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Task Similarity Aware Meta Learning: Theory-inspired Improvement on MAML
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3Nanjing University of Information Science & Technology

Abstract

Few-shot learning ability is heavily desired for ma-
chine intelligence. By meta-learning a model ini-
tialization from training tasks with fast adaptation
ability to new tasks, model-agnostic meta-learning
(MAML) has achieved remarkable success in a
number of few-shot learning applications. How-
ever, theoretical understandings on the learning
ability of MAML remain absent yet, hindering
developing new and more advanced meta learn-
ing methods in a principled way. In this work, we
solve this problem by theoretically justifying the
fast adaptation capability of MAML when applied
to new tasks. Specifically, we prove that the learnt
meta-initialization can benefit the fast adaptation
to new tasks with only a few steps of gradient de-
scent. This result explicitly reveals the benefits of
the unique designs in MAML. Then we propose
a theory-inspired task similarity aware MAML
which clusters tasks into multiple groups accord-
ing to the estimated optimal model parameters and
learns group-specific initializations. The proposed
method improves upon MAML by speeding up
the adaptation and giving stronger few-shot learn-
ing ability. Experimental results on the few-shot
classification tasks testify its advantages.

1 INTRODUCTION

Meta learning [Schmidhuber, 1987, Naik and Mammone,
1992, Bengio et al., 1990], a.k.a. learning-to-learn [Thrun
and Pratt, 2012], offers a new way to solve few-shot learning
tasks via learning task-level knowledge. Specifically, at task
level it trains a meta learner to extract task-shared knowl-
edge from all the training tasks; then the meta learner is used
to facilitate a task-specific model to learn a new task with
only a small amount of data [Ravi and Larochelle, 2017,

Finn et al., 2017, Santoro et al., 2016, Vinyals et al., 2016,
Nichol and Schulman, 2018]. Among existing meta learn-
ing methods, model-agnostic meta-learning (MAML) [Finn
et al., 2017] is a representative one because of its simplic-
ity, generality and state-of-the-art performance [Nichol and
Schulman, 2018, Antoniou et al., 2019, Li et al., 2017]. It
aims to learn a meta model from the observed tasks that
could serve as a good initialization for task-specific models.
Then given a test task, it only applies a few gradient descent
steps on a few training samples for adapting the meta model
to the test task, since the learnt initial model is desired to be
close to the optimal models of the observed tasks and thus
can be quickly adapted to new similar tasks.

Despite its remarkable success in practice [Finn et al., 2017,
Duan et al., 2016, Li et al., 2017], the theoretical under-
standing of MAML is still largely absent. Specifically, it
is not clear why MAML is able to generalize well in new
tasks via merely taking a few steps of gradient descent on
a small amount of data. The answer to this question is im-
portant not only for justifying the fast adaptation capability
of MAML, but also for inspiring new insights for algorithm
improvement.

Contributions. In this work, we address the above fun-
damental question and contribute to derive some new re-
sults, insights and alternatives for MAML. Particularly, we
provide rigorous theoretical analysis for its generalization
behaviors. Inspired by our theory, we then propose a new
alternative of MAML which is more effective for few-shot
learning. Our main contributions are highlighted below.

Our first contribution is proving that in MAML, its learnt
meta-initialization can benefit the fast adaptation to new
tasks with only a few steps of gradient descent. Specif-
ically, let θ∗ be the initialization learnt by MAML with
meta model f(θ, x) on the training tasks which are drawn
from a task distribution T. For a task T , let LDT

(θ) =
1
K

∑
(x,y)∈DT

`(f(θ, x), y) denote its empirical risk on its
training dataset DT of size K. Then for any test task
T ∼ T, we prove that its task-specific adapted parame-
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Figure 1: Illustration of the learnt group structures by MAML and TSA-MAML on 5-shot 5-way learning task of a group-
structured dataset with three sub-datasets, i.e. Aircraft [Maji et al., 2013], CUB Birds [Wah et al., 2011] and FGVCx
Fungi [Maji et al., 2018]. One can observe indistinguishable sample features of tasks in (a) but well group-structured optimal
model parameters of tasks learnt by MAML and TSA-MAML via 10 gradient descent steps from learnt initializations in (b)
and (c) respectively. See details in Sec. 5.1.

ter θqT = θ∗−α
[
∇LDT

(θ∗)+
∑q−1
t=1∇LDT

(θtT )
]

obtained
by taking q gradient descent steps on its training data DT

has good performance on its test data (x, y) ∼ T , where
θ1T =θ∗−α∇LDT

(θ∗). Specifically, by defining population
risk L(θ) = E(x,y)∼T `(f(θ, x), y) on task T , we show the
excess risk ET∼TEDT

[L(θqT )− L(θ∗T )] of θqT , well mea-
suring the testing performance, is upper bounded by O

(
ρq

K

+ET∼TEDT

[
LDT

(θqT )− L(θ∗T )
]
), where the constant ρ is

slightly larger than one, and θ∗T is the optimum of population
risk L(θ) on T . This result explicitly reveals the importance
of the gradient step number q in MAML. Indeed, it sug-
gests us to adapt the learnt initialization θ∗ to new task via a
few gradient descent steps. See details in Sec. 3.2. Besides,
we further upper bound ET∼TEDT

[
LDT

(θqT )− L(θ∗T )
]

by
1
2αET∼T

[
‖θ∗ − θ∗T ‖22

]
, showing the smaller distance be-

tween θ∗ and θ∗T the smaller the excess risk. Meanwhile, as
the learnt initialization θ∗ by MAML is often close to θ∗T ,
our results can explain why MAML generalizes well to new
tasks to some extent.

Inspired by our theory, we further develop the task similar-
ity aware MAML (TSA-MAML) as a novel alternative to
achieve faster adaptation to new tasks. As shown in Fig. 1
(a) and (b), though the samples in tasks are undistinguish-
able, the optimal model parameters estimated by MAML
have remarkable group structures. So instead of learning
one initialization for all tasks, TSA-MAML leverages task
similarity to discover the group structures in the tasks by
using a learner A to measure task similarity in terms of the
estimated task-specific model parameters. Then to facilitate
the learning of new tasks, it learns multiple model initializa-
tions each of which corresponds to a group of similar tasks.
Specifically, given a training task, TSA-MAML first uses
the learner A to predict its group membership and assign a
group-specific initialization to it for few-shot training. Next,
the initializations are in turn improved and become more
group-specific. Consequently, as shown in Fig. 1 (c), the

optimal model parameters of tasks in the same group are
much closer to the group-specific initialization learnt by
TSA-MAML than one common initialization learnt for all
tasks by MAML. So TSA-MAML can adapt to new tasks
more quickly and better under the few-shot learning setting.
In this work, we implement the learner A as the vanilla
MAML and measure the task similarity according to the
Euclidean distance between task-specific model parameters.
We also theoretically show the superiority of TSA-MAML
over MAML on learning new tasks. Extensive experimental
results also well demonstrate the advantages of our approach
on the few-shot learning problems.

2 RELATED WORK

Meta learning has gained much attention recently because
of its success in many applications [Finn et al., 2017, Duan
et al., 2016, Mishra et al., 2017, Sung et al., 2017, Xiao
et al., 2021, Lin et al., 2021, Zhou et al., 2019, Bai et al.,
2021]. The current methods can be divided as metric-based
family [Koch et al., 2015, Vinyals et al., 2016, Sung et al.,
2018, Snell et al., 2017] that learns sample similarity met-
rics, memory-based family [Weston et al., 2014, Santoro
et al., 2016, Munkhdalai and Yu, 2017] that learns a fast
adaptation algorithm via memory models [Graves et al.,
2014], and optimization-based family [Finn et al., 2017,
Ravi and Larochelle, 2017, Li et al., 2017, Nichol and Schul-
man, 2018] that learns a model initialization for fast adap-
tation. Among them, optimization based methods are more
preferable, thanks to its simplicity and effectiveness [Finn
et al., 2017, Antoniou et al., 2019, Khodak et al., 2019].
One representative method in this line is MAML [Finn
et al., 2017] that learns a network initialization such that
the network can adapt to a new task via a few gradient
descent steps. Later, various variants are proposed to im-
prove MAML [Finn et al., 2019, Li et al., 2017, Yao et al.,

24



2019]. Among them, HSML [Yao et al., 2019] considers the
hierarchical parameter structures in tasks by learning task
embeddings to measure task similarity. But it has two issues:
(1) feature similarity cannot well reveal model parameter
structures in tasks as shown in Fig. 1 and (2) learning simi-
lar embeddings for similar tasks is hard, as one cannot well
align sample orders in tasks without global sample infor-
mation (labels) and recurrent networks is sensitive to input
orders. In contrast, we measure task similarity in the model
parameter space and avoid the above issues. To handle mul-
timodal task distribution, for a task T , MMAML [Vuorio
et al., 2019] first learns its task embedding and then its task-
specific parameter τ which modulates meta-initialization θ
as inner-product initialization τ �θ for T . It does not explic-
itly utilize task similarity as it still learns task-specific initial-
ization. In contrast, we explore task structure by clustering
similar tasks and learn group-specific initialization. More-
over, like [Yao et al., 2019], learning similar embeddings
for similar tasks is hard. Besides, MMAML needs accurate
task-specific parameter τ to align with high-dimensional θ
to obtain accurate task initialization, increasing learning dif-
ficulty. TSA-MAML also differs from multi-task learning,
e.g. [Kang et al., 2011, Kumar and Daume, 2013, Pentina
et al., 2015], as TSA-MAML learns group-specific initial-
ization with fast adaptation ability to new tasks, while the
later directly learns task-specific optimal model.

The theoretical analysis of MAML is rarely investigated
though heavily desired. Golmant [2019] and Finn et al.
[2019] showed the convergence of MAML under strongly
convex setting. In [Fallah et al., 2019, Ji et al., 2020], the
convergence behavior of MAML on non-convex problems
were studied. Saunshi et al. [2020] analyzed the sample com-
plexity for Reptile-alike algorithm [Nichol and Schulman,
2018] instead of MAML. The works [Baxter, 2000, Maurer,
2005, Amit and Meir, 2018, Mikhail et al., 2019, Du et al.,
2020, Bai et al., 2021] study the generalization performance
of meta learning. But they focus on general meta learning
methods and their results do not well reveal any unique
property of MAML. For instance, they cannot explain why
a few gradient descent steps on a few data in MAML is
sufficient to obtain good testing performance. In contrast,
by focusing on MAML itself, our theory well justifies this
essential design in MAML. Besides, our results are more
heuristic and directly derive a new MAML variant which
leverages task similarity to facilitate new task learning and
is well testified by experimental results.

3 THEORETICAL ANALYSIS OF MAML

Here we first briefly recall the formulation of MAML and
then analyze the testing performance of its adapted task-
specific model via a few gradient descent steps.

3.1 FORMULATION OF MAML

MAML [Finn et al., 2017] is to learn a good initialization
parameter θ for a class of parameterized learner f : X 7→ Y

(e.g. a classifier) such that for any task T drawn from a
task distribution T, its task-specific adapted parameter θT
via one gradient descent step from θ on a small training
dataset Dtr

T = {(xi, yi)}Ki=1 can perform well on its test
dataset Dts

T = {(x̃i, ỹi)}Ki=1. Towards this goal, for each
task T ∼ T, MAML optimizes the test loss of its adapted
parameter θT as follows

minθ ET∼T LDts
T

(θ − α∇LDtr
T

(θ)),

where LDT
(θT ) = 1

K

∑
(x,y)∈DT

`(f(θT , x), y) with DT =

Dtr
T or Dts

T is the empirical risk on the dataset DT , and α is
a learning rate. Here the function `(f(θT , x), y) measures
the discrepancy between the prediction f(θT , x) and the
ground truth y, e.g. the cross-entropy loss in classification.

After learning the initialization θ∗, given a test task T ∼ T

with small training and test datasets Dtr
T and Dts

T respec-
tively, MAML adapts θ∗ to task T via a few gradient descent
steps on Dtr

T and then tests the adapted parameter on Dts
T .

In spite of its impressive performance, there is no rigorous
theoretical analysis of MAML that explicitly justifies effec-
tiveness of a few gradient based adaptation. The following
sections attempt to solve this issue by developing testing
performance guarantees.

3.2 TESTING PERFORMANCE ANALYSIS

Here we answer two questions: (1) what factors affect the
test performance of the adapted model in MAML via a
few gradient descent adaptation steps on a few training
data; (2) how the learnt initialization benefits the learning
of future tasks. Let T ∼ T be any future task with K train-
ing samples DT = {(xi, yi)}Ki=1. Assume we run q gra-
dient descent steps on the data DT to obtain the adapted
model θqT =θ∗−α[∇LDT

(θ∗)+
∑q−1
t=1∇LDT

(θtT )] for task
T with learnt initialization θ∗ and θ1T = θ∗−α∇LDT

(θ∗).
Let θ∗T ∈ argminθT

{
L(θT ) := E(x,y)∼T [`(f(θT , x), y)]

}
trained on all samples (x, y)∼T denote the optimal model
parameter of the task T ∼ T. Before analysis, we first give
necessary definitions which are fairly standard in the opti-
mization analysis of deep network and MAML [Zhou and
Feng, 2018b,a, Zhou et al., 2020a,b, Finn et al., 2019, Gol-
mant, 2019, Fallah et al., 2019, Ji et al., 2020, Wu et al.,
2020].

Definition 1 (Lipschitz continuity and smoothness). We
say a function g(θ) is G-Lipschitz continuous if ‖g(θ1) −
g(θ2)‖2 ≤ G‖θ1 − θ2‖2 with a constant G. g(θ) is said to
be L-smooth if ‖∇g(θ1)−∇g(θ2)‖2 ≤ L‖θ1 − θ2‖2 with
a constant L.
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Then we formally state our results in Theorem 1 which
shows the role of q and the benefits of initialization θ∗

on reducing the excess risk ER(θqT ) = ET∼TEDT

[
L(θqT )

−L(θ∗T )
]
. As ER(θqT ) evaluates the loss difference

[`(f(θqT , x), y)−`(f(θ∗T , x), y)] on all samples (x, y) ∼ T
and all tasks T ∼ T, it can well measure the testing per-
formance of the adapted parameter θqT . See its proof in
Appendix C.2.

Theorem 1. (Testing Performance Analysis) Suppose
`(f(θ, x), y) is G-Lipschitz continuous w.r.t. the parame-
ter θ. We also assume `(f(θ, x), y) is Ls-smooth w.r.t. θ
and α obeys α ≤ 1

Ls
. By setting ρ = 1 + 2αL, then for any

T ∼ T and DT ={(xi, yi)}Ki=1 ∼ T , we have

ER(θqT )
(a)

≤ 2G2(ρq−1)

KL
+ ET∼TEDT

[
LDT

(θqT )−L(θ∗T )
]

(b)

≤ 2G2(ρq−1)

KL
+

1

2α
ET∼T

[
‖θ∗−θ∗T ‖22

]
.

From the first inequality (a) in Theorem 1, one can observe
that the excess risk ER(θqT ) of the task-specific adapted
model θqT for task T is determined by two factors, i.e., the
training sample number K for each task and the expected
loss distance ET∼TEDT

[
LDT

(θqT ) − L(θ∗T )
]

between the
adapted parameter θqT provided by MAML and the optimal
model θ∗T for task T . Obviously, the larger training sample
number K is, the smaller the first term in the upper bound
is. Besides, the closer θqT is to θ∗T , the better task-specific
parameter θqT with smaller excess risk.

Theorem 1 also provides some insights of the effect of adap-
tation step number q to the excess risk ER(θqT ). From the
results, one way to reduce the loss LDT

(θqT ) is to increase
the number q of gradient descent steps for adaptation which
however increases the first term in the upper bound, as ρ
is often slightly larger than one since we often use a small
learning rate α. To trade-off the first and second terms, q
should not be large. This is because the first term always
increases, while as shown in Fig. 2 and in Fig. 6 of Ap-
pendix 6, the test loss ET∼TEDT

[
LDT

(θqT )
]

in the second
term ET∼TEDT

[
LDT

(θqT )−L(θ∗T )
]

decreases very fast at
the first a few iterations but increases along more optimiza-
tion iterations due to over-fitting issue. This observation
accords with our theory affirmation. So the bound of excess
risk ER(θqT ) can reveal the important characterization of
ER(θqT ) in practice as observed in Fig. 2. The above results
also partially explain why MAML often adapts the learnt
initialization θ∗ to new tasks via a few gradient descent
steps.

Besides, the second inequality (b) in Theorem 1 justifies the
benefits of the learnt initialization θ∗ to the testing perfor-
mance. Specifically, Theorem 1 shows the smaller distance
between θ∗ and θ∗T , the smaller excess risk. Intuitively, if θ∗

is close to θ∗T , the task-specific adapted parameter θqT would
be close to θ∗T , guaranteeing good testing performance of

θqT on its corresponding task T ∼ T. Fortunately, empirical
results of MAML show that as shown in Fig. 2, a few gradi-
ent steps (about 4) from θ∗ can provide good performance
for test task T ∼ T, which indicates the small distance
‖θ∗ − θ∗T ‖22.

Then we provide the first-order optimality guarantee in
Theorem 2. It shows that the adapted parameter θqT
has small expected population gradient EPG(θqT ) =

ET∼T
[ ∥∥EDT

[∇L(θqT )]
∥∥2
2

]
and thus is close to the desired

first-order stationary points of L(θT ).

Theorem 2. (First-order Optimality Analysis) With the
same assumptions in Theorem 1 and ρ = 1 + 2αL, then for
any T ∼ T and DT = {(xi, yi)}Ki=1 ∼ T , we have

EPG(θqT )≤ 8G2(ρq − 1)2

K2
+2ET∼TEDT

[∥∥∇LDT
(θqT )

∥∥2
2

]
.

See its proof in Appendix C.3. Similar to Theorem 1, Theo-
rem 2 also shows the importance of training sample number
K and prefers a small gradient step number q, as large q
increases the first term in the upper bound fast but decreases
the second term slowly. Besides, Theorem 2 reveals the role
of the empirical gradient EDT

[∥∥∇LDT
(θqT )

∥∥2
2

]
on deter-

mining the expected population gradient EPG(θqT ). Since on
a small dataset, when the learnt initialization θ∗ is close to
the first-order stationary points of the empirical risk LDT

(θ)
of task T ∼ T, then taking a few gradient descent steps
already guarantees a very small gradient ∇LDT

(θqT ) of the
adapted parameter θqT . This means that θqT is very close to
a desired stationary point of the population risk L(θT ) and
thus can enjoy satisfactory testing performance on the cor-
responding task T . So a good initialization θ∗ can facilitate
the learning of new tasks T ∼ T which well explains the
success of MAML.

Some works [Baxter, 2000, Maurer, 2005, Amit and Meir,
2018] focused on general meta learning methods and pro-
vided generalization performance guarantees which however
cannot guarantee the testing performance in this work un-
der fair training performance. Though Mikhail et al. [2019]
proved a regret upper bound for a general meta learning
framework, their analysis is restricted to online strongly-
convex setting and is not applicable to the realistic non-
convex settings. Moreover, these aforementioned results do
not reveal the unique properties of MAML, e.g. the fast
adaptation via a few gradient descent steps. Finally, our
Theorem 2 provides the first-order optimality guarantee for
MAML which is absent in the prior works.

4 TASK SIMILARITY AWARE MAML

Here we introduce the formulation and implementation of
our task similarity aware MAML.
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Figure 2: Effects of adaptation step numbers in MAML and TSA-MAML to test loss. See more results (loss and accuracy)
in Fig. 6 of Appendix 6. We test on 1,000 tasks and report the average test loss after adaptation. The loss decreases fast at
the first a few iterations but increases along more iterations due to over-fitting issue.

4.1 META-PROBLEM FORMULATION

Theorem 1 shows that if one hopes to achieve good testing
performance, the learnt initialization θ∗ should be close
to the optimal model parameter θ∗T of any task T ∼ T,
i.e. small distance ET∼T[‖θ∗ − θ∗T ‖22]. One natural way
to further reduce this distance is to learn multiple initial-
izations {θ∗i }mi=1 and select a correct initialization θ∗iT =
A({θ∗i }mi=1, T ) from {θ∗i }mi=1 for a specific task T such that
ET∼T[‖A({θ∗i }mi=1, T )− θ∗T ‖22] is small. Here given a task
T , the learner A assigns it into one of the m groups accord-
ing to the similarity between T and the tasks in each group
such that the optimal model parameter θ∗T of T is close
to the initialization A({θ∗i }mi=1, T ) shared by the tasks in
the same group. Here we focus on a general learner A and
provide one effective approach to implement it in Sec. 4.2.
Towards this goal, we propose task similarity aware MAML
(TSA-MAML):

ET∼TLDts
T

(A({θi}mi=1, T )− α∇LDtr
T

(A({θi}mi=1, T )))

with optimization variables {θi}mi=1 and A.

Intuitively, this model aims at using the learner A to cluster
tasks T ∼ T into m groups according to their similarity
in terms of their optimal model parameter estimation such
that the tasks in each group are sufficiently close to a com-
mon initialization. Then based on Theorems 1 and 2, we
derive the testing performance bound and first-order opti-
mality of TSA-MAML. Let {θ∗i }mi=1 be the learnt multiple
initializations, θ̄∗T =A({θ∗i }mi=1, T ) be the assigned initial-
ization for task T , and θqT be the adapted parameter θqT = θ̄∗T
−α
[
∇LDT

(θ̄∗T )+
∑q−1
t=1∇LDT

(θtT )
]

for task T with θ1T =
θ̄∗T − α∇LDT

(θ̄∗T ). θ∗T is the optimal model parameter of
the population risk L(θT ) = E(x,y)∼T [`(f(θT , x), y)] on
task T . Then we state our results in Corollary 1 with proof
in Appendix D.1.

Corollary 1. With the same assumptions in Theorem 1 and
ρ= 1+2αL, for any T ∼ T and DT = {(xi, yi)}Ki=1 ∼ T ,

the expected excess risk ER(θqT ) obeys

ER(θqT )≤ 2G2(ρq − 1)

KL
+

1

2α
ET∼T

[
‖A({θ∗i}mi=1,T )−θ∗T ‖22

]
.

Moreover, the population gradient EPG(θqT ) obey

EPG(θqT )≤ 8G2(ρq − 1)2

K2
+2ET∼TEDT

[∥∥∇LDT
(θqT )

∥∥2
2

]
.

Corollary 1 shows that if the learner A can assign the
task T ∼ T into a correct group with a small distance
ET∼T[‖A({θ∗i }mi=1, T )−θ∗T ‖22], TSA-MAML would be ex-
pected to have smaller expected excess risk ER(θqT ) and
thus better testing performance than MAML. This can be
intuitively understood: by grouping the tasks T ∼ T into m
clusters such that the tasks in the same group have similar
optimal model parameters and by learning a group-specific
shared initialization for each group, the optimal model pa-
rameters of tasks in a group will be much closer to the
group-specific shared initialization learnt by TSA-MAML
than a common initialization learnt for all tasks T ∼ T in
MAML. Accordingly, TSA-MAML requires less samples
to adapt to new tasks and thus achieves better testing per-
formance. Moreover, for a task, since the initialization of
TSA-MAML is closer to its optimal parameter θ∗T than that
of MAML, after a few gradient descent steps the adapted
parameter θqT of TSA-MAML is expected to be closer to
θ∗T , guaranteeing smaller ET∼TEDT

[∥∥∇LDT
(θqT )

∥∥2
2

]
. So

θqT in TSA-MAML would have smaller population gradient
EPG(θqT ), indicating better performance over MAML.

4.2 IMPLEMENTATION AND DISCUSSION

Implementation. The key for implementing TSA-MAML is
to design the learner A which assigns a task T into a correct
group such that its optimal model parameter is close to the
initialization of the group. Here we implement A as follows.
Firstly, we train vanilla MAML and obtain the initialization
θ∗ for all tasks T ∼ T. Then we use vanilla MAML with ini-
tialization θ∗ to compute the estimated optimal parameters

27



Table 1: Classification accuracy (%) of the compared approaches on the 5-shot 5-way few-shot learning tasks in the two
group-structured datasets (600 test episodes with 95% confidence intervals).

Aircraft + CUB Bird + FGVCx Fungi Stanford Car + CUB Bird + FGVCx Fungi
aircraft bird fungi average car bird fungi average

Reptile [Nichol and Schulman, 2018] 60.46±0.68 71.96±0.79 51.71±0.84 61.38 43.64±0.64 69.63±0.78 52.06±0.85 55.11
HSML [Yao et al., 2019] 69.89±0.90 68.99±1.01 53.63±1.03 64.17 48.19±0.93 71.20±0.97 53.48±1.08 57.62

MMAML [Vuorio et al., 2019] 56.02±0.63 68.33±0.82 53.44±0.76 59.26 34.97±0.46 64.83±0.80 53.33±0.77 51.04
FOMAML [Finn et al., 2017] 49.60±0.98 69.53±0.95 47.56±0.83 55.56 34.20±0.72 68.50±0.78 46.66±0.89 49.79

MAML [Finn et al., 2017] 67.82±0.65 70.55±0.77 53.20±0.82 63.86 47.67±0.70 68.64±0.82 53.43±0.89 56.25
TSA-MAML 72.84±0.63 74.80±0.76 56.86±0.87 68.17 50.01±0.65 73.92±0.80 56.03±0.87 59.98

Algorithm 1 Meta Framework for TSA-MAML

Input: learning rates α and β, task distribution T.
Initialization: initialize {θ0i }mi=1 via the vanilla MAML
and k-means based approach in Sec. 4.2.
for t = 0, · · · , S − 1 do

sample a task mini-batch St={Ti}si=1 as Ti∼T.
for task Ti in St do

set initialization θiTi
=A({θti}mi=1,Ti) for Ti.

compute gradient∇LDtr
T

(θiTi
).

update task-specific parameter θTi
as θTi

= θiTi
−

α∇LDtr
T

(θiTi
) for task Ti.

end for
update{θt+1

i }mi=1 as follows:
{θt+1
i }mi=1 ={θti}mi=1−β

∑
Ti∼T∇{θti}mi=1

LDts
Ti

(θTi
).

end for
Output: {θSi }mi=1

{θ̄Ti}ni=1 of sufficient sampled tasks {Ti}ni=1 and perform
k-means [MacQueen, 1967] on {θ̄Ti

}ni=1 to cluster them
into m groups {Gi}mi=1. See the experimental settings of n
and m in Sec. 5.

Next, we initialize each group-specific initialization θ0i by
averaging the model parameters {θ̄Ti

}i∈Gi
. Finally, for train-

ing, given a task T , we also first use vanilla MAML with
initialization θ∗ to compute its estimated optimum θ̄T , and
then find a group Gi such that the group-specific initial-
ization θi has a smallest Euclidean distance to θ̄T . In this
way, we can use task T to update the initialization θi for
group Gi like MAML. Note, we measure the task similarity
in the model parameter space instead of the task feature
space (sample feature) which measures the similarity more
accurately, since as shown in Fig. 1, task features cannot
well reveal the group structures of the optimal models of
tasks and will be discussed in Sec. 5.1 with more details.
See detailed algorithm in Algorithm 1.

Discussion. HSML [Yao et al., 2019] considers the hier-
archical parameter structures in tasks by learning task em-
beddings to measure task similarity which however has two
issues. (1) Due to complex deep models, feature similarity
cannot well reveal the model parameter structures in tasks.
For instance, Fig. 1 shows that undistinguishable sample
features in tasks still have remarkable group-structured op-

timal models. (2) Learning similar embeddings for similar
tasks is hard, as one cannot align sample orders in tasks
without global sample information (labels) and recurrent
networks are sensitive to input sample orders. In contrast,
we measure task similarity from model parameter space
which avoids the above issues and guarantees small distance
among optimal models in the same group. To handle mul-
timodal task distribution, MMAML [Vuorio et al., 2019]
learns individual embedding for each task T and uses it
to learn parameter τ which modulates initialization θ∗ as
task-specific inner-product initialization τ � θ∗ for T . So
it does not explicitly utilize task similarity as it still learns
task-specific initialization. Conversely, we explicitly explore
task structure by clustering similar tasks, and learn group-
specific initializations. Moreover, like HSML, it also faces
the issue of learning similar embeddings for similar tasks.
Besides, MMAML needs accurate modulation parameter τ
to align with high-dimensional θ to produce accurate task-
specific initialization, increasing learning difficulty.

5 EXPERIMENTS

Here we compare our TSA-MAML with state-of-the-arts
for the few-shot classification tasks.

5.1 EVALUATION ON THE GROUP-STRUCTURED
DATA

Datasets. We first investigate whether TSA-MAML
can leverage the task similarity to discover task-group struc-
tures and further learn group-specific initializations. To-
wards this goal, we randomly sample each training/test task
from one of the three datasets, i.e. Aircraft dataset [Maji
et al., 2013], CUB Birds [Wah et al., 2011] and FGVCx-
Fungi dataset [Maji et al., 2018]. As each dataset only con-
tains one category, e.g. birds, the tasks drawn from each
dataset should have similar optimal model parameters, indi-
cating remarkable group structures in these optimal model
parameters as illustrated by Fig. 1. Accordingly, discovering
these group structures and learning group-specific initializa-
tions can benefit new task learning. Similarly, we construct
the second group-structured dataset which contains Stanford
Car [Krause et al., 2013], CUB Birds [Wah et al., 2011] and
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Table 2: Few-shot classification accuracy (%) of the compared approaches on the CIFARFS dataset. The reported accuracies
are averaged over 600 test episodes with 95% confidence intervals.

method 1-shot 5-way 5-shot 5-way 1-shot 10-way 5-shot 10-way

Matching Net [Vinyals et al., 2016] 36.64 ± 1.13 42.68 ± 0.96 15.02 ± 1.05 32.53 ± 0.93
Meta-LSTM [Ravi and Larochelle, 2017] 41.93 ± 1.20 61.40 ± 1.15 31.40 ± 0.75 41.25 ± 0.66

Reptile [Nichol and Schulman, 2018] 51.26 ± 0.99 68.62 ± 0.98 35.73 ± 0.94 54.35 ± 0.91
HSML [Yao et al., 2019] 46.72 ± 0.87 68.76 ± 0.76 33.89 ± 0.55 53.94 ± 0.49

MMAML [Vuorio et al., 2019] 40.64 ± 0.50 49.64 ± 0.49 23.80 ± 0.28 37.19 ± 0.27
iMAML [Rajeswaran et al., 2019] 49.72 ± 0.39 60.83 ± 0.49 30.02 ± 0.36 47.13 ± 0.29

FOMAML [Finn et al., 2017] 47.03 ± 1.47 64.20 ± 1.38 34.65 ± 1.09 51.35 ± 1.16
MAML [Finn et al., 2017] 51.98 ± 0.87 68.91 ± 0.74 38.48 ± 0.55 55.24 ± 0.54

TSA-MAML 53.07 ± 0.85 71.37 ± 0.74 39.77 ± 0.53 58.05 ± 0.56
Reptile + Transduction [Nichol and Schulman, 2018] 54.03 ± 0.92 72.60 ± 0.83 38.41 ± 0.97 57.16 ± 0.87

HSML + Transduction [Yao et al., 2019] 54.71 ± 1.50 69.62 ± 1.01 38.49 ± 1.22 55.51 ± 0.68
MMAML+ Transduction [Vuorio et al., 2019] 45.16 ± 0.58 58.56 ± 0.51 27.30 ± 0.25 41.26 ± 0.26

iMAML + Transduction [Rajeswaran et al., 2019] 55.13 ± 0.38 64.44 ± 0.58 34.23 ± 0.33 49.76 ± 0.27
FOMAML + Transduction [Finn et al., 2017] 49.30 ± 1.18 66.96 ± 1.27 37.83 ± 1.06 53.23 ± 1.12

MAML + Transduction [Finn et al., 2017] 57.46 ± 0.90 72.75 ± 0.71 39.97 ± 0.56 56.21 ± 0.55
TSA-MAML + Transduction 58.21 ± 0.93 73.52 ± 0.72 42.18 ± 0.58 58.69 ± 0.56

FGVCx-Fungi [Maji et al., 2018]. Like conventional setting,
each sub-dataset, e.g. CUB Birds, contains meta-training,
meta-validation and meta-test classes which is specified
in [Yao et al., 2019] and Appendix A.

Experimental setting. Following [Finn et al., 2017, Snell
et al., 2017], we use the episodic procedure for K-shot
N -way few-shot learning task. We use the same 4-layered
convolution network in [Finn et al., 2017, Nichol and Schul-
man, 2018] for evaluation. In TSA-MAML, we set its
initialization number m as three and the task number as
n = 10, 000 for clustering in k-means. For training, we use
Adam [Kingma and Ba, 2014] with learning rate 10−3 and
total iteration number S = 40, 000. To be more stable, we
use cosine annealing in [Loshchilov and Hutter, 2017] to
gradually decrease the learning rate. We evaluate 600 test
tasks from each sub-dataset, and test all methods on the
5-shot 5-way learning tasks under the transduction setting
where test tasks share information via batch normalization,
since the baselines are reported under this setting [Finn et al.,
2017, Yao et al., 2019].

Results. Table 1 shows that TSA-MAML achieves the best
performance over other state-of-the-arts. Specifically, on
the first group-structured dataset (Aircraft + Birds + Fungi),
TSA-MAML respectively makes about 2.95%, 2.84% and
3.23% improvements on the three sub-dataset (from left
to right). It also brings about 4.00% improvement for the
overall accuracy. Similarly, for the second group-structured
dataset (Car + CUB Birds + Fungi), TSA-MAML also out-
performs others on all three sub-datasets and averagely im-
proves by about 2.36%. Compared with the approaches
learning one common initialization, e.g. MAML and Reptile,
TSA-MAML leverages task similarity in the model param-
eter space to discover the group structures in the tasks and
learns group-specific initializations to facilitate the learning
of new tasks. As a result, as shown in Fig. 1, the optimal
parameters of tasks in the same group would be much closer
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Figure 3: Usage frequency of multiple initializations in TSA-
MAML on new tasks.

to the group-specific initialization learnt by TSA-MAML
than the single common initialization learnt for all tasks by
other approaches, e.g. MAML. So for few-shot learning,
TSA-MAML can adapt to the new tasks more quickly and
better than other methods with a single initialization which
confirms our theories in Sec. 3.2. Please refer to the rea-
sons for the superiorty of our TSA-MAML over HSML and
MMAML at the end of Sec. 4.2.

Indeed, we also test MAML using larger models (MAML-L).
We increase its network depth from four to seven and then
increase channels per layer so that new model is about 3×
larger than TSA-MAML. The accuracies of MAML-L are
72.68 (aircraft), 69.73 (bird) and 54.18 (fungi) on the first
group-structured dataset. In Table 5 of Appendix A, we also
test MAML-L and TSA-MAML on CIFARFS [Bertinetto
et al., 2019] and observe that TSA-MAML makes about at
least 1.5% average improvement on the four test settings
(n-way k-shot, n = 5 or 10 and k = 1 or 5) over both
MAML and MAML-L. These results further demonstrate
the superiority of TSA-MAML over MAML.

Fig. 3 further reports the usage frequency of the multiple ini-
tializations learnt by TSA-MAML when testing new tasks.

29



Table 3: Few-shot classification accuracy (%) of the compared approaches on the tieredImageNet dataset. The reported
accuracies are averaged over 600 test episodes with 95% confidence intervals.

method 1-shot 5-way 5-shot 5-way 1-shot 10-way 5-shot 10-way

Matching Net [Vinyals et al., 2016] 34.95 ± 0.89 43.95 ± 0.85 22.46 ± 0.34 31.19 ± 0.30
Meta-LSTM [Ravi and Larochelle, 2017] 33.71 ± 0.76 46.56 ± 0.79 22.09 ± 0.43 35.65 ± 0.39

Reptile [Nichol and Schulman, 2018] 49.12 ± 0.43 65.99 ± 0.75 31.79 ± 0.28 47.82 ± 0.30
HSML [Yao et al., 2019] 47.36 ± 0.84 66.16 ± 0.78 33.39 ± 0.57 51.53 ± 0.55

MMAML [Vuorio et al., 2019] 44.82 ± 0.46 61.47 ± 0.49 30.42 ± 0.37 48.92 ± 0.29
FOMAML [Finn et al., 2017] 48.01 ± 1.74 64.07 ± 1.72 30.31 ± 1.12 46.54 ± 1.24

MAML [Finn et al., 2017] 48.50 ± 1.83 65.93 ± 1.78 32.41 ± 1.23 48.81 ± 1.32
TSA-MAML 48.82 ± 0.88 67.82 ± 0.72 34.48 ± 0.56 52.26 ± 0.55

Reptile + Transduction [Nichol and Schulman, 2018] 51.06 ± 0.45 66.30 ± 0.78 33.79 ± 0.29 51.27 ± 0.31
HSML + Transduction [Yao et al., 2019] 48.82 ± 0.86 66.74 ± 0.76 34.63 ± 0.55 51.47 ± 0.54

MMAML + Transduction [Vuorio et al., 2019] 48.52 ± 0.47 64.39 ± 0.47 33.69 ± 0.35 50.90 ± 0.29
FOMAML + Transduction [Finn et al., 2017] 50.12 ± 1.82 67.43 ± 1.80 31.53 ± 1.08 49.99 ± 1.36

MAML + Transduction [Finn et al., 2017] 50.48 ± 1.81 68.06 ± 1.75 34.25 ± 1.19 51.69 ± 1.33
TSA-MAML + Transduction 52.03 ± 0.86 68.97 ± 0.74 35.78 ± 0.58 52.50 ± 0.56

After learning three initializations, we sample 1,000 test
tasks from each sub-dataset of the group-structured dataset,
and then assign one initialization for each test task by first
using MAML to find its approximate optimal model θT
and selecting a learnt initialization with smallest distance
to θT . The values in the (i, j)-th grid in Fig. 3 denotes the
frequency that TSA-MAML assigns the i-th learnt initializa-
tion to the tasks from the j-th sub-dataset. From these results
in Fig. 3, one can observe that in most cases, TSA-MAML
assigns the same learnt initialization for the tasks from the
same sub-dataset. This well demonstrates that TSA-MAML
has leveraged the task similarity and thus can well learn the
group structures in the tasks, explaining the superiority over
state-of-the-arts.

5.2 EVALUATION ON THE REAL DATA

Datasets. We evaluate TSA-MAML on three benchmarks,
CIFARFS [Bertinetto et al., 2019], tieredImageNet [Ren
et al., 2018] and miniImageNet [Ravi and Larochelle,
2017] . CIFARFS is a recently proposed few-shot classi-
fication benchmark. It splits the 100 classes from CIFAR-
100 [Krizhevsky and Hinton, 2009] into 64, 16 and 20
classes for training, validation, and test respectively. Each
class contains 600 images of size 32× 32× 3. TieredIma-
geNet contains 608 classes from ILSVRC-12 dataset [Rus-
sakovsky et al., 2015], in which each class has 600 images
of size 84×84×3. Moreover, it groups classes into broader
hierarchy categories corresponding to higher-level nodes in
the ImageNet [Deng et al., 2009]. Specifically, there are total
34 top hierarchy categories which are further split into 20
training categories (351 classes), 6 validation categories (97
classes) and 8 test categories (160 classes). So all training
classes are sufficiently distinct from the test classes, giving a
more challenging learning task. MiniImageNet has the same
image number and size for each class as tieredImageNet,
but only contains 100 classes from ILSVRC-12 and also
does not have hierarchy structures.

Experimental setting. We use the same network architec-
ture, training strategy and task number n in Sec. 5.1. In
TSA-MAML, the training iteration number S is 40, 000
for CIFARFS and 80, 000 for tieredImageNet and miniIm-
ageNet, and the cluster number m is five for all datasets.
Like [Finn et al., 2017, Nichol and Schulman, 2018], we test
all methods on 600 test episodes under (non-)transduction
settings. In non-transduction, batch normalization statistics
are collected from all training data and one test sample. See
transduction setting in Sec. 5.1.

Results. From Table 2, one can observe that TSA-
MAML consistently outperforms optimization based meth-
ods, e.g. MAML, HSML and MMAML, and metric based
method, e.g. Matching Net. Specifically, on CIFARFS, TSA-
MAML respectively brings about 1.09%, 2.46%, 1.29%
and 2.81% improvements on the four test cases (from left
to right) under non-transduction setting, and under trans-
duction setting it also makes about 0.75%, 0.77%, 2.21%
and 2.48% improvements for the four cases. Similarly, on
tieredImageNet, it averagely improves by about 1.68% and
1.20% on the four test cases under non-transduction and
transduction cases. For the results on miniImageNet in Ta-
ble 4 of Appendix A, TSA-MAML also respectively makes
about 1.2% and 0.7% average improvement on four cases
under non-transduction and transduction settings. See more
details in Appendix A. These results demonstrate the ad-
vantages of TSA-MAML behind which the reasons have
been discussed in Sec. 5.1. Besides, compared with MAML,
TSA-MAML respectively makes about 1.73% and 1.44%
average improvements on CIFARFS and tieredImageNet.
These observations further confirm our theories in Sec. 3.2.

Fig. 4 shows the effects of initialization number m to the
testing performance of TSA-MAML. When m ranges from
3 to 11, the performance of TSA-MAML on 1-shot 10-way
learning tasks on CIFARFS are relatively stable. See similar
observations of the 5-shot 10-way tasks on CIFARFS in
Fig. 5 in Appendix A. So TSA-MAML is robust to m. This
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Figure 4: Effects of m to TSA-MAML.

is because assigning tasks into m groups means dividing
model parameter space into m regions and is not hard when
m is not large, as estimating approximate location of optimal
task models in the parameter space is sufficient and can be
achieved by MAML.

6 CONCLUSION

In this work, for the first time we theoretically justify the
effectiveness of a few gradient based adaptation and the
benefits of the learnt initialization for fast adaptation. Then
inspired by our theory, we propose TSA-MAML as a new
variant of MAML which leverages the task-similarity via
learning shared initialization for similar tasks to facilitate
learning new tasks. Experimental results on benchmark
datasets demonstrate the superiority of TSA-MAML over
the state-of-the-art methods.
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