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Abstract

Multi-task learning is popular in machine learning and
computer vision. In multitask learning, properly modeling
task relations is important for boosting the performance of
jointly learned tasks. Task covariance modeling has been
successfully used to model the relations of tasks but is lim-
ited to homogeneous multi-task learning. In this paper, we
propose a feature based task relation modeling approach,
suitable for both homogeneous and heterogeneous multi-
task learning. First, we propose a new metric to quantify
the relations between tasks. Based on the quantitative met-
ric, we then develop the task relation layer, which can be
combined with any deep learning architecture to form task
relation networks to fully exploit the relations of different
tasks in an online fashion. Benefiting from the task rela-
tion layer, the task relation networks can better leverage
the mutual information from the data. We demonstrate our
proposed task relation networks are effective in improving
the performance in both homogeneous and heterogeneous
multi-task learning settings through extensive experiments
on computer vision tasks.

1. Introduction

Multi-task learning has been the focus in the community
of machine learning and computer vision. Learning with
closely related tasks is believed to be helpful for boosting
the performance of the involved tasks, which has been ver-
ified by considerable research in many areas such as com-
puter vision [25, 16], and other areas like natural language
processing [7, 23]. To better understand multi-task learning,
a lot of research effort has been made to study better ways
of modeling and leveraging the relations among different
tasks.

Existing methods for task relation modeling in multi-task
learning can be categorized into task covariance based and

feature based ones. For task covariance based modeling,
traditional methods usually build a task covariance matrix
between the learned parameters of different tasks [2, 24]
to characterize the task relations. Although effective, task
covariance is only applicable to homogeneous multi-task
learning setting, where the output spaces of different tasks
have the same dimension. Essentially in homogeneous
multi-task learning, the special setting on identical output
dimensions determines that different linear models for dif-
ferent tasks have the same structure. This makes the re-
lation modeling easier, and a task covariance matrix can
be obtained conveniently from the parameters for different
tasks. Very recently, [15] extends such classic task covari-
ance modeling from shallow linear models to deep models
by separately examining the parameters per layer. In their
method, the task covariance matrix is learned together with
the whole model. Such explicit modeling of task relations
is shown to be effective in multi-task learning setting for
capturing mutual information among different tasks and im-
proving their performance.

For heterogeneous multi-task learning, where different
tasks have different output dimensions, the task covariance
relation modeling is no longer valid as parameters for dif-
ferent models have different structures. This problem is
only partially addressed in [15, 22] because these models
are only able to model the relations between hidden layer
parameters, which are of the same shape and cannot model
task relations at the critical output layer. Such a kind of
modeling is arguably not optimal and may harm the multi-
task model capability and final performance. Essentially, it
is not clear how to fully model task relations in heteroge-
neous multi-task learning using the task covariance.

Apart from task relation modeling using task covariance,
the feature based task relation modeling is also widely used
in the literature. Based on the similarity of feature vectors,
multiple tasks can be grouped together [12] to facilitate the
learning process. [1] defines that two tasks are similar if



they use the same feature to make predictions [20]. [5] uses
the distance between the response maps to decide if two
tasks are similar tasks. [16] uses cross-stitch networks to
learn the sharing structure of common and task-specific fea-
tures for two tasks. It allows different tasks to share inter-
mediate features with each other, and the sharing degree can
roughly reflect if the involved tasks are closely or loosely re-
lated. However, none of the works in the feature-based task
relation modeling defines explicit metrics to quantitatively
measure the relations between different tasks, making them
less principled and unclear on how to further improve.

Considering the demand for explicit metrics for task re-
lations in feature-based relation modeling, and the inher-
ent limitation of task covariance based modeling, we pro-
pose a similarity metric to quantitatively measure the re-
lations between tasks in both homogeneous and heteroge-
neous multi-task learning. The proposed similarity metric,
named Statistical Task Relation (STR), measures the rela-
tions between tasks from a statistical point of view (details
in Sec. 3.1). The metric is developed based on our obser-
vation of isotopic multi-task learning, where different out-
puts are associated with the same input. In such cases, the
multi-task models (both homogeneous and heterogeneous)
are essentially learned mappings from the same input data
to different outputs. Thus what distinguishes one task from
another are the features the inputs are mapped to by the
model. Therefore we measure the similarity between the
features in the output space (i.e. the predictions), and use it
as the metric for relations between two tasks.

Based on the proposed similarity metric STR, we fur-
ther develop a Task Relation Layer (TRL), which serves as
the workhorse to measure the similarity between the output
features dynamically in a deep neural network. Different
from [15] which models the relation of the model weights in
each layer, we directly model the relation between the fea-
tures. An online learning algorithm is also proposed such
that TRL can be inserted into any deep learning architecture
and end-to-end trained. When incorporating the TRL into a
deep neural network, the resultant Task Relation Net (TRN)
can better leverage the mutual information within the tasks.
We demonstrate that TRN can effectively increase the per-
formance of baseline models with the explicit modeling of
relations between tasks in both homogeneous and hetero-
geneous multi-task learning, as shown by our experiments
on facial landmark localization and attribute classification
tasks.

2. Related Work

2.1. Multi-Task Feature Learning and Relation
Learning

Multi-task learning aims to learn to perform multiple
tasks by exploiting their shared information for better gen-

eralization capability. Traditionally, multi-task learning
schemes can be categorized into multi-task feature learning
and multi-task relation learning. The first category mainly
focuses on learning features shared for different tasks, such
that it enables implicit data augmentation and mitigates rep-
resentation bias [20]. The second category usually uses task
covariance [2, 24] to model the relationship between tasks
to achieve mutual performance boosts. Different from them,
our proposed TRN explicitly models the relations between
the features, so that more favorable features can be learned
for improving upon multiple tasks.

2.2. Deep Models for Multi-Task Learning

Multi-task learning has been commonly used in deep
learning. The structure of one trunk and several branches
in the “Share-and-Split” scheme is popular in deep models.
While there are quite a number of successful deep models
learning different tasks with such a structure (see [18, 21,
17, 13]), very few have studied the relations between differ-
ent tasks. [16] uses cross-stitch networks to learn the shar-
ing structure of common and task-specific representations
for two tasks and [5] presents a similar idea and extends it
to more than two tasks. However, explicit modeling of task
relations is not present in these works. Different from these
works, our proposed TRN explicitly presents a metric to
measure the similarity between tasks and uses the similarity
to regularize the learning of the network.

2.3. Homogeneous and Heterogeneous Multi-Task
Learning

Compared with homogeneous multi-task learning that
requires different tasks to have the same output dimen-
sion, heterogeneous multi-task learning is attracting more
research attention due to its flexibility of modeling various
types of tasks. [6] uses a heterogeneous model to predict
multiple heterogeneous face attributes. In [25], a hetero-
geneous model is used to predict facial landmark locations
and facial attributes. [10] presents a model for multilingual
speech processing. In [22], a tensor factorization approach
is used to decompose only the weights in the shared layers
in a heterogeneous deep multi-task model, and the weights
in the last layer are un-modeled due to the incompatibility
of the dimensions of model weights. A similar situation is
observed in [15], where the last layer of the heterogeneous
multi-task learning model is un-modeled due to the differ-
ences in output spaces. So none of the works above fully
model the task relations in the heterogeneous setting. In
contrast, the proposed TRN can fully model the task rela-
tion in all the task-specific layers in both homogeneous and
heterogeneous multi-task learning settings.



3. Method
In this section, we first define the proposed similarity

metric Statistical Task Relation (STR). Then we introduce
the Task Relation Layer (TRL), which incorporates STR
into a deep neural network for estimating the similarity of
dynamic features, and an online learning algorithm that en-
ables end-to-end training of the deep model with TRL. With
the proposed TRL and the online updating algorithm, the re-
sultant Task Relation Network (TRN) can better exploit mu-
tual information and increase the performance of the tasks.

3.1. STR: Proposed Metric for Task Similarity

We first introduce STR, our proposed similarity met-
ric between two tasks from a statistical point of view. In
single-task supervised learning, given a set of input samples
X = {x(1),x(2), · · · ,x(N)}, where x(i) ∈ Rd, and their
corresponding labels Y1 = {y(1)

1 , y(2)1 , · · · , y(N)
1 }, where

y(i)1 ∈ Rn1 , the single-task model aims to learn a mapping
from the input set X to the label set Y1, i.e. f1(x(i))→ y(i)1 .
In multi-task learning, in addition to one set of labels Y1,
there are usually extra sets (at least one more) of labels.
Without loss of generality, we consider the multi-task learn-
ing with two different label sets. The other label set is
denoted as Y2 = {y(1)2 , y(2)

2 , · · · , y(N)
2 }, y(i)2 ∈ Rn2 as-

sociated with the same input set X . Then the multi-task
learning model aims to learn mappings from the input to
both sets of labels, i.e. two mappings, f1(x(i)) → y(i)

1 and
f2(x(i)) → y(i)2 that are learned jointly. We denote the two
tasks involved as T1 , {f1(x(i))→ y(i)1 ,∀i ∈ 1, 2, · · · , N}
and T2 , {f2(x(i)) → y(i)

2 ,∀i ∈ 1, 2, · · · , N}. According
to the output dimensions, multi-task learning can be classi-
fied into homogeneous multi-task learning if n1 = n2, and
heterogeneous one otherwise, as mentioned in Sec. 1.

We can see that T1 and T2 capture and represent the rel-
evant information in input X w.r.t. the labels Y1 and Y2,
respectively. Suppose T1 and T2 generate output features
(i.e. the predictions) f(i)1 and f(i)2 , respectively, when taking
x(i) as input, i.e. f(i)1 = f1(x(i)) and f(i)2 = f2(x(i)). The
relation of T1 and T2 can be characterized by the similarity
between the output feature sets F1 = {f(1)1 , f(2)1 , · · · , f(N)

1 }
andF2 = {f(1)2 , f(2)2 , · · · , f(N)

2 }, considering they are taking
in the same inputs. So we propose to adopt a similarity met-
ric between F1 and F2, denoted as τ(F1,F2), to quantify
the relation between the two tasks T1 and T2. In particular,
we adopt Canonical Component Analysis (CCA) [9] to find
the maximal correlations between the two sets of variables
F1 and F2 as the similarity between the two tasks T1 and
T2. We adopt CCA as it is commonly used to find what is
common in two sets of variables, and it is applicable even if
the two sets of variables are of different dimensions.

Under the framework of CCA, we aim to find two auxil-

iary vectors a and b such that the correlation between aT f
(i)
1

and bT f
(i)
2 , denoted as ρ, is maximized. Then we use the

maximal correlation ρm as the similarity between F1 and
F2, i.e. τ(F1,F2) , ρm.

The correlation between aT f
(i)
1 and bT f

(i)
2 is defined as

ρ =
aTΣ12b√

aTΣ11a
√

bTΣ22b
, (1)

where Σ denotes the covariance matrix, and the f in sub-
script of the covariance matrix is omitted for conciseness.
Here we aim to find the maximal ρ w.r.t. a and b. Substitut-
ing c = Σ

1/2
11 a and d = Σ

1/2
22 b, ρ is re-written as

ρ =
cTΣ

−1/2
11 Σ12Σ

−1/2
22 d

√
cT c
√

dT d
. (2)

With Cauchy–Schwarz inequality in(
cT Σ

−1/2
11 Σ12Σ

−1/2
22

)
d ≤(

cT Σ
−1/2
11 Σ12Σ

−1/2
22 Σ

−1/2
22 Σ21Σ

−1/2
11 c

)1/2
(dT d)1/2,

(3)

we have

ρ ≤

(
cTΣ

−1/2
11 Σ12Σ

−1/2
22 Σ

−1/2
22 Σ21Σ

−1/2
11 c

)1/2
(cT c)1/2

. (4)

By defining

Ω = Σ
−1/2
11 Σ12Σ

−1
22 Σ21Σ

−1/2
11 , (5)

Eqn. (4) is simplified as

ρ ≤
(
cTΩc

)1/2
(cT c)1/2

. (6)

Here we aim to get the maximal value of ρ, so we can max-
imize the right hand side w.r.t. c. Thus we can make c the
leading eigenvector of Ω. When c is the leading eigenvector
with largest eigenvalue λ1 of Ω, we have

ρ ≤
(
cTΩc

)1/2
(cT c)1/2

=
(cTλ1c)1/2

(cT c)1/2
=
√
λ1.

(7)

Thus the maximal value of the correlation ρ, i.e. ρm, is the
square root of λ1. Hence we have

ρm =
√
λ1, (8)



Putting these pieces together, we reach

τ(F1,F2) =

√
max{eig(Σ

−1/2
11 Σ12Σ

−1
22 Σ21Σ

−1/2
11 )}.

(9)
To calculate the value of τ , we need to calculate the max-
imal eigenvalue of Ω. We notice that this calculation can
be simplified by applying Singular Value Decomposition
(SVD), since Ω can be decomposed as Ω = ΩhΩT

h , where
Ωh = Σ

−1/2
11 Σ12Σ

−1/2
22 . Thus we have

τ(F1,F2) = max (diag(S)) ,

for U,S,VT = svd(Σ
−1/2
11 Σ12Σ

−1/2
22 ).

(10)

Then we obtain the task similarity of T1 and T2 as

τ(T1, T2) , τ(F1,F2)

= max{singular(Σ
−1/2
11 Σ12Σ

−1/2
22 )},

(11)

where singular(·) denotes the operation of getting the sin-
gular values in the SVD operation. We can clearly see that
the similarity between T1 and T2, τ(T1, T2), is reflected by
the covariance matrices and cross-covariance matrix of F1

and F2. The task similarity has good interpretability. The
value of the similarity ranges from 0 to 1, where 0 means
two tasks are not related, and 1 means they are highly re-
lated. Also we notice the following property:

Proposition 1. Task similarity defined in Eqn. (11) is com-
mutative.

The proposition above agrees with the common sense
that the similarity of two tasks is invariant to their orders.
The proposition can be proofed mathematically as follows:

Proof.

With the definition of task similarity, we have

τ(T1, T2) = max{diag(S)}, for USVT = Σ
−1/2
11 Σ12Σ

−1/2
22 .

Taking the transpose operation, we have

VSTUT = Σ
−1/2
22 Σ21Σ

−1/2
11 .

As a result,

τ(T2, T1) = max{diag(ST)} = max{diag(S)} = τ(T1, T2).

So we have τ(T1, T2) = τ(T2, T1).

We also note the metric in Eqn. (11) has no restriction on
the dimensions of F1 and F2, thus it is able to measure the
similarity of the tasks in both homogeneous and heteroge-
neous multi-task learning.

In the formulations above, the features vectors F1 and
F2 are output features and the corresponding similarity met-
ric is the proposed STR. We can make two simple exten-
sions to the formulation as follows. Firstly, when we use the
ground truth labels as the feature vectors, the corresponding
similarity metric is the ground truth task similarity for T1
and T2:

τgt(T1, T2) , τ(Y1,Y2). (12)

This ground truth task similarity metric is model-
independent, and it serves as an additional supervision sig-
nal in our proposed TRN. Secondly, when we use hidden
features as the feature vectors, the corresponding similarity
metric reflects how the hidden features are related.

3.2. Task Relation Layer and Task Relation Net

The definition of STR is based on the covariance matri-
ces, which can be estimated from all the samples in an off-
line fashion. However, the off-line estimation makes STR
infeasible when training a deep network, as the features are
dynamic during training. In this subsection, we introduce
TRL, which estimates the STR from the dynamic features
in a deep neural network. Formally, the TRL takes as inputs
two random vectors F1 and F2 in a mini-batch, estimates
the covariance matrices, and outputs the similarity metric
between them according to Eqn. (10).

Then we introduce how to build a TRN with TRLs as fol-
lows. We use TRLs to enforce constraints, i.e. regulariza-
tions, on the output features and the hidden features as illus-
trated in Fig. 1. The TRN adopts a commonly used multi-
task learning architecture, where there is a trunk network to
learn the shared representations, and two task-specific sub-
nets performing two tasks. We apply TRL between the cor-
responding layers in the task-specific subnets. Specifically,
we can place a TRL between the output layers in the task-
specific subnets to form an output TRL. Taking as input the
features from output layers, the output TRL generates STR.
TRL can also be placed between the labels of the two tasks
to form a label TRL, and taking as input the labels, the label
TRL outputs the ground truth task similarity. We take this
ground truth task similarity to regularize the layer outputs
between two tasks. We can also place a TRL between the
hidden layers to form a hidden TRL to estimate the similar-
ity between hidden features. TRN uses additional losses to
encourage the learned features to have the same similarity
compared with the ground truth task similarity.

To train a TRN with TRLs, we define loss terms of task
relations in addition to the original loss terms as

L = L1 + L2 +
∑
l

λlL(l)
ts , (13)

where L1 and L2 are the losses for the first and the sec-



Task Relation Layer

Constraints/Losses

Task 1

Task 2

Figure 1. Structure of the proposed TRN containing three TRLs. The three TRLs, from right to left, are label TRL, output TRL and hidden
TRL, respectively.

ond task, respectively, in Fig. 1. The term L(l)
ts is the task

similarity loss for the l-th layer, with its corresponding loss
weight denoted by λl. Here l can be the output layer, or the
hidden layer. The term Lts is

L(l)
ts = ‖τ(F (l)

1 ,F (l)
2 )− τ(Y1,Y2)‖, (14)

where F (l)
1 ,F (l)

2 are the activations of the l-th layer for the
first and second task, respectively, and τ(F (l)

1 ,F (l)
2 ) is the

output of the TRL for the l-th layer. Similarly τ(Y1,Y2)
is the output of the label TRL. With the loss function in
Eqn. (13) and an online learning algorithm detailed in the
next subsection, all the parameters in a TRN can be learned
with standard mini-batch gradient descent.

3.3. Online Learning of TRL

In this subsection, we introduce an online learning algo-
rithm for TRL to capture the similarity of dynamic features
when training deep neural networks, as listed in Alg. 1.

The algorithm maintains the global covariance matrices
as its parameter. In training it accepts one mini-batch of
feature vectors {F̃1, F̃2} from one mini-batch of input data
during each training step, calculates the covariance matrices
for the current mini-batch, and add them to the respective
global matrices with a momentum m. Finally the estimated
similarity between F1 and F2 over the whole dataset is cal-
culated with the updated global covariance matrices. Note
that in Alg. 1, the calculation of matrix inverse square root
is also realized by SVD as

U,S,UT = svd(Σ11),

Σ
−1/2
11 = US−1/2UT .

(15)

Algorithm 1 Online learning algorithm for TRLs
1: Σ11 ← I
2: Σ22 ← I
3: Σ12 ← 0 . Initial values of the global covariance

matrices
4: Required: momentum m, batch size
5: procedure TRL ONLINE(F̃1, F̃2) . The input features

of a mini-batch
6: f̃1m ← F̃1 −mean(F̃1)
7: f̃2m ← F̃2 −mean(F̃2) . The demeaned input

features of a mini-batch along each feature dimension
8: Σ̃11 ← f̃1m ∗ f̃

T

1m

9: Σ̃22 ← f̃2m ∗ f̃
T

2m

10: Σ̃12 ← f̃1m ∗ f̃
T

2m . Estimated covariance matrices
from one mini-batch of feature vectors

11: Σ11 ← m ∗Σ11 + (1−m) ∗ Σ̃11

12: Σ22 ← m ∗Σ22 + (1−m) ∗ Σ̃22

13: Σ12 ← m ∗Σ12 + (1−m) ∗ Σ̃12 . Update the
global covariance matrices with a moment m

14: τ ← max{singular(Σ
−1/2
11 Σ12Σ

−1/2
22 )} . obtain

τ with the updated global matrices
15: return τ

4. Experiments
We present experiments on two sets of multi-task learn-

ing problems, including one homogeneous and one hetero-
geneous multi-task learning, to demonstrate the effective-
ness of the proposed task relation nets for face landmark
localization and face attribute classification.

4.1. Experimental Settings

The face landmark localization task aims to predict loca-
tions, i.e. coordinates, of the key points on facial images,



Figure 2. Face landmark localization and face pose estimation.
White dots on faces represent landmark locations, and different
columns show faces of different out-of-plane rotation angles. Face
landmark localization aims to predict the coordinates of the land-
marks, and face pose estimation aims to classify pose angles into
discretized bins. We can see that these two tasks are closely related
to each other.

such as corners of mouth and center of eyes. The landmark
localization task is related to face pose estimation task, as
illustrated in Fig. 2. Hence in this experiment, we explore
how the prediction of face pose and landmark locations can
help boost the performance of each other with the proposed
TRN. Note that this is a case of heterogeneous multi-task
learning, as the output spaces are of different dimensions.

For the task of face attribute classification, we investigate
whether the proposed TRN can facilitate predicting certain
face attributes with the help of other attributes. It is a ho-
mogeneous multi-task learning, as all the tasks involved are
binary classification.

4.1.1 Datasets

The MTFL dataset [25] provides annotations of facial land-
mark locations for 5 landmarks (10 coordinates), and anno-
tation for face pose angles (discretized into 5 bins). We con-
duct experiments on multi-task learning of facial landmark
localization (a regression task) and face pose classification
(a 5-way classification task). The CelebA dataset [14] con-
tains about 200k face images with annotations for 40 at-
tributes, and classifying each attribute corresponds to a bi-
nary classification task. There are two versions for the
dataset, i.e. a pre-cropped version and an original image
version, and we use the pre-cropped version in our experi-
ments.

4.1.2 Evaluation Metrics

The evaluation metric for face landmark localization is the
widely used normalized mean error [25]. It is defined as the
mean discrepancies between the estimated landmark loca-
tions and the ground truth, normalized by the inter-ocular
distance. The metric for face pose estimation is accuracy.
For the CelebA dataset, the evaluation metrics are error rate
and average precision.
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Figure 3. Similarity measurement on the ground truth labels for
all pairs of face attributes in the CelebA dataset. Warmer colors
(like red, orange) indicate higher similarity values and cooler col-
ors ( e.g green, blue) indicate lower similarity values.

4.1.3 Baselines

In the experiments, we consider the following baseline
methods. The first baseline is the Single Task Learning
(STL), where each task is performed by a separate model
without weight sharing. The second is Multi-Task Learn-
ing (MTL), which is essentially the proposed TRN with-
out TRL. Other baselines are the state-of-the-art meth-
ods in the literature, i.e. [25, 4] for the MTFL dataset
and [14, 19, 11, 3] for CelebA.

4.2. Experiments and Analysis

4.2.1 Validation of the Similarity Metric

To validate the correctness of the similarity measurement,
we perform experiments on the CelebA dataset. We com-
pute the ground truth task similarity τ(Y1,Y2) for all pairs
of 40 face attributes, and the results are given in Fig. 3. In
this figure, the pairs of face attributes with high values of
τgt are Heavy Makeup and Wearing Lipstick, Wearing Lip-
stick and Male, Sideburns and No Beard, Smiling and Mouth
Slightly Open, while those with low values of τgt are Re-
ceding Hairline and Black Hair, Rosy Cheeks and Narrow
Eyes, Bangs Under Eyes and Wearing Hat. We can see that
the measurement of task similarity agrees well with com-
mon sense on whether these two tasks are similar or not.

4.2.2 Convergence of the Online Learning Algorithm

In this subsection, we investigate whether the online learn-
ing algorithm (Alg. 1) is capable of converging to the offline
calculated ground truth similarity values. We conduct an ex-
periment on two classification tasks in the CelebA dataset.
We train two separate models using residual networks [8]
with 18 layers (ResNet-18) to perform the two classification
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Figure 4. Learning curve of Alg. 1 with different momentum m and batch size. In all figures, the x-axis is the number of training iteration,
and the y-axis is the similarity value. The horizontal lines denote the offline calculated similarity values, and the curves show the online
learned ones. Row 1: batch size = 32, Row, 2: batch size = 128. Col. 1-3, m = 0.9, 0.99 and 0.999.

tasks. After training, we extract the output features from the
output layers and the hidden features from the penultimate
layers from the two models. Then we calculate the similar-
ity of the output features, hidden features and labels (given
in CelebA) between the two tasks offline using Eqn. (12).
Then we use Alg. 1 to online learn the three similarity val-
ues with various batch sizes and momentum settings. The
results of the online learned similarity values are shown
in Fig. 4. We can see that the online learned similarities
converge to the offline calculated values for different batch
sizes and momentum settings. The convergence behaviors
for large batch size (128) and small batch size (32) are sim-
ilar, but using large batch size is more stable. For momen-
tum, the curve is smoother with high values than low ones,
with the cost of slower convergence speed (the scale of x-
axis is different in different columns). In the following ex-
periments, we use a batch size of 128 and momentum of
0.99.

We find that the online learning algorithm is able to con-
verge even if the number of channels of feature vectors (512
for hidden feature vectors) is larger than the batch size (128
or 32). We also observe that there is a gap between the sim-
ilarity of output features and that of labels.

4.2.3 Components Studies in TRN

In this experiment, we demonstrate that the regularization
Lts in Eqn. (13) contributes to performance improvement

on the MTFL dataset. We compare the performance of STL,
MTL, TRN (with different settings), and other state-of-the-
art methods in facial landmark localization and face pose
classification. For STL, the network architecture is ResNet-
18 with 5 stages. For MTL, we also adopt ResNet-18, where
the trunk contains the first 4 stages, and each task-specific
subnet contains the last stage and the final output layer. For
TRN, we apply regularizations at different layers, including
the output layer and the hidden layer, i.e. the hidden fea-
tures of the last stage after global average pooling. The loss
weight λ for the output layer and the hidden layer is 0.01
and 0.001, respectively.

The results of different models are shown in Tab. 1. For
STL, different tasks use separate models, and they can ex-
plore the feature space independently. Thus the output fea-
ture similarity is not far from the ground truth task simi-
larity. When we change the structure of the model from
STL to MTL by sharing quite a number of parameters in
the trunk network, the similarities of both the hidden fea-
tures and output features in task-specific layers of subnets
have increased, although the MTL still benefits both tasks
through multi-task learning. In TRN where explicit model-
ing of the similarity is used, the output similarity is closer to
the ground truth, and the performance is also improved by
such modeling. TRN further benefits the tasks when taking
the hidden layer into the modeling process.



Model τhidden τoutput Err. (%) Acc. (%)

[25] - - 8.0 -
[4] - - - 75.7
STL 0.84 0.67 7.87 78.70
MTL 0.90 0.69 6.36 79.33
TRN (l=output) 0.88 0.68 6.12 79.60
TRN (l=hidden+output) 0.81 0.66 6.03 80.37

Table 1. Performance of different models on the test set of MTFL.
τoutput refers to the output task similarity, and τhidden denotes
the similarity of the hidden features. Err. is the normalized mean
error of facial landmark localization and Acc. is the accuracy of
face pose classification. The ground truth task similarity τgt is
0.66.

4.2.4 Performance on the CelebA Dataset

We then proceed to evaluate the proposed TRN on CelebA
to perform classification of all the 40 attributes. We use
the first 5 stages in ResNet-18 as the trunk network with
40 classifier layers on top of the trunk for the MTL base-
line. To model the relations of the 40 tasks in TRN, we
group the 40 attributes into two groups, and model the re-
lations between the two groups. The first 20 attributes are
in the first group and the remaining 20 attributes are in the
second group. The loss weight for the task similarity loss
is 0.01. We compare the performance of MTL, TRN and
other state-of-the-art methods on CelebA dataset, shown in
Tab. 2. We can see that our proposed TRN outperforms
MTL, and also other state-of-the-art methods in terms of
mean Average Precision. TRN also reduces the mean error
rate compared to MTL and achieves state-of-the-art perfor-
mance.

Model Mean Err. (%) Mean AP(%)

[19] 9.06 -
[3] 8.67 -
[11] 9.49 77.69
[11]+ Seg 8.20 81.45
MTL 8.42 80.72
TRN 8.21 81.62

Table 2. Results of mean error and mean Average Precision (AP)
over all 40 attributes on the test set of CelebA. Here [Kalayeh et
al., 2017] is their baseline method and [Kalayeh et al., 2017]+Seg
is their final model, which uses additional segmentation informa-
tion.

4.2.5 TRN for Tasks of Various Similarities

In this experiment, we investigate how TRN behaves for
tasks with different task similarities. We choose different

Att1 Att2 τgt
AP of Att1(%) AP of Att2 (%)

STL MTL TRN STL MTL TRN

W.H. B. 0.031 91.66 92.24 93.04 75.32 75.82 76.98
Mt. G. 0.451 56.61 58.54 59.13 72.35 72.65 72.76
S.B. N.B. 0.543 74.18 76.21 76.82 99.60 99.61 99.62

S.B. A.E. 0.116 75.85 74.43 75.82 75.64 75.30 75.74
M. B.E. 0.301 99.54 99.54 99.55 59.97 59.44 60.14

Table 3. Performance for different pairs of attributes with var-
ious τgt. The short-hand attribute names are: W.H.: Wearing
Hat, B.:Bald, S.B.:Sideburns, A.E.:Arched Eyebrows, M.:Male,
B.E.:Bags Under Eyes, Mt.:Mustache, G.:Goatee, N.B.:No Beard.

pairs of attributes that have varying levels of ground truth
task similarities in CelebA, and compare the performance
of STL, MTL, and TRN for each pair. Here STL adopts
ResNet-18, MTL uses ResNet-18 with two classifier layers,
and TRN adds regularization to the output layers of MTL.
The chosen pairs and the performance are in Tab. 3. We
can observe that the proposed TRL can model the mutual
learning of tasks with different ground truth task similar-
ities. For some pairs, where MTL outperforms STL, our
proposed TRN can further improve the performance. See
Rows 1, 2 and 3 of Tab. 3. For some pairs, where MTL
underperforms STL (so-called negative transfer), TRN can
improve the performance of MTL to mitigate negative trans-
fer, like in Rows 4 and 5.

5. Conclusion
In this paper, we propose a quantitative metric named

Statistical Task Relation (STR) to measure the relations be-
tween tasks in multi-task learning. We develop a Task Re-
lation Layer (TRL) and an online learning algorithm to cal-
culate the STR from dynamic features in a deep neural net-
work. The resultant Task Relation Net (TRN) is able to per-
form explicit analysis and reasoning with task relation, and
better leverage the mutual information of different computer
vision tasks. Experiments show that the proposed TRNs
are effective for improving the performance for both homo-
geneous and heterogeneous multi-task learning for vision
tasks.
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