Singapore Management University
Institutional Knowledge at Singapore Management University

Centre for Computational Law Yong Pung How School of Law

12-2022

Compliance through model checking

Avishkar MAHAJAN
STRECKER Martin
Seng Joe WATT

Meng Weng (HUANG Mingrong) WONG
Singapore Management University, mwwong@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/cclaw

b Part of the Legal Writing and Research Commons, and the Science and Technology Law Commons

Citation

MAHAJAN, Avishkar; STRECKER Martin; WATT, Seng Joe; and WONG, Meng Weng (HUANG Mingrong).
Compliance through model checking. (2022). International Workshop on Al Compliance Mechanism
WAICOM 2022.

Available at: https://ink.library.smu.edu.sg/cclaw/3

This Conference Paper is brought to you for free and open access by the Yong Pung How School of Law at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Centre for
Computational Law by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/cclaw
https://ink.library.smu.edu.sg/sol
https://ink.library.smu.edu.sg/cclaw?utm_source=ink.library.smu.edu.sg%2Fcclaw%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/614?utm_source=ink.library.smu.edu.sg%2Fcclaw%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/875?utm_source=ink.library.smu.edu.sg%2Fcclaw%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Compliance through Model Checking

Avishkar Mahajan[0000-0002-9925-1533] '\fartin Strecker*0000—0001-9953—9871]
Watt Seng Joe[0000-0002-6883-4736] and Meng Weng Wong[0000—0003—0419— 9443]

Singapore Management University

Abstract. In this short note, we describe part of a case study about
Singapore’s Personal Data Protection Act, which we first presented in-
formally, then formally as interacting Timed Automata. From these, we
derive desiderata on a language and verification framework for reasoning
about compliance.

Keywords: Compliance, Knowledge representation and reasoning, Computa-
tional Law, Model Checking

1 Introduction

With the present paper, we intend to provide solutions to the problem of spec-
ifying and enforcing compliance in particular in state-based, time-dependent
systems. Our solutions are far from complete or conclusive — our short note is
meant to present a snapshot of our current work and to contribute to a discus-
sion about relevant issues: when are legal requirements coherent (so that they
can be implemented)? How can compliance be technically enforced? How can
violations be detected and error scenarios be communicated?

Our contribution first presents a case study that we have been working on
at Singapore’s Centre for Computational Law, CCLAW!, dealing with a partic-
ularly relevant fragment of publicly available legislation and regulation: Singa-
pore’s Personal Data Protection Act. It will be described informally in Section 2.
We will then proceed to a formal analysis in Section 3, highlighting some prob-
lems of the current legislation that could be termed an internal inconsistency
and that has in part been revealed by the formal analysis. We then conclude
with a description of desiderata on a language and verification framework for
reasoning about compliance, in Section 4.

Our approach continues work on “contracts as automata” [7] and has simi-
larities with other automata-based approaches for reasoning about contracts, in
particular [3,10].

* part of the work carried out at Toulouse University
Y https://cclaw.smu.edu.sg/

https://cclaw.smu.edu.sg/

2 Case Study: PDPA

Singapore’s Personal Data Protection Act [11] consists of a set of rules governing
the use of personal data in private and public organizations, and describes actions
to be taken if a data breach is detected. It consists on the one hand of constitutive
rules, i.e. definitions specifying what is considered a data breach and under which
conditions it is deemed a notifiable data breach. On the other hand, regulative
rules prescribe which actions need to be taken if a notifiable data breach is
detected.

The constitutive rules are sufficiently voluminous and complex to warrant the
development of an expert system assisting organizations in assessing whether a
data breach is notifiable. In the CCLAW project, we have developed such a
system. The regulative rules are seemingly less involved but sufficiently intricate
that actors that precisely follow the rules may wind up in a state where they have
breached the law. The complexity results from the interplay of temporal condi-
tions that remain implicit and that would have to be explicated to guarantee
lawful behavior.

We here give an abridged account of the relevant rules; for details, see §§ 26 A
to E of [11] that leads to and motivates our formalization in Section 3. The PDPA
identifies three actors in a data breach scenario:

— the organization in which a data breach has occurred;

— the Personal Data Protection Commission (PDPC, henceforth only called
the commission), the governmental authority that has to be notified in case
of a breach;

— the individual affected by a data breach. The abstraction of the multitude
of affected individuals to a single entity is already done in the law text and
seems appropriate as there is no interaction among the individuals.

The temporal requirements are as follows:

— When a data breach is detected, the organization has up to thirty days to
assess whether the data breach is notifiable; if it is not, no further action is
required, and the process stops there.

— If the breach is notifiable, the organization is obliged to inform the commis-
sion within three days of having recognized the breach as notifiable.

— If the breach is notifiable, any affected individual also has to be informed
within the three day period.

— The organization must not notify an affected individual if the commission
so directs.

The inconsistency, that was in part revealed by the formalization and then
confirmed by model checking, arises from the lack of temporal coordination be-
tween the action of informing the commission and the individual, and possibly
the interdiction by the commission to inform the individual.

3 Formal Analysis

3.1 Formal Model

We have carried out a formal analysis of this scenario with Timed Automata
(TA) in the Uppaal [9] model checker. The global setup is shown in Figure 1.
There are three interacting automata, one for each of the above-mentioned ac-
tors. The states carry names (in mauve), the initial states are marked with a
double circle. The automata synchronize via messages (in turquoise), where a
send action is indicated by an exclamation and a receive action by a question
mark. Transitions may depend on Boolean conditions (here: variables such as
isNotifiable) and on temporal conditions modeled with the aid of clocks.
In this example, there is one clock, c1, that is zero in the initial state, and
that is again reset to zero in the transition from the state breachDetected to
breachDeterminedNotifiable.

Name: [Commission Parameters: ¢| Name: [individual Parameters:

notifindivProhibited

ignorant informed
acceptingNotification

©

evaluatingNotj

notifindivRequested E notifylndiv?

otifyPDPC?

(a) Commission (b) Individual

B

File Edit View Tools Options Help

EIC

&)[s]+|[a[a]a]] e]<]2[¥]
Editor | Simulator | ConcreteSimulator | Verifier

Name: [Organisation Parameters: |

b Project
[J Dedarations
- %9 commission breachDetected breachDeter

[5) Declarations)
¢T3 Individual . TsNotifiable = selectNotiiable A

B Dedlarations isNotifiable and cf <= 30 c<=3
¢ ¥4 [Organisation o
J Declarations a:=0 notifyPDPC

individualNotified [

O

s
<

O

notifylndiv

o not isNotifiable
[System declarations

notificationNotRequired

(c) Organization
Fig. 1: Automata modeling the PDPA scenario

According to the TA semantics, there are two kinds of transitions: the pas-
sage of time, at the same rate in all automata, or discrete state changes along
enabled transitions, i.e. transitions whose conditions are satisfied. In case sev-
eral transitions are enabled, one of them is chosen non-deterministically. This
happens for example in the Commission automaton after receiving a notification
(notifyPDPC?), modeling the fact that the commission’s decision to prohibit
or request the notification of the affected individual is autonomous and not in-
fluenced by external factors. The Individual automaton only provides two states
corresponding to whether the individual has not yet / has been notified.

The Organization automaton is the most complex one: the very first tran-
sition is a modeling artifact for giving a random Boolean value to the variable
isNotifiable. If the data breach is not notifiable, the process ends. If the
breach is determined to be notifiable within 30 days, the timer is reset to allow
for a 3 day period before the notification is carried out. We have here made the
choice to sequentialize the notifications (the commission, then the individual).
An interleaved execution would be preferable but is hampered by limitations of
Uppaal (no nested parallel automata).

Let us note that our automaton model is not complete: not every execution
of the automata will run to completion, i.e. wind up in one of the end nodes
of the automata. Instead, an execution can get stuck in an intermediate state.
This choice is deliberate, but open to debate: adding failure states for every
undesirable run would clutter up the automata; some runs may legitimately be
infinite without clearly identified end states; and, as seen below, such deadlock
states can be detected.

3.2 Checking the Model

The model can be validated in several respects. The simplest form corresponds to
testing in traditional program development. For this, Uppaal (and similar tools)
provides a simulation environment whose purpose is to step through the model
depending on user-selected criteria, for example the values of Boolean variables
or the duration of staying in particular system states. We will not further dwell
on simulation, also because error traces (see below) can be run in the simulator.

Contrasting with simulation is a systematic state space exploration by model
checking. Model checking can be used in legal drafting mode, to discover inco-
herences in a law. It can also be used in “production” mode to identify illegal
behaviors and possible contrary-to-duty repair actions. We will present examples
of the two kinds below.

Editor | Simulator Verifier

g0
dgefaon)

orant,)
(acceptingNot react
ot TGRS - AT
evaluat pdpeNori
a0
(otifindivProhibite
ot -1
fy nosficstonotiequired

in
((notfindivProhibited,informed,individualNotified)

Trace File:

N T

open | ¥ swe Rand...

siow Fast c T o

Fig. 2: Failure trace

Model checking tries to verify if a system’s behavior conforms to requirements
that are typically stated in a formal logic, here the temporal logic CTL. We give
a few examples in our scenario:

— A desirable property is that it is possible to reach a state such that the
individual is informed and the commission requests informing the individual.
This property is written as

E<>I.informed and C.notifIndivRequested

Here, E<> means: “there exists a run eventually leading to”. and I.informed
and C.notifIndivRequested refer to the corresponding states in the In-
dividual and Commission automata. This property is indeed satisfied.

— An undesirable situation is that the individual is informed in spite of the
commission having prohibited it, expressed by the formula

E<> I.informed and C.notifIndivProhibited

. This property is also satisfied, and Uppaal produces a trace (Figure 2)
leading to this error situation. It comes about because the organization has
no clue at which point the commission’s interdiction to inform the individual
could intervene, and is therefore entitled to inform the individual as soon as
a data breach is identified.

— Another undesirable behavior is when the execution of the process gets stuck,
or, more precisely, when there is a deadlock, in a system state that is not per-
ceived as final. Note that in a technical sense, according to the terminology
of labelled transition systems, every system with final states is deadlocked in
these states. Identifying deadlocks in “intermediate” states may contribute to
finding leaks in the formal model, or states that correspond to breaches of the
law. For example, the intermediate state breachDeterminedNotifiable
is identified by the query

E<> O.breachDeterminedNotifiable and deadlock

as a deadlock state. Indeed, in this state, no action is possible when the
notification deadline of 3 days has been exceeded.

4 Discussion: Extensions and Refinements

4.1 Refining the Model

The formal model could be perceived as “incomplete” in several respects. As
shown by the formal analysis of Section 3, some behaviors are undefined (and
lead to deadlocks), others are under-specified. In particular, a precise interaction
between the commission and the organization is not made explicit in the law text,
which might question the tenet of “isomorphism” [4] between law texts and formal
representations: the formal representation possibly has to make completions to
avoid undesirable situations.

One such completion would be the following: the commission communicates
its decision back to the organization before the organization informs the indi-
vidual. Such a provision is currently not foreseen in the law text. In order for
the deadline of informing the individual (call it d;) to be satisfied, the commis-
sion’s response (call it d.) would have to arrive before: d. < d;. These additional
constraints can be incorporated into the automaton model and would avoid the
above error scenario.

4.2 Realizability

Laws are requirements that constrain processes adopted by companies and or-
ganizations and that are often described by business processes [12].

We take an automaton such as in Figure lc as an abstract specification of
a business process. Depending on an organization’s internal functioning, such
an abstract description will be further refined, typically by adding new states
(for example to guide the investigations to determine if a breach is notifiable).
We will then have two automata, the abstract one (such as in Figure 1c) and
its refinement (the business process, possibly specified in a dedicated language
such as BPMN). Since tools such as Uppaal do not offer support for refinement
checking, our project currently works on a language for describing refinements
and for verifying them.

Of particular interest for the legal drafter in this context is the question of
realizability: can laws be implemented under realistic conditions? To continue the
example of Section 4.1: formally, the requirement d. < d; on the deadlines is not
a sufficient guarantee for realizability under realistic conditions: the difference
d; — d. can become arbitrarily small. Detecting such inconsistencies is part of
our ongoing work.

4.3 Modularization through Rely-Guarantee Reasoning

The previous discussion highlights another desideratum: modularization. The
organization can only satisfy requirements imposed on them when other actors
(such as the commission) satisfy theirs. For separate refinement (in the sense of
Section 4.2) to work, an (abstract) automaton should be annotated with require-
ments it expects its environment to provide (the rely part of its specification) in
order to deliver the promise it makes about its behavior (the guarantee of the
specification).

Without having clearly identified solutions, we are interested in exploring the
duality of notions such as permissions (and reliance statements in a specification)
and obligations (guarantees) known from deontic logics, notions that have been
largely explored, among others, in LogiKEy [6].

A whole line of work is concerned with formal contracts [5], and in particular
notions of modularization and refinement [2,8]. In a legal context, similar ideas
have in particular been proposed as a temporal logic of normative systems [1].

Acknowledgements. This research / project is supported by the National Re-
search Foundation, Singapore under its Industry Alignment Fund — Pre-positioning
(IAF-PP) Funding Initiative. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not
reflect the views of National Research Foundation, Singapore.

References

1. Agotnes, T., van der Hoek, W., Rodriguez-Aguilar, J.A., Sierra, C., Wooldridge,
M.: A temporal logic of normative systems. In: Towards Mathematical Philosophy,
pp. 69-106. Springer (2009)

2. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Broy, M., Gruenbauer,
J., Harel, D., Hoare, C. (eds.) Engineering Theories of Software-intensive Systems.
NATO Science Series, vol. 195, pp. 83-104. Springer (2005)

3. Azzopardi, S., Pace, G.J., Schapachnik, F., Schneider, G.: Contract automata:
An operational view of contracts between interactive parties. Artificial Intelli-
gence and Law 24(3), 203-243 (September 2016). https://doi.org/10.1007/
s10506-016-9185-2

4. Bench-Capon, T.J.M., Gordon, T.F.: Isomorphism and argumentation. In:
The 12th International Conference on Artificial Intelligence and Law, Pro-
ceedings of the Conference, June 8-12, 2009, Barcelona, Spain. pp. 11—
20. ACM (2009). https://doi.org/10.1145/1568234.1568237, https://
doi.org/10.1145/1568234.1568237

5. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J., Reinkemeier,
P., Sangiovanni-Vincentelli, A.L., Damm, W., Henzinger, T.A., Larsen, K.G.: Con-
tracts for system design. Found. Trends Electron. Des. Autom. 12(2-3), 124—
400 (2018). https://doi.org/10.1561/1000000053, https://doi.org/
10.1561/1000000053

6. Benzmiiller, C., Farjami, A., Fuenmayor, D., Meder, P., Parent, X., Steen, A., van
der Torre, L., Zahoransky, V.: LogiKEy workbench: Deontic logics, logic combina-
tions and expressive ethical and legal reasoning. Data in Brief 33, 106409 (2020)

7. Flood, M.D., Goodenough, O.R.: Contract as automaton: representing a sim-
ple financial agreement in computational form. Artif. Intell. Law 30(3), 391-416
(2022). https://doi.org/10.1007/s10506-021-09300-9, https://doi.
0org/10.1007/s10506-021-09300-9

8. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans.
Program. Lang. Syst. 16(3), 843-871 (1994). https://doi.org/10.1145/
177492.177725, https://doi.org/10.1145/177492.177725

9. Larsen, K.G., Pettersson, P.; Yi, W.: Uppaal in a nutshell. International journal
on software tools for technology transfer 1(1), 134-152 (1997), http://user.it.
uu.se/~yi/pdf-files/2017/nutshell.pdf

10. Parvizimosaed, A., Roveri, M., Rasti, A., Amyot, D., Logrippo, L., Mylopoulos,
J.: Model-checking legal contracts with symboleopc. In: Proceedings of the 25th
International Conference on Model Driven Engineering Languages and Systems.
pp. 278-288 (2022)

11. Singapore Statutes Online: Personal data protection act (2012), https://sso.
agc.gov.sg/Act/PDPA2012

12. Van der Aalst, W.M.: Business process management: a comprehensive survey.
International Scholarly Research Notices 2013 (2013), http://www.padsweb.
rwth-aachen.de/wvdaalst/publications/p712.pdf

https://doi.org/10.1007/s10506-016-9185-2
https://doi.org/10.1007/s10506-016-9185-2
https://doi.org/10.1007/s10506-016-9185-2
https://doi.org/10.1007/s10506-016-9185-2
https://doi.org/10.1145/1568234.1568237
https://doi.org/10.1145/1568234.1568237
https://doi.org/10.1145/1568234.1568237
https://doi.org/10.1145/1568234.1568237
https://doi.org/10.1561/1000000053
https://doi.org/10.1561/1000000053
https://doi.org/10.1561/1000000053
https://doi.org/10.1561/1000000053
https://doi.org/10.1007/s10506-021-09300-9
https://doi.org/10.1007/s10506-021-09300-9
https://doi.org/10.1007/s10506-021-09300-9
https://doi.org/10.1007/s10506-021-09300-9
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/177492.177725
http://user.it.uu.se/~yi/pdf-files/2017/nutshell.pdf
http://user.it.uu.se/~yi/pdf-files/2017/nutshell.pdf
https://sso.agc.gov.sg/Act/PDPA2012
https://sso.agc.gov.sg/Act/PDPA2012
http://www.padsweb.rwth-aachen.de/wvdaalst/publications/p712.pdf
http://www.padsweb.rwth-aachen.de/wvdaalst/publications/p712.pdf

	Compliance through model checking
	Citation

	Compliance through Model Checking

