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ABSTRACT
Video domain adaptation is non-trivial due to video is inherently
involved with multi-dimensional and multi-modal information. Ex-
isting works mainly adopt adversarial learning and self-supervised
tasks to align features. Nevertheless, the explicit interaction be-
tween source and target in the temporal dimension, as well as the
adaptation between modalities, are unexploited. In this paper, we
propose Mix-Domain-Adversarial Neural Network and Dynamic-
Modal-Distillation (MD-DMD), a novel multi-modal adversarial
learning framework for unsupervised video domain adaptation. Our
approach incorporates the temporal information between source
and target domains, as well as the diversity of adaptability between
modalities. On the one hand, for every single modality, we mix
the frames from source and target domains to form mix-samples,
then let the adversarial-discriminator predict the mix ratio of a
mix-sample to further enhance the ability of the model to capture
domain-invariant feature representations. On the other hand, we
dynamically estimate the adaptability for different modalities dur-
ing training, then pick the most adaptable modality as a teacher to
guide other modalities by knowledge distillation. As a result, modal-
ities are capable of learning transferable knowledge from each other,
which leads to more effective adaptation. Experiments on two video
domain adaptation benchmarks demonstrate the superiority of our
proposed MD-DMD over state-of-the-art methods.

CCS CONCEPTS
• Information systems→Multimedia streaming.

KEYWORDS
Dynamic-Modal-Distillation, Video Domain Adaptation, Adversar-
ial Learning
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1 INTRODUCTION
Unsupervised domain adaptation (UDA) [44] has drawn significant
research attention in recent years, which aims to transfer a model
trained on a labelled source domain to an unlabelled target domain
with different distribution. UDA is of great value by alleviating the
demand to acquire time-consuming and expensive labelled data
to train notoriously data-hungry deep neural networks. Existing
works [3, 7, 17, 30, 35, 43, 51] have made great progress in image-
based domain adaptation. Nevertheless, it is still not sufficiently
explored in video-based domain adaptation. Unlike the image, video
is naturally multi-modal (e.g., RGB and Optical Flow) and multi-
dimensional (i.e., spatial and temporal information), making video
domain adaptation much more challenging.

The dominated video domain adaptation methods are mainly
based on adversarial learning (AL) [6, 20, 29, 32] due to the sim-
plicity and excellent performance of AL. The AL-based methods
add adversarial domain discriminators to distinguish the extracted
features from which domain, and the feature extraction network is
forced to learn domain-invariant feature representation by adversar-
ially trained with discriminator. AL methods are easy to implement
by adding a few standard layers with a gradient reversal layer as
a plug-and-play unit [12], which has been widely used for image-
based tasks. However, there are very few works to explore how
to improve adversarial learning in video domain adaptation. Ex-
isting AL-based video domain adaptation methods naively match
sample-level feature distributions, which do not make full use of
the temporal information between source and target domains. Be-
sides, self-supervised learning (SSL) for feature alignment in cross-
domain has been studied extensively in recent years, and significant
progress has been made [8, 23, 28, 34, 37]. The SSL-based methods
design various self-supervised sub-tasks to enhance the robustness
of feature extraction and the alignment between different modal-
ities, then assign pseudo labels to the target data to better align
domain-invariant features. Contrastive learning is widely used in
self-supervised sub-tasks, which include complicated feature space
projections and similarity calculations. Moreover, the performance
on the target domain heavily depends on the reliability of the as-
signment of pseudo labels.

https://doi.org/10.1145/3503161.3548313
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In the literature, it is a common practice to make use of the
correlation between different modalities to enhance the domain
adaptation performance, as video is related to multiple modalities,
for instance, [23, 28, 29, 37]. In addition, it is shown that domain
shift in different modalities varies, resulting in the performance of
the sub-model for each modality being distinct [28, 29]. [28] makes
use of the modal-diverseness through Asynchronous Learning. Its
superior performance indicates the potential of exploring themodal-
ities’ differences for domain adaptation. However, most existing
multi-modal domain adaptation methods [23, 29, 37] treat different
modalities equally. How to utilize the difference in adaptability
among the modalities is yet to be explored.

This paper addresses the aforementioned limitations for video
domain adaptation by combining the multi-dimensional source and
target data with adversarial learning and further making use of the
modal diversities in videos. The main idea of our approach is shown
in Figure 1. Specifically, we propose Mix-Domain-Adversarial Neu-
ral Network (Mix-DANN), which extends DANN [12] with mix-
samples. For each modality, we firstly mix the source and target
samples with a specified ratio along the temporal dimension to pro-
duce mix-samples, which are also regarded as inputs for the model
like the vanilla-samples (i.e., original samples). Unlike DANN [12],
the adversarial domain discriminator not only needs to distinguish
which domain the feature comes from when the input is a vanilla-
sample but also should identify the mix ratio between source and
target domains when the input is a mix-sample. A non-adversarial
mix-sample classifier is also added as a self-supervised auxiliary
task. As a result, the ability to capture domain-invariant feature
representation is further enhanced. Additionally, Dynamic-Modal-
Distillation (DMD) is proposed by taking advantage of the diversi-
ties within different modalities. Knowledge distillation [18] is em-
ployed to transfer the knowledge from the most adaptable modality
to other modalities during training. We dynamically add the loss
from the mix-sample discriminator and the adversarial losses as
Teacher Score to measure the degree of adaptation for each modal-
ity. A higher Teacher Score indicates the model is more confusing
to get the domain-relevant information from the features, i.e., the
features are more domain-invariant and adaptable. After obtaining
the adaptability to the target domain of each modality, the most
adaptable modality is set to play the role of the teacher to guide
the other less adaptable modalities. In the whole training process,
modalities guide and reinforce each other alternatively. Finally,
the multi-modal model achieves stronger adaptability in the target
domain.

We examine the performance of MD-DMD on two video domain
adaptation benchmarks, EPIC-Kitchens [9, 10] and UCF-HMDB [24,
38] datasets. Experimental results demonstrate that Mix-DANN
improves accuracy in every single modality, and Dynamic-Modal-
Distillation can boost the multi-modal model’s adaptability. By
combining these two components, MD-DMD outperforms state-of-
the-art methods for unsupervised video domain adaptation.

The main contributions of this paper are as follows:

• A novel Mix-DANN method is proposed to leverage adver-
sarial learning in video tasks in a single modality, which
makes full use of the temporal dimension of video inputs to

Figure 1: The main idea of our proposed approach. The
MixDANN is used to align feature distribution from the
source and target domains within a modality and then pro-
duces a teacher score to measure the modality’s adaptability.
Dynamic-Modal-Distillation is used to dynamically transfer
knowledge from the most adaptive modality to other less
adaptive modalities based on teacher scores.

enhance adversarial strength and let the single-modal model
learns more domain-invariant feature representations.

• We propose a novel Dynamic-Modal-Distillation method
that dynamically measures the adaptability of each modal-
ity during training, and then the adaptability score enables
modalities to teach each other domain adaptable knowledge
by knowledge distillation. Our method is the first attempt
to leverage the knowledge distillation technique to solve
multi-modal domain adaptation problems.

• Experimental results demonstrate the effectiveness of the
proposed components, and the overall MD-DMD achieves
state-of-the-art performance in unsupervised action recog-
nition domain adaptation benchmark datasets.

2 RELATEDWORK
The proposed MD-DMD is closely relevant to research areas, in-
cluding supervised video classification, unsupervised domain adap-
tation, video domain adaptation, and knowledge distillation.

2.1 Supervised Action Recognition
Action recognition is the basic problem in video understanding,
which can be roughly divided into two categories: 2D-CNN [22]
or 3D-CNN [21] based methods. Besides RGB frames, Optical Flow
is commonly used in action recognition models. Two-stream net-
works [36] is an effective 2D-CNN based method that provides a
basic architecture for multi-modal models. C3D [41] is a milestone
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for 3D-CNNs. I3D [5] extends the two-stream networks by inflating
the 2D convolution layers to 3D and initializing the corresponding
3D layers with pre-trained 2D CNNs. Besides, several works are pro-
posed to further incorporate the temporal relations between frames,
e.g., Non-Local [46], SlowFast [11], Group Contextualization [16].
And a lot of works focus on reducing the high computational cost of
3D convolutions [33, 42, 47–49]. In addition, compared with CNN
models, transformers recently show great potential and promising
results in action recognition [1, 27, 45, 50]. However, the perfor-
mance of these models deteriorates significantly when directly
applied to domains with different distribution. Our focus is to im-
prove the performance of the action recognition models without
extra labels in the target domain.

2.2 Unsupervised Domain Adaptation
Typical unsupervised domain adaptation (UDA) approaches can be
summarized into three categories [44]: discrepancy-based, adversarial-
based, and reconstruction-based. The discrepancy-based methods
work by aligning the statistical distribution shift between the source
and target domains, e.g., MMD [13], CORAL [39], KL [52] and
BN [19]. The adversarial-based methods use a domain discrimina-
tor that distinguishes whether the extracted features are from the
source or target domain to encourage domain confusion through
an adversarial objective, e.g., DANN [12] and ADDA [43]. The
reconstruction-based methods reconstruct the features of target
samples, which is helpful for improving the performance on the
target domain, e.g., TLDA [52] and DRCN [14]. More recently, sev-
eral works have designed self-supervised auxiliary tasks to help
learn transferable features for DA, e.g., JiGen [4] and [40].

2.3 Video Domain Adaptation
Most UDA methods are proposed mainly for image tasks, while
video domain adaptation received less attention until recent years.
Several works attempt to extend the UDA methods from image
to video case. Adversarial-based methods are widely used due to
efficiency and simplicity. DAAA [20] and MM-SADA [29] align the
features from different domains by adding a domain-discriminator
as DANN [12]. However, they both triviallymatch the segment-level
feature distribution without making use of the temporal dimension
in adversarial training. TA3N [6] and TCoN [32] combine the adver-
sarial framework [12]with different attentionmechanisms, but their
works are not proposed for multi-modal architectures, which are
commonly used in video tasks. Besides adversarial-based methods,
self-supervised methods, especially contrastive learning, for video
DA gains significant attention in recent years. A dizzying variety of
self-supervised auxiliary tasks are designed. SAVA [8] uses the clip
order prediction as an auxiliary task, which is proposed for RGB
single modality. CoMix [34] utilizes temporal contrastive learning
by minimizing or maximizing the similarity of different videos or
the same video played at different speeds and using background
mixing to leverage action semantics shared across both domains.
The CoMix is also proposed for RGB single modality, and prior back-
ground subtraction techniques are required. STCDA [37] proposes
spatio-temporal contrastive learning and video-based contrastive
alignment to establish the cross-modal domain alignment, and a
cluster algorithm was used to assign pseudo-labels to target data.

CrossModal [23] simultaneously uses cross-modal contrastive learn-
ing to align cross-modal representations from the same video and
cross-domain contrastive learning to align representations between
the source and target domains in each modality, pseudo-labels are
assigned by setting a certain threshold. The multi-modal models
mentioned above are all treated each modality equally. However,
the degrees of domain shift and the adaptability of different modal-
ities are usually diverse (Observed in the paper of DLMM [28]).
DLMM makes use of the diversity between multiple modalities
by proposing a novel Prototype based Reliability Measurement to
estimate the reliability of the recognition results to assign pseudo-
labels to target data and an Asynchronous Curriculum Learning
strategy that chooses the pseudo-labelled target samples from easy
to hard to train the sub-models. In contrast, our work aligns cross-
domain feature distributions by a novel adversarial based method
MixDANN and makes use of the modalities difference by our knowl-
edge distillation based method Dynamic-Modal-Distillation.

2.4 Knowledge Distillation
Knowledge distillation (KD) [18] is proposed for model compres-
sion by transferring knowledge between different neural networks.
The bigger complex model is called Teacher Model whose knowl-
edge is transferred to a smaller compact Student Model by mini-
mizing their output probability distribution. Temperature-based
softmax is used to compute the probability distribution. A higher
temperature makes the distribution softer, which can reveal the
similarities between different classes, thus it is beneficial for knowl-
edge transfer. Several works have utilized KD for specific DA tasks,
e.g., [2] applies KD by trivially transferring the knowledge of the
source model to the adapted model on acoustic tasks, [25] uses
the posterior probabilities generated by the source-domain model
as pseudo-label for target data to train the target-domain model,
[31] adopts KD to semi-supervised DA for segmentation of white
matter hyperintensities (WMH) in magnetic resonance imaging
(MRI) scans generated by scanners, [15] adapts a complex teacher
model to a compact student model by progressively teaching the
student about domain-invariant features using KD. Nevertheless,
all these DA methods employ KD in a single modality, transfer-
ring knowledge from one model to another, while our proposed
Dynamic-Modal-Distillation utilizes KD in multi-modal domain
adaptation by transferring knowledge between modalities, and we
propose Teacher Score to control the direction of distillation.

3 METHOD
An overview of our proposed method MixDANN and Dynamic-
Modal-Distillation (MD-DMD) is presented in Figure 3. In a nut-
shell, the MixDANN is particularly built based on DANN [12] by
mixing samples from source and target domains to capture domain-
invariant feature representation in every single modality (e.g., RGB
and Optical Flow). Moreover, the Dynamic-Modal-Distillation mod-
ule is proposed to distil knowledge across modalities based on
transferability for multi-modal domain adaptation.

To be specific, MixDANN extends the well-known DANN from
image to video tasks, which takes mix-samples and vanilla-samples
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Figure 2: The first two blocks show vanilla-samples from the source (green) and target (blue) domains, respectively. The source
vanilla-sample contains label while the target vanilla-sample does not. The block on the right (gray) is onemix-sample generated
by mixing vanilla-samples in source and target domains with a specific ratio 𝑟 (e.g., 𝑟 = 50%). The frames are concatenated along
the temporal dimension for each modality.

from the two domains as inputs. Mix-samples are obtained by mix-
ing the frames from both source and target domains along the tem-
poral dimension. The mix-samples contain information from both
source and target domains. The extracted features are more domain-
invariant by confusing the adversarial domain-discriminator to pre-
dict the mix-ratio. A non-adversarial mix-sample classifier is added
on top of the backbone network as a self-supervised auxiliary task.
The purpose of MixDANN is two-fold, on the one hand, to enhance
the ability of feature learning and, on the other hand, as a basis to
measure the adaptability (the degree of adaptation to the target do-
main) of each modality. In addition, Dynamic-Modal-Distillation is
proposed that dynamically measures the adaptability of one modal-
ity with the Teacher Score produced by MixDANN during training,
and then the adaptability score enables modalities to teach each
other domain adaptable knowledge by knowledge distillation. The
teacher score controls the direction of Modal-Distillation, where
a higher score indicates a modality is more transferable. Based on
the value of the Teacher Score, knowledge distillation between
modalities is conducted in every iteration during training from a
modality with a higher score to others. In the following subsections,
we describe each of the proposed components in detail.

3.1 Vanilla-Sample and Mix-Sample
Denote a labelled video set 𝑺 = {𝑋𝑆 , 𝑌𝑆 } as source domain and
an unlabelled video set 𝑻 = {𝑋𝑇 } as target domain, where 𝑋 =<

𝑋 1, 𝑋 2, . . . , 𝑋𝑀 > indicates multi-modal input sets with𝑀 modali-
ties. 𝑌𝑆 refers to the label set of the source domain. Denote 𝑥𝑚 ∈
R𝑡×ℎ×𝑤×𝑐 as an input sample of the 𝑚𝑡ℎ (1 ≤ 𝑚 ≤ 𝑀) modal-
ity with 𝑡 frames. The original samples from the source or target
domains, i.e., 𝑋𝑣𝑎𝑛𝑖𝑙𝑙𝑎 = {𝑋𝑆 , 𝑋𝑇 } are called vanilla-samples.

Labeled source vanilla-samples of the𝑚𝑡ℎ modality 𝑺𝑚 are used
to train the backbone feature extractor 𝑭𝑚 and video classifiers
𝑪𝑚 . Similar with previous works [23, 28, 29], late fusion is adopted
for different modalities and cross-entropy loss is employed for
supervised classification:

L𝐶 = −
∑︁
𝑥 ∈𝑋𝑆

𝑦 log𝜎 (
𝑀∑︁

𝑚=1
𝐶𝑚 (𝐹𝑚 (𝑥𝑚))), (1)

where 𝜎 stands for softmax function and 𝑦 ∈ 𝑌𝑆 is the one-hot label
vector of the source vanilla-sample 𝑥 .

L𝑚
𝐶 = −

∑︁
𝑥 ∈𝑋𝑆

𝑦 log𝜎 (𝐶𝑚 (𝐹𝑚 (𝑥𝑚))), (2)

Mix-samples (denoted as𝑋𝑚𝑖𝑥 ) are formed by randomlymixing
vanilla-samples from source and target domains. Specifically, as
shown in Figure 2, we extract 𝑟 × 𝑡 frames from one source vanilla-
sample 𝑥𝑚

𝑆
∈ 𝑋𝑆 and (1 − 𝑟 ) × 𝑡 frames from one target vanilla-

sample 𝑥𝑚
𝑇

∈ 𝑋𝑇 , where 𝑟 ∈ (0, 1) indicates the ratio of source
domain of this mix-sample and 𝑡 is the temporal window of video
samples. Then we concatenate the source and target frames along
the temporal dimension to form one mix-sample 𝑥𝑚

𝑚𝑖𝑥
∈ R𝑡×ℎ×𝑤×𝑐

for the 𝑚𝑡ℎ modality. Along with vanilla-samples in source and
target domains, the mix-samples are fed into the MixDANN with
details in the following subsection.

3.2 MixDANN
MixDANN extends DANN [12] to video tasks by introducing mix-
samples. In brief, the key idea of DANN is to employ a binary
classifier named domain-discriminator 𝐷 to distinguish whether
the inputs from the source or target domain, with a gradient rever-
sal layer to maximize the discriminative loss of feature extractor
when minimizing that loss of the discriminator. As shown in Fig-
ure 3, different from DANN, we take vanilla-samples 𝑋𝑣𝑎𝑛𝑖𝑙𝑙𝑎 and
mix-samples 𝑋𝑚𝑖𝑥 together as inputs for adversarial training. Each
modality has its own discriminator, which can avoid the easier
solution of the network focusing only on the less robust modality
in classifying the domain [29].

For eachmodality, when the input is a vanilla-sample the domain-
discriminator 𝐷𝑚 is to predict the probability which domain the
extracted feature comes from, as follows:

L𝑚
𝐷𝑣𝑎𝑛𝑖𝑙𝑙𝑎

= −
∑︁

𝑥 ∈{𝑋𝑆 ,𝑋𝑇 }
𝑦𝑑 log𝜎 (𝐷𝑚 (𝐹𝑚 (𝑥𝑚))), (3)

where the domain label 𝑦𝑑 is a binary one-hot vector, 𝑦𝑑 =< 1, 0 >

for 𝑥 ∈ 𝑋𝑆 and 𝑦𝑑 =< 0, 1 > for 𝑥 ∈ 𝑋𝑇 .
When a mix-sample 𝑥𝑚

𝑚𝑖𝑥
is fed into the MixDANN network,

the same domain discriminator 𝐷𝑚 is employed to predict the
mix-sample’s proportion from each domain by its binary output
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Figure 3: The overview of the proposed Mix-Domain-Adversarial Neural Network and Dynamic-Modal-Distillation (MD-DMD).
The three blocks on the left are different types of input samples. We use different colours to indicate the flow direction of
different input types. For each modality, all three types of inputs are used to train the adversarial Domain Discriminator and
the Mix-Sample Classifier. The Action Classifier is trained by the vanilla-samples from the source domain only. The adversarial
losses L𝐷𝑣𝑎𝑛𝑖𝑙𝑙𝑎

, L𝐷𝑚𝑖𝑥
and the non-adversarial L𝐶𝑚𝑖𝑥

are added as Teacher Score TS. The TS is calculated in every training
step for each modality, and the modality with the largest TS is chosen as the Teacher Modality to teach other modalities by
knowledge distillation. All vanilla-samples from both source and target domains can be used in the distillation.

probability distribution. We use 𝑦𝑚
𝑚𝑖𝑥

indicating the groundtruth
mix proportion distribution, i.e., 𝑦𝑚𝑖𝑥 =< 𝑟, (1 − 𝑟 ) >. And we use
𝑃 (𝑥𝑚

𝑚𝑖𝑥
) as the prediction distribution, the mix loss is defined as

follows:

L𝑚
𝐷𝑚𝑖𝑥

= 𝐾𝐿(𝑦𝑚𝑚𝑖𝑥 | |𝑃 (𝑥
𝑚
𝑚𝑖𝑥 )) = −

∑︁
𝑦𝑚𝑚𝑖𝑥 log(

𝑃 (𝑥𝑚
𝑚𝑖𝑥

)
𝑦𝑚
𝑚𝑖𝑥

),

where: 𝑃 (𝑥𝑚𝑚𝑖𝑥 ) = 𝜎 (𝐷
𝑚 (𝐹𝑚 (𝑥𝑚𝑚𝑖𝑥 ))) .

(4)

The MixDANN loss is accumulated by summing both vanilla and
mix adversarial losses from all modalities as follows:

L𝑀𝑖𝑥𝐷𝐴𝑁𝑁 =

𝑀∑︁
𝑚=1

(L𝑚
𝐷𝑣𝑎𝑛𝑖𝑙𝑙𝑎

+ L𝑚
𝐷𝑚𝑖𝑥

). (5)

3.3 Self-supervised Mix-Sample Classification
Task

To enhance the ability of MixDANN to extract domain-invariant fea-
tures and better measure each modality’s adaptability, we introduce
a self-supervised mix-sample classification auxiliary task. Specifi-
cally, a simple binary classifier𝐶𝑚𝑖𝑥 is added to each modality after
the feature extractor 𝐹 . The classifier 𝐶𝑚

𝑚𝑖𝑥
of the𝑚𝑡ℎ modality is

used to predict whether the input sample is vanilla or mixed.
Given a binary one-hot label 𝑦𝑥 indicating a sample is vanilla

or mixed, the Mix-Sample Classification loss is calculated by cross-
entropy:

L𝑚
𝐶𝑚𝑖𝑥

= −
∑︁

𝑦𝑥 log𝜎 (𝐶𝑚𝑚𝑖𝑥 (𝐹
𝑚 (𝑥𝑚))), (6)

where 𝑦𝑥 =< 1, 0 > for 𝑥 ∈ 𝑋𝑣𝑎𝑛𝑖𝑙𝑙𝑎 and 𝑦𝑥 =< 0, 1 > for 𝑥 ∈ 𝑋𝑚𝑖𝑥 .

The classification losses from all modalities are summed up as
the loss of the self-supervised sub-task:

L𝑀𝑖𝑥𝐶𝑙𝑠 =

𝑀∑︁
𝑚=1

L𝐶𝑚
𝑚𝑖𝑥

. (7)

3.4 Teacher Score
If the domain discriminator 𝐷 is more confusing in determining the
domain composition of the sample, it means the extracted feature
contains less domain-specific information. In other words, the more
domain-invariant the feature is, the more difficult the discriminator
to determine and the higher the losses values are. The same for
the mix-sample classifier 𝐶𝑚𝑖𝑥 . The higher the values of these
losses, the more domain-invariant the features extracted by the
feature extractor are, that is, the better the adaptability of this
modality. Thus, the value of the losses L𝑚

𝐷𝑣𝑎𝑛𝑖𝑙𝑙𝑎
, L𝑚

𝐷𝑚𝑖𝑥
and L𝑚

𝐶𝑚𝑖𝑥

can indicate the domain-invariant degree of the𝑚𝑡ℎ modality. We
propose the Teacher Score (TS) to measure the adaptability of
each modality dynamically during the training process as follows:

TS𝑚 = L𝑚
𝐷𝑣𝑎𝑛𝑖𝑙𝑙𝑎

+ L𝑚
𝐷𝑚𝑖𝑥

+ L𝑚
𝐶𝑚𝑖𝑥

. (8)

TS1 (9)

TS2 (10)

Based on the teacher score, we can conduct Dynamic Modal-
Distillation for multi-modal domain adaptation, described in the
following subsection.
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3.5 Dynamic Modal-Distillation
We propose Dynamic Modal-Distillation (DMD) to deal with the
problem of modal differences in both the degree of domain shift
and the adaptability of sub-modals.

During training, we calculate the teacher score TS dynamically
for each modality as a measure of current adaptability to the target
domain for that modality, larger TS indicating a more adaptive
modality. Therefore, we pick the modality with the largest TS as
the Teacher Modality to teach the other Student Modalities.
Knowledge distillation, originally proposed for model compression,
is utilized to transfer the currently most domain-invariant knowl-
edge from the Teacher Modality to the less adaptive modalities.
Modalities are learning from and teaching each other during train-
ing. More specifically, the target of Modal-Distillation lossL𝐷𝑀𝐷 is
the soft-distribution of class probabilities predicted by the Teacher
Modality, calculated by the softmax function with temperature. The
soft-distribution preserves more information about correlations
across different classes, which offers better generalizability. Denote
𝑄 (𝑥𝑡 ) as the output probabilities distribution of Teacher Modality
for sample 𝑥 , 𝑃 (𝑥𝑖 ) as it of the 𝑖𝑡ℎ Student Modality, and 𝑇 as the
softmax temperature. The DMD loss is defined as:

L𝐷𝑀𝐷 =

𝑀−1∑︁
𝑖=1

𝐾𝐿(𝑄 (𝑥𝑡 ) | |𝑃 (𝑥𝑖 )), 𝑥 ∈ {𝑋𝑆 , 𝑋𝑇 }, 𝑖 ≠ 𝑡

where: 𝑄 (𝑥𝑡 ) = 𝜎 (𝐶𝑡 (𝐹 𝑡 (𝑥𝑡 ))/𝑇 )
and 𝑃 (𝑥𝑖 ) = 𝜎 (𝐶𝑖 (𝐹 𝑖 (𝑥𝑖 ))/𝑇 ).

(11)

3.6 MD-DMD
The overall proposed end-to-end multi-modal domain adaptation
framework,MixDANNandDynamic-Modal-Distillation (MD-DMD),
is illustrated in Algorithm 1, and the objective is defined as follows:

L = L𝐶 + L𝑀𝑖𝑥𝐷𝐴𝑁𝑁 + L𝑀𝑖𝑥𝐶𝑙𝑠 + L𝐷𝑀𝐷 . (12)

Note that the L𝐶 is computed only on labelled source data. The ad-
versarial L𝑀𝑖𝑥𝐷𝐴𝑁𝑁 and non-adversarial L𝑀𝑖𝑥𝐶𝑙𝑠 are computed
from both vanilla-samples from the source and target domains and
the proposed mix-samples. And the dynamic modal-distillation loss
L𝐷𝑀𝐷 is optimised on vanilla source and target data.

4 EXPERIMENTS
In this section, we first introduce the datasets and the implemen-
tation details, then we show performance comparisons with the
state-of-the-art methods, and finally, we present the ablation study.
We adopt Top-1 accuracy (%) as evaluation metric for the experi-
ments by following [23, 28, 29, 34, 37].

4.1 Datasets
We adopt the EPIC-Kitchens [9, 10] and two small-scale UCF[38]
andHMDB[24] action recognition datasets to evaluate our proposed
MD-DMD framework. Below presents their brief descriptions.

EPIC-Kitchens is a challenging egocentric video dataset which
serves as a standard benchmark to test domain adaptation for fine-
grained action recognition. We adopt the same domain adaptation
settings as previous works [23, 28, 29, 34, 37], focusing on the 8
largest classes in three kitchens D1, D2 and D3, using 2 commonly

Algorithm 1 MixDANN and Dynimaic Modal-Distillation
Input: Labelled source data 𝑺 and unlabelled target data 𝑻
1: repeat
2: Sample batches B𝑠 ⊂ 𝑺 and B𝑡 ⊂ 𝑻
3: Generate mix-sample batch B𝑚𝑖𝑥 by concatenate vanilla-

samples in B𝑠 and B𝑡 along the temporal dimension
4: Calculate L𝐶 by B𝑠

5: Calculate L𝐷𝑣𝑎𝑛𝑖𝑙𝑙𝑎
by both B𝑠 and B𝑡 for each modality

6: Calculate L𝐷𝑚𝑖𝑥
by B𝑚𝑖𝑥 for each modality

7: Calculate L𝐶𝑚𝑖𝑥
by B𝑠 , B𝑡 and B𝑚𝑖𝑥 together for each

modality
8: Calculate the Teacher Score TS for each modality, pick the

modality with the largest TS as Teacher Modality
9: Do knowledge distillation from Teacher Modality to other

Student Modalities, Calculate L𝐷𝑀𝐷

10: Calculate the over all objective
L = L𝐶 + L𝑀𝑖𝑥𝐷𝐴𝑁𝑁 + L𝑀𝑖𝑥𝐶𝑙𝑠 + L𝐷𝑀𝐷 ,
where
L𝑀𝑖𝑥𝐷𝐴𝑁𝑁 =

∑𝑀
𝑚=1 (L𝑚

𝐷𝑣𝑎𝑛𝑖𝑙𝑙𝑎
+ L𝑚

𝐷𝑚𝑖𝑥
),

L𝑀𝑖𝑥𝐶𝑙𝑠 =
∑𝑀
𝑚=1 L𝑚

𝐶𝑚𝑖𝑥

11: Backpropagate L then update parameters
12: until done

employedmodalities: RGB andOptical Flow. The number of samples
in the three domains is 1978, 3245 and 4871, respectively.

UCF-HMDB are overlapped subsets of the original UCF101
and HMDB51 datasets for action recognition. UCF-HMDB have 12
shared categories.

4.2 Implementation Details
Following previous video domain adaptation works, we use the
I3D [5] as our backbone for feature extractor 𝐹 of each modality. For
the Adversarial-Domain-Discriminator 𝐷 and Mix-Sample Classi-
fier 𝐶𝑚𝑖𝑥 , we use 2 fully-connected layers with hidden layer of 100
dimensions. The size of the input clips is 16 frames with 224×224
pixels. The mix-samples are produced by a random ratio 𝑟 in our
framework. The temperature 𝑇 of our Dynamic-Modal-Distillation
is set to 5 in the comparison results. We train all our models end-to-
end. Followed the ‘pre-train then adapt’ procedure for multi-modal
domain adaptation as [28] does, each sub-model of a modality is
pre-trained on the labelled source domain independently for the
classification task before the proposed approach is employed. The
optimizer is stochastic gradient descent (SGD) with momentum of
0.9, and the weight decay is set to 1𝑒 − 7. The weights of each loss
term are set to 1 equally. On average, training takes 14 hours on 4
RTX 3090 GPUs with batch size 28 and 16000 training steps.

4.3 Comparison with State-of-the-Arts
We compare the proposed MD-DMD with current State-of-the-Art
methods (SOTAs) [8, 23, 29, 37] on EPIC-Kitchens and UCF-HMDB
datasets in Table 1 and Table 2, respectively.

On the EPIC-Kitchens dataset, the DANN [12] outperforms three
commonly used baselines, AdaBN [26], MMD [13] and MCD [35],
by employing a domain discriminator with adversarial learning.
Compared with DANN, our proposed adversarial based MD-DMD
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Table 1: Performance comparison on EPIC-Kitchens dataset.

Method D2→D1 D3→D1 D1→D2 D3→D2 D1→D3 D2→D3 Avg Gain
Source-only 42.5 44.3 42.0 56.3 41.2 46.5 45.5 -
AdaBN [26] 44.6 47.8 47.0 54.7 40.3 48.8 47.2 +1.7
MMD [13] 43.1 48.3 46.6 55.2 39.2 48.5 46.8 +1.3
MCD [35] 42.1 47.9 46.5 52.7 43.5 51.0 47.3 +1.8
DANN [12] 50.2 47.9 46.5 52.7 43.5 51.0 48.6 +3.1
MM-SADA [29] 46.9 50.2 50.2 53.6 44.7 50.8 50.3 +4.8
CrossModal [23] 49.5 51.5 50.3 56.3 46.3 52.0 51.0 +5.5
STCDA [37] 49.0 52.6 52.0 55.6 45.5 52.5 51.2 +5.7
MD-DMD 50.3 51.0 56.0 54.7 47.3 52.4 52.0 +6.5

Supervised-target 62.8 62.8 71.7 71.7 74.0 74.0 69.5 -

Table 2: Performance comparison on UCF-HMDB dataset.
MMrefers toMulti-Modal, U andH representUCF andHMDB
respectively.

Method MM U→H H→U Avg Gain
Source-only [37] (R) 80.8 88.4 84.6 -
SAVA [8] (R) 82.2 91.2 86.7 +2.1
STCDA [37] (R) 81.9 91.9 86.9 +2.3
Source-only (R) 77.2 86.5 81.9 -
MixDANN (R) 77.5 86.5 82.0 +0.1
Supervised-target (R) 93.1 97.0 95.1 -

Source-only [37] ! 82.8 89.8 86.3 -
MM-SADA [29] ! 84.2 91.1 87.7 +1.4
CrossModal [23] ! 84.7 92.8 88.8 +2.5
STCDA [37] ! 83.1 92.1 87.6 +1.3

Source-only ! 80.8 91.0 85.9 -
MD-DMD ! 82.2 92.8 87.5 +1.6

Supervised-target ! 98.8 95.0 96.9 -

achieves noticeable improvements from 48.6 to 52.0. Furthermore,
MD-DMD manages to outperform the SOTAs MM-SADA [29],
CrossModal [23] and STCDA [37] by 3.4%, 2.0% and 1.6% on aver-
age, respectively. Note that MD-DMD is simple and lightweight
by adding two plug-and-play units, 𝐷 and 𝐶𝑚𝑖𝑥 . Both units are
shallow enough. In contrast, CrossModal [23] and STCDA [37] are
both Contrastive-Learning (CL) based methods. They both contain
two CL sub-tasks with properly designed sampling strategies to
generate pseudo-label for unlabelled target data.

On UCF-HMDB datasets, we conduct experiments in two direc-
tions, UCF to HMDB (U→H) and HMDB to UCF (H→U). Table 2 is
divided into two categories, i.e., using single-modality RGB-only
(RGB) and multi-modal (MM) for domain adaptation. Note that
since our implementation does not meet the performance reported
in [8, 23, 29, 37] on Source-only, we list our results and compare the
improvements to Source-only separately. In a single modality, our
proposedMixDANN has no obvious improvements. However, in the

lower group, our complete MD-DMD framework for multi-modal
domain adaptation gains a 1.6% increase over Source-only, which is
higher than the 1.4% and 1.3% of MM-SADA [29] and STCDA [37],
respectively.

4.4 Ablation Study
Our ablation studies investigate the individual impact of each com-
ponent in ourMD-DMD framework and the different configurations
of the hyperparameters.

MixDANN. Firstly, we test the effectiveness of our MixDANN
and the Mix-Samples Classification sub-task in every single modal-
ity on the EPIC-Kitchens dataset. The RGB and Flow modalities are
trained individually without cross-modal alignment, illustrated in
Table 3, where the 𝐶𝑚𝑖𝑥 indicates the mix-sample classifier. Specif-
ically, for each modality, the first row reports the direct transfer
results trained on labelled source data without any adaptation meth-
ods, and the second row is the results trivially using DANN as a
baseline. The third row shows the effectiveness of our proposed
MixDANN, which extends by DANN, which improves the perfor-
mance by 8.9% in RGB and 1.8% in Flow compared with DANN. In
MixDANN, the domain discriminator is forced not only to distin-
guish the inputs from source or target domains but also to predict
the mix ratio of mix-samples. This process makes the feature ex-
tractor need to extract more domain-invariant features to confuse
the discriminator. The last row shows the results of MixDANN with
the mix-sample classification sub-task. There is a slight (1.1%) drop
in RGB modality, but in Flow modality, there is a 2.4% improvement.
Overall it brings improvement. Note that the 𝐶𝑚𝑖𝑥 is vital for con-
ducting the direction of our proposed Dynamic-Modal-Distillation
(DMD), which we reported in the next ablation. The difference
between RGB and Flow demonstrates that Flow modality is more
domain-invariant than RGB. The performance of Flow is 7.8% larger
than RGB when directly transferring the model trained on source
data to the target domain. Our MixDANN reduces this gap to 1.1%
by 14.1% improvement in RGB and 7% in Flow. This phenomenon
also demonstrates that the degrees of domain shift of modalities
and the adaptability of sub-models are diverse, which motivates us
to propose DMD.

MD-DMD. We further investigate the effect of different temper-
atures on Modal-Distillation in Eq 11, listed in Table 4. The results
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Table 3: Ablation study of MixDANN and Mix-Prediction sub-task in each single modality.

Modality Setting D2→D1 D3→D1 D1→D2 D3→D2 D1→D3 D2→D3 Avg GainDANN MixDANN 𝐶𝑚𝑖𝑥

RGB

% % % 37.0 34.7 39.7 44.9 38.3 42.7 39.6 -
! % % 37.8 41.1 45.7 45.1 38.1 41.2 41.5 +1.9
! ! % 44.6 43.0 50.3 46.4 42.0 44.9 45.2 +5.6
! ! ! 43.4 43.0 48.0 46.9 43.0 43.9 44.7 +5.1

Flow

% % % 38.9 44.4 44.7 45.6 37.4 45.3 42.7 -
! % % 42.8 42.8 47.3 46.9 41.5 48.1 44.9 +2.2
! ! % 42.5 46.0 49.7 48.3 40.5 47.4 45.7 +3.0
! ! ! 45.3 46.9 50.5 49.7 40.8 47.3 46.8 +4.1

Table 4: Performance of MD-DMD with different Temperature 𝑇 .

Method 𝑇 D2→D1 D3→D1 D1→D2 D3→D2 D1→D3 D2→D3 Avg Gain
Source-only - 42.5 44.3 42.0 56.3 41.2 46.5 45.5 -

MD-DMD

2 50.3 49.7 54.7 54.0 47.8 52.4 51.5 +6.0
5 50.3 51.0 56.0 54.7 47.3 52.4 52.0 +6.5
10 50.6 50.8 56.0 54.9 47.6 51.6 51.9 +6.4
20 49.9 49.9 56.9 55.1 48.4 51.1 51.7 +6.2

show that the optimum distillation temperature is different. This
may be due to the degrees of domain shift between domains being
diverse. On average, the best result occurred when the temperature
was 5. Note that even the worst average value of 51.5 (𝑇 = 2) also
achieves SOTA results.

Table 5: Ablation study on different components’ contribu-
tions to Teacher Score (TS).

Setting RGB : Flow AccuracyL𝐷𝑣𝑎𝑛𝑖𝑙𝑙𝑎
L𝐷𝑚𝑖𝑥

L𝑀𝑖𝑥𝐶𝑙𝑠

! % % 7619 : 8352 49.1
! ! % 7903 : 8075 49.2
! ! ! 5290 : 10711 50.6

Teacher Score. We also examine the contributions of differ-
ent components (especially the mix-sample classifier 𝐶𝑚𝑖𝑥 ) in the
Teacher Score TS, which controls the direction of knowledge trans-
fer in our proposed Modal-Distillation, listed in Table 5. The exper-
iment is conducted on EPIC-Kitchens D2→D1, and the distillation
temperature is set to 10, the L𝐷𝑣𝑎𝑛𝑖𝑙𝑙𝑎

, L𝐷𝑚𝑖𝑥
and L𝑀𝑖𝑥𝐶𝑙𝑠 cor-

responding with the components DANN, MixDANN and 𝐶𝑚𝑖𝑥 ,
respectively. We report the ratios of the number of RGB playing the
role of Teacher Modality with the number of Flow as Teacher over
the 16000 training steps. Results show that the 𝐶𝑚𝑖𝑥 dominates
the direction of Modal-Distillation, which can make TS reflecting
the adaptability of single modality sub-models more accurate. Ac-
cording to our observation, numerically, L𝑀𝑖𝑥𝐶𝑙𝑠 varies in a larger
range and has a greater impact on the teacher score. And the RGB

modality converges faster than Flow in this mix-sample classifi-
cation task, causing the loss value of Flow to be almost always
greater than RGB before convergence. This reflects the inherent
domain-invariant of the Flow modality, which makes it more diffi-
cult to distinguish than RGB. In the adversarial training tasks, the
differences in loss values are not so obvious. Note that since teacher
scores may sometimes be equal, the sum of the teaching times may
not necessarily be equal to the total training steps of 16000.

We also have observed the changes of teacher modality during
training. In the beginning, the Optical Flow almost always plays the
role of teacher to guide RGB modality. Then, RGB begins to teach
Flow gradually. When it comes to convergence, the frequencies of
RGB and Flow as teachers are similar.

5 CONCLUSION
We have presented MixDANN and Dynamic-Modal-Distillation
(MD-DMD) framework for video domain adaptation, which makes
full use of the temporal dimension of video inputs for adversarial
learning in a single modality and explored the adaptability differ-
ence between modalities for multi-modal domain adaptation. We
produce mix-samples to enhance adversarial strength, dynamically
measure the adaptability of each modality and let modalities guide
and reinforce each other alternatively for better multi-modal per-
formance. Experimental superior results over SOTAs [8, 23, 29, 37]
demonstrate the effectiveness of our framework.
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