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Latent Local-to-Unity Models∗

Jun Yu
Singapore Management University

May 5, 2021

Abstract
This paper proposes a class of state-space models where the state equa-

tion is a local-to-unity process. The large sample theory is obtained for the
least squares (LS) estimator of the autoregressive (AR) parameter in the AR
representation of the model under two sets of conditions. In the first set of
conditions, the error term in the observation equation is independent and
identically distributed (iid), and the error term in the state equation is sta-
tionary and fractionally integrated with memory parameter H ∈ (0, 1). It is
shown that both the rate of convergence and the asymptotic distribution of
the LS estimator depend on H. In the second set of conditions, the error
term in the observation equation is independent but not necessarily identi-
cally distributed, and the error term in the state equation is strong mixing.
When both error terms are iid, we also develop the asymptotic theory for an
instrumental variable estimator. Special cases of our models are discussed.

JEL classification: C12, C22, G01
Keywords: State-space; Local-to-unity; O-U process; Fractional O-U process;
Fractional Brownian motion; Fractional integration; Instrumental variable.

1 Introduction

Since the local-to-unity literature was initiated by Phillips (1987a) and Chan and

Wei (1987), the local-to-unity model has received so much attention both in theo-

retical studies and in empirical studies.1 The success of the local-to-unity model is
∗I would like to thank Peter Phillips, Liyu Dou, Yiu Lim Lui, Jia Li, Shuping Shi, and Xi-

aohu Wang for helpful discussion. Jun Yu, School of Economics and Lee Kong Chian School of
Business, Singapore Management University, 90 Stamford Road, Singapore 178903. Email: yu-
jun@smu.edu.sg.

1An incomplete list of contributions include Stock (1991), Elliott and Stock (1994), Cavanagh et
al. (1995), Wright (2000a), Elliott and Stock (2001), Gospodinov (2004), Valkanov (2003), Torous
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not surprising because (1) the local-to-unity model is more general than the exact

unit root model; (2) it well describes the dynamics of many macroeconomic time

series and financial time series; (3) the resulting asymptotic distribution better ap-

proximates the finite sample distribution than the asymptotic distribution under the

assumption of weak dependence.

However, the local-to-unity models used in practical applications assume the

variable of interest is observed without any error. This assumption can be too

strong in practice. For example, when a time series is obtained from a survey, many

forms of errors are possible, including recall errors and sampling errors. These so-

called measurement errors can occur with a systematic pattern that generates the

difference between the respondents’answers to a question and the actual values. See

Kasprzyk (2005) for possible sources of measurement errors and Bound et al. (2001)

for certain econometric consequences of measurement errors. For another example,

a time series is sometimes obtained from estimation. A well-known example that

motivates the present paper is the daily time series of realized volatilities (RV), which

are estimates of the daily integrated volatilities (IV). Andersen et al. (2003) and

Corsi (2009) introduce alternative models for RV. For the third example, a latent

time series may be related to an observed time series by definition or for structural

reasons. The class of the DSGE models and the class of stochastic volatility (SV)

models are among the interesting models in this example.

In this paper, we consider the following latent local-to-unity model:{
yt = ξt + wt
ξt = θT ξt−1 + vt, θT = 1 + c

T
, ξ0 ∼ Op(1)

, t = 0, ..., T, (1)

where {ξt} is a latent process that is local-to-unity with c ∈ (−∞,∞) being the local

coeffi cient. When θT = θ, which is independent of T , and when {wt} and {vt} are
serially independent Gaussian processes, the model is the popular linear Gaussian

state-space model. We deviate from the literature on linear Gaussian state-space

modeling by assuming θT is a function of T , and also, by allowing for more general

stochastic behavior for wt and vt.

We are not the first one that is concerned about the latency of a persistent

process. Motivated by the fact that RV is merely an estimate of IV, Hansen and

Lunde (2014) also consider model (1). However, our model is different from their

model in two aspects. First, Hansen and Lunde (2014) assume {wt} and {vt} are
et al. (2004), Rossi (2005), Campbell and Yogo (2006), Jansson and Moreira (2006), Mikusheva
(2007), Wang et al. (2019), Jiang et al. (2021), Dou and Müller (2021).
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serially independent. Our assumptions about {wt} and {vt} are more general, as
it will become clear later. Second, Hansen and Lunde (2014) assume θT = θ and

consider two cases in particular, θ < 1 and θ = 1. We focus our attention to the

case where θT = 1 + c
T
that includes the unit root as a special case. Like Hansen

and Lunde (2014), the parameter of interest in our paper is θT .

Model (1) may be rewritten as

yt = ξt + wt = θT ξt−1 + vt + wt = θTyt−1 + vt + wt − θTwt−1 := θTyt−1 + εt, (2)

where

εt = vt + wt − θTwt−1. (3)

When {wt} and {vt} are serially independent, {εt} is a local-to-unity moving av-
eraging (MA) process plus an iid process. While {εt} involves a local-to-unity MA
component, a property shared by the model of Dou and Müller (2021), our model is

very different from theirs because there is vt in it. We will address the implication

for this important difference later.

The paper is organized as follows. In Section 2, we assume {vt} is a stationary
fractionally integrated process and {wt} is an iid sequence. In Section 3, we assume
{vt} is strong mixing and {wt} is an independent but not necessarily identically dis-
tributed sequence. In the same section, we also investigate the large sample theory

of a more effi cient estimator when {vt} and {wt} are both iid. Section 4 concludes.
Appendix collects the proof of the theoretical results. Throughout the paper, we use
p→, ⇒, d→, d

=, iid∼ to denote convergence in probability, weak convergence, conver-

gence in distribution, and equivalence in distribution, independent and identically

distributed, respectively.

2 Latent Model with Fractionally Integrated Er-
rors

In the RV literature, a well-established stylized fact is a slowly decaying ACF for

daily RV. However, how to model the slowly decaying ACF has recently been de-

bated in the literature. An earlier attempt is to use a fractional process, namely

I(H − 0.5) with H ∈ (0.5, 1), to model the slowly decaying ACF.2 Important con-

2In the literature on fractional integration, parameter d has been traditionally used to represent
the memory parameter. In this paper, we use H to represent the memory parameter. The two
parameters are related to each other by d = H − 0.5.
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tributions include Andersen et al. (2001), Andersen et al. (2001), Andersen et

al. (2003). Andersen and Bollerslev (1997) provide an interesting explanation of

a slowly decaying ACF in volatilities (i.e. ACF at lag k is of order k2−2H with

H ∈ (0.5, 1) for large k so that the ACF is not absolutely summable) from the inter-

actions of a large number of heterogeneous information processes.3 Andersen et al.

(2003) introduce the ARFIMA(1, H−0.5, 0) model with H ∈ (0.5, 1) for log RV and

provide evidence that the model outperforms many alternative models in predicting

RV and log RV, including GARCH-type models and other high-frequency models.

Gatheral et al. (2018) establish a new stylized fact, namely, the roughness of

sample paths of RV. Consequently, a more recent attempt is to use continuous-time

models based on the fractional Brownian motion (fBm), denoted by BH(t) with H

being the Hurst parameter, to explain roughness in RV. To generate roughness, H

in BH(t) must be in (0, 0.5). Since the ACF of ARFIMA(0, H − 0.5, 0) and the first

difference of BH(t) have the same asymptotic behavior, the use of H < 0.5 in the

fBm is at odds with H > 0.5 used in the ARFIMA model.

Gatheral et al. (2018) find that the fBm with H = 0.14 has exceptionally good

performance in forecasting RV or log RV out-of-sample. It outperforms the AR(5),

AR(10), and HAR models in predicting the daily RV and log RV. Wang et al. (2019)

propose a two-stage estimation method for the fractional Ornstein—Uhlenbeck (fO-

U) process and develop large sample properties of the estimators. When applying the

method to the daily log RV, daily log realized kernel (RK), and daily log bipower

variation (BV), they find strong evidence of H < 0.5, although H > 0.5 is also

allowed in their model. The same paper also reports evidence of the near unity root

behavior, which leads to slowly decaying ACF at small and moderate lags. When

examining the forecasting performance of the fO-U model out-of-sample, it is found

that the fO-U model outperforms the random walk, AR(1), HAR, ARFIMA, fBm

in predicting the daily RV, daily log RV, daily log RK, daily log BV.

Instead of modeling RV or log RV directly, Fukasawa et al. (2021) and Bolko et

al. (2020) assume the log spot variance follows a continuous time model driven by the

fBm. In both studies, high-frequency data are used to construct daily RV, and the

estimation errors in the daily RV are taken seriously when the estimation equations

3Partly motivated by the presence of heterogeneous traders, Corsi (2009) proposes to use the
heterogeneous autoregressive (HAR) model to capture the slowly decaying ACF. The HAR model
has become a popular model in practice to forecast RV. An interesting observation of Table 2 in
Corsi (2009) is that the sum of the three autoregressive parameter estimates is very close to one
for USD/CHF and S&P500.
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are set up. In particular, Fukasawa et al. (2021) obtain the approximate spectral

density of the daily RV and then get the quasi-maximum likelihood estimate of H.

Bolko et al. (2020) obtain the expressions for moments of the daily RV and then use

the generalized method of moments to estimate H. When applying the proposed

method to real data, both studies report strong evidence ofH ∈ (0, 0.5). In addition,

Bolko et al. (2020) obtain strong evidence of the near unit root behavior in log spot

variance. Liu et al. (2020) assume the log spot variance follows the fO-U process.

Unlike Fukasawa et al. (2021) and Bolko et al. (2020), where high-frequency data

are used to obtain the daily RV, Liu et al. (2020) only use daily returns, and treat

log spot variance latent. A simulated maximum likelihood method is introduced to

estimate the model. Strong evidence of H ∈ (0, 0.5) and the near unit root behavior

is found in several empirical studies in Liu et al. (2020).

Motivated by this debate in the literature, together with the possibility that IV

is highly persistent, and the fact that daily RV is an approximation to daily IV, we

consider model (1) with the following three assumptions.

Assumption 1 wt
iid∼ (0, σ2

w). There exists k = max
{

4, 2
H
− 4
}
where H ∈ (0, 1)

such that E |wt|k <∞.

Assumption 2 (1− L)H−0.5 vt = et
iid∼ (0, σ2

e) with σ2
e > 0. There exists k =

max
{

4, 2
H
− 4
}
where H ∈ (0, 1) such that E |et|k <∞.

Assumption 3 wt and vs are independent for any t and s.

Remark 2.1 Assumption 1 allows {ξt} to be observed with iid errors.

Remark 2.2 Assumption 2 allows ξt to have an error term that is fractionally

integrated, I(H − 0.5). When H > 0.5, vt has a slowly decaying ACF such that the

ACF is not summable. When H = 0.5, vt = et becomes an iid sequence. When

H < 0.5, vt is antipersistent and has a fast-decaying ACF although the ACF of ξt
can decay slowly at small and moderate lags due to the local-to-unity. Assumption

2 implies that

vt =
∞∑
k=0

aket−k, with ak =
Γ(k +H − 0.5)

Γ(k + 1)Γ(H − 0.5)
∼ |k|H−1.5 for large |k| .

An I(H − 0.5) process is always stationary when H ∈ (0, 1). From Sowell (1990),

we know that

V ar

(
T∑
t=1

vt

)
=

σ2
eΓ(2− 2H)

2HΓ(H + 0.5)Γ(1.5−H)

[
Γ(H + 0.5 + T )

Γ(0.5−H + T )
− Γ(H + 0.5)

Γ(0.5−H)

]
5



∼ T 2H

[
σ2
eΓ(2− 2H)

2HΓ(H + 0.5)Γ(1.5−H)

]
:= T 2Hσ2

v, (4)

where σ2
v = σ2

eΓ(2−2H)
2HΓ(H+0.5)Γ(1.5−H)

is often referred to as the long-run variance of vt in

the literature. The instantaneous variance of vt (denoted by σ2
v) is

σ2
v := V ar (vt) =

σ2
eΓ(2− 2H)

(Γ(1.5−H))2 . (5)

Since V ar
(∑T

t=1 vt

)
∼ T 2Hσ2

v and E |et|
k < ∞ for k = max

{
4, 2

H
− 4
}
, according

to Davydov (1970, Theorem 2), we have the following functional central limit theorem

(FCLT):

1

THσv

[Tr]∑
t=1

vt ⇒ BH(r), as T →∞,

where [Tr] denotes the integer part of Tr and BH(r) is an fBm that is a Gaussian

process with mean zero and covariance function

Cov
(
BH(t), BH(s)

)
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, ∀t, s. (6)

An alternative definition of fBm is given by Mandelbrot and van Ness (1968) as

BH(t) =
1

Γ(H + 0.5)

{∫ 0

−∞

[
(t− s)H−0.5 − (−s)H−0.5

]
dW (s) +

∫ t

0

(t− s)H−0.5 dW (s)

}
,

where W (t) is a standard Brownian motion. Clearly, if H = 0.5, BH(r) becomes a

standard Brownian motion, W (r).

Remark 2.3 Since vt is a stationary I(H − 0.5) process, and {wt − θTwt−1} is an
m-dependent process by Assumption 1, εt defined in (3) is also a stationary I(H−0.5)

process due to Assumption 3. Note that the limit of the instantaneous variance of εt
(denoted by σ2

ε) is

σ2
ε := lim

T→∞
V ar (εt) = lim

T→∞

[
E
(
v2
t

)
+ E

(
w2
t

)
+ θTE

(
w2
t

)]
=

σ2
eΓ(2− 2H)

(Γ(1.5−H))2 + 2σ2
w,

(7)

and that

V ar

(
T∑
t=1

εt

)
= E

(
T∑
t=1

vt

)2

+ E

(
T∑
t=1

(wt − θTwt−1)

)2

= T 2Hσ2
v +

(
T (1− θT )2 − 2θT

)
σ2
w

6



= T 2Hσ2
v +

(
c2

T
− 2θT

)
σ2
w

∼ T 2Hσ2
v. (8)

Moreover, Assumption 1 and Assumption 2 imply that there exists k = max
{

4, 2
H
− 4
}

such that E |εt|k < ∞. Consequently, the FCLT of Davydov (1970) is applicable to
the partial sum process of {εt}. The FCLT for the partial sum process of {εt} is the
source of limits of several sample moments that we state in the following lemma.

Lemma 2.1 Let {yt}Tt=0 be the time series generated by (1). Let Assumptions 1-3

hold. Then, as T →∞,

1. 1
THσv

y[Tr] ⇒ JHc (r);

2. 1
T 1+2Hσ2

v

∑T
t=1 y

2
t−1

d→
∫ 1

0
JHc (r)2dr;

3. 1
T

∑T
t=1 yt−1εt

d→ −1
2

(
σ2
eΓ(2−2H)

(Γ(1.5−H))2 + 2σ2
w

)
, if H < 0.5;

4. 1
T

∑T
t=1 yt−1εt

d→ 1
2

(
σ2
vJc(1)2 − 2cσ2

v

∫ 1

0
Jc(r)dr −

(
σ2
eΓ(2−2H)

(Γ(1.5−H))2 + 2σ2
w

))
, ifH =

0.5;

5. 1
T 2H

∑T
t=1 yt−1εt

d→ σ2
v

2

(
JHc (1)2 − 2c

∫ 1

0
JHc (r)dr

)
, if H > 0.5.

where Jc(t) is an O-U process defined by

dJc(t) = cJc(t)dt+ dW (t), Jc(0) = 0,

and JHc (t) is an fO-U process defined by

dJHc (t) = cJHc (t)dt+ dBH(t), JHc (0) = 0. (9)

We consider the following LS estimator of θT , denoted by θ̂T ,

θ̂T =

∑T
t=1 ytyt−1∑T
t=1 y

2
t−1

= θT +

∑T
t=1 εtyt−1∑T
t=1 y

2
t−1

.

While the LS is not effi cient, it is a simpler alternative to the maximum likelihood

estimator (MLE) that can be obtained by the Kalman filter. However, MLE requires

the full parametric assumption about the model. Moreover, it does not have an

analytical expression.4

4In the case where vt ∼MA(q) with q <∞, another more effi cient estimator is the instrumental
variable estimator that has the analytical expression (see Hall (1989) and Hansen and Lunde
(2014)). However, in our model, vt ∼ I(H − 0.5) that can only be expressed as an MA(∞) unless
H = 0.5. As a result, it is not clear how to find valid instruments.
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Theorem 2.1 Let {yt}Tt=0 be the time series generated by (1). Let Assumptions 1-3

hold. Then, as T →∞,

T 2H
(
θ̂T − θT

)
d→ −

HΓ(H+0.5)
Γ(1.5−H)

+ 2HΓ(H+0.5)Γ(1.5−H)
Γ(2−2H)

σ2
w

σ2
e∫ 1

0
JHc (r)2dr

, if H < 0.5; (10)

T
(
θ̂T − θT

)
d→
Jc(1)2 − 2c

∫ 1

0
Jc(r)dr −

(
2HΓ(H+0.5)

Γ(1.5−H)
+ 4HΓ(H+0.5)Γ(1.5−H)

Γ(2−2H)
σ2
w

σ2
e

)
2
∫ 1

0
Jc(r)2dr

, if H = 0.5;

(11)

T
(
θ̂T − θT

)
d→
JHc (1)2 − 2c

∫ 1

0
JHc (r)dr

2
∫ 1

0
JHc (r)2dr

, if H > 0.5. (12)

Remark 2.4 When σ2
w = 0, there is no measurement error in ξt. If, in addition,

c = 0 (and hence, θ = 1), then the model is a unit root model without measurement

error. This model is studied in Sowell (1990) where it is shown that, as T →∞,

T
(
θ̂ − 1

)
d→
∫ 1

0
W (r)dW (r)∫ 1

0
W (r)2dr

, if H = 0.5, (13)

T
(
θ̂ − 1

)
d→

1
2
BH(1)2∫ 1

0
BH(r)2dr

, if H > 0.5, (14)

T 2H
(
θ̂ − 1

)
d→ −

H Γ(0.5+H)
Γ(1.5−H)∫ 1

0
BH(r)2dr

, if H < 0.5. (15)

As J0(t) = W (t) and JH0 (t) = BH(r), our results include those in Sowell (1990) as

special cases.

Remark 2.5 When σ2
w = 0, our model is closely related to the following model

considered in Wang et al. (2021):

ξt = θT ξt−1 + εt, θT = exp(c/T ) ≈ 1 +
c

T
, t = 1, ..., T, (16)

where εt is a fractional Gaussian noise (FGN) with memory parameter H ∈ (0, 1)

whose covariance function is

Cov
(
ηHt∆, η

H
s∆

)
= ∆2H 1

2

[
(k + 1)2H + (k − 1)2H − 2k2H

]
∼ H(2H−1)k2H−2 for large k = |t−s|.

For large k, the covariance function of an FGN is the same as that of ARFIMA(0, H−
0.5, 0) model. Wang et al. (2021) show that when ξt is observed, as T → ∞, we
have

T
(
θ̂T − θT

)
d→

(
Jc(1)2 − 2c

∫ 1

0
Jc(r)

2dr − 1
)
/2∫ 1

0
Jc(r)2dr

, if H = 0.5;

8



T
(
θ̂T − θT

)
d→

(
JHc (1)2 − 2c

∫ 1

0
JHc (r)2dr

)
/2∫ 1

0
JHc (r)2dr

, if H > 0.5;

T 2H
(
θ̂T − θT

)
d→ −1/2∫ 1

0
JHc (r)2dr

, if H < 0.5.

The results in Wang et al. (2021) are not the invariance principle as the error term

in model (16) is assumed to be normally distributed. However, since the FGN has

the same ACF as the I(H−0.5) process for large lags, our asymptotic theory is very

similar to that in Wang et al. (2021). The only difference is in the numerator of

the limiting distribution. This difference arises because the instantaneous variance

of the I(H − 0.5) process is different from that of FGN.

Let us conclude this section by relating our model with several interesting models

proposed in the literature.

Example 2.1 In Equation (35), Comte and Renault (1996) specify the following
model for the log spot variance:

dX(t) = −κX(t)dt+ σdBH(t), H > 0.5. (17)

It is well-known that the following discrete-time model

ξt∆ = e−κ∆ξ(t−1)∆ + (1− L)0.5−Het∆, et∆
iid∼
(

0,
1− e−2κ∆

2κ
σ2

)
, t = 1, ..., T, (18)

weakly converges to model (17), that is, δHΓ(H+1/2)
TH

ξbTrc ⇒ X(r), as ∆→ 0 (Tanaka,

2013). Clearly, model (18) is a local-to-unity model with the error term satisfying

Assumption 2. Comte and Renault (1996) impose the restriction that H > 0.5. This

restriction together with the local-to-unity feature will make the sample path of X(t)

very smooth.

Example 2.2 Breidt et al. (1998) propose the following long memory SV model:

rt = σeξt/2εt, εt
iid∼ N (0, 1) , (19)

ξt = θξt−1 + vt, (1− L)H−0.5vt = et
iid∼ N

(
0, σ2

e

)
. (20)

Let yt = log (r2
t ) = log σ2+1.27+ξt+wt where wt

iid∼ log
(
χ2

(1)

)
−1.27. The estimated

value for H−0.5 reported in Breidt et al. (1998) is 0.444, implying that H = 0.944.

If θ = 1 + c
T
, then the model is a special case of our model.

9



Example 2.3 Andersen et al. (2003) propose the following model for log RV,

ξt = µ+ θξt−1 + vt, (1− L)H−0.5vt = et
iid∼ N

(
0, σ2

e

)
.

If ξt is the log IV, θ = 1 + c
T
, and ξt is proxied by the observed log RV that is equal

to ξt + wt with {wt} being an iid sequence, then the model is a special case of our
model.

Example 2.4 Wang et al. (2019) specify the following model for log RV:

dξ(t) = −κξ(t)dt+ σdBH(t),

Different from the model in Comte and Renault (1996), a general H ∈ (0, 1) is

allowed in Wang et al. (2019). Since the discrete-time model specified in (18)

weakly converges to model (17) as ∆ → 0 for any H ∈ (0, 1), the model of Wang

et al. (2019) is closely related to a local-to-unity model with fractionally integrated

errors. If ξ(t) is the log IV and ξ(t) is proxied by the log RV that perturbs ξ(t) with

an iid error, then the model is closely related to our model.

Example 2.5 Liu et al. (2020) propose the following fractional SV model:

rt∆ = σeξt∆/2εt∆, εt∆
iid∼ N (0, 1) , (21)

ξt∆ = (1 + γ∆) ξ(t−1)∆ + σvη
H
t∆, (22)

where ηHt∆ := BH(t∆) − BH((t− 1) ∆) is a FGN. As shown earlier, the covariance

function of a FGN is the same as that of ARFIMA(0, H − 0.5, 0) model for large

lags. Let yt∆ = log (r2
t∆) = log σ2 + 1.27 + ξt∆ +wt∆ where wt∆

iid∼ log
(
χ2

(1)

)
− 1.27.

Then the fractional SV model is closely related to our model if ∆→ 0.

3 Latent Model with Strong Mixing Errors

While Assumptions 1-3 allow for fractionally integrated errors in the latent local-

to-unity model, no heteroskedasticity is allowed in {wt} or {vt}. It is possible that
{wt} and/or {vt} involve heteroskedasticity in practice and hence, it is important
to relax the requirement of homoskedasticity.

For example, heteroskedasticity may be in presence in {vt} when ξt is the spot
variance. The well-known square root model of Heston (1993) and the GARCH dif-

fusion model of Nelson (1990) are two widely used specifications for the spot variance
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that allow for heteroskedasticity in the error term of the discretized representation

via the Euler scheme. In the discretized square root model, the variance of vt is a

linear function of ξt. In the discretized GARCH diffusion model, the variance of vt
is a square function of ξt. This is the reason why we would like to relax the identical

assumption about vt.

For another example, heteroskedasticity arises in {wt} when one uses daily RV
to estimate daily IV. To compute the daily RV for a trading day t, let the intra day

return based on a particular sampling frequency M be

ri,t = pi/M,t − p(i−1)/M,t, where i = 1, 2, · · · ,M, (23)

where pi/M,t is the log price at time i/M on day t. The RV on day t is

RVt (M) =
M∑
i=1

r2
i,t. (24)

As M →∞,

RVt (M) =
M∑
i=1

r2
i,t

p→
∫ t

t−1

σ2
sds := IVt, (25)

where σ2
s is the spot variance. Moreover, according to Barndorff-Nielsen and Shep-

hard (2002), as M →∞,
√
M (RV t(M)− IV t)

d→ N(0, 2IQt), (26)

where

IQt =

∫ t

t−1

σ4
sds (27)

is the integrated quarticity (IQ).

To improve the accuracy of the asymptotic approximation, Barndorff-Nielsen and

Shephard (2005) suggest using the log RV to approximate the log IV and develop

the asymptotic distribution for the log RV, that is, as M →∞,
√
M (log (RV t(M))− log (IV t))

d→ N(0, 2IQt/IV
2
t ), (28)

The asymptotic theory given by (26) and (28) suggests the presence of het-

eroskedasticity when approximating IV (or log IV) by RV (or log RV).5 This is the

reason why we would like to relax the iid assumption about wt.

Unfortunately, for the FCLT to be applicable when the assumption of homoskedas-

ticity is relaxed, a form of strong mixing condition for {vt} is required as a trade-off.
5However, IQt/IV 2t is usually less time varying than IQt.
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Assumption 4 E(wt) = 0 for all t. {wt} is independent over t. Let σ2
w =

limT→∞
1
T

∑T
t=1E(w2

t ) exist. There exists k > 2 such that suptE |wt|
k <∞.

Assumption 5 E(vt) = 0 for all t. {vt} is strong mixing with mixing coeffi cient
αm satisfying

∑∞
m=0 α

1− 2
k

m <∞. There exists k > 2 such that suptE |vt|
k <∞. Let

both σ2
v = limT→∞

1
T

∑T
t=1 E(w2

t ) > 0 and σ2
v = limT→∞

1
T
E
(∑T

t=1 vt

)2

> 0 exist.

Assumption 6 wt and vs are independent for any t and s.

Remark 3.1 Assumption 4 allows {ξt} to be observed with independent but not
necessarily identically distributed errors.

Remark 3.2 Assumption 5 allows ξt to have an error term that could be serially

dependent and heteroskedastic. The assumption, also adopted in Phillips (1987a,

1987b), includes many stationary ARMA models as special cases. According to

Phillips (1987a, 1987b), the FCLT of Herrndorf (1983) is applied to the partial sum

process of {vt}, that is, as T →∞,

1

T 0.5σv

[Tr]∑
t=1

vt ⇒ W (r).

Remark 3.3 Since {vt} is strong mixing with mixing coeffi cient αm, and {wt − θTwt−1}
is an m-dependent process by Assumption 4, εt defined in (3) is also strong mixing

with mixing coeffi cient αm due to Assumption 5. Note that

σ2
ε := lim

T→∞
V ar (εt) = lim

T→∞

[
E
(
v2
t

)
+ E

(
w2
t

)
+ θTE

(
w2
t

)]
= σ2

v + 2σ2
w, (29)

and that

σ2
ε := lim

T→∞

1

T
V ar

(
T∑
t=1

εt

)
= lim

T→∞

1

T
E

(
T∑
t=1

vt

)2

+ lim
T→∞

1

T
E

(
T∑
t=1

(wt − θTwt−1)

)2

= σ2
v + 2σ2

w − 2σ2
w

= σ2
v. (30)

Consequently, the FCLT of Herrndorf (1983) is also applicable to the partial sum

process of {εt}.
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Remark 3.4 In Dou and Müller (2021), a generalized local-to-unity model is pro-
posed where the MA component of the model is local-to-unity, that is, εt = wt −(
1 + γ

T

)
wt−1. Assuming {wt} is iid, we can show that

σ2
ε := lim

T→∞

1

T
V ar

(
T∑
t=1

εt

)
= lim

T→∞

1

T
V ar

(
wT − w0 −

γ

T

T∑
t=1

wt−1

)
= 0.

This suggests that the FCLT cannot be applied to {εt} in their model although the
FCLT is applicable to their model with p autoregressive roots and p − 1 moving-

average roots, all local-to-unity with p > 1.

Lemma 3.1 Let {yt}Tt=0 be the time series generated by (1). Let Assumptions 4-6

hold. Then, as T →∞,

1. 1
T 0.5σv

y[Tr] ⇒ Jc(r);

2. 1
T 2σ2

v

∑T
t=1 y

2
t−1

d→
∫ 1

0
Jc(r)

2dr;

3. 1
Tσ2

v

∑T
t=1 yt−1εt

d→
∫ 1

0
Jc(r)dW (r) + 1

2

(
1− σ2

v+2σ2
w

σ2
v

)
.

Theorem 3.1 Let {yt}Tt=0 be the time series generated by (1). Let Assumptions 4-6

hold. Then, as T →∞,

T
(
θ̂T − θT

)
d→

∫ 1

0
Jc(r)dW (r) + 1

2

(
1− σ2

v+2σ2
w

σ2
v

)
∫ 1

0
Jc(r)2dr

. (31)

Remark 3.5 When c = 0, θ = 1. In this case, the model has a unit root and is a

special case of the model considered in Phillips (1987b). When c = 0, J0(r) = W (r)

and
∫ 1

0
J0(r)dW (r) = 1

2
(W (1)2 − 1) and hence, the asymptotic theory in (31) can

be rewritten as

T
(
θ̂ − 1

)
d→

1
2

(
W (1)2 − σ2

v+2σ2
w

σ2
v

)
∫ 1

0
W (r)2dr

.

This is the same as his Theorem 3.1(c).

Remark 3.6 When σ2
w = 0, there is no measurement error. In this case, the

model is a special case of the model considered in Phillips (1987a). That is why

equation (31) is the same as that in his Theorem 1(a) with σ2
v + 2σ2

w and σ
2
v being

the instantaneous variance and long-run variance.
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If both {wt} and {vt} are iid sequences (hence σ2
v = σ2

v), then εt is an m-

dependent process. In this case more effi cient estimation of θT can be achieved

by using valid instrument variables. Following Hall (1989) and Hansen and Lunde

(2014), we use yt−2 as the instrument variable and consider the following instrumen-

tal variable estimator of θT , denoted by θ̂
IV

T ,

θ̂
IV

T =

∑T
t=2 ytyt−2∑T
t=2 yt−1yt−2

= θT +

∑T
t=2 yt−2εt∑T
t=2 yt−1yt−2

.

Lemma 3.2 Let {yt}Tt=0 be the time series generated by (1). Let {wt} and {vt} are
iid sequences. Then, as T →∞,

1. 1
T 2σ2

v

∑T
t=2 yt−1yt−2

d→
∫ 1

0
Jc(r)

2dr;

2. 1
Tσ2

v

∑T
t=2 yt−2εt

d→
∫ 1

0
Jc(r)dW (r).

Theorem 3.2 Let {yt}Tt=0 be the time series generated by (1). Let {wt} and {vt}
are iid sequences. Then, as T →∞,

T
(
θ̂
IV

T − θT
)

d→
∫ 1

0
Jc(r)dW (r)∫ 1

0
Jc(r)2dr

. (32)

Remark 3.7 Our result in (32) extends the result of Hall (1989) to the local-to-
unity case. Compared to the asymptotic theory in (31), the asymptotic distribution

of the IV estimator only depends on c, not on the variances of the errors.

Remark 3.8 In this case, it is straightforward to show that the asymptotic theory
for the OLS estimator given in (31) can be rewritten as

T
(
θ̂T − θT

)
d→

∫ 1

0
Jc(r)dW (r) + 1

2

(
1− σ2

v+2σ2
w

σ2
v

)
∫ 1

0
Jc(r)2dr

. (33)

Since σ2
v+2σ2

w

σ2
v

> 1 as long as σ2
w > 0, compared to the asymptotic distribution in

(32), the asymptotic distribution in (33) involves an additional term,
1
2

(
1−σ

2
v+2σ2

w
σ2
v

)
∫ 1
0 Jc(r)

2dr
,

which only has the negative support.

Let us conclude this section by relating our model with several interesting models

proposed in the literature.
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Example 3.1 The random walk model has been widely used in the literature as the

benchmark for examining the forecasting performance. If one assumes the log IV

evolves according to the following random walk model

ξt = ξt−1 + vt, vt
iid∼ N

(
0, σ2

e

)
, t = 1, ..., T, (34)

and assumes the log IV is related to the log RV by

yt = ξt + wt, wt
iid∼ N

(
0,

2

M

IQt

IV 2
t

)
, (35)

then this model is a special case of our model.

Example 3.2 If one replaces equation (34) by the following local-to-unity AR(1)
model

ξt =
(

1 +
c

T

)
ξt−1 + vt, vt

iid∼ N
(
0, σ2

e

)
, t = 1, ..., T, (36)

and keep equation (35) intact, one would have another special case of our model.

Example 3.3 The HAR model proposed by Corsi (2008) is of the form

ξt = β1ξt−1 + β2ξt−5 + β3ξt−22 + ṽt, (37)

where ξt is the daily RV. We can rewrite Model (37) as

ξt = θξt−1 − β2

4∑
j=1

(
ξt−j − ξt−j−1

)
− β3

21∑
j=1

(
ξt−j − ξt−j−1

)
+ ṽt,

= θξt−1 + vt,

where θ = β1 + β2 + β3 and

vt = −β2

4∑
j=1

(
ξt−j − ξt−j−1

)
− β3

21∑
j=1

(
ξt−j − ξt−j−1

)
+ ṽt.

Since in practice, β1, β2 , β3 > 0 and β1 + β2 + β3 is close to one, we could assume

θ = 1 + c
T
. In this case, as β2 + β3 < 1, {vt} is stationary and satisfies the strong

mixing in Assumption (5). If we assumes ξt is daily IV that is related to daily RV

by

yt = ξt + wt, wt
iid∼ N

(
0,

2IQt

M

)
,

then the HAR model is a special case of our model.
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Example 3.4 A well-studied SV model is given by

rt = σeξt/2εt, εt
iid∼ N (0, 1) ,

ξt = θξt−1 + vt, vt
iid∼ N

(
0, σ2

v

)
.

Let yt = log (r2
t ) = log σ2 +1.27+ ξt+wt where wt

iid∼ log
(
χ2

(1)

)
−1.27. If θ = 1+ c

T
,

then the model is a special case of our model.

Example 3.5 Hansen and Lunde (2014) consider the following model

yt = ξt + wt,

θ(L)ξt = ϕ(L)vt,

where θ(L) and ϕ(L) are lag polynomial of orders p, q with p, q <∞. An important
special case considered by Hansen and Lunde (2014) is p = 1, q = 0, that is,

θ(L) = 1 − θL, ϕ(L) = 1. In this case, their model with θ = 1 is a special case

of our model. Although Hansen and Lunde (2014) is interested in the case where

{ξt} is stationary and the case where {ξt} is I(1), their empirical estimates of θ are
always very close to unity, indicating strong support to our model.

4 Conclusion

In this paper, we study the asymptotic properties of the LS estimator of the AR(1)

parameter in latent local-to-unity models. Two different sets of conditions are con-

sidered. In the first class of models, the error term in the observation equation is

iid, and the error term in the state equation is a stationary and fractionally inte-

grated sequence. In this case, when if H ≤ 0.5, the rate of convergence is T ; when if

H > 0.5, the rate of convergence is T 2H which is faster. The asymptotic distribution

depends on H. The asymptotic distribution has an additional term when H = 0.5

than when H > 0.5 and two additional terms than when H < 0.5. The discontinuity

in the asymptotic distribution is due to the order of the sum of squared errors in the

AR(1) representation of the model. In the second class of models, the error term in

the observation equation is independent and not necessarily identically distributed,

and the error term in the state equation is strong mixing. In this case, the rate of

convergence is T , and the asymptotic distribution is similar to what Phillips (1987a)

obtains for the observed local-to-unity model.
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While the models considered in our paper do not have an intercept, such restric-

tion can be lifted by adding an intercept to the measurement equation, that is, by

considering the following model,{
yt = α + ξt + wt
ξt = θT ξt−1 + vt, θT = 1 + c

T
, ξ0 ∼ Op(1)

, t = 0, ..., T, (38)

The asymptotic distributions of the LS estimator and the instrumental variable

estimator will be slightly different as demeaning is needed in the stochastic integrals.

This extension can be done in the same way as how Phillips and Perron (1988) extend

the results of Phillips (1987b).

Our model is similar to the class of models recently introduced in Dou and Müller

(2021) in the sense that the local-to-unity feature exists both in the autoregressive

component and in the moving average component. However, the local-to-unity fea-

ture comes from the state-space modeling strategy in our model, and hence, has a

natural structural interpretation. It would be interesting to compare the empirical

relevance of these two non-nested modeling strategies.

While the LS estimator has an analytical expression in our models, it is not

effi cient as it ignores the dependence of the error term in the AR(1) representation

of the model. The instrumental variable estimator is obviously more effi cient than

the LS estimator when the two error terms are serially independent, as it is man-

ifest in our asymptotic theory. If, in addition, the distributions of two errors are

Gaussian, another effi cient estimator can be constructed based on the Kalman filter

that maximizes the likelihood function. In unreported simulation studies, we have

found evidence that the instrumental variable estimator and the MLE share similar

effi ciency in finite samples for our model. How to obtain the asymptotic theory for

the MLE and what is the relative asymptotic effi ciency of the instrumental variable

estimator and the MLE are important questions to be investigated.

5 Appendix

Proof of Lemma 2.1
In model (2), under Assumptions (1)-(3), we have V ar

(∑T
t=1 εt

)
∼ T 2Hσ2

v as

T → ∞ by equation (8). By Assumption 1 and Assumption 2, there exists k =

max
{

4, 2
H
− 4
}
where H ∈ 0, 1) such that E |εt|k < ∞. By the FCLT of Davydov
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(1970), we have, as T →∞,

1

THσv

[Tr]∑
t=1

εt ⇒ BH(r).

From model (2), we have

yt = θTyt−1 + εt = θtTy0 +

t−1∑
j=0

θjT εt−j = θtTy0 +
t∑

s=1

θt−sT εs.

Let Sj =
∑j

i=1 εi and, when
j−1
T
≤ r < j

T
,

XT (r) =
1

THσv
S[Tr] =

1

THσv
Sj−1, for j = 1, ..., T.

Then, since y0 ∼ Op(1) and θ[Tr]
T ∼ O(1), we have

1

THσv
y[Tr] =

1

THσv
θ

[Tr]
T y0 +

1

THσv

[Tr]∑
s=1

θt−sT εs

=
1

THσv

[Tr]∑
s=1

(
1 +

c

T

)t−s
εs +Op

(
T−H

)
=

[Tr]∑
s=1

e([Tr]−j)c/T
∫ j/T

(j−1)/T

dXT (s) +Op

(
T−H

)
+Op(T

−1)

=

∫ 1

0

e(r−s)cdXT (s) +Op

(
T−H

)
= JHc (r) +Op

(
T−H

)
.

This proves (1) of the lemma. Part (2) of the lemma follows when we applying part

(1) and the continuous mapping theorem.

To prove part (3), note that

T∑
t=1

yt−1εt =
1

2θT

[
y2
T − y2

0 −
(
θ2
T − 1

) T∑
t=1

y2
t−1 −

T∑
t=1

ε2
t

]
.

By the law of large numbers, for any H ∈ (0, 1),

1

T

T∑
t=1

ε2
t

p→ σ2
ε =

σ2
eΓ(2− 2H)

(Γ(1.5−H))2 + 2σ2
w.

Hence,
∑T

t=1 ε
2
t = Op(T ) for any H ∈ (0, 1). However, the order of

∑T
t=1 ε

2
t relative

to those of y2
T and

(
θ2
T − 1

)∑T
t=1 y

2
t−1 depends on the value of H.

18



When H = 0.5,

1

T

T∑
t=1

yt−1εt =
1

2θT

[
y2
T − y2

0

T
− T

(
θ2
T − 1

) T∑
t=1

(
yt−1√
T

)2
1

T
− 1

T

T∑
t=1

ε2
t

]
d→ 1

2

{
σ2
vJc(1)2 − 2cσ2

v

∫ 1

0

Jc(r)dr −
(
σ2
eΓ(2− 2H)

(Γ(1.5−H))2 + 2σ2
w

)}
.

When H > 0.5,

1

T 2H

T∑
t=1

yt−1εt =
1

2θT

[
y2
T − y2

0

T 2H
− T

(
θ2
T − 1

) T∑
t=1

(yt−1

TH

)2 1

T
− 1

T 2H

T∑
t=1

ε2
t

]
d→ 1

2

{
σ2
vJ

H
c (1)2 − 2cσ2

v

∫ 1

0

JHc (r)dr

}
.

When H < 0.5,

1

T

T∑
t=1

yt−1εt =
1

2θT

[
y2
T − y2

0

T
− T

(
θ2
T − 1

) T∑
t=1

(
yt−1√
T

)2
1

T
− 1

T

T∑
t=1

ε2
t

]
d→ −1

2

(
σ2
eΓ(2− 2H)

(Γ(1.5−H))2 + 2σ2
w

)
.

This completes the proof of Lemma 2.1.

Proof of Theorem 2.1
The results in Theorem 2.1 follow directly from the continuous mapping theorem

and Lemma 2.1.

Proof of Lemma 3.1
In model (2), under Assumptions (4)-(6), εt is strong mixing with mixing coeffi -

cient αm. By Lemma 1 of Phillips (1987a), as T →∞,

1

T 0.5σv
y[Tr] ⇒ Jc(r),

1

T 2σ2
v

T∑
t=1

y2
t−1

d→
∫ 1

0

Jc(r)
2dr,

and
1

Tσ2
v

T∑
t=1

yt−1εt
d→
∫ 1

0

Jc(r)dW (r) +
1

2

(
1− σ2

v + 2σ2
w

σ2
v

)
,

since σ2
ε = σ2

v + 2σ2
w and σ

2
ε = σ2

v. This completes the proof of Lemma 3.1.

Proof of Theorem 3.1
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The results in Theorem 3.1 follow directly from the continuous mapping theorem

and Lemma 3.1.

Proof of Lemma 3.2
In model (2), when {vt} is an iid sequence, σ2

v = σ2
v and hence, σ

2
ε = σ2

v. By

Lemma 1 of Phillips (1987a), as T →∞,

1

T 0.5σv
y[Tr] ⇒ Jc(r).

By the above FCLT and the continuous mapping theorem, we have

1

T 2σ2
v

T∑
t=1

yt−1yt−2 =
1

T 2σ2
v

T∑
t=1

((
1 +

c

T

)
yt−2 + εt−1

)
yt−2

=
1

T 2σ2
v

T∑
t=1

y2
t−2 +

c

T 3σ2
v

T∑
t=1

y2
t−2 +

1

T 2σ2
v

T∑
t=1

yt−2εt−1

d→
∫ 1

0

Jc(r)
2dr,

since c
T 3σ2

v

∑T
t=1 y

2
t−2

p→ 0 and 1
T 2σ2

v

∑T
t=1 yt−2εt−1

p→ 0.

Moreover,

1

Tσ2
v

T∑
t=1

yt−2εt =
1

Tσ2
v

T∑
t=1

(
1

θT
yt−1 −

1

θT
yt−1 + yt−2

)
εt

=
1

θTTσ2
v

T∑
t=1

yt−1εt −
1

θTT 2σ2
v

T∑
t=1

εt−1εt

=
1

2θ2
Tσ

2
v

{
y2
T − y2

0

T
− T

(
θ2
T − 1

) T∑
t=1

(
yt−1√
T

)2
1

T
− 1

T

T∑
t=1

ε2
t

}
− 1

θTTσ2
v

T∑
t=1

εt−1εt

d→ 1

2

{
Jc(1)2 − 2c

∫ 1

0

Jc(r)
2dr − σ2

v + 2σ2
w

σ2
v

}
+
σ2
w

σ2
v

d
=

1

2

{
Jc(1)2 − 2c

∫ 1

0

Jc(r)
2dr − 1

}
d
=

1

2

∫ 1

0

Jc(r)dW (r),

where the third last step is due to the FCLT, continuous mapping theorem, and law

of large numbers, and the last step is from the well-known relationship between the

OU process and the standard Brownian motion (see equation (8) in Phillips (1987a)

for example).
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Proof of Theorem 3.2
The results in Theorem 3.2 follow directly from the continuous mapping theorem

and Lemma 3.2.
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