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From A Timeline Contact Graph to Close
Contact Tracing and Infection Diffusion

Intervention
Yipeng Zhang, Zhifeng Bao, Yuchen Li, Baihua Zheng, Xiaoli Wang

Abstract—This paper proposes a novel graph structure to address the problems of information spreading in a real-world, frequently
updating graph, with two main contributions at hand: accurately tracing infection diffusion according to fine-grained user movements
and finding vulnerable vertices under the virus immunization scenario to mitigate infection diffusion. Unlike previous work that primarily
predicts the long-term epidemic trend at the census level, this study aims to intervene in the short-term at the individual level.
Therefore, two downstream tasks are formulated to illustrate practicalities: Epidemic Mitigating in Public Area problem (EMA) and
Epidemic Maximized Spread in Public Area problem (ESA), where EMA aims to find intervention strategies, and ESA is an
adversarial solution against the intervention strategy to test the robustness. Comprehensive experiments are conducted using two
real-world datasets with millions of public transport trips, which demonstrate the effectiveness of our approach and highlight the
importance of considering the dynamic nature of close contacts in epidemic modelling.

Index Terms—Graph Structure, Infection Diffusion.

✦

1 INTRODUCTION
Graph theory has been a powerful tool for analyzing various
network structures, such as social networks, web graphs,
and road networks. However, most existing data structures
for graph analysis focus on static graphs, which is inad-
equate for real-world scenarios where graphs change fre-
quently. For example, in a social network, people constantly
add and remove followers; in a transportation system, pas-
sengers constantly get on and off buses and trains; in road
networks, vehicles merge and leave traffic flows. This can
make it challenging to track the spread of information, such
as a virus or an idea, through the graph.

In this work, we focus on how the information spreads
in the temporal/dynamic graph, where the graph structure
may change frequently. For instance, tracking the spread of
diseases through crowds requires modelling close contact
between people when they move over time [1], [2], [3],
a regional communication system built spontaneously to
connect multiple mobile wireless devices without requiring
typical network infrastructure equipment [4], or the ad-
hoc radio network between moving vehicles as a local
wireless network to exchange information [5], [6]. However,
traditional graph data structures are expected to handle
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Fig. 1: A two-day check-in record of four persons from p1 to
p4 at the same location. Each blue bar indicates the period
of the corresponding person staying at the location. The two
times shown below each bar are the check-in/out times.
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Fig. 2: Eight snapshots are updated every 15 minutes. Each
snapshot is generated based on Fig 1, where each line
between two dots indicates that the two corresponding
persons are staying at one location in that 15 minutes.
Particularly, solid lines represent the correct contacting re-
lationships, whereas dot lines are incorrect.

these dynamic connections better. Otherwise, it may lead
to inaccuracies and inefficiencies.

To tackle this problem, we propose a new data struc-
ture, Timeline Contact Graph (TCG), which is specifically
designed to handle frequently changing graphs. Our data
structure can be efficiently generated based on city-wide
individual movement data and hence capture all contact
among persons. This allows us to accurately model the
spread of information or diseases through the graph. In a
nutshell, each instance, such as a person, a vehicle, or an ac-
count in the social network, is a vertex in our data structure.
Whenever a change affects the connections between this
vertex and its neighbours, we will create a mirror for this
vertex connecting to new neighbours, whereas most existing
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work mainly leverages massive snapshots to maintain the
information of the temporal graph [7], [8], [9].

There are some drawbacks to snapshot-based solutions.
First, there is a dilemma between capturing correct edge
connections and maintaining an affordable memory cost.
The snapshot-based solution updates with an interval be-
tween two snapshots, which may cause the incorrect con-
nection capture when a connection crosses multiple snap-
shots. For example, in Fig 2, the dot-lines between p1, p3,
and p4 on both days are not supposed to be connected.
However, decreasing the update interval will significantly
increase the number of snapshots. Second, even if the hard-
ware is powerful enough to handle massive snapshots, the
influence diffusion is hard to split into different snapshots.
For any nonlinear diffusion model that measures the influ-
ence exchanging between two nodes, it is hard to evaluate
the total influence from split segments by simply integrating
the influence of each segment with the linear normalization
factors. More details are shown in Section 3.1.
Our Contributions:
• Graph Structure. In order to deal with the temporal graph
with a rapidly changing graph structure and efficiently
find how the information spreads through the temporal
graph, we propose a novel graph structure, namely Timeline
Contact Graph (TCG). It can be created directly based on
vertices information such as the public transport system
record, or transform the enormous discrete graph structures
(e.g., snapshots) into a TCG graph, to avoid creating enor-
mous snapshots and hence overcome the dilemma between
losing the accuracy of changing edges among vertexes and
suffering the explosive amount of data (Section 3).
• Evaluation Downstream Tasks. In order to illustrate how
our work helps overcome the disadvantage of snapshot-
based solutions on the huge temporal graph, we design two
downstream takes under the Virus Immunization scenarios
for concreteness. The general applicability of our graph
structure will be illustrated later in Section 7.

Task 1. Tracing Infection Diffusion in Short-term. The virus
infection is rapidly spreading with cascading diffusion and
exponentially growing close contacts of infected individu-
als. However, these close contacts between people change
constantly. In this context, we aim to identify all potential
infections caused by close contact with known infected
persons. Given a set of infected individuals and a temporal
network representing check-in/out records, our goal is to
find all potentially infected individuals based on a diffusion
model (Section 4).

Task 2. Detecting Vulnerable vertices. Understanding a
network’s vertex vulnerability is crucial for addressing is-
sues like virus immunization and influence maximization.
In our study, we focus on identifying the network’s most
vulnerable vertices. Our goal is twofold: firstly, we aim to
identify highly influential individuals or ’super spreaders’
contributing to pandemic spread (Section 5), and secondly,
we seek to locate the most dangerous points of interest
(POIs) for effective virus intervention (Section 6). By identi-
fying these key vertices, we can better understand network
dynamics and devise robust virus control strategies. We
prove the task’s NP-hardness theoretically and introduce
our algorithm to address the problems.

• Simulator & Experiment. We carefully design experiments
based on two large-scale real-world movement datasets to
evaluate all baselines. The experimental result shows that (1)
Simulation: our solution is up to 20 times more accurate than
baselines; (2) Intervention: our solution outperforms the best
baselines about three times by average; (3) Scalability: our
solution is scalable to handle four weeks of movement data
with tens of millions trips. s

2 RELATED WORK
In this section, we review related work in the two most
closing domains of virus immunization and facility location.
Overall, the contributions and related work are connected
through their shared focus on addressing the challenges
posed by temporal graphs in the context of virus control
and prevention.

2.1 Virus Immunization
The Virus Immunization (VI) work aims to study the pre-
vention and diffusion of the virus. The three most common
compartments in all epidemic models are Susceptible (S),
Infected (I), and Recovered (R) [10]. S represents the set of
people who are healthy but susceptible to being infected.
I represents the set of people who are infected but are
able to recover. R represents the set of people who have
recovered but may be infected again based on different
problem settings. Our work is fundamentally different from
most VI studies from the perspective of the objectives, and
the methodology, respectively, as illustrated below.

Objective: Most studies [2], [3], [11], [12], [13], [14] in VI
focus on the question of “will the pandemic happen at long-
term at population-level?” The difference is three-fold: time
period, analytical granularity, and goal. For instance, given
a graph G, the goal of the work [13] is to find a threshold
of the first eigenvalue λ∗, such that the virus will diminish
when the time approaches infinity (time period) if λ of G is
smaller than λ∗, otherwise it will become a pandemic. Each
node in the graph represents a city (analytical granularity).
Nadini et al. [15] investigate the effects of modular and tem-
poral connectivity patterns on epidemic spreading among
communities, and the interval of snapshots is one month.

In contrast, we focus on accurately tracking the influence
of diffusion in a graph within a short time, where the diffu-
sion is based on the physical distance. Intuitively, under the
texture of the influence diffusion, we answer the question of
”who will be influenced exactly?”

Methodology: Existing VI studies fall into two cate-
gories, based on either the betweenness centrality [16] or the
eigenvalues [17], [18]. However, most existing solutions do
not take the dynamic graph into consideration, whereas, the
time-varying connectivity pattern of networks is essential to
the epidemic process [19], [20]. A few studies [9], [15], [18],
[21] that support the varying graph or temporal graph are
suffering an accuracy and efficiency issues since they are the
snapshot-based solution.

2.2 Facility Location
Due to the ever-growing city scale, the fierce competi-
tion among businesses, and residents’ strong willingness
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to chase a better quality of life, it is crucial for companies
and governments to devote more effort to city planning that
will benefit neighbourhoods and the people who live there.
It aims to model complex real-world scenarios and solve
various facility location applications in promoting social
benefits or saving costing.

Ali et al. [22] study two problem, k Best Facility Trajec-
tory Search (kBFT) and k Best Coverage Facility Trajectory
Search (kBCovFT). The former one aims to find the top-k
locations from a given dataset that each of them covers the
maximum number of trajectories generated from a set of
users than the rest locations, while the latter one aims to find
a subset of locations with a cardinality k from the dataset,
such that the number of trajectories covered by this subset
is maximized. Several work [23], [24] has been published
focusing on the similar ideal of maximizing the total number
of covered trajectories.

Yilmaz et al. [25] consider a scenario where the lo-
cations of the customers are unknown. They propose an
optimal location predictor that accepts partial information
about customer locations and returns a location for the
new facility. Ahmadian et al. [26] define a problem where
points are referred to as clients and clusters are defined
by the assignment of clients to centres. The goal is to find
a feasible solution that minimizes the maximum radius or
the clustering cost of the total k facilities. Gomez-Rodriguez
al. [27] focus on inferring the probability of each edge, given
the graph structure and initial/final states of nodes.

Most facility location research focuses on maximizing
the number of covered customers. While one of our con-
tributions involves deploying facilities at POIs, maximizing
customers is insufficient for our problem of preventing
information from spreading in a temporal graph among
continuously moving individuals. Therefore, the facility lo-
cation problem cannot address the challenges posed by our
dynamic graph scenario.

3 TIMELINE CONTACT GRAPH

In this section, we will introduce a novel Timeline Contact
Graph (TCG). We first raise three challenges of snapshot-
based solutions, then introduce essential notations and de-
fine TCG, describe its construction from temporal graphs,
and demonstrate its equivalence to all temporal graphs.

3.1 Pain Points

Challenge 1 - Incorrect connection capture. Challenge 1 -
Incorrect connection capture. In a temporal graph, edges
and vertices can be added or removed anytime. Therefore,
a snapshot-based solution may include edges between ver-
tices that have since been removed. For example, in Fig 2,
for each snapshot, we connect two persons if they stay in
the same period. Since they all are at the same location from
8:00:00 to 8:14:59 on day 1, they are connected in the third
snapshot, which lead to incorrect connections (the dot lines)
as p3 does not contact with p1 and p4.
Challenge 2 - High memory cost. To record the correct
check-in/out data shown in Fig 1, we need a higher update
frequency. Instead of setting a concise duration, a more
reasonable solution is event-based snapshotting that creates

TABLE 1: Important notations

Notation Description
tstart, tend Start time, end time

−→
t A duration from from tb to te
s A location
pn A person. Each Person has multiple

records pn.T r = {tri, · · · , trj}.
pin A movement record. pin and pn.tri

are interchangeable.
tri ∈ R A movement formed as a tuple

{s, tb, te}, where tb/te is the check-
in/out time

G = (V, Etstart,tend ) A temporal graph at the duration
from tstart to tend

e = (u, v,
−→
t ) A temporal edge connects vertices u

and v among duration −→
t

R(
−→
t 1,

−→
t 2) The overlap time of −→t 1 and −→

t 2

Day 1

𝑝!

𝑝"

𝑝#

𝑝$

8:06:28 – 8:15:45

8:06:28 – 8:15:45

7:51:21 –

 8:06:12

8:06:28 –
 8:20:13

Day 2

𝑝!

𝑝"

𝑝#

𝑝$

8:04:28 – 8:11:13

8:14:19 – 8:16:25
8:01:21 –

 8:03:56

Fig. 3: A temporal graph generated according to Fig 1. Not-
ing that we illustrate the temporal graph with two figures
to show multiple edges between the same pairs of persons
distinctly, not because they are two snapshots.

new snapshots whenever check-in/out happens. However,
this event-based snapshotting captures precise graph states
but can lead to prohibitive memory costs at a city-wide
scale, as millions of check-in/out happen daily, which poses
a dilemma between accuracy and memory efficiency.
Challenge 3 - Splitting diffusion. Segmenting diffusion
into snapshots complicates the accurate modeling of influ-
ence, particularly in nonlinear diffusion models. For exam-
ple, if an exposure of 13.75 minutes between p2 and p4,
as shown in Fig 1, is split by a snapshot, simple addition
of the resulting probabilities from segments 9.28 and 4.46
minutes (f(9.28) + f(4.46)) is misleading for any nonlinear
f(). Such nonlinear behaviors, common in various infor-
mation propagation contexts like epidemic modeling [28],
information spreading [29] and influence maximization [30],
require careful normalization of influence among snapshots
to maintain accuracy.

3.2 Preliminary
3.2.1 Check-in/out Data
Location. Given a location database S , each location s ∈ S
can be checked in/out by persons.
Movement. Given a movement database R, where each
movement tri ∈ R is a tuple {s, tb, te}. Particularly, sb/se
denotes the check-in/out location, and tb/te is the check-
in/out time.
Person. Given a person database P , where each person
pn ∈ P has a set of trips pn.T r = {tri, ..., trj}. For
simplifying, let pin denote the trip tri of pn. We use pin and
pn.tri interchangeably.

3.2.2 Temporal Graph
The temporal graph is defined as G = (V, Etstart,tend

),
where from tstart to tend finite period. A temporal edge
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e = (u, v,
−→
t ) connects temporal vertices u and v, where

u, v ∈ V , and
−→
t is a duration from tb to te. Each temporal

edge e only exists in the period e.
−→
t = [tb, te) from tb to te.

∀e ∈ E , e.tb ≥ tstart and e.te ≤ tend. Noting that v does not
have temporal features, as all vertices are stable. Therefore,
we do not remove any vertex from the temporal graph if no
edge is connected to it in a particular period. Let R(

−→
t 1,
−→
t 2)

denote the overlap time between two durations. For any
two edges e1 = (u, v,

−→
t 1) and e2 = (u, v,

−→
t 2), there is a

duration overlap, if and only if R(
−→
t 1,
−→
t 2) > 0.

It is easy to build a temporal graph based on any given
movement database. Fig 3 illustrate a temporal graph gen-
erated from Fig 1. As every two vertices may have multiple
temporal edges, for illustrating more clearly, we illustrate
the temporal graph with two separate figures. We first build
a graph G containing four vertices V = {v1, v2, v3, v4}, as
we have four persons. For every pair of persons pi and pj ,
we build an edge (vm, vn) if and only if ∃tri ∈ pm.T r, trj ∈
pn.T r such that trmi .s = trnj .s and R(trmi , trnj ) > 0.

3.3 Timeline Contact Graph
Definition 1. A Timeline Contact graph (TCG) is an ordered

pair G = (V,E), where V refers to a set of vertices, with
each v ∈ G representing a state of v ∈ G. The set E
comprises edges defined as {(vi, vj)|vi, vj ∈ V and vi ̸=
vj}, indicating direct connections between vertices.

This definition introduces TCG that addresses the chal-
lenges identified with snapshot-based methods. This struc-
ture enables us to capture all relevant close contacts effec-
tively. Fig 4 illustrates a TCG generated based on Fig 1,
which is intricately designed to capture all close contacts
associated with check-ins and check-outs. In this graph,
movements are denoted by light blue pairs, where the left
and right vertices symbolize check-in and check-out points,
respectively. Dotted arrows within or between these pairs
represent self-connections, signifying the continuous infec-
tion status of an individual. Conversely, solid arrows depict
close contacts between different individuals, highlighting
potential new infection pathways.

3.4 Generate TCG based on a temporal graph
Algorithm 1 illustrates how to generate TCG based on a
temporal graph. Fig 4 exemplifies a simple TCG generated
based on the movement record shown in Fig 1.

We begin by initializing a TCG G and a hash-set H <
v, (v1, v2) >. Here, a temporal vertex from G serves as the
key, and the set of pairs (v1, v2) are the values (line 1.1).
The first and last vertices for each individual are added
as the start and end states, denoted as vbegin and vend,
respectively (orange dots in Fig 4) (lines 1.2-1.4). Next, each
temporal edge contributes two pairs of vertices to the hash-
set H (lines 1.5-1.9). Each pair corresponds to a single vertex
of G. Thus, two pairs are needed for the two vertices of
the corresponding temporal edge (line 1.6). These pairs are
added to H under the relevant u′ ∈ G (line 1.7). We also
assign the beginning and ending times to each vertex of a
pair (line 1.8). In the subsequent step, pairs belonging to the
same person are merged if their durations overlap (lines 1.10
- 1.13). Then, all pairs (vi, vj) ∈ H(v′) associated with one

Algorithm 1: Timeline Contact Graph Generation

Input: G = (V, Etstart,tend
)

Output: G
1.1 Initialize G and H < v, (v1, v2) >
1.2 for v′ ∈ V do
1.3 Add the beginning/ending vertex vbegin/vend

into G
1.4 Set vbegin.t = tstart, vend.t = tend
1.5 for e = (u′, v′,

−→
t ) ∈ E do

1.6 Add two pairs vertices (vi, vj) and (vm, vn) to G
presenting the beginning and ending time (i.e.,
e.tb and e.te) of u′ and v′, respectively.

1.7 H.add(u′, (vi, vj)), H.add(v′, (vm, vn))
1.8 Set vi.t = vm.t = e.tb, vj .t = vn.t = e.te
1.9 Add edges (vi, vj), (vm, vn), (vi, vm), (vm, vi)

1.10 for v′ ∈ H.key do
1.11 while ∃(vi, vj), (vm, vn) ∈ H(v′), such that

R((vi.t, vj .t), (vm.t, vn.t)) > 0 do
1.12 Add a new pair (vp, vq) and set

vp.t = min(vi.t, vm.t),
vq.t = max(vj .t, vn.t)

1.13 Relocate all edge connecting to vi and vm to
vp

1.14 for v′ ∈ H.key do
1.15 Order (vi, vj) ∈ H(v′) ascendingly based on vi.t
1.16 From (vi, vj)1 to (vi, vj)|H(v′)|, add edges linking

vj in previous one to vi in next one

𝑝!
𝑝"
𝑝#
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𝑝!! 𝑝!"
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Fig. 4: TCG based on the movement record of Fig 1.

person are ordered in ascending order based on vi.t (lines
1.14 - 1.16). For an ordered pairs list of one person, denoted
as H(v′) = {(vi, vj)1, · · · , (vi, vj)k}, we add self-connecting
edges that connect all adjacent pairs from the end of one (i.e.,
vj of (vi, vj)k ∈ H(v′)) to the beginning of the next (i.e., vi of
(vi, vj)k+1 ∈ H(v′)), which are depicted as the dotted arrow
between pairs in Fig 4. In the event of vertex activation or
infection, the state is maintained probabilistically. Thus, we
use self-connections to sustain the state within each pair and
between pairs associated with an individual. The weights or
probabilities assigned to these self-connection edges can be
tailored to meet the specific needs of different applications.

4 DIFFUSION ON TIMELINE CONTACT GRAPH

Modelling influence diffusion in networks is an important
challenge. Depending on the different types of applications,
the influence diffuses differently. For instance, influence
within social networks is spread via user interactions, such
as following relationships, and propagated through actions
like posts or shares. Similarly, in physical spaces, informa-
tion spreads through direct interactions between individuals
or vehicles. To examine TCG, we design two downstream
tasks in the VI problem, which traditionally suffers the un-
affordable memory cost when the graph structure changes
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rapidly. First, we need to define how the infection spread,
and how to utilize TCG to model this spreading.

4.1 Infection Propagation Model

In this work, we adopt the Susceptible-Infected (SI) model
to introduce the virus spreading, as it is the most classical
disease model. Individuals are born into the simulation with
no immunity (susceptible). Once infected, individuals stay
infected and remain in contact with the susceptible popula-
tion. To demonstrate that our work can take any infection
probability f() as an input, we adopt two different f(),
the EC50 model and InfTre model. In this part, we first
introduce the EC50 model. Another one will be introduced
in Section 7.

The EC50 model is a well-known model in the virus
domain [31], [32], [33]. The infection probability increases
when the duration increases. Formally, it is defined as
f(R) = 1/(1+(EC50/R)τ ), where EC50 is a time threshold
that a healthy person will have a 50% probability of being
infected if she stays in the same POI closely with another
infected person; τ is used to adjust the slope of f().

Let Pr(pin, p
j
m) = f(R(pin, p

j
m)) be the infection prob-

ability between two persons after one contact (i.e., con-
tact between i-th check-in of pn and j-th check-in of pm).
Here, R() is the exposure duration of one contact, de-
fined as R(pin, p

j
m) = max((min(tri.te, trj .te)−max(tri.tb,

trj .tb)), 0) if tri.s = trj .s, and R(pin, p
j
m) = 0 otherwise; f()

is the virus diffusion model measures the infection proba-
bility based on the exposure duration, which is EC50 model
at here. When an infected passenger pn is making a trip
tri, pn will infect another passenger pm with a probability
Pr(pin, p

j
m). This process can be viewed as random events

of flipping a coin with a probability Pr(pin, p
j
m).

We describe the following routine to simulate the infec-
tion propagation process.
Step 1. We initialize an empty priority queue of trip records,
with all the trips sorted in ascending order of tb.
Step 2. Given a set of infected passengers P , we assume the
remaining passengers (i.e., P\P ) are healthy. We push the
first trips of all the infected passengers (i.e., ∪pn∈P p

1
n) into

the queue.
Step 3. The queue pops a record tri iteratively. While
checking in a POI via tri, pn infects other passengers in the
same POI with a probability Pr(pin, p

j
m).

Step 4. We push all the trips that have not been infected but
will be infected by tri into the queue.
Step 5. Repeat steps 3 and 4 until the queue is empty.

The TCG has two advantages. First, by utilizing the TCG,
the enormous discrete graph structures (e.g., snapshots) can
be transformed into a single graph that contains all the
information, which avoids the dilemma of whether losing
the accuracy of changing edges among vertexes or suffering
from the explosive amount of data. Second, according to the
government’s rules, the levels of strict intervention may
change, and hence the definition of close contact varies.
The TCG handles this scenario by involving a threshold for
pushing infected trips. For example, for a loose intervention
rule that contacts for more than 10 minutes will be counted
as close contact, we only push trips where the infection
probability is larger than f(10 mins) into the queue.

4.1.1 Incubation Period
There is a special condition when we study virus diffusion,
the incubation period, which makes the virus diffusion
problem more complex than the influence maximization
problem in the social network. When a person is infected,
she/he might be not able to infect other healthy persons
immediately because of the incubation period. We define the
incubation period as γ hours. For instance, if pn is infected
at the check-in record tri, then pn will be infectious and
detectable from tri.tb + γ onward, i.e., γ hours after tri.

Accordingly, we need to modify Algorithm 1 to become
compatible with the incubation period. Technically, instead
of linking the two pairs based on their close contact in line
1.10 (i.e., vi, vm and vm, vi), we will connect vi to the vm
of a pair that is behind the current one. For example, let
γ be 12 hours. In Fig 4, instead of connecting pairs on the
first day (i.e., (v1, v2)1, (v5, v6)1, (v9, v10)1 and (v13, v14)1),
we actually connect the pairs in the first day to the cor-
responding pairs in the second day. For instance, instead
of connecting (v1, v2)1 and (v5, v6)1, we connect (v1, v2)1
to (v7, v8)2 and (v5, v6)1 to (v3, v4)2. Consequently, if p1 is
infected at (v1, v2)1 and successfully diffuse to p2, p2 will
become activated at (v3, v4)2 in second day, which is the 12
hours after p1 and p2 have a close contact.

5 EPIDEMIC MITEGATING IN PUBLIC AREA

In this section, we explore the problem of Epidemic
Mitigation in Public Areas (EMA) from a defensive per-
spective, focusing on developing optimal checkpoint de-
ployment strategies to effectively mitigate infection diffu-
sion. The motivation is clear: by detecting and intercepting
infected individuals, identified as pi, before they access
transit stations, we can prevent them from infecting others
on public transport and further quarantine them to curb
subsequent virus spread. To facilitate this, checkpoints are
established at stations, enabling the implementation of pre-
ventative measures and identification of potentially infected
passengers during boarding.

In the following, we first introduce the problem defini-
tion of EMA and prove that EMA is NP-hard. Next, based
on our TCG, we propose a concept called Contact Paths
Tracing (CPT) that is generated based on the latest trip of
a passenger pn. It presents a set of contacts that have the
potential to infect the passenger pn. Last, we propose our
solution to address the EMA problem based on CPT.

5.1 Problem Definition of EMA

First, we formally define the checkpoint as follows:

Definition 2. Checkpoint: Given a checkpoint s and a
passenger pn who has a trip tri at s, pn is allowed to
board and alight if she is healthy and meanwhile passes
the screening test implemented at s; pn will be isolated
if she is infected (and accordingly, the following trips of
pn ,{pi+1

n , · · · , p|Tr|
n }, are removed from T ).

We introduce W (sn) = ∪tri∈∂snI(p
i
n) to denote the

coverage of the checkpoint sn, where ∂sn refers to a set of
trips such that ∀tri ∈ ∂sn, tri.s = sn, and I(pin) denotes all
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close contacts of pin. Now, we are ready to formally present
the problem definition for EMA.
Definition 3. The EMA Problem: Given a passenger dataset
P , a trip dataset T , a checkpoint candidates dataset S , a
budget k, and an incubation threshold γ, EMA is to find
a set of stations S ⊆ S to set up checkpoints so as to
maximize the coverage of checkpoints.

S = argmax
|S|≤k

W ∗
P,T ,γ(S) = | ∪sn∈S W (sn)|. (1)

A straightforward solution is to select the top-k stations
with the largest number of trips. However, a station with a
larger number of trips does not necessarily have a higher
vulnerability. For example, considering a POI with many
check-in records that come from a fixed crowd with a con-
stant movement pattern, whereas another POI with fewer
check-in records from a group of highly mobile persons, the
latter POI is more vulnerable. The experimental results to
be reported in Section 7.5 confirm this observation. As com-
pared to the checkpoint deployment strategy that always
picks the top-k stations (based on the volume of trips), our
solution can improve the coverage by at most three times.

Theoretically speaking, an optimal checkpoint deploy-
ment strategy should well mitigate the virus from spreading
among all situations, which is equivalent to minimizing the
maximum number of finally infected passengers no matter
who the initially infected passengers are [34], [35]. However,
to the best of our knowledge, no existing work could be ap-
plied to address our problem because of two main reasons:
(1) They are unable to handle a highly-frequent changing
graph structure caused by people’s movements. (2) The
scale of the trips considered by existing work is significantly
smaller than ours. For instance, existing work [35] proposes
a dynamic index data structure, namely Weighted Cascade
(WC) model. It is designed for influence analysis when
some of the edges or nodes are removed from the graph.
With a dataset that is one order of magnitude smaller, WC
needs more than one hour to build the dynamic index data
structure and update the index after removing edges/nodes
in each iteration. In contrast, our solution costs less than
300 seconds in the default settings for finding 50 stations as
checkpoints to eliminate all infected passengers.

5.2 Hardness of EMA
Theorem 1. The EMA problem is NP-hard.

Proof 2. We prove it by reducing the Minimum k-union
Problem (MinKU) [36]. In the MinKU problem, given
a collection of set S ′ = {s′1, s′2, · · · , s′m} where each
set s′i is a subset of a given ground set P ′, an integer
0 ≤ k ≤ m and 0 ≤ τ ≤ |P ′|, it aims to find S′ ⊆ S ′,
such that |S′| = k and | ∪s′i∈S′ s′i| ≤ τ . We map the
MinKU problem to the EMA problem with the following
process: (1) In EMA problem, let each person has two
check-ins only; let γ = 0; let f(R()) = 100% if R() > 0.
(2) We map each check-in p in EMA to each element
p′ ∈ P ′ in MinKU, and map each candidate location
s ∈ S in EMA to each set s′ ∈ S ′ in MinKU. (3) For
any check-in pin, if Pr(pin) > 0, we connect pn to the
location pin.s, and connect the corresponding p′n to s′.
Clearly the mapping can be done in polynomial time.

Consequently, EMA is equivalent to deciding, given k
and τ , whether MinKU problem can find k subsets
S′ such that | ∪s′i∈S′ s′i| ≤ τ . If the answer is Yes,
then EMA can find |S| − k locations from S that saves
|P| − | ∪si∈S Si|/2 ≥ |P| − τ/2 persons. This is because,
for a checkpoint, people who connect to it will be healthy
as they only have two check-ins. Therefore, for a set of lo-
cations that are not checkpoints S, the maximum number
of infected persons is | ∪Si∈S′ Si|/2. Since MinKU is NP-
complete, the decision problem of EMA is NP-complete.
Hence, the optimization problem of EMA is NP-hard.

5.3 CPT-based Station Selection (CPT-SS)

According to Definition 3, given a set of checkpoints S,
we have W (S) that captures the set of people who can
be covered (i.e., saved from being infected) if checkpoints
are placed at the set S. Accordingly, we define W (S|si) =
|W (S ∪ {si})| − |W (S)| as the marginal gain of adding si
into S. A naive greedy-based solution will iteratively select
a POI with the maximum W (S|si). However, the challenge
is how to efficiently evaluate W (S|si). Hence, we introduce
the CPT-based POI Selection (CPT-SS).
Definition 4. Given a passenger pn ∈ P , the Contact Paths

Tracing (CPT) of pn is the set of trips that can infect pn.

Intuitively, a Contact Paths Tracing (CPT) is generated
based on the latest trip made by a passenger pn ∈ P and
it includes all the trips tr that have a certain probability
(> 0%) of infecting the passenger pn based on the given
infectious model. CPT is generated as follows:
Generation of one CPT.
Step 1. Randomly select pn ∈ P ; initialize an empty queue
Q and an empty CPT;
Step 2. Add tri into both Q and CPT where tri ∈ pn.T r
refers to the latest trip of pn;
Step 3. Pop the top trip tri out of Q;
Step 4. For each incoming edge of tri (from node pjm), flip a
coin with Pr(pin, p

j
m) probability;

Step 5. If true and trj /∈ CPT , add trj into both Q and CPT.
Step 6. Repeat steps 3 to 5 until Q is empty.

According to Definition 4, given a CPT of pn, all trips
in this CPT can infect pn. It has been proven that the
probability of CPT overlapping with any set of trips T is
equivalent to the probability of T infecting pn [37], [38],
[39]. Thus, the number of times that a trip tri appears in the
CPT of different passengers indicates the potential impact
of tri in terms of the capability to spread the virus, e.g.,
the trip appearing in the largest number of CPT contributes
the most to the spread of the virus and hence shall be
isolated first. The last question is how many CPT we need
to accurately evaluate W (S|si). Let θ be the number of
CPT sets that we need, F(S) be the fraction of CPT sets
over all CPT sets covered by a given set of checkpoints
S. The existing work [39] shows that, nF(S) is an accu-
rate estimator of W (S), when θ is sufficiently large, i.e.,
θ ≥ n(8 + 2ϵ)(l log n+ log

(n
k

)
+ log 2)/(OPT · ϵ2), where n

is the number of trips and ϵ is the approximate ratio. OPT
can be estimated by n(1− (1−w(CPT ))k), where w(CPT )
is the number of edges of CPT . For more details of deriving
θ, please refer to the work [39].

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 
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Algorithm 2: CPT-based Station Selection (CPT-SS)
Input: Checkpoint number k, Timeline Graph G, θ,

Location database S
Output: Checkpoint set S

2.1 Based on G, generate θ CPT set into R
2.2 while |S| ≤ k do
2.3 Select si ∈ S that covers the most CPT sets in R
2.4 S ← S ∪ {si}
2.5 S ← S\{si}
2.6 Remove all CPT sets covered by si from R

Algorithm 2 presents the pseudo-code of CPT-SS. To
minimize the number of infected passengers, we need to
find stations with the most extensive coverage, i.e., block
the most dangerous trips that may infect a large number
of passengers. Since the most dangerous trip is expected to
appear in the greatest number of CPT sets, we generate CPT
sets and then find checkpoints that can detect the largest
number of dangerous trips. We first generate θ CPT sets as
R based on the timeline contact graph G (Line 2.1). In the
selection loop, we select a station si that covers the most
CPT sets in R (Lines 2.3-2.5) and remove all CPT sets that
are covered by si from R (Line 2.6). The loop terminates
when |S| = k and S is returned.

6 EPIDEMIC MAXIMIZED SPREAD IN PUBLIC AREA

In this section, from the offensive perspective, we study
the ESA problem that aims to find k “super-spreaders”, the
passengers who will spread the virus the most, thus pos-
sibly leading to a pandemic. This helps the government to
evaluate the robustness of checkpoint deployment strategies
in the extreme case that the virus is spread widely.

6.1 Problem Definition of ESA
We begin by introducing the Epidemic Maximized Spread
in Public Area (ESA) problem. The primary objective here
is to assess the efficacy of a given checkpoint deployment
strategy under the worst-case scenario. In specific terms,
given a certain checkpoint deployment strategy, we aim to
identify a set of k passengers who, if initially infected, could
potentially infect the maximum number of other passengers.

Taking checkpoints into account, the infection probabil-
ity between two trips can be expressed as follows:

Pr(pin, p
j
m) =

{
f(R(·)) otherwise

0 if tri.sb ∈ S ∨ trj .sb ∈ S
(2)

where S denotes a set of checkpoints. Conceptually, when
an infected passenger attempts to pass a checkpoint, all
of her remaining trips are immediately suspended. As a
result, these trips are no longer taken into account in the
simulation of virus diffusion. Building on Equation 2, we
formally present the ESA problem as follows:
Definition 5. The ESA Problem: Given a passenger dataset
P , a trip dataset T , a set of infected passengers P ∈ P ,
a set of checkpoints S, a budget k, and an incubation
period γ, ESA is to find at most k passengers P ∈ P
such that P can maximize the following equation:

P = argmax|P |≤k IP,T ,γ,S(P ). (3)

6.2 Hardness of ESA

Theorem 3. The ESA problem is NP-hard.

Proof 4. We prove it by reducing the Set Cover problem
to the ESA problem. In the Set Cover problem, given a
collection of sets S′ = {s′1, s′2, · · · , s′m} where each set
s′i is a subset of a given ground set P ′ = {p′1, ..., p′n},
it aims to find whether there exist k of the subsets
whose union is equal to P ′. We reduce the Set Cover
problem to ESA with the following process: (1) We map
each element p′i ∈ P ′ in the Set Cover problem to each
person pi ∈ P in the ESA problem. (2) We map each
set s′i ∈ S′ in the Set Cover Problem to a set of persons
{pi, · · · , pj} = I(pn) ⊆ P in the ESA problem, where
p′m ∈ s′n maps to the person pm ∈ I(pn) that will be
infected by pn. Consequently, the Set Cover problem is
equivalent to deciding whether there are the k-sized set
of initially infected persons P ∈ P , such that I(P ) = |P|.
Since the Set Cover problem is NP-complete, the decision
problem of EMA is NP-complete. Hence, the optimiza-
tion problem of EMA is NP-hard.

6.3 CPT-based Passengers Selection (CPT-PS)

Now, we are ready to present the solution, CPT-based Pas-
sengers Selection (CPT-PS), for the ESA problem. The main
objective is to find the set of super-spreaders, with each
being able to infect many healthy passengers. Similar to the
EMA problem, a super-spreader is a passenger whose trips
appear in the greatest number of CPT sets. Since the solution
of ESA is similar to that of EMA, we omit the pseudocode
but highlight the key steps and differences only. Based on
the timeline contact graph G, we initialize and generate θ
number of CPT sets as R first. Then, a passenger pi that
covers the largest fraction of CPT sets is added into P ; and
all CPT sets that are covered by pi are removed fromR. The
loop terminates when |P | = k, and P is returned. It is worth
noting that there is one difference between ESA and EMA;
the process of generating a CPT. According to Definition 2,
if an infected passenger pn checks-in at s via tri, pn will be
isolated and pn.T r = {tri, · · · , tr|Tr|}will be removed from
T ). Moreover, the CPT of pn is the set of trips in T that can
infect p|Tr|

n . Therefore, an infected trip is not able to infect pn
for the CPT of pn. As a result, in the process of generating
CPT, we change Step 4 to: for each incoming edge of tri, if
tri.s /∈ S, flip a coin with Pr(pin, p

j
m) probability, where S

is the set of checkpoints.

7 EXPERIMENT

In this section, we first introduce the datasets in Section 7.1.
Then, we introduce two infection probability measurements
that are commonly used in the epidemic field and experi-
ment setup in Section 7.2. Finally, we evaluate the proposed
graph structure in Section 7.3, evaluate how well the various
algorithms could mitigate viruses for EMA problem in
Section 7.4, and the robustness of each algorithm for ESA
problem in Section 7.5, respectively. All codes are available
online1 for reproducibility.
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TABLE 2: Dataset Information

Dataset Trip Passenger Station
EZ-LINK 2× 106 5.2× 104 302
BART 4.2× 106 6.8× 105 50

TABLE 3: Parameter settings

k 25, 50, 75
γ (Hours) 24, 72, 120

EC50 (Seconds) 1800, 3600, 7200
Period (Days) 14, 21, 28

Ps 0.01%, 0.05%, 0.1%, 0.2%, 0.5%, 1%

7.1 Datasets
We conduct experiments based on EZ-LINK (default) and
BART datasets. Details on this dataset are summarized in
Table 2. The EZ-LINK data contains comprehensive move-
ment records within a city-scale public transport system, as
close contact and high user density offer ideal conditions
for studying virus transmission dynamics, which are crucial
for tracing infection pathways. Notably, unlike many larger
datasets where each movement record is anonymous, EZ-
LINK provides individual identification, enabling the trac-
ing of specific infected individuals over time and accurately
assessing the spread of infection through direct contacts.

Due to privacy constraints and the rarity of similar
datasets with individual tracking, we synthesize the BART
dataset based on Bart data from the San Francisco Bay Area
Rapid Transit District (BART) system2. The original BART
data only contains orientation destination (OD) matrix. To
synthesize the BART dataset based on EZ-LINK data, we
first extracted the trip frequency distribution per passenger
from EZ-LINK. We then calculate a scale factor based on
average numbers of trips per passenger for both datasets,
and use it to adjust the trip frequencies of BART. Next, trips
are assigned to unique passenger IDs for the RABT dataset.
For each trip, select origin and destination stations based
on the probabilities from the RABT OD matrix, simulating
a realistic spatial distribution of trips. Finally, we randomly
generate exact boarding and alighting times, ensuring each
trip reflects realistic variations in travel times.

7.2 Experiment Setup
All key parameters are summarized in Table 3. In each set of
experiments, we vary only one parameter and set the rest of
the parameters to their default values highlighted in bold.
Incubation period γ. γ is a period between when a pas-
senger is able to infect others and when she is infected. It
varies from disease to disease. For instance, the average γ
of Influenza is two days [40], and that of COVID-19 is five
days [41], [42]. Hence, we set γ to 24 hours (1 day), 72 hours
(3 days), and 120 hours (5 days), to represent short, normal,
and long incubation periods to cover most cases.
Percentage of Initially Infected Passengers Ps. Since a
fixed number is meaningless without considering the total
number of passengers, we set Ps as the percentage of the
passengers that are initially infected. Then, the number of

1. https://github.com/e1qjmis5/VirusDiffusionCode
2. https://www.bart.gov/about

(a) EC50 = 1800s (b) EC50 = 3600s (c) EC50 = 5400s

Fig. 5: Graph competition of varying EC50 (Seconds) when
the incubation period γ = 72 hours within 14 days

(a) γ = 24 hours (b) γ = 72 hours (c) γ = 120 hours

Fig. 6: Graph competition of varying γ when the incubation
period EC50 = 3600 seconds within 14 days

initially infected passengers will be Ps×|P|, where |P| is the
total number of passengers. In each experiment, we set Ps to
0.01%, 0.05%, 0.1%, 0.2%, 0.5%, and 1%, which represent
the cases from a few initially infected persons to a small
group of initially infected persons.
Infection Probability Measurement. To demonstrate that
our work can take any infection probability f() as an
input, we adopt two different models with unique f() for
illustration. (1) EC50 model. It is widely used in measur-
ing the concentration required for the drug, antibody, or
toxicant, to measure infection probability [31], [32], [33].
We set f(R) = 1/(1 + (EC50/R)τ ), where EC50 indicates
the duration of the close contact that will lead to a 50%
probability of being infected; τ is used to adjust the slope
of f(). We name it EC50 model, and set τ = 3. (2) InfTre
model. InfTre model is based on a threshold of exposure
duration. Specifically, given a threshold of exposure dura-
tion, f() = 100% if R() is not shorter than the threshold,
and f() = 0% otherwise [43]. Please refer to the technical
report for the experimental results of InfTre.
Performance Metrics. The total number of infected passengers
and the running time are employed as the effectiveness metric
and the efficiency metric respectively. For each experiment,
we report the average result of 20 runs.
Compared Methods. The comparison is conducted from
two perspectives, w.r.t. two different goals presented earlier.
1) Task 1. Tracing Infection Diffusion: We compare our

TCG with the dynamic graph [18], namely Dy-x. Here, x
refers to the number of hours between two consecutive
snapshots (i.e., a smaller x value indicates that more
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Fig. 7: Running time of varying EC50 (Seconds) when the
incubation period γ = 72 hours within 14 days

snapshots will be generated based on a shorter interval).
The edge between two close contact passengers is added
according to the probability f(R), where R is the shortest
time that vi or vj stays at the location. For this task, we
employ the Monte Carlo (MC) method to provide the
ground truth, enabling us to determine which baseline is
more accurate in terms of simulating virus diffusion. The
detail of the MC method is presented in Section 7.3.

2) Task 2. High-risk Detection: (1) For the EMA problem,
we compare four deployment strategies: I) Tk1: Top-k
checkpoints covering the largest number of trips; Tk2:
Top-k checkpoints covering the largest number of 100
super-spreaders found by ESA, II) CPT-SS: the CPT-
based checkpoints selection (Section 5.3), and iii) Eig:
the eigenvalue-based solution presented in Section 2.
In each iteration, we select a node that maximizes the
decrease of the first eigenvalue. (2) For the ESA prob-
lem, we compare three initial infection settings: I) Rand:
Ps randomly-selected passengers, II) Max1/2: Ps super-
spreaders identified by CPT-PS (Section 6.3), and III)
Max3: Top-k check-in passengers.

7.3 Evaluation of The Timeline Contact Graph
The tracing of infection diffusion is compared between our
TCG and the dynamic graph approach [18], referred to as
Dy-x, where x signifies the hours between two successive
snapshots. Thus, a smaller x value indicates a faster snap-
shot updating. The weight of the edge in the graph repre-
sents the infection probability, measured as f(R), where R
is the shortest duration that either vi or vj stays at a specific
location. Since there is no ground truth data to evaluate the
accuracy of different simulating methods, we introduce the
MC method to simulate the ground truth results. The detail
of MC is shown as follows:
Step 1. Initialize an empty priority queue Q, ordered by the
check-in time tb of trips.
Step 2. Add all trips from the initial infectious persons to Q.
Step 3. Pop a trip pin from Q and identify its close contacts.
Step 4. For each close contact, calculate Pr(pin, p

j
m). If a

random event with this probability occurs, add the corre-
sponding trip pjm to Q.
Step 5. Repeat Steps 3-4 until Q is empty.
Step 6. Count the number of unique infected persons.

We first compare the accuracy and efficiency of our TCG
and the dynamic graph in modelling infection diffusion
without checkpoints under default settings with randomly
selected initial infections. We vary two parameters, trans-
missibility EC50 and incubation period γ. The lower the
EC50 and γ, the faster the disease outbreak. Thus, a small
EC50 and γ require precise modelling.

Figs 5 - 6 show the experimental results of varying EC50

and γ. We have two main observations.
First, TCG models virus diffusion more accurately. For

instance, in Fig 6b, Dy-1, Dy-2, and Dy-3 overestimate
the number of infections by three, nine, and twelve times
compared to TCG, respectively. This is because snapshot-
based solutions fail to capture accurate close contacts.

Second, the advantage of TCG becomes more significant
when EC50 becomes smaller. For example, when EC50 =
1, 800s, in terms of the number of infected passengers, TCG
outperforms Dy-1 by at most 20 times as shown in Fig 5a. It
is because the small EC50 will lead to a high infection prob-
ability and hence cause an explosive increase in the number
of infected passengers and make the dynamic graph (based
on snapshots) mistakenly consider non-contact passengers
as having contact. Therefore, it is easy for a dynamic graph
to overestimate the number of infected passengers.

Last, the experimental results reported in Fig 6 demon-
strate a similar trend. In the case of Dy-2 and Dy-3 in Fig 5a
and Fig 6a, we have excluded the results, as both of them
exceeded the memory limits. This was a consequence of
their generation of an extensive number of edges, primarily
attributable to inaccurate contact recording.

We also evaluate the efficiency of different methods
and the results are reported in Fig 7. Results of Dy-2 and
Dy-3 are not reported, as they are out of memory when
generating a massive number of edges due to inaccurate
contact recording. Consistent with our expectation, TCG
requires significantly less time, as compared to dynamic
graph. One interesting point is that, with a larger EC50, the
increase of Ps shows a smaller impact on the running time.
It is because a large EC50 can avoid the explosive growth of
the final infection number. Therefore, the larger the EC50 is,
the smaller the impact of Ps on running time is.

7.4 Evaluation of Checkpoints Deployment Strategies
to Address the EMA Problem

7.4.1 Effectiveness Study
In this part, we first evaluate how well all algorithms can miti-
gate the infection diffusion under different settings of γ and EC50

on EZ-LINK dataset. Specifically, we simulate three different
categories corresponding to the virus of low/medium/high
danger, which leads to nine scenarios. For each scenario, we
vary the percentage of initially infected passengers, Ps, from
0.01% to 1%, to simulate how serious the epidemic is. We ad-
ditionally involve “None” as the none-checkpoint strategy
to show the worst case. Figs 8-10 show the experimental
results where we make five main observations. Lastly, we
conduct experiments on BART dataset.

First, with a larger Ps, all the algorithms result in a larger
number of finally infected passengers. It is clear that early
adoption of the measures to control the virus spread could
help mitigate the epidemic. Moreover, when both γ and
EC50 are small, the virus is highly contagious, and hence
a few infected passengers will lead to a huge number of
infected passengers.

Second, with a fixed EC50, the smaller the incubation
period γ is, the bigger the number of finally infected pas-
sengers will be. This is because when γ is small, a passenger
will soon be able to infect others after she is infected.
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(a) γ = 24 hours (b) γ = 72 hours (c) γ = 120 hours

Fig. 8: Infection of varying incubation γ (EC50 = 1800s)

(a) γ = 24 hours (b) γ = 72 hours (c) γ = 120 hours

Fig. 9: Infection of varying incubation γ (EC50 = 3600s)

(a) γ = 24 hours (b) γ = 72 hours (c) γ = 120 hours

Fig. 10: Infection of varying incubation γ (EC50 = 5400s)

Third, with a fixed γ, when EC50 becomes larger, the
numbers of finally infected passengers under all the al-
gorithms become smaller. This is because a larger EC50

indicates that healthy passengers will be less likely infected.
Fourth, CPT-SS significantly outperforms all baselines,

achieving results that are approximately three times better
than both Tk1 and Tk2, and ten times better than Eig. The
underwhelming performance of Tk1 indicates that merely
setting up checkpoints based on high passenger traffic is
ineffective. This suggests that blocking the top-k stations
with the highest passenger flow or targeting top-k ’super-
spreaders’ with the most infectiousness is an inefficient
strategy, creating vulnerabilities in the public transportation
network and necessitating a focus on systemic resilience.

Fifth, the effectiveness of CPT-SS is pronounced in sce-
narios where the epidemic is more severe (i.e., Figure 8a).
This is because highly contagious viruses require careful
planning in the deployment of checkpoints to prevent
widespread outbreaks. Conversely, when the virus’s spread-
ing ability is weakened (larger γ and EC50), all algorithms
show the capacity to control the epidemic effectively.

Fig 11 illustrates how varying the number of checkpoints
k affects the total number of infected passengers. We ob-
serve three main points: First, an increase in checkpoints
leads to a reduction in the number of infected passengers.
Second, with a higher number of checkpoints (k ≥ 50),

(a) k = 25 (b) k = 50 (c) k = 75

Fig. 11: Infection of varying the checkpoint number k

(a) k = 25 (b) k = 50 (c) k = 75

Fig. 12: Robustness evaluation

(a) γ = 24 hours (b) γ = 72 hours (c) γ = 120 hours

Fig. 13: Infection of varying the checkpoint number k using
BART dataset

the benefits of CPT-SS become more pronounced. This is
because checkpoints can only limit virus spread to a certain
extent. At higher k, since high-traffic stations are often in
urban centres with overlapping coverage, less busy areas
might be overlooked. Third, when the initially infected
group is smaller (i.e., Ps ≤ 0.5%), the advantages of CPT-
SS are more significant. With fewer initial infections, precise
control can almost completely halt virus spread. If check-
points are not strategically placed, however, and resources
are wasted on redundant coverage, some areas may be
neglected, leading to more infections.
Experiments using BART dataset. Fig 13 depicts the
efficacy of various algorithms at managing virus spread
with checkpoints, comparing results from BART and EZ-
LINK datasets. We observe two main points: First, even with
20 checkpoints, which represent 40% of the total stations,
performance is significantly lower compared to EZ-LINK
due to the BART dataset’s higher passenger density. Second,
despite our solution outperforming all baselines, over 25%
of passengers are infected with 20 checkpoints at Ps = 1%,
indicating the potential need for city-wide lockdowns in
dense urban areas.

7.4.2 Efficiency Study
Table 4 shows the efficiency results. We have two obser-

vations. First, the increasing EC50 will increase the time-
cost. According to existing studies [37], [38], [39], a more
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TABLE 4: Efficiency Study of CPT-SS method

EC50

k 1800 3600 5400
25 72.17 Seconds 179.73 Seconds 191.5 Seconds
50 61.26 Seconds 133.8 Seconds 143.84 Seconds
75 66.49 Seconds 127.85 Seconds 139.36 Seconds

negligible infection probability leads to a smaller average
width of CPT (contact paths tracing). Theoretically, to main-
tain the same error bound, more samples are needed to
trade off the small width of CPT, which in turn requests
a larger number of CPT to evaluate each trip’s infection
range. Consequently, it is more time-consuming. Second, the
number of checkpoints only slightly affects the time-cost of
CPT-SS. The reason is that, the more stations are selected,
the less number of CPT is needed. Intuitively, when the
number of checkpoints increases, we do not need a highly
accurate evaluation of the coverage of checkpoints since a
larger number will “remedy” the accurate loss.

7.5 Robustness Evaluation for the ESA Problem
As outlined in Section 3, we identify 100 ‘super-spreaders’ -
a small group of passengers who could potentially cause
a pandemic. We then test the robustness of checkpoint
deployment strategies by setting these ‘super-spreaders’ as
the initial carriers.

We have four strategies to illustrate the impact of
‘super-spreaders’. Specifically, Max1 and Max2, based on
Algorithm 2. Max1 generates ‘super-spreaders’ without
knowing the checkpoint locations, simulating a general
worst-case scenario. Conversely, Max2 generates ‘super-
spreaders’ with the knowledge of the checkpoint locations,
simulating a targeted attack. Max3 finds the infected indi-
viduals who have checked in the most at non-checkpoint
locations as ‘super-spreaders’. We also implement a random
selection strategy, Rand. The results, shown in Fig 12, lead
to three observations.

First, among all solutions, ‘super-spreaders’ indeed have
a higher risk of causing a pandemic, as evidenced by the fact
that the number of finally infected passengers in the Rand
strategy is smaller than that in the Max methods.

Second, the effectiveness of our algorithm increases with
the number of checkpoints. In situations where checkpoints
are scarce, we cannot protect the entire population even
when we successfully locate the ‘super-spreaders’. How-
ever, as the number of checkpoints increases, our algorithm
becomes more effective at deploying those checkpoints to
block the ‘super-spreaders’. Specifically, when comparing
the results from k = 25 to 75, our solution outperforms top-
k and Eig by about 18.9%, 31.2%, 44.8%, and 52.8%, 65.1%,
64.3%, respectively.

Third, all solutions show improved performance in
Max3 in terms of controlling the final number of infected
passengers. This can be attributed to two reasons. First,
passengers who have checked in the most at non-checkpoint
locations may concentrate in the same locations, making
it easier to isolate and control the spread of infection.
Second, Max3 uses a linear equation (Top-k) to evaluate
the infectious probability. Despite these challenges, our al-
gorithm still manages to outperform others, demonstrating
its robustness and effectiveness.

8 CONCLUSION

In this work, we study how to trace and mitigate infec-
tion diffusion according to fine-grained users’ movement
records. We introduce an infection diffusion simulator based
on TCG to model the infection diffusion according to users’
movements. Two downstream tasks ESA and EMA are
proposed to illustrate how our work assists governments in
mitigating the epidemic from the defensive and offensive
perspectives. Finally, we conduct experiments using two
real-world datasets from public transport systems in Singa-
pore and San Francisco, containing millions of trip records.
The results demonstrate that our TCG graph evaluates the
infection diffusion model more accurately compared to a
snapshot-based dynamic graph. Additionally, in terms of
checkpoint deployment strategies, our solution consistently
outperforms the baselines for randomly infected passengers
and super-spreaders across various virus infectiousness lev-
els and different periods.
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