
∥∥∥2

≤ 1

K − bK/2c

K∑
k=1

∥∥∥(
√
nk + ε)

1/2 ◦ (yk+1 − yk)
∥∥∥2 ≤ 1

K − bK/2c
R2

K
≤ 2R2

K2
.

Finally, we have:

E (‖∇f(x̄)‖) = E (‖∇h(x̄)‖) + E (‖∇f(x̄)−∇h(x̄)‖) = O(ε) +
2ρR2

ε
= O(ε),

where we use the results from Eq.(24), namely:

E (‖∇f(x̄)−∇h(x̄)‖) = E
(∥∥∥∇f(x̄)− gfull0 −H(x̄− x0)

∥∥∥) ≤ ρ

2
E
(
‖x̄− x0‖2

)
,

and we also note that, by Eq.(22):

E ‖x̄− x0‖ ≤
1

K0 − 1

K0∑
k=1

E ‖xk − x0‖ ≤
2R

ε1/2
.

B.4.5 Proof for Main Theorem

Theorem 2. Suppose that Assumptions 1-3 hold. Let B = O
(
ε0.5
)
, β = O

(
ε2
)
, η = O

(
ε1.5
)
,

K ≤ K = O
(
ε−2
)
. Then Algorithm 1 find an ε-approximate first-order stationary point within at

most O
(
ε−3.5

)
iterations. Namely, we have:

E (f(yK)− f(x0)) = −O
(
ε1.5
)
, E (‖∇f(x̄)‖) = O(ε).

Proof. Note that at the beginning of each restart cycle in Algorithm 2, we set x0 to be the last iterate
xK in the previous restart cycle. Due to Lemma 3, we already have:

E (f(yK)− f(x0)) = −O
(
ε1.5
)
.

Summing this inequality over all cycles, say N total restart cycles, we have:

min
x
f(x)− f(xinit) = −O

(
Nε1.5

)
,

Hence, the Algorithm 2 terminates within at mostO
(
ε−1.5∆f

)
restart cycles, where ∆f := f(xinit)−

minx f(x). Note that each cycle contain at most K = O
(
ε−2
)

iteration step, therefore, the total
iteration number must be less than O

(
ε−3.5∆f

)
.

On the other hand, by Lemma 4, in the last restart cycle, we have:

E (‖∇f(x̄)‖) = O(ε).

Now, we obtain the final conclusion for the theorem.
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B.5 Auxiliary Lemmas

Proposition 2. If Assumption 2 holds. We have:
‖mk‖∞ ≤ c∞, ‖nk‖∞ ≤ c

2
∞.

Proof. By the definition of mk, we can have that:

mk =

k∑
t=0

ck,tgt,

where

ck,t =


β1(1− β1)

(k−t) when t > 0,

(1− β1)
k when t = 0.

Similar, we also have:

nk =

k∑
t=0

c′k,t(gt + (1− β2)(gt − gt−1))
2
,

where

c′k,t =


β3(1− β3)

(k−t) when t > 0,

(1− β3)
k when t = 0.

If is obvious that:
k∑
t=0

ck,t = 1,

k∑
t=0

c′k,t = 1,

hence, we get:

‖mk‖∞ ≤
k∑
t=0

ck,t‖gt‖∞,

‖nk‖∞ ≤
k∑
t=0

c′k,t‖gt + (1− β2)(gt − gt−1)‖2∞ ≤ c
2
∞.

Proposition 3. If Assumption 2 holds, we have:∥∥∥∥ηk − ηk−1
ηk−1

∥∥∥∥
∞
≤
√

2β3c∞
ε

.

Proof. Give any index i ∈ [d] and the definitions of ηk, we have:∣∣∣∣(ηk − ηk−1
ηk−1

)
i

∣∣∣∣ =

∣∣∣∣(√nk−1 + ε
√
nk + ε

)
i

− 1

∣∣∣∣ =

∣∣∣∣(√nk−1 −√nk√
nk + ε

)
i

∣∣∣∣.
Note that, by the definition of nk, we have:∣∣∣∣(√nk−1 −√nk√

nk + ε

)
i

∣∣∣∣ ≤
∣∣∣∣∣
(√
|nk−1 − nk|√

nk + ε

)
i

∣∣∣∣∣
=β3


√∣∣∣nk−1 − (gk + (1− β2)(gk − gk−1))

2
∣∣∣

√
nk + ε


i

≤
√

2β3c∞
ε

,

hence, we have: ∣∣∣∣(ηk − ηk−1
ηk−1

)
i

∣∣∣∣ ∈
[

0,

√
2β3c∞
ε

]
.

We finish the proof.
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Lemma 5. Consider a moving average sequence:

mk = (1− β)mk−1 + βgk,

where we note that:
gk = Eζ [∇f(θk, ζ)] + ξk,

and we denote gfullk := Eζ [∇f(θk, ζ)] for convenience. Then we have:

E
(∥∥∥mk − gfullk

∥∥∥2) ≤ (1− β)E
(∥∥∥mk−1 − gfullk−1

∥∥∥2)+
(1− β)

2
L2

β
E
(
‖θk−1 − θk‖2

)
+ β2σ2.

Proof. Note that, we have:

mk − gfullk =(1− β)
(
mk−1 − gfullk−1

)
+ (1− β)gfullk−1 − gfullk + βgk

=(1− β)
(
mk−1 − gfullk−1

)
+ (1− β)

(
gfullk−1 − gfullk

)
+ β

(
gk − gfullk

)
.

Then, take expectation on both sides:

E
(∥∥∥mk − gfullk

∥∥∥2)
=(1− β)

2E
(∥∥∥mk−1 − gfullk−1

∥∥∥2)+ (1− β)
2E
(∥∥∥gfullk−1 − gfullk

∥∥∥2)+ β2σ2+

2(1− β)
2E
(〈

mk−1 − gfullk−1,g
full
k−1 − gfullk

〉)
≤
(

(1− β)
2

+ (1− β)
2
a
)
E
(∥∥∥mk−1 − gfullk−1

∥∥∥2)+(
1 +

1

a

)
(1− β)

2E
(∥∥∥gfullk−1 − gfullk

∥∥∥2)+ β2σ2

(a)

≤ (1− β)E
(∥∥∥mk−1 − gfullk−1

∥∥∥2)+
(1− β)

2

β
E
(∥∥∥gfullk−1 − gfullk

∥∥∥2)+ β2σ2

≤(1− β)E
(∥∥∥mk−1 − gfullk−1

∥∥∥2)+
(1− β)

2
L2

β
E
(
‖θk−1 − θk‖2

)
+ β2σ2,

where for (a), we set a = β
1−β .

Lemma 6. Consider a moving average sequence:

vk = (1− β)vk−1 + β(gk − gk−1),

where we note that:
gk = Eζ [∇f(θk, ζ)] + ξk,

and we denote gfullk := Eζ [f(θk, ζ)] for convenience. Then we have:

E
(
‖vk‖2

)
≤ (1− β)E

(
‖vk−1‖2

)
+ 2βE

(∥∥∥gfullk − gfullk−1

∥∥∥2)+ 3β2σ2.

Proof. Take expectation on both sides:

E
(
‖vk‖2

)
= (1− β)

2E
(
‖vk−1‖2

)
+ β2E

(
‖gk − gk−1‖2

)
+ 2β(1− β)E(〈vk−1,gk − gk−1〉)

(a)
= (1− β)

2E
(
‖vk−1‖2

)
+ β2E

(
‖gk − gk−1‖2

)
+ 2β(1− β)E

(〈
vk−1,g

full
k − gk−1

〉)
(b)

≤(1− β)
2E
(
‖vk−1‖2

)
+ 2β2E

(∥∥∥gfullk − gfullk−1

∥∥∥2)+ 2β(1− β)E
(〈

vk−1,g
full
k − gk−1

〉)
+ 3β2σ2

(c)

≤(1− β)
2E
(
‖vk−1‖2

)
+ 2β2E

(∥∥∥gfullk − gfullk−1

∥∥∥2)+ 2β(1− β)E
(〈

vk−1,g
full
k − gfullk−1

〉)
+ 3β2σ2

(d)

≤ (1− β)E
(
‖vk−1‖2

)
+ 2βE

(∥∥∥gfullk − gfullk−1

∥∥∥2)+ 3β2σ2,
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where for (a), we utilize the independence between gk and vk−1, while for (b):

E
(
‖gk − gk−1‖2

)
≤ E

(∥∥∥gk − gfullk

∥∥∥2)+ 2E
(∥∥∥gfullk−1 − gk−1

∥∥∥2)+ 2E
(∥∥∥gfullk − gfullk−1

∥∥∥2),
for (c), we know:

E
(〈

vk−1,g
full
k−1 − gk−1

〉)
= E

(〈
(1− β)vk−2 + β(gk−1 − gk−2),gfullk−1 − gk−1

〉)
=E
(〈

(1− β)vk−2 − βgk−2,gfullk−1 − gk−1

〉)
+ βE

(〈
gk−1 − gfullk−1 + gfullk−1,g

full
k−1 − gk−1

〉)
=− βE

(∥∥∥gfullk−1 − gk−1

∥∥∥2),
and thus E

(〈
vk−1,g

full
k − gk−1

〉)
= E

(〈
vk−1,g

full
k − gfullk−1

〉)
− βE

(∥∥∥gfullk−1 − gk−1

∥∥∥2). Fi-
nally, for (d), we use:

2E
(〈

vk−1,g
full
k − gfullk−1

〉)
≤ E

(
‖vk−1‖2

)
+ E

(∥∥∥gfullk − gfullk−1

∥∥∥2).
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