
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

7-2024 

A deep learning method to predict bacterial ADP-A deep learning method to predict bacterial ADP-

ribosyltransferase toxins ribosyltransferase toxins 

Dandan ZHENG 

Siyu ZHOU 

Lihong CHEN 

Guansong PANG 
Singapore Management University, gspang@smu.edu.sg 

Jian YANG 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Artificial Intelligence and Robotics Commons, Bioinformatics Commons, and the 

Databases and Information Systems Commons 

Citation Citation 
ZHENG, Dandan; ZHOU, Siyu; CHEN, Lihong; PANG, Guansong; and YANG, Jian. A deep learning method to 
predict bacterial ADP-ribosyltransferase toxins. (2024). Bioinformatics. 40, (7), 1-12. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9033 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9033&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9033&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/110?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9033&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9033&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Sequence analysis

A deep learning method to predict bacterial 
ADP-ribosyltransferase toxins
Dandan Zheng 1,‡, Siyu Zhou1,‡, Lihong Chen1, Guansong Pang 2,�, Jian Yang 1,�

1NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and 
Peking Union Medical College, Beijing 102629, China 
2School of Computing and Information Systems, Singapore Management University, Singapore 178902, Singapore
�Corresponding authors. School of Computing and Information Systems, Singapore Management University, Singapore 178902, Singapore. Tel: þ65- 
68264864. E-mail: gspang@smu.edu.sg (G.P.); National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical 
College, Beijing 102629, China. Tel: þ861067875146. E-mail: yangj@ipbcams.ac.cn (J.Y.)
‡These authors contributed equally to this work.
Associate Editor: Pier Luigi Martelli

Abstract
Motivation: ADP-ribosylation is a critical modification involved in regulating diverse cellular processes, including chromatin structure regulation, 
RNA transcription, and cell death. Bacterial ADP-ribosyltransferase toxins (bARTTs) serve as potent virulence factors that orchestrate the manip-
ulation of host cell functions to facilitate bacterial pathogenesis. Despite their pivotal role, the bioinformatic identification of novel bARTTs poses 
a formidable challenge due to limited verified data and the inherent sequence diversity among bARTT members.
Results: We proposed a deep learning-based model, ARTNet, specifically engineered to predict bARTTs from bacterial genomes. Initially, we in-
troduced an effective data augmentation method to address the issue of data scarcity in training ARTNet. Subsequently, we employed a data 
optimization strategy by utilizing ART-related domain subsequences instead of the primary full sequences, thereby significantly enhancing the 
performance of ARTNet. ARTNet achieved a Matthew’s correlation coefficient (MCC) of 0.9351 and an F1-score (macro) of 0.9666 on repeated 
independent test datasets, outperforming three other deep learning models and six traditional machine learning models in terms of time effi-
ciency and accuracy. Furthermore, we empirically demonstrated the ability of ARTNet to predict novel bARTTs across domain superfamilies 
without sequence similarity. We anticipate that ARTNet will greatly facilitate the screening and identification of novel bARTTs from bacte-
rial genomes.
Availability and implementation: ARTNet is publicly accessible at http://www.mgc.ac.cn/ARTNet/. The source code of ARTNet is freely avail-
able at https://github.com/zhengdd0422/ARTNet/.

1 Introduction
ADP-ribosylation is a ubiquitous modification of biomole-
cules found across all domains of life and known to regulate 
a variety of fundamental processes, such as chromatin struc-
ture, RNA transcription, cell differentiation, the antiviral 
response, energy metabolism, and cell death (Manco et al. 
2022, Suskiewicz et al. 2023). This modification occurs 
through the transfer of a single or multiple ADP-ribose unit(s) 
from NADþ onto target substrates by the release of nicotin-
amide by ADP-ribosyltransferase (ART) superfamilies. 
Bacterial ADP-ribosyltransferase toxins (bARTTs) are potent 
bacterial virulence factors that disrupt host cell functions by 
transferring single ADP-ribose to various eukaryotic sub-
strates, thereby promoting bacterial pathogenesis (Simon 
et al. 2014, Bullen et al. 2022). Historically, bARTTs were 
known as post-translational modifications of proteins includ-
ing heterotrimeric G proteins, Rho proteins, and actin 
(Aktories et al. 1986, 1989, Gill and Meren 1978). However, 
studies in recent years have demonstrated that nucleic acids 
can also be substrates of reversible ADP-ribosylation 
(Groslambert et al. 2021, Suskiewicz et al. 2023). For 
instance, reversible ADP-ribosylation of DNA on thymidine 

and guanosine bases occurs in cellulo through DarT of the 
bacterial toxin–antitoxin (TA) system DarTG, which is wide-
spread among prokaryotes including many human pathogens 
and shown to provide control of DNA replication and bacte-
rial growth as well as protection against bacteriophages 
(Schuller et al. 2021, 2023). In addition, Tre23, the C-termi-
nal toxin domain of Rhs1 secreted by Photorhabdus laumon-
dii, inhibits translation through ADP-ribosylation of 23S 
ribosomal RNA (Jur _enas et al. 2021). Similarly, RhsP2, an 
antibacterial toxin, secreted by Pseudomonas aeruginosa, 
ADP-ribosylates the 20-hydroxyl groups of double-stranded 
RNA and tRNAs, leading to cellular intoxication (Bullen 
et al. 2022). These findings suggest that ADP-ribosylation of 
nucleic acids is a common yet largely unexplored aspect of 
ADP-ribosylation signaling, which may become an exciting 
area in the fields of DNA damage response, epigenetics, and 
beyond (Schuller et al. 2021).

More than 40 bARTTs have been reported, as shown in 
Supplementary Table S1. They are encoded by various impor-
tant human pathogens, such as Vibrio cholerae, Bordetella 
pertussis, Salmonella typhi, Staphylococcus aureus, 
P. aeruginosa, Mycoplasma pneumoniae, Corynebacterium 
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diphtheriae, and Clostridium botulinum. According to their 
toxin domain and conserved active site motifs, bARTTs are 
divided into two primary groups: diphtheria-like (DT-like) 
toxins with H-Y-E motifs and cholera-like (CT-like) toxins 
with R-S-E motifs (Rosado and Pioli 2021). DT-like toxins 
are single-chain AB toxins, with an A domain mediating the 
enzymatic activity responsible for halting protein synthesis in 
the target cell and a B domain binding to a cell receptor and 
mediating the translocation of the A chain into the cytosol. 
CT-like toxins are normally AB5 toxins with an A domain 
and B oligomer comprised of five noncovalently associated 
proteins (Sixma et al. 1993). CT-like toxins have three other 
derivatives: C2-like, C3-like, and CT-PT-like toxins 
(Fieldhouse et al. 2010). C2-like toxins are composed of an 
enzymatic component C2-I and a binding and translocation 
component C2-II (Schleberger et al. 2006). C3-like toxins are 
single-chain proteins consisting solely of a catalytic A subunit 
(Han et al. 2001). In addition, some recently discovered 
bARTTs have different structural organizations. For instance, 
typhoid toxin exhibits a unique A2B5 stoichiometry, with two 
covalently bonded A subunits (PltA and CdtB) linked to a 
pentameric B subunit composed of PltB or PltC (Fowler et al. 
2019, Chang et al. 2022). Tc toxins are ABC toxins consist-
ing of the binding component TcA, the functional linker com-
ponent TcB, and the enzyme component TcC (Pfaumann 
et al. 2015, Belyy et al. 2022). Although many investigations 
on the role of bARTTs in pathological processes have been 
conducted during the last few decades, our understanding of 
the molecular mechanisms and cellular functions they medi-
ate remains insufficient (Bullen et al. 2022). This gap in 
knowledge may result in a lack of understanding of numerous 
potentially related pathogenic mechanisms and disease path-
ways (Palazzo et al. 2019). Early efforts to identify bARTTs 
were based on genetics, cell biology, and biochemical analy-
ses, which are very time-consuming (Simon et al. 2014). 
Subsequently, sequence similarity-based bioinformatics tech-
niques such as BLAST or PSI-BLAST enabled the discovery of 
some homologous bARTT variants (Fieldhouse et al. 2010). 
However, despite bARTTs having a conserved structural or-
ganization of the core fold, most members exhibit significant 
sequence divergence (Weixler et al. 2021). Indeed, the upper 
quartile and median pairwise sequence similarities of the 
ART domain of 44 reported bARTTs were 19% and 16.9%, 
respectively (Supplementary Fig. S1), indicating that it is diffi-
cult, if not impossible, to identify novel bARTTs based on 
sequence similarity.

Deep learning (DL) has been widely applied in computa-
tional biology in recent years (Baek et al. 2021). Our previous 
work showed that a convolutional neural network (CNN) 
demonstrated the desired generalization performance for the 
classification of bacterial virulence factors by capturing con-
served regions or motifs related to protein families (Zheng 
et al. 2020). Motivated by its success, in this study, we devel-
oped a CNN-based model, termed ARTNet, to address the 
issues described above that hinder in silico prediction of 
bARTTs. One key challenge is that the number of verified 
bARTTs is extremely limited, which is not conducive to the 
construction of DL models. To address this challenge, first 
and foremost, we introduced a data augmentation method 
based on the ART functional domain and generated a signifi-
cantly expanded dataset, providing an important benchmark 
for developing novel methods (such as training deep meth-
ods) for the prediction of bARTTs. Then, we constructed 

ARTNet models based on the full-length sequence-based 
dataset and illustrated the effectiveness of our data augmen-
tation approach. Considering that the full sequences of 
bARTTs typically contain irrelevant or noisy subsequences, 
we generated a more effective ARTNet that is trained using 
ART domain subsequences rather than the primary full 
sequences. Impressively, this optimization strategy signifi-
cantly improved the performance of ARTNet, obtaining an 
MCC of 0.9351 and an F1-score (macro) of 0.9666 on 
repeated independent test datasets and outperforming three 
other DL models and six traditional machine learning (ML) 
models in terms of time efficiency and classification perfor-
mance. This provides a new avenue for computational studies 
on related biological issues. Additionally, we empirically 
demonstrated the ability of ARTNet to predict bona fide 
novel bARTTs across domain superfamilies without sequence 
similarity. To facilitate the future application of ARTNet for 
bARTT prediction, we further developed a user-friendly 
online web server that is publicly accessible at http://www. 
mgc.ac.cn/ARTNet/.

2 Materials and methods
2.1 Data collection and processing
2.1.1 Sequence-based data construction
Figure 1 shows the entire workflow of the ARTNet approach. 
We first collected 44 reported experimentally verified 
bARTTs encoded by 27 different bacterial pathogens 
(Supplementary Fig. S2) to construct the original positive 
sample set. The core dataset of the virulence factor database 
(VFDB) (Liu et al. 2022), excluding the 44 known bARTTs, 
and the bacterial catalog of the database of essential genes 
(DEG) (Luo et al. 2021) were merged to construct the nega-
tive sample set. A limited quantity of positive samples may 
prevent DL or ML models from learning sufficient valuable 
features to build prediction systems. Further analyses 
revealed that the ART-related functional domains of the 44 
known bARTTs were mainly categorized into three superfa-
milies: ‘ADP_ribosyl’ (cl00283), ‘VIP2’ (cl00173), and 
‘Enterotoxin_a’ (cl03779) (Supplementary Table S1). The 
ADP_ribosyl domain presents in diphtheria toxin from C. 
diphtheriae, which inhibits protein synthesis by transferring 
ADP-ribose from NADþ to elongation factor 2 (Bennett and 
Eisenberg 1994, Baldi and Sadowski 2014). ExoS secreted by 
P. aeruginosa encodes the VIP2 domain that ADP-ribosylates 
numerous host proteins, resembling vertebrate mono-ARTs 
(Van der Maaten and Hinton 2008). Pertussis toxin from 
B. pertussis carries an Enterotoxin_a domain that ADP- 
ribosylates inhibitory alpha-subunits of G proteins to disrupt 
G protein-coupled receptor signaling (Katada et al. 1983, 
Carbonetti 2010). Motivated by these experimental eviden-
ces, we downloaded all protein sequences related to these 
three domain superfamilies available from GenBank 
(accessed in April 2021) and predict their conserved domain 
via CD-Search (Lu et al. 2020). We extracted 41 267 sequen-
ces with conserved domain that exactly matched the three 
superfamilies to construct an expanded positive sample set. 
Then, we deleted invalid sequences, including duplicate sam-
ples, nonstandard amino acid-containing samples, and very 
short samples (<50 amino acids), and further removed 
redundant samples of high homology by CD-HIT (Fu et al. 
2012) (90%) to produce an expanded positive dataset of 
3158 sequences. The negative sample set mentioned above 
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was also refined with the same processes and cutoffs, which 
yielded a collection of 19 653 sequences.

We randomly selected 10 bARTTs from the original posi-
tive sample set, 314 sequences from the expanded positive 
sample set (1/10 of each superfamily), and 324 sequences 
from the negative sample set to perform an independent test. 
The remaining sequences of the expanded positive set, desig-
nated as pos_whole, were used as training data. For the con-
struction of the DL models, we applied a slide window with a 
size of 1000 (step¼ 1) to truncate long sequences of 
pos_whole to satisfy the equal length input and used CD-HIT 
(70%) to remove redundancy. This data partitioning process 
was repeated five times. More details of the data preprocess-
ing pipeline are illustrated in Supplementary Fig. S3.

2.1.2 Domain-based data construction
To enable classifiers to accurately learn the features of ART- 
related domains, we also carried out domain-based data 
optimization. Specifically, the subsequences of known or pre-
dicted ART-related domains of the samples in the original 
positive sample set and the expanded positive sample set de-
scribed above were extracted and represented as pos_art to 
train the DL models. However, we realized that DL models 
trained on pure ART-related domains were prone to overfit-
ting and failed to identify real-world samples with irrelevant 
noise (data not shown). We, therefore, constructed several 
variants of pos_art by including upstream and downstream 
contexts based on their original full-length sequences, which 
was found to be effective in alleviating this issue. In particu-
lar, we first extended each subsequence of the ART-related 
domain from the middle to 346 amino acids (the maximum 
length of pos_art) or a longer length, including 400, 450, and 
500 amino acids, to produce positive sample sets, designated 
as pos_art_346, pos_art_400, pos_art_450, and pos_art_500, 
respectively. Second, to determine the effect of context, we 
shifted the extended amino acids of pos_art_346 in two 
ways: (1) randomly shuffling the order of the extended amino 

acids at each end to produce pos_art_346_random and (2) 
randomly replacing each amino acid with any of the 20 stan-
dard amino acids to produce pos_art_346_randomreplace. 
These datasets were refined with the same processes and cut-
offs as those described above. Sequences identical to those in 
the independent test were excluded, and the remaining 
sequences were used as training data. One issue was that 
these domain-based positive datasets had different sample 
length distributions than the negative dataset (Supplementary 
Fig. S4), which may have created an undesired artifact for the 
model to learn. Therefore, we utilized a sliding window strat-
egy (step¼1) with a size the same as the maximum length of 
each domain-based positive dataset, which helped truncate 
full-length negative samples to fit similar length distributions. 
CD-HIT (70%) was then used to remove redundancy in the 
truncated negative sample set. The statistical details of the 
datasets described above can be found in Supplementary 
Table S2.

2.2 ARTNet: our proposed DL model
We proposed a CNN-based model, designated ARTNet, to 
predict bARTTs. ARTNet applied an end-to-end prediction 
procedure that began with protein sequences in FASTA for-
mat and ended with the predicted classification of bARTTs. 
It included one input layer, two 1D convolutional layers 
(Conv1D), two global max pooling (Maxpooling1D) layers, 
one fully connected (fc) layer, and one prediction/output 
layer. Formally, we had: 

yi ¼ g f xið Þ
� �

;

where xi represents the input protein sequence, f is the fea-
ture representation learner consisting of all the layers before 
the prediction layer, and g is the prediction layer used to pre-
dict the input sequence.

Specifically, every input sequence was transformed into a 
one-hot encoding matrix based on its appearance in the 

Figure 1. The overall workflow of the bacterial ADP-ribosyltransferase toxin prediction development method.
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alphabet (Zheng et al. 2020). A zero-padding strategy 
was applied to align the input length (Taghouti et al. 2016). 
If Xi represented the one-hot encoding matrix of xi, the fea-
ture representation learner could be represented as follows: 

f ¼ f fc
� f con Xi; Θf

� �
;

where f fc represents one fc mapping function, ‘�’ is a com-
pound operation, Θf is the set of parameters to be learned, 
and f con consists of two nonlinear convolution and pooling 
operations, each of which can be defined as follows: 

f con ¼Maxpoolong1D   

Conv1D Maxpoolong1D Conv1D Xið Þð Þð Þð Þ:

We set the first Conv1D with a filter number of 256 and 
kernel size of 9 and the second Conv1D with a filter number 
of 128 and kernel size of 7. The rectified linear unit (ReLU) 
function was used as a nonlinear activation function in each 
convolutional layer to transform the data from one volume 
to another (Veltri et al. 2018). We set the Maxpooling1D size 
to 5 to reduce the output dimension of Conv1D. The fc layer 
with 128 units was applied after convolution to learn more 
expressive high-level abstract features. We applied a dropout 
(0.5) after the pooling layer and the fc layer to avoid overfit-
ting by randomly masking the positions of the output (Baldi 
and Sadowski 2014). The prediction layer contained a single 
neuron and applied the sigmoid function to produce the pre-
diction probability for yi ¼ 1, defined as pðyi ¼ 1jxiÞ. We set 
0.5 as the prediction threshold, and a prediction value greater 
than 0.5 was considered positive. Binary cross-entropy loss 
and the Adam (Kingma and Ba 2014) optimizer were used to 
determine the parameters of the models. The learning rate 
was set to 0.001 by default, and the batch size and the num-
ber of epochs were set to 128 and 100, respectively. We 
tested a range of convolution options, including 64, 128, and 
256 for the filter size, 5, 7, and 9 for the kernel size, 3 and 5 
for the max pooling size, and 64, 128, and 256 for the batch 
size. Finally, we fixed these hyperparameters based on 5-fold 
cross-validation results (data not shown). The Keras (http:// 
www.keras.io) library with a TensorFlow (http://tensorflow. 
org/) backend in Python was used to implement DL models, 
which were executed with four GeForce RTX 2080 Ti 
graphics cards.

2.3 Other competing DL models
To develop a more accurate and efficient bARTT prediction 
model and examine the effectiveness of ARTNet, we con-
structed three additional DL models, namely, ‘onehotþ
cnn_lstm’, ‘onehotþfc’, and ‘numberþembed’. Specifically, 
‘onehotþcnn_lstm’ replaced the second convolutional layer 
of ARTNet with long short-term memory (LSTM) (LeCun 
et al. 2015) (128 units), while the ‘onehotþfc’ network 
replaced two convolutional layers with two fc layers (256 
and 128 units, respectively). Instead of using one-hot encod-
ing, ‘numberþembed’ converted the peptide sequence into a 
zero-padded numeric vector using numbers 1–20 to represent 
each of the 20 standard amino acids (Veltri et al. 2018) and 
fed them to an embedding layer (128 units), a convolutional 
layer and an LSTM layer to perform feature abstraction. 
More structural details are listed in Supplementary Fig. S5.

2.4 Traditional ML models using predefined features
Traditional ML algorithms with predefined features have 
demonstrated good performances for predicting virulence 
factors from entire sequences (Xie et al. 2021). To verify the 
advantages of our proposed ARTNet, we applied six well- 
established classification algorithms, namely, logistic regres-
sion (LR), support vector machine (SVM), k-nearest 
neighbors (KNN), random forest (RF), gradient boosting clas-
sifier (GBC), and extreme gradient boosting classifier (XGBC), 
as the baselines (Zeng and Zou 2019, Xu et al. 2021). Building 
stable, dependable classifiers with competitive performance 
requires efficient feature extraction (Xie et al. 2021). To thor-
oughly study the typical and particular patterns of bARTT 
proteins, we extracted 15 widely used predefined features, in-
cluding three major groups: a sequence-based features group 
[AAC (Anfinsen 1972), DPC (Zou et al. 2013), and TPC 
(Chou 2000, Hosen et al. 2022)], a physicochemical property- 
based features group [CTD (Cao et al. 2013), QSO (Chou 
2000), PAAC (Chou 2001), APAAC (Chou 2001), MBauto 
(Lin and Pan 2001), Moranauto (Horne 1988), and Gearyauto 
(Sokal and Thomson 2006)] and an evolutionary information- 
based features group [PSSM-composition (Zou et al. 2013), S- 
FPSSM (Zahiri et al. 2013), DPC-PSSM (Liu et al. 2010), Pse- 
PSSM (Chou and Shen 2007), and RPSSM (Chen et al. 2023)]. 
Sequence-based features describe the frequencies or composi-
tions of sequence elements, whereas physicochemical property- 
based features represent the statistical information about the 
physicochemical properties of the amino acids in protein 
sequences. We applied the propy program (Cao et al. 2013) 
for their extraction. Previous studies have demonstrated that 
the evolutionary information of sequences can sometimes be 
more insightful than that of sequences (Wang et al. 2011, 
2018, 2019, An et al. 2018). We applied a PSI-BLAST search 
against UniRef50 (accessed in May 2023) with the parameters 
j¼ 3 and e-value¼ 0.001 to obtain the original PSSM profiles 
and used POSSUM (Wang et al. 2017) to generate PSSM 
profile-based features. More details can be found in the 
Supplementary Methods.

2.5 Performance assessment
We applied 5-fold cross-validation to train models by divid-
ing train data into training and validation datasets at a ratio 
of 4:1 and compared the models on five repeated independent 
test datasets. The reported performance was averaged over 
the results of the five implementations. Accuracy, precision, 
recall, F1-score, and MCC were used to evaluate the perfor-
mance of all methods, and their formulas are listed below: 

accuracy ¼
TPþTN

TPþTNþ FPþFN
;

precision ¼
TP

TPþFP
;

recall ¼
TP

TPþFN
;

F1-score ¼
2 � ðprecision�recallÞ

precisionþ recall
;

MCC ¼
TP �TN � FP �FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ

p ;

where TP, TN, FP, and FN denote the numbers of true posi-
tives, true negatives, false positives, and false negatives, 
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respectively. The MCC ranged from −1 to 1, with a higher 
MCC indicating better performance. In addition, the receiver 
operating characteristic (ROC) curve and the precision–recall 
(PR) curve were plotted to visualize the comprehensive per-
formance of the model. The area under the ROC curve 
(AUC) and the area under the PR curve (AP) were also calcu-
lated to quantify the respective performances. The higher the 
area value is, the better the prediction performance.

3 Results
3.1 Construction of ARTNet on the 
sequence-based dataset
We first constructed our proposed ARTNet on pos_whole 
and then applied it to predict independent test samples. Each 
target sequence in the independent test was truncated to a 
length threshold of 1000 to align with the input dimensions 
of the model. ARTNet demonstrated good performance on 
the validation samples (Table 1) and performed well on re-
peated independent test datasets, with an MCC of 0.9004 
and an F1-score (macro) of 0.9490 (Table 2). To investigate 
whether the data expansion procedure effectively improved 
the performance of ARTNet as expected, we excluded the ex-
panded positive samples in both train and independent test 
datasets and compared the performances of ARTNet before 
and after data expansion. Undoubtedly, before data expan-
sion, ARTNet performed poorly, with an MCC of approxi-
mately 0.5 on both the validation and independent test 
samples. When focusing on the 10 verified bARTTs in the in-
dependent test datasets, we found that the mean accuracy of 
ARTNet significantly improved from 44.44% to 100%, 
benefiting from the data expansion.

3.2 Construction of ARTNet on domain-based datasets
To enhance the predictive performance of ARTNet, we first 
constructed pos_art, the ART-related domain-based dataset, 
to train ARTNet via 5-fold cross-validation and evaluated it 
on independent test datasets. Table 3 shows that on the vali-
dation samples, pos_art outperformed pos_whole, with a 
nearly 3% improvement in sensitivity, suggesting that short 
and precise subsequences made classification easier than long 
subsequences or full-length sequences did. However, on an 
independent test, ARTNet trained on pos_whole (with a 
length threshold of 1000) outperformed ARTNet trained on 
pos_art (with a length threshold of 346) by 54% in terms of 
sensitivity and 44% in terms of the MCC (Supplementary 
Table S3). By examining the differences between training and 
independent samples, we discovered that ARTNet trained on 
pos_art could identify subsequences composed of pure 
domains but failed to predict subsequences within the up-
stream and downstream context, implying that the model 
was overfitting.

To address this issue, we carried out data optimization by 
introducing various levels of noise based on the original full- 
length sequences and constructed six additional domain- 
based datasets (details described in Section 2). It should be 
noted that the datasets pos_art_346, pos_art_400, pos_ 
art_450, and pos_art_500 had fewer positive training sam-
ples than pos_whole due to efficient redundancy removal of 
short sequences, while pos_art_346_random and pos_ 
art_346_randomreplace had many more positive training 
samples than pos_whole due to expansion by domain context 
randomization (Supplementary Table S2).

We trained ARTNet on these datasets individually using an 
input length dimension of model structure equal to the maxi-
mum sequence length of the corresponding dataset. Table 3 
indicates that when the ART-related domain was extended to 
lengths of 346, 400, 450, or 500, the MCC declined nearly 
2% compared with that of pos_art, but when the context of 
the ART-related domain was randomized (pos_art_346_ran-
dom and pos_art_346_randomreplace), all metrics exceeded 
99%. We then applied the ARTNet models trained on these 
datasets to predict independent test datasets. Before predic-
tion, we truncated each target sequence in an independent 
test with length thresholds ranging from 100 to 1000 to 
explore the best length parameter. As expected, the models 
trained with pos_art_346, pos_art_400, pos_art_450, pos_ 
art_500, and pos_art_346_random outperformed those 
trained with pos_whole (1–3%) and pos_art (21–23%) in 
terms of the MCC when the best length threshold was used 
(Fig. 2A and Supplementary Table S3), suggesting that our 
domain-based data optimization improved the generalization 
ability of ARTNet. There were no significant differences 
among the performances of the models trained on pos_ 
art_346, pos_art_400, pos_art_450, and pos_art_500; there-
fore, we only used pos_art_346 as a representative training 
sample set in our subsequent experiments. Among all data-
sets, pos_art_346_random demonstrated the best perfor-
mance, with an MCC of 0.9351 and an F1-score (macro) of 
0.9666 with a length threshold of 346. ROC curves and PR 
curves (Fig. 2B and Supplementary Fig. S6) indicated that 
ARTNet trained on pos_art_346_random achieved the best 
AUC and AP, exceeding 0.97, on almost all independent test 
sets. Notably, this dataset had more training data than the 
others, which demonstrated the effectiveness of our domain- 
based data optimization strategies and highlighted the impor-
tance of large datasets for model improvement. However, 
when the upstream and downstream information was 
completely destroyed rather than simply disrupted, pos_ 
art_346_randomreplace did not show any advantages on the 
independent test datasets. Presumably, the locations of ART- 
related domains are not as accurate as expected, or alterna-
tively, some unknown features within the context are critical 
for domain prediction. A thorough analysis indicated that 
ARTNet generated the best results for almost all datasets 
when using a length threshold similar to the model input 
length dimension, which was applied as the length threshold 
of the objective sequences in the following experiments, e.g. 
pos_art_346_random of 346, pos_art_346 of 346, and 
pos_whole of 1000.

In addition, to investigate the consistency of the ARTNet 
models, we used heatmaps to visualize the metrics predicted 
by the five models (from 5-fold cross-validation) on the corre-
sponding independent test set (Fig. 2C). For each index, the 
values among the five models were generally very close. 
Moreover, the clustering of rows indicated that the perform-
ances of the ARTNet models trained on all datasets except 
for pos_art and pos_art_346_randomreplace were similar. 
We also generated a Venn diagram to analyze the ability of 
the five models trained on pos_art_346_random to predict 
324 true-positive samples from an independent test set 
(Supplementary Fig. S7). These remarkably consistent results 
highlight the stability and robustness of ARTNet. In addition, 
we used VFDB and DEG individually as a negative set to fur-
ther explore the impact of different negative datasets on 
ARTNet. Supplementary Table S4 shows that no significant 
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difference was found between them according to 5-fold cross- 
validation. Therefore, we applied the combination of VFDB 
and DEG as a negative set in this work.

3.3 Comparison of ARTNet with other DL models
We constructed three other DL models on pos_art_346_ran-
dom (optimum for ARTNet) to investigate the effectiveness 
of ARTNet. On both the repeated 5-fold cross-validation 
datasets (Fig. 3A and Supplementary Table S5) and the inde-
pendent test datasets (Fig. 3B and Supplementary Table S6), 
‘onehotþcnn_lstm’ was equivalent to ARTNet, while 
‘onehotþfc’ and ‘numberþembed’ were worse than ARTNet 
in terms of all the metrics. ROC curves and PR curves 
(Fig. 3C and Supplementary Fig. S8) also verified this result. 
The classification metrics between ARTNet and 
‘onehotþcnn_lstm’ were not significantly different, but the 
training speed of ARTNet was twice as fast as that of 
‘onehotþcnn_lstm’ (Fig. 3D). Undoubtedly, fast training is 
crucial for the development of DL models with large amounts 
of data. T-distributed stochastic neighbor embedding (t-SNE) 
(Van der Maaten and Hinton 2008) was further applied in an 
independent test to explore the underlying reasons for the dif-
ferences in performance among the DL models. The raw 
input of one-hot encoding or numerical encoding was disor-
ganized, but after feature abstractions (particularly ARTNet 
and ‘onehotþcnn_lstm’), the samples became clear and sepa-
rable (Fig. 3E), which demonstrates the rationality of the 
ARTNet model structure.

To examine whether ARTNet has the ability to predict 
proteins across different domain superfamilies, we extracted 
all 358 sequences encoding the ‘ADP_ribosyl’ domain from 
the expanded positive sample set, along with 358 randomly 

selected sequences from the negative sample set, to build a 
new independent test. Then, the remaining samples, including 
2800 sequences encoding either the ‘VIP2’ or ‘Enterotoxin_a’ 
domain from the expanded positive sample set and the 
remaining negative samples, were used to train the pos_ar-
t_346_random model as described above. On the validation 
samples (Fig. 4A and Supplementary Table S7), all the models 
demonstrated a good performance, as they exhibited similar 
characteristics from the training samples. On an independent 
test (Fig. 4B and Supplementary Table S8), ARTNet outper-
formed the others in terms of all metrics and showed a rela-
tively strong ability to predict protein sequences of unseen 
superfamilies, with an MCC of 0.8214 and an F1-score 
(macro) of 0.9022. Radar charts (Fig. 4C) were generated to 
compare the results of independent tests with (Supplementary 
Table S8) or without (Supplementary Table S6) across super-
families. Across all the models, except for specificity, there 
was a notable decrease in all the metrics, particularly sensitiv-
ity, which decreased by 8–30%. This suggested substantial 
variations in fundamental characteristics among these super-
families, presenting a challenging classification task for DL 
models. We investigated whether pos_art_346 or pos_whole 
could help DL models predict proteins across superfamilies. 
Unfortunately, they appeared to lack such capabilities, 
especially pos_whole, where the MCC was only 0.14 
(Supplementary Tables S9 and S10).

3.4 Comparison of ARTNet with traditional ML 
baseline methods
To verify the advantages of ARTNet over traditional ML 
methods, we implemented six well-established ML classifiers 

Table 1. Performance (mean ± SD) of ARTNet combined with pos_whole on repeated 5-fold cross-validation before and after data augmentation.

Method Accuracy Sensitivity Specificity F1-score (micro) Precision (macro) Recall (macro) F1-score (macro) MCC

pos_whole 0.9816 (±0.0016) 0.9447 (±0.0021) 0.9909 (±0.0023) 0.9816 (±0.0016) 0.9748 (±0.0042) 0.9678 (±0.0010) 0.9712 (±0.0024) 0.9425 (±0.0049)
before_data_ 

augmentation
0.9955 (±0.0050) 0.4686 (±0.1465) 0.9964 (±0.0050) 0.9955 (±0.0050) 0.8487 (±0.0772) 0.7325 (±0.0732) 0.7270 (±0.0551) 0.5072 (±0.0954)

Note: Expanded positive samples in train and independent sets were excluded in ‘before_data_augmentation’. The best indicators are shown in bold.

Table 2. Performance (mean ± SD) of ARTNet combined with pos_whole on repeated independent test datasets before and after data augmentation.

Method Accuracy Sensitivity Specificity F1-score (micro) Precision (macro) Recall (macro) F1-score (macro) MCC

pos_whole 0.9491 (±0.0070) 0.9149 (±0.0115) 0.9832 (±0.0031) 0.9491 (±0.0070) 0.9513 (±0.0064) 0.9491 (±0.0070) 0.9490 (±0.0070) 0.9004 (±0.0134)
before_data_ 

augmentation
0.9746 (±0.0071) 0.3120 (±0.1418) 0.9951 (±0.0071) 0.9746 (±0.0071) 0.8944 (±0.0604) 0.6535 (±0.0701) 0.7005 (±0.0872) 0.4699 (±0.1570)

Note: Expanded positive samples in train and independent sets were excluded in ‘before_data_augmentation’. The best indicators are shown in bold.

Table 3. Performance (mean ± SD) of ARTNet combined with eight datasets on repeated 5-fold cross-validation.

Method Accuracy Sensitivity Specificity F1-score (micro) Precision (macro) Recall (macro) F1-score (macro) MCC

pos_art 0.9937 (±0.0016) 0.9745 (±0.0032) 0.9952 (±0.0017) 0.9937 (±0.0016) 0.9713 (±0.0082) 0.9849 (±0.0019) 0.9777 (±0.0052) 0.9559 (±0.0098)
pos_art_346 0.9901 (±0.0018) 0.9237 (±0.0064) 0.9961 (±0.0019) 0.9901 (±0.0018) 0.9757 (±0.0091) 0.9599 (±0.0033) 0.9674 (±0.0053) 0.9353 (±0.0104)
pos_art_400 0.9892 (±0.0009) 0.9262 (±0.0020) 0.9958 (±0.0011) 0.9892 (±0.0009) 0.9761 (±0.0051) 0.9610 (±0.0007) 0.9683 (±0.0024) 0.9369 (±0.0049)
pos_art_450 0.9886 (±0.0010) 0.9251 (±0.0022) 0.9959 (±0.0012) 0.9886 (±0.0010) 0.9771 (±0.0050) 0.9605 (±0.0010) 0.9685 (±0.0026) 0.9373 (±0.0052)
pos_art_500 0.9877 (±0.0015) 0.9218 (±0.0071) 0.9957 (±0.0020) 0.9877 (±0.0015) 0.9772 (±0.0076) 0.9588 (±0.0031) 0.9676 (±0.0037) 0.9357 (±0.0074)
pos_art_346_ 

random
0.9956 (±0.0002) 0.9922 (±0.0003) 0.9990 (±0.0001) 0.9956 (±0.0002) 0.9957 (±0.0002) 0.9956 (±0.0002) 0.9956 (±0.0002) 0.9912 (±0.0004)

pos_art_346_ 
randomreplace

0.9984 (±0.0002) 0.9981 (±0.0003) 0.9988 (±0.0001) 0.9984 (±0.0002) 0.9984 (±0.0002) 0.9984 (±0.0002) 0.9984 (±0.0002) 0.9968 (±0.0003)

pos_whole 0.9816 (±0.0016) 0.9447 (±0.0021) 0.9909 (±0.0023) 0.9816 (±0.0016) 0.9748 (±0.0042) 0.9678 (±0.0010) 0.9712 (±0.0024) 0.9425 (±0.0049)

Note: The best indicators are shown in bold.
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Figure 2. Performance of ARTNet combined with different data preprocessing methods on repeated independent test datasets. (A) Performance 
comparison of ARTNet combined with eight datasets using different length thresholds. The MCC value of each method is labeled. (B) ROC curves and 
precision-recall curves of ARTNet on one of five repeated independent tests. Only the results of the best length threshold of each model are plotted. (C) 
Heatmap of the sensitivity, specificity, precision (macro), recall (macro), F1-score (macro), and MCC of the eight data preprocessing methods. Only the 
results of the best length threshold of each model are plotted. Fold1–5 refer to the five models produced by 5-fold cross-validation in one of five repeated 
experiments.

Figure 3. Comparison of four deep learning models combined with pos_art_346_random. (A) Comparison of four deep learning models on repeated 5- 
fold cross-validation. (B) Comparison of four deep learning models on repeated independent test datasets. (C) ROC curves and precision–recall curves of 
four deep learning models on one of five repeated independent tests. (D) Training time of four deep learning models per 100 epochs. (E) T-SNE 
visualization of two encoded input datasets and four model-learned features based on one of five repeated independent tests.
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combined with 15 predefined features to construct bARTT 
prediction models using protein sequences. Undersampling 
was used during model training for the class imbalance 
problem. On both 5-fold cross-validation (Fig. 5A and 
Supplementary Table S11) and independent tests (Fig. 5B and 
Supplementary Table S12), for almost all algorithms, features 
based on evolutionary information, e.g. DPC-PSSM, outper-
formed sequence-based features and physicochemical 
property-based features. Among all combinations of algo-
rithms and features, SVM using PSSM-composition feature 
achieved the best results, with an MCC of 0.8221 on inde-
pendent test datasets (Supplementary Table S12), but this 
value was still about 8–11% lower than that of ARTNet 
trained on pos_art_346_random, pos_art_346 or pos_whole 
(Supplementary Table S3). ROC curves and PR curves (Fig. 6 
and Supplementary Fig. S9) showed that no combination on 
independent test datasets achieved an AUC or AP exceeding 
0.96, while ARTNet trained on pos_art_346_random 
achieved over 0.97 in both AUC and AP performance, indi-
cating that ARTNet outperformed all predefined features- 
based ML models.

3.5 Availability of the online bARTTs prediction service
To facilitate future application of ARTNet, we created a 
user-friendly online web server for the prediction of potential 
bARTTs from protein sequences of interest. The web 
server was written in Perl CGI and can be accessed for free at 

http://www.mgc.ac.cn/ARTNet/. Users can submit one or 
multiple sequences in FASTA format for prediction by a sin-
gle click. In particular, as numerous previous studies have 
indicated that ensemble models are able to achieve signifi-
cantly improved performance over the original baseline mod-
els (Wang et al. 2019, Xie et al. 2021, Yu et al. 2023, Liu 
et al. 2024), the ARTNet models trained on pos_art_346, 
pos_art_346_random, and pos_whole were used to build an 
ensemble method. To meet the demands of different users for 
further interpretation of the prediction results, the web server 
provides three modes, comprehensive, medium, and strict, to 
report positive sequences supported by at least one model, at 
least two models, and all three models, respectively. The 
tested computational time for a set of 1000 proteins is about 
3 min. The maximum number of sequences in one batch was 
set to 5000 to avoid abuse and overloading. For privacy, 
the sequences uploaded by users and the corresponding 
prediction results will be deleted from the server three days 
after analysis. Users may download the prediction results 
for further local analyses in the future. Users can also down-
load our source code to perform personalized large-scale 
sequence predictions from https://github.com/zhengdd0422/ 
ARTNet/.

3.6 A case study
We conducted a case study based on two very recently veri-
fied bARTTs to examine the predictive scalability and 

Figure 4. Comparison of the ability of four deep learning models combined with pos_art_346_random to predict proteins across superfamilies. 
(A) Comparison of four deep learning models on 5-fold cross-validation. (B) Comparison of four deep learning models on an independent test dataset. 
(C) Radar charts to compare the sensitivity, specificity, precision (macro), recall (macro), F1-score (macro), and MCC of four deep learning models on the 
independent test with or without across superfamilies. The ‘raw’ refers to the results that without across superfamilies.
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Figure 6. ROC curves and precision–recall curves of ARTNet combined with pos_art_346_random and six traditional machine learning models using 15 
predefined features on one of five repeated independent tests.

Figure 5. Comparison of six traditional machine learning models combined with 15 predefined features based on original full-length sequences. 
(A) Comparison of six traditional machine learning models combined with 15 predefined features on repeated 5-fold cross-validation. (B) Comparison 
of six traditional machine learning models combined with 15 predefined features on repeated independent test datasets.
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robustness of our proposed approach. RhsP2 is an ART toxin 
exported by P. aeruginosa HSI-2 T6SS, which kills competi-
tor cells through the ADP-ribosylation of structured noncod-
ing RNAs (Bullen et al. 2022). Tre23 is an antibacterial toxin 
delivered by P. laumondii T6SS, which inhibits translation 
through ADP-ribosylation of 23S ribosomal RNA 
(Jur _enas et al. 2021). In particular, neither was included in 
our positive sample set since they were reported after our 
original data collection. In addition, both of them show little 
sequence similarity [<10% as computed by MatGat 
(Campanella et al. 2003)] with the ART-related domains 
from the 44 previously identified bARTTs (Supplementary 
Fig. S1). Nevertheless, our ARTNet server successfully pre-
dicted both RhsP2 and Tre23 as possible bARTTs in compre-
hensive mode. Indeed, the recent crystal structure of RhsP2 
revealed two perpendicularly orientated β sheets that form 
the core of the toxin fold, resembling the catalytic domain of 
numerous ARTs, such as Exotoxin A from P. aeruginosa and 
diphtheria toxin from C. diphtheriae (Bullen et al. 2022). 
These results suggested the difficulty in identifying potential 
novel bARTTs using similarity-based methods and 
highlighted the usefulness and reliability of our proposed 
ARTNet. Furthermore, we also used ARTNet to predict the 
DarT toxin of TA system DarTG encoded by Mycobacterium 
tuberculosis, but not surprisingly, ARTNet did not predict 
successfully. Indeed, previous phylogenetic analysis of DarT 
showed that it was distinct from other bacterial diphtheria 
toxin-like ARTs and closer to eukaryotic members of poly 
(ADP-ribose)polymerase (PARP) (Jankevicius et al. 2016), 
and recent structure confirmed DarT as a diverged member 
of the PARP family (Schuller et al. 2021). Since our dataset 
comprises only bacterial bARTTs, identifying DarT proves 
challenging by the current model. This limitation guides our 
future research efforts.

4 Discussion
The bARTTs are potent bacterial virulence factors that or-
chestrate the manipulation of host cell functions to facilitate 
bacterial pathogenesis. More than 40 bARTTs have been 
reported to be encoded by a variety of important human 
pathogens, indicating the potential existence of additional 
undiscovered bARTTs that may play significant pathogenic 
roles in bacterial genomes. Most bARTTs exhibit significant 
sequence divergence, making it challenging, if not impossible, 
to identify novel bARTTs solely based on sequence similarity. 
In this work, we developed ARTNet, a DL-based model 
designed specifically for predicting bARTTs from bacterial 
genomes. To overcome the issue of the limited number of 
positive samples, we implemented effective data augmenta-
tion according to ART-related functional domains encoded 
by full-length protein sequences. While this similarity-based 
approach may introduce potential false positives, it signifi-
cantly contributed to the ability of ARTNet to accurately 
classify 44 reported bARTTs and negative samples. Then, 
exact domain subsequences were used to construct ARTNet, 
but overfitting occurred; therefore, we conducted a domain- 
based data optimization strategy and verified its effectiveness. 
Among the domain-based datasets, pos_art_346_random 
outperformed others due to its larger training sample size, 
underscoring the significance of large datasets in constructing 
DL models. Nevertheless, when the upstream and down-
stream information of the exact ART domain was completely 

destroyed rather than merely disrupted, pos_art_346_ran-
domreplace did not exhibit any advantages. This suggests 
that the precise localization of ART-related domains may not 
be as accurate as anticipated, or alternatively, certain uniden-
tified contextual features may play a crucial role in domain 
prediction. Besides, we empirically demonstrated the ability 
of ARTNet to predict novel bARTTs across domain superfa-
milies without sequence similarity. To optimize ARTNet, we 
also extensively explored alternative models, including three 
other DL models, and six well-established ML classifiers 
combined with 15 predefined features. Unsurprisingly, our 
CNN-based ARTNet outperformed the others in terms of 
both time efficiency and accuracy. Perhaps employing 
recently popular algorithms such as Transformer (Liu et al. 
2024) instead of CNN to develop a bARTTs prediction 
model may potentially yield comparable or even superior 
results to our ARTNet. However, it may not significantly im-
pact how we approach the scientific challenge of developing 
a new method for predicting bARTTs. To facilitate the future 
application of ARTNet, we have created a user-friendly on-
line web server for the prediction of potential bARTTs. 
Nevertheless, comprehensive follow-up analyses of our pre-
dicted candidates are highly recommended to preclude poten-
tial false positives prior to further biological verification.

5 Conclusion
In this work, we developed a DL-based ARTNet for the pre-
diction of ART toxins from bacterial genomes. We intro-
duced an effective data augmentation method and a data 
optimization strategy to significantly enhance the perfor-
mance of ARTNet. Our ARTNet achieved a Matthew’s cor-
relation coefficient (MCC) of 0.9351 and an F1-score 
(macro) of 0.9666 on repeated independent test datasets, out-
performing three other DL models and six traditional ma-
chine ML classifiers (combined with 15 predefined features) 
in terms of time efficiency and accuracy. In-depth analysis 
from multiple perspectives demonstrated the robustness and 
stability of ARTNet. Moreover, ARTNet has the potential to 
predict novel bARTTs across domain superfamilies without 
relying on sequence similarity. ARTNet trained on pos_ 
art_346_random could provide more candidates and predict 
potential toxins belonging to other superfamily members that 
are very difficult to identify using sequence similarity-based 
methods. ARTNet trained on pos_art_346 and pos_whole 
may have higher specificity, as they performed strongly in 
identifying the 44 verified bARTTs. To offer more options 
and provide a more robust bARTT prediction service, we 
reported the results of ensemble ARTNet models trained on 
the three datasets described above on a user-friendly online 
web server. To the best of our knowledge, this is the first suc-
cessful application of DL algorithms for the prediction of 
bARTTs. We anticipate that ARTNet will greatly facilitate 
the screening and identification of novel bARTTs from bacte-
rial genomes by microbiologists. In addition, the ARTNet 
roadmap will benefit the development of future DL models 
for the identification of various bacterial virulence factors.
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