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a b s t r a c t 

Feature learning is a critical step in pattern recognition, such as image classification. However, most of 

the existing methods cannot extract features that are discriminative and at the same time invariant under 

some transforms. This limits the classification performance, especially in the case of small training sets. 

To address this issue, in this paper we propose a novel Partial Differential Equation (PDE) based method 

for feature learning. The feature learned by our PDE is discriminative, also translationally and rotationally 

invariant, and robust to illumination variation. To our best knowledge, this is the first work that applies 

PDE to feature learning and image recognition tasks. Specifically, we model feature learning as an evo- 

lution process governed by a PDE, which is designed to be translationally and rotationally invariant and 

is learned via minimizing the training error, hence extracts discriminative information from data. After 

feature extraction, we apply a linear classifier for classification. We also propose an efficient algorithm 

that optimizes the whole framework. Our method is very effective when the training samples are few. 

The experimental results of face recognition on the four benchmark face datasets show that the proposed 

method outperforms the state-of-the-art feature learning methods in the case of low-resolution images 

and when the training samples are limited. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Nowadays, many well-known methods for image classification 

tasks (e.g. face recognition) involve two steps: feature extraction 

and classification. As the performance of the classifier is heavily 

dependent on the quality of features (or data representation), 

much of the effort on image classification goes into the design of 

features and data transformations [1] . The approaches to feature 

extraction can be split into two categories: manually designing 

features and automatically learning features. 

Manual feature design is a way that incorporates human inge- 

nuity and prior knowledge to represent data. Features extracted 

by existing popular methods, such as Scale-Invariant Feature 

Transform (SIFT) [2] , Histogram of Oriented Gradients (HOG) 

[3] , and Invariant Scattering Convolution Networks [4] , usually 

satisfy some invariance properties, e.g., translational and rotational 

invariance, that are beneficial to the image classification tasks. 

∗ Corresponding author. 

E-mail addresses: fangcong@pku.edu.cn (C. Fang), dwightzzy@gmail.com (Z. 

Zhao), pzhou@u.nus.edu (P. Zhou), zlin@pku.edu.cn (Z. Lin). 

They are intuitive and fit for various image classification tasks 

relatively well. However, inventing these methods is extremely 

labor-intensive, and existing methods may not extract discrimina- 

tive information from the data well. So researchers gradually turn 

to learn representations of data. 

Linear representation based feature learning methods have at- 

tracted much attention recently. This is because images of convex 

and Lambertian objects taken under distant illumination lie near 

an approximately nine-dimensional linear subspace, known as the 

harmonic plane [5] . By utilizing this subspace property, Low Rank 

Representation [6] based methods extract feature to capture the 

global structure of the whole data and are robust to noise. Chen 

et al. [7] extract the low rank matrix as feature and then apply 

Sparse Representation Classification (SRC) [8] for classification. 

Li et al. [9] propose a semi-supervised framework with class- 

wide diagonal structure to learn low-rank representations. Zhang 

et al. [10] expand the low-rank model into a dictionary learning 

method. Wu et al. [11] also apply a low-rank dictionary model 

into multi-view tasks. Dictionary learning methods, which learn a 

set of representation atoms and weighted coefficients (feature) at 

the same time, have also achieved huge success. Zhang et al. [12] 

http://dx.doi.org/10.1016/j.patcog.2017.03.034 

0031-3203/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.patcog.2017.03.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.03.034&domain=pdf
mailto:fangcong@pku.edu.cn
mailto:dwightzzy@gmail.com
mailto:pzhou@u.nus.edu
mailto:zlin@pku.edu.cn
http://dx.doi.org/10.1016/j.patcog.2017.03.034


C. Fang et al. / Pattern Recognition 69 (2017) 14–25 15 

propose a discriminative KSVD method (D-KSVD) which combines 

the dictionary reconstruction error and classification error and 

then solve their model by a single KSVD. Mairal et al. [13] model 

the supervised dictionary learning as a bilevel optimization frame- 

work. To build the relationship between dictionary atoms and the 

class labels, Jiang et al. [14] associate label information with each 

dictionary item and propose a Label Consistent K-SVD method (LC- 

KSVD). Liu et al. [15] also propose an oriented-discriminative 

dictionary to tackle this problem. There are also some works 

which construct several different dictionaries for classification. Ou 

et al. [16] use an occlusion dictionary for face recognition with 

occlusion. Liu et al. [17] apply a bilinear dictionary for face recog- 

nition. However, these linear representation based feature learning 

methods ignore the invariance of the features. For example, in 

face recognition tasks the changes of illumination or poses can 

only be regarded as noise. Moreover, since a little misalignment 

among faces can bring down the performance of classification 

significantly, much effort is spent on aligning the faces before 

classification [18] . 

Deep neural networks, which are composed of multiple non- 

linear transformations, have shown their superiority during the 

past few years [19–21] . Their hierarchical structure is effective 

in extracting discriminative information. Convolutional Neural 

Networks (CNN) [22] cut down the connections between the 

successive layers by using shared weights (same filters) and apply 

pooling strategies to extract local useful features, which have 

achieved an amazing performance [21] in image classification 

tasks. However, deep neural networks usually need a huge number 

of samples for training. Unfortunately, for many problems, such as 

tasks in bioinformatics and face recognition, each class only has 

several samples for training. 

Recently, Liu et al. [23,24] have proposed a framework that 

learns partial differential equations (PDEs) from training image 

pairs, which has been successfully applied to several computer 

vision and image processing problems. In [24] , they apply learning- 

based PDEs to object detection, color2gray, and demosaicking. In 

[25] , they model the saliency detection task as learning a bound- 

ary condition of a PDE system. Zhao et al. [26] extend this model 

to text detection. 

The incapability of the existing methods in incorporating 

both discrimination and invariance into features motivates us 

to find new ways to feature learning, especially in the case of 

limited training samples . Considering that symmetry methods for 

differential equations can construct invariances rigorously, in this 

paper we propose a novel PDE model for feature learning. An 

illustration of the proposed approach is shown in Fig. 1 . 

The PDE is formulated as a linear combination of fundamental 

differential invariants. The evolution process of the PDE works 

as a mapping from the raw images to the features of the same 

dimension. Distinguished from traditional PDE methods, our PDE 

is data-driven, enhancing discriminative information in the learned 

feature. In addition, its evolution process is strictly translationally 

and rotationally invariant. Then the feature is fed to a simple 

linear classifier for classification. We also provide an algorithm 

that updates the parameters alternately to optimize our discretized 

model. By utilizing the invariance property well, our method is 

very efficient when the training samples are few. We summarize 

the contributions of this paper as follows: 

• We propose a novel PDE based method to extract image feature 

for classification. We model the feature extraction process as 

an evolutionary PDE. The learned feature is both discriminative 

and invariant under translation, rotation and gray-level scaling. 

To our best knowledge, this is the first work that applies PDE 

to feature learning and image recognition. 

…

…

…

Learning feature by PDE

…

Label

t=0 (Input) t=T/N

1

2

3

t=(N-1)T/N t=T (Feature)

Linear
classifier

Fig. 1. Illustration of the proposed approach. The evolutionary process of our 

PDE (solid arrow) with respect to the time ( t = 0 , T /N, · · · , T, ) extracts the feature 

from the image and the gradient descent process (hollow arrow) learns a transform 

to represent the feature. 

• We provide a simple yet effective algorithm to optimize 

our discretized PDE model. The whole training time in each 

experiment is less than five minutes. 1 

Face recognition is a paradigm where the training samples are 

few. Our experimental results 2 on the four well-known public 

face recognition datasets show that our method outperforms the 

state-of-the-art methods in this case. For example, we obtain a 

recognition accuracy of 96% on Extended Yale B, with only 10 

samples for each person, which is about 9% higher than sparse 

coding and dictionary learning methods. 

The rest of the paper is structured as follows: we will first 

introduce our PDE model in Section 2 . In Section 3 , we provide 

our algorithm to optimize our model. We discuss some other 

related works in Section 4 . In Section 5 , we evaluate our PDE 

model on face recognition tasks and show the superiority of our 

model. Finally, we will conclude our paper in Section 6 . 

2. PDE based feature learning model 

In this section, we present our PDE model for discriminative 

feature learning. We first propose the general framework and then 

crystallize our model via some invariance properties. To begin 

with, we provide in Table 1 a brief summary of the notations used 

throughout the paper. For vector x, x i presents its i th component. 

2.1. General PDE model 

We first assume that feature extraction is an evolution process 

which can be described by a certain kind of time-dependent PDE. 

1 The code will be available at http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin. 

htm . 
2 Currently, our method focuses on low-resolution images. To best of our knowl- 

edge, all the compared methods which aim at classification with limited training 

samples also test on images at this scale. 

http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin.htm
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Table 1 

Notations (Nota. stands for notation.) 

Nota. Description Nota. Description 

u Evolution of the input image. vec( · ) Rearrange a matrix to a column vector. 

� An open bounded region in R 2 . || · || F Frobenious norm, || X || F = 

√ ∑ 

i, j X 
2 
i j 

. 

∂� Boundary of �. I m , h m The m th training image and its tag vector. 

Q � × [0, T ]. { a i (t) } 5 i =0 Parameters in the PDE. 

� ∂� × [0, T ]. A, W Parameters in the PDE and classifier. 

∇u Gradient of u . X T Transpose of matrix (or vector). 

H u Hessian of u . 〈·, ·〉 Inner product, 〈 C, D 〉 = ( vec (C)) T vec (D ) . 

The input of the PDE (initial condition) is the original image. The 

output of the PDE is the feature of the image. The time-dependent 

operations of the evolutionary PDE resemble different steps of 

information processing. The PDE can be formulated as: ⎧ ⎨ 

⎩ 

∂u 

∂t 
= F (u, x, y, t) , (x, y, t) ∈ Q, 

u (x, y, t) = 0 , (x, y, t) ∈ �, 

u | t=0 (x, y, t) = I, (x, y ) ∈ �, 

(1) 

where I is the input image, � is the rectangular region occupied 

by the input image I , and T is the time that the PDE finishes fea- 

ture extraction. 3 The evolution result u | t= T is the learned feature 

map. The meanings of other notations in Eq. (1) can be found in 

Table 1 . So when the PDE is discretized, which will be discussed 

in Section 3.1 , the dimension (size) of the feature map u | t= T will 

be the same as the input image I . 

2.2. Formulate the PDE 

The F ( u, x, y, t ) in (1) is unknown. For most existing evolution- 

ary PDE methods for image processing tasks [27,28] , the PDEs can 

be written as follows: 

∂u 

∂t 
= F (u, ∇u, H u ) , (2) 

where F is a function of u , ∇u , and H u . Different choices of F result 

in different PDEs. For some image processing problems, people can 

use their intuition (e.g. smoothness of edge contour and surface 

shading) to devise a particular F . But for classification tasks, it is 

hard to directly write down an F which can describe the feature 

extraction process. Inspired by Liu et al. [24] , we tend to deduce 

the property of F in order to narrow down its search space instead 

of directly finding the right form the PDE. 

2.2.1. Translational and rotational invariants 

For many image classification tasks, the features need to be 

invariant under some transformations so as to make the classifi- 

cation robust. The most basic transformations are translation and 

rotation. Some existing manually designed features, such as SIFT 

and HOG, are roughly invariant under translation and rotation. 

Inspired by Liu et al. [24] , we also require our PDE to be trans- 

lationally and rotationally invariant over time. According to the 

differential invariant theory [29] , F ( ·, ·, ·, t ) must be a function of 

the fundamental differential invariants under the group of trans- 

lation and rotation. The fundamental differential invariants are 

invariants under translation and rotation and any other invariant 

can be written as their function. The fundamental invariants up to 

the second order 4 that we will use are listed in Table 2 , which we 

refer to as inv i ( u ), i = 0 , · · · , 5 . 

3 When discretizing the PDE, we pad images with zeros so as to satisfy the 

Dirichlet boundary conditions u (x, y, t) = 0 , where ( x, y, t ) ∈ �. 
4 Like most PDE based methods, we limit our attention to second order PDEs, 

since higher order PDEs will pose difficulties in numerical stability and theoretical 

analysis. 

Table 2 

Rotational invariants up to the second order. 

i inv i ( u ) 

0,1,2 1, u , ‖∇u ‖ 2 = u 2 x + u 2 y , 

3 tr(H u ) = u xx + u yy , 

4 (∇ u ) T H u ∇ u = u 2 x u xx + 2 u x u y u xy + u 2 y u yy , 

5 tr(H 

2 
u ) = u 2 xx + 2 u 2 xy + u 2 yy . 

To verify that the inv i ( u ), i = 0 , · · · , 5 , are invariant under 

rotation, it is not hard to find that ∇u , H u will change to R ∇u and 

RH u R 

T , respectively, when the image is rotated by a matrix R . 

2.2.2. Nonlinear mapping 

In many image classification tasks, such as face recognition, 

variation of illumination is a big challenge [8] . To achieve approx- 

imate invariance in illumination, we add a nonlinear mapping 

g(x ) = 

x 
1+ | x | on each fundamental differential invariant, making it 

nearly invariant under gray-level scaling. Note that we cannot use 

˜ g (x ) = 

x 
| x | = sgn (x ) because it is not a bijection. So { ̃ g ( inv i (u )) } 5 i =0 

are not fundamental differential invariants that can be used to 

represent other differential invariants. In contrast, { g( inv i (u )) } 5 i =0 

are still fundamental differential invariants. In the same spirit, g ( x ) 

can be chosen as other commonly used transfer function in neural 

networks, such as the logistic function [19,20] . But g ( x ) here is 

much simpler. Since F ( ·, ·, ·, t ) can be written as a function of 

fundamental differential invariants, in the simplest case we choose 

F as a linear combination of these transformed fundamental 

differential invariants, formulated as follows: 

F (u, x, y, t) = 

5 ∑ 

i =0 

a i (x, y, t ) g ( inv i ( u ( t ) ) ) , (3) 

where { a i (x, y, t) } 5 i =0 are parameters to be determined. 

The nonlinear mapping has another advantage, i.e., making 

the fundamental differential invariants bounded, reducing the 

difficulty of optimization and improving numerical stability of the 

PDE. The experiments show that the mapping can improve face 

recognition rate by about 4%. 

When F ( u, x, y, t ) in Eq. (1) is chosen as Eq. (3) , our PDE 

is actually a simplified version of the PDE system proposed by 

Liu et al. [24] , who have successfully used this model to handle 

different image processing problems. Our model adds a nonlinear 

mapping on each fundamental differential invariants, and drops 

the indicator function in their model which was introduced for 

collecting global information. This is because we are considering 

local features. Omitting the indication function greatly reduces the 

computational complexity and the training cost. Our PDE also has 

the following properties: 

Proposition 1. Suppose the PDE (1) is translationally invariant, then 

{ a j (x, y, t) } 5 
j=0 

must be independent of ( x, y ) . 
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Proposition 2. When F ( u, x, y, t ) is a function of the fundamental 

differential invariants, u ( t ) is invariant under the group of translation 

and rotation through the evolution of the PDE (1) . 

The proofs are the same as those in [24] , despite the introduc- 

tion of the nonlinear mapping g . According to Proposition 1 , we 

will use { a j (t) } 5 
j=0 

to denote { a j (x, y, t) } 5 
j=0 

in the following. 

2.3. Classification 

When obtaining the feature u m 

| t= T from the input image I m 

, 

we need a classifier for classification. In the training phase, we 

minimize a loss function to determine both the F and the param- 

eters in the classifier. Especially, we first prepare training samples 

{ (I m 

, h m 

) } M 

m =1 
, where I m 

is the m th input image, h m 

is its corre- 

sponding tag vector with 1 at the i th entry if the m th input image 

belongs to class i , and M is the number of samples. For each input 

image I m 

, we obtain a feature map u m 

| t= T by PDE (1) for classifica- 

tion. Then the whole learning model can be formulated as finding 

a certain function F ( u, x, y, t ) and parameters W of a classifier to 

minimize a loss function L with a regularization term J : 

min 

F,W 

E = 

1 

M 

M ∑ 

m =1 

L (W ; u m 

| t= T , h m 

) + λJ(W ) , (4) 

where u m 

satisfies the PDE (1) with u m 

| t=0 = I m 

and λ > 0 is 

a trade-off parameter. When F is chosen as Eq. (1) , we are to 

determine a i ( t ), i = 0 , · · · , 5 , instead. 

For simplicity, we use a linear classifier, such as Multivariate 

Ridge Regression (MRR), for classification, which is widely used 

in multi-class classification [10,12,14] . We can also adopt the 

hinge loss as it is advantageous in many cases, such as in face 

recognition and in dimensionality reduction [30–32] . The objective 

in (4) to learn MRR is as follows: 

E = 

1 

M 

‖ 

H − W · U| t= T ‖ 

2 
F + λ‖ W ‖ 

2 
F , (5) 

where H = [ h 1 , h 2 , · · · , h M 

] . And as mentioned before, u m 

| t= T will 

be a matrix of the same size as the input image I m 

when the 

PDE is discretized. So for MRR, W will be a matrix with size of 

c × p , where c is the number of categories and p is the pixel 

number of the input images I m 

. 5 We set U| t= T = [ vec (u 1 | t= T ) , 
vec (u 2 | t= T ) , · · · , vec (u M 

| t= T )] . When testing, the class label l ∗ of a 

testing image I can be obtained as follows: 

l ∗ = arg max 
l 

{ s l } , (6) 

where s = W · vec (u | t= T ) is the label vector and u satisfies our 

learned PDE (1) with u | t=0 = I. 

2.4. The whole PDE based feature learning model 

Integrating feature extraction and classification, our whole PDE 

model can be formulated as follows: 

min 

W, { a i (t) } 
E = 

1 

M 

‖ 

H − W · U| t= T ‖ 

2 
F + λ‖ W ‖ 

2 
F , 

s.t. 

⎧ ⎨ 

⎩ 

∂u m 

∂t 
= 

∑ 5 
i =0 a i (t ) g ( inv i ( u m 

( t ) ) ) , (x, y, t) ∈ Q, 

u m 

(x, y, t) = 0 , (x, y, t) ∈ �, 

u m 

| t=0 (x, y, t) = I m 

, (x, y ) ∈ �, 

(7) 

where m = 1 , 2 , · · · , M, I m 

presents each training image, H, U| t= T , 
W , and λ are the same as those in Eq. (5) , and a i ( t ) is give in 

Eq. (3) . One can find that our PDE extracts discriminative feature 

as { a (t) j } 5 j=0 
is determined to minimize the loss function of the 

training data. 

5 We assume that all images are in a same size. Otherwise, we will normalize 

them to a unique size. 

3. Algorithm for solving (7) 

In this section, we propose an algorithm to solve our feature 

learning model (7) . The main strategy is to update the parameters 

A and W alternately, where discretized of a i is the i th column of 

A . We first discretize the PDE and then show details of optimizing 

A and W . When updating A , we use the gradient descent method. 

W is given a closed-form solution. The whole algorithm is shown 

in Algorithm 1 , including some fixed hyper-parameters. 

Algorithm 1 Training PDEs. 

Input Training image pairs { (I m 

, h m 

) } M 

m =1 
, η, λ. 

Initialize �t = 0 . 5 , N = 5 , ρ = 0 . 95 , ε = 10 −6 , k = 1 , k max = 10 . 

Initialize A with each entry uniformly sampled from [ −1 , 1] . 

while k ≤ k max and || E k − E k −1 || > ε do 

1. For all images, set u 0 m 

= I m 

and calculate u n m 

by Eq. (10). 

2. Solve W by Eq. (11). 

3. Update A by one gradient descentstep as Eq. (22). 

4. Update η = ρη. 

5. Update k = k + 1 . 

end while 

3.1. Discretization 

We first discretize our PDE. We use central difference to 

approximate the spatial derivatives as follows: ⎧ ⎪ ⎨ 

⎪ ⎩ 

∂ f 

∂x 
= 

f (x +1) − f (x −1) 
2 

, 

∂ 2 f 

∂x 2 
= f (x + 1) − 2 f (x ) + f (x − 1) , 

(8) 

The discrete forms of ∂ f 
∂y 

, 
∂ 2 f 
∂y 

, and 

∂ 2 f 
∂ x∂ y 

can be defined similarly 

through central difference. Then inv i (u ) , i = 0 , · · · , 5 , can be cal- 

culated directly through the discrete form of spatial derivatives, 

e.g. inv 3 (u )(p, q ) = u (p − 1 , q ) + u (p + 1 , q ) + u (p, q + 1) + u (p, q −
1) − 4 u (p, q ) , where ( p, q ) is the coordinate in the image u . 

The temporal derivatives is approximated by forward difference, 

formulated as: 

∂ f 

∂t 
= 

f (t + �t) − f (t) 

�t 
, (9) 

where �t is the step size. We then denote discreted temporal 

variable t as t i = i · �t, i = 0 , · · · , N, where in our experiments 

N = 5 . In the sequel, we simply use u n m 

to denote u m 

( x, y, t n ) 

and a n 
i 

to denote a i ( t n ). So A can be written as a matrix with a n 
i 

being the ( n, i )th entry. The forward scheme to approximate the 

evolutionary PDE in Eq. (7) can be written as follows: 

u 

n +1 
m 

= u 

n 
m 

+ �t 

5 ∑ 

i =0 

a n i · g ( inv i ( u 

n 
m 

) ) , (10) 

where n = 0 , 1 , · · · , N − 1 . 

3.2. Updating W 

By fixing A , we calculate u m 

| t= T = u N m 

by iterating Eq. (10) with 

n ranging from 1 to N − 1 . Then W can be solved as: 

W = arg min 

W 

1 

M 

∥∥H − W · U 

N 
∥∥2 + λ‖ W ‖ 

2 
F 

= H ·
(
U 

N 
)T ·

[ 
U 

N ·
(
U 

N 
)T + λMI 

] −1 

, (11) 

where I ∈ R 

p×p is an identity matrix, p is the pixel number of an 

image, and U 

N = [ vec (u N 
1 
) , vec (u N 

2 
) , · · · , vec (u N 

M 

)] . 
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3.3. Updating A 

When W is fixed, A is updated by the gradient descent method. 

So we deduce the gradient first. ∂E 
∂a n 

i 

is obtained by the chain rule 

or back-propagation [33] : 

∂E 

∂a n 
i 

= 

∂E 

∂U 

n +1 
· ∂U 

n +1 

∂a n 
i 

. (12) 

where U 

n = [ vec (u n 
1 
) , vec (u n 

2 
) , · · · , vec (u n 

M 

)] . According to Eq. (10) , 
∂E 
∂a n 

i 

can be rewritten as 

∂E 

∂a n 
i 

= �t 

M ∑ 

m =1 

〈
∂E 

∂u 

n +1 
m 

, g ( inv i ( u 

n 
m 

) ) 

〉
, (13) 

where ∂E 
∂u n m 

is a matrix with 

∂E 
∂u n m 

(p, q ) = 

∂E 
∂u n m (p,q ) 

and 〈·, ·〉 is the 

matrix inner product. Now we compute ∂E 
∂u n m 

. When n = N, 

∂E 

∂U 

N 
= 

1 

M 

W 

T ·
(
W · vec 

(
U 

N 
)

− H 

)
. (14) 

For n < N , by the chain rule we have 

∂E 

∂u 

n 
m 

(p, q ) = 

∂E 

∂u 

n +1 
m 

(p, q ) + �t 

5 ∑ 

i =0 

a n i 

∑ 

r 

∑ 

s 

∂E 

∂u 

n +1 
m 

(r, s ) 

×∂ g ( inv i ( u 

n 
m 

) ( r, s ) ) 

∂ u 

n 
m 

(p, q ) 
, (15) 

where ( r, s ) is the image coordinate and travels all the pixels 

over the image. Since the central difference are only linked to the 

adjacent points on each point, Eq. (15) reduces to: 

∂E 

∂u 

n 
m 

= 

∂E 

∂u 

n +1 
m 

+ �t 

5 ∑ 

i =0 

a n i Z(i, m, n ) , (16) 

where Z ( i, m, n ) is a matrix in a same size of the input image I m 

with each element ( p, q ) being 

Z(i, m, n )(p, q ) = 

1 ∑ 

r= −1 

1 ∑ 

s = −1 

∂E 

∂u 

n +1 
m 

(p + r, q + s ) 

×∂ g ( inv i ( u 

n 
m 

) ( p + r, q + s ) ) 

∂ u 

n 
m 

(p, q ) 
. (17) 

In the following, we give details of computing Z ( i, m, 

n ). We use (i = 3) as an example. The discrete form of 

inv 3 (u n m 

)(p, q ) = u n m 

(p − 1 , q ) + u n m 

(p + 1 , q ) + u n m 

(p, q + 1) + 

u n m 

(p, q − 1) − 4 u n m 

(p, q ) . Then we have 

∂g ( inv 3 ( u 

n 
m 

) ( p, q ) ) 

∂u 

n 
m 

(p − 1 , q ) 
= g ′ ( inv 3 ( u 

n 
m 

( p, q ) ) ) , 

∂g ( inv 3 ( u 

n 
m 

) ( p, q ) ) 

∂u 

n 
m 

(p + 1 , q ) 
= g ′ ( inv 3 ( u 

n 
m 

( p, q ) ) ) , 

∂g ( inv 3 ( u 

n 
m 

) ( p, q ) ) 

∂u 

n 
m 

(p, q − 1) 
= g ′ ( inv 3 ( u 

n 
m 

( p, q ) ) ) , 

∂g ( inv 3 ( u 

n 
m 

) ( p, q ) ) 

∂u 

n 
m 

(p, q + 1) 
= g ′ ( inv 3 ( u 

n 
m 

( p, q ) ) ) , 

∂g ( inv 3 ( u 

n 
m 

) ( p, q ) ) 

∂u 

n 
m 

(p, q ) 
= −4 g ′ ( inv 3 ( u 

n 
m 

( p, q ) ) ) , (18) 

where g ′ (x ) = 

1 
(1+ | x | ) 2 . So we obtain 

Z(3 , m, n )(p, q ) = 

∂E 

∂u 

n +1 
m 

(p + 1 , q ) 
g ′ ( inv 3 ( u 

n 
m 

) ( p + 1 , q ) ) 

+ 

∂E 

∂u 

n +1 
m 

(p − 1 , q ) 
g ′ ( inv 3 ( u 

n 
m 

) ( p − 1 , q ) ) 

+ 

∂E 

∂u 

n +1 
m 

(p, q + 1) 
g ′ ( inv 3 ( u 

n 
m 

) ( p, q + 1 ) ) 

Table 3 

Operator K(g( inv i (u n m ))) , where u n 
A 

= u n x u 
n 
xx + u n y u 

n 
xy , u n B = u n y u 

n 
yy + u n x u 

n 
xy , and g ′ = 

1 
(1+ | x | ) 2 

∣∣∣
x = inv i (u n m ) 

. 

i = 0 i = 3 ⎛ 

⎝ 

0 0 0 

0 0 0 

0 0 0 

⎞ 

⎠ 

⎛ 

⎝ 

0 g ′ 0 

g ′ − 4 g ′ g ′ 
0 g ′ 0 

⎞ 

⎠ 

i = 1 i = 4 ⎛ 

⎝ 

0 0 0 

0 g ′ 0 

0 0 0 

⎞ 

⎠ 

⎛ 

⎝ 

g ′ u n x u 
n 
y / 2 g ′ u n B + g ′ (u n y ) 

2 − g ′ u n x u 
n 
y / 2 

g ′ u n 
A 

+ g ′ (u n x ) 
2 − 2 g ′ (u n x ) 

2 − 2 g ′ (u n y ) 
2 − g ′ u n 

A 
+ g ′ (u n x ) 

2 

−g ′ u n x u 
n 
y / 2 − g ′ u n B + g ′ (u n y ) 

2 g ′ u n x u 
n 
y / 2 

⎞ 

⎠ 

i = 2 i = 5 ⎛ 

⎝ 

0 g ′ u n y 0 

g ′ u n x 0 − g ′ u n x 

0 − g ′ u n y 0 

⎞ 

⎠ 

⎛ 

⎝ 

g ′ u n xy 2 g ′ u n yy − g ′ u n xy 

2 g ′ u n xx g ′ · (−4 u n xx − 4 u n yy ) 2 g ′ u n xx 

−g ′ u n xy 2 g ′ u n yy g ′ u n xy 

⎞ 

⎠ 

+ 

∂E 

∂u 

n +1 
m 

(p, q − 1) 
g ′ ( inv 3 ( u 

n 
m 

) ( p, q − 1 ) ) 

−4 

∂E 

∂u 

n +1 
m 

(p, q ) 
g ′ ( inv 3 ( u 

n 
m 

) ( p, q ) ) . (19) 

To make the above expression simple, we define an operator: 

(C ◦ D )(p, q ) = 

1 ∑ 

r= −1 

1 ∑ 

s = −1 

C(p + r, q + s )[ D (r + 2 , s + 2 , p + r, q + s )] , 

where C is a matrix with the same size of the image and D is a 

3 × 3 operator, with each entry being a function. D actually has 

4 parameters. The first two parameters index an entry in the 3 ×
3 matrix and the last two index the coordinate in an image. Then 

Eq. (19) can be written as 

Z(3 , m, n ) = 

∂E 

∂u n +1 
m 

◦ K ( g ( inv 3 ( u 
n 
m 

) ) ) , (20) 

where K(g( inv 3 (u n m 

))) is a 3 × 3 operator and is 
(0 g ′ 0 

g ′ −4 g ′ g ′ 

0 g ′ 0 

)
. For 

example, when i = 3 , r = 0 , and s = −1 , K(g( inv 3 (u n m 

))(r + 2 , s + 

2 , p + r, q + s )) = g ′ ( inv 3 (u n m 

(p, q − 1)) . For other i , similarly we also 

have 

Z(i, m, n ) = 

∂E 

∂u n +1 
m 

◦ K ( g ( inv i ( u 
n 
m 

) ) ) , (21) 

where K(g( inv i (u n m 

))) is shown in Table 3 . 

With the gradient of E computed, by gradient descent, in the 

k th iteration A is updated as follows: 

(a n i ) 
k +1 = (a n i ) 

k − η
∂E k 

∂(a n 
i 
) k 

, (22) 

where η is the step size and 

∂E 
∂a n 

i 

is obtained through Eq. (13) . 

3.4. Complexity 

Since each point on inv i (u n m 

) is linked only to nine adjacent 

points in u n m 

, the back-propagation process can be calculated in 

linear time with respect to the pixel number. The whole com- 

plexity of our algorithm is O (Nmp + p 3 ) , where N is 5, m is the 

number of training samples, and p is the pixel number of the input 

image. The experiments on Section 5 show that our method is 

much faster than sparse coding and dictionary learning methods. 

4. Discussions 

4.1. Distinction from other PDE based methods 

There are also some PDE based works which try to devise 

particular PDEs for classification [34,35] . In [34] , Yin et al. apply 
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Fig. 3. The internal architecture in processing cell of L-PDE. 
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Fig. 4. The internal architecture in processing cell of CNN. 

the total variation as regularization to decompose the image, and 

use the decomposed part as feature for classification. In [35] , 

Shan et al. devise a simple PDE to normalize illumination and 

then use the normalized image as feature for classification. These 

PDE based works are actually using the PDE as a pre-processing 

for classification . The classification and PDE are still separated. So 

these methods should belong to image processing. In contrast, 

our method integrates classification with feature extraction, which 

uses a PDE as a learning tool to extract discriminative feature. 

4.2. Relation with CNN 

The CNN models have achieved a huge success in image clas- 

sification tasks [21] in recent layers. Like CNN, the discrete form 

of our PDE has a hierarchical architecture. Since the element-wise 

operations can be available to all modern deep learning training 

suits, e.g. Caffe [36] , Torch [37] , our PDE can be implemented 

as a “special CNN”. The architecture of our PDE model is shown 

in Figs. 2 and 3 , where Fig. 3 illustrates the internal 

architecture in the processing cell in Fig. 2 . A traditional CNN with 

a similar architecture is shown in Figs. 2 and 4 . 

There are still critical distinctions between our L-PDE and 

CNN. First, from Fig 3 , the fundamental differential invariants are 

non-linear and are calculated through element-wise multiplica- 

tion, not convolutional operators. Second, for neural networks, the 

non-linear mapping is after the linear transformation, while our 

PDE does the non-linear mapping, i.e., computing the differential 

invariants, before the linear combination. Third, in practice, most 

CNN models have a large number of parameters in the convolu- 

tional kernels, and they learn the feature through the strength of 

“big data”. Our PDE model develops invariance properties in the 

evolution process and works with few training samples. 

5. Experiments 

In this section, we present experiments to validate the pro- 

posed method. Classification with few training samples is a big 

challenge in image classification tasks, which is often encountered 

in reality and could be as difficult as the case of large training 

samples. Many sparse coding and dictionary learning methods 

[7,8,10,12,14] have aimed at classification in this case and have 

shown their superiorities. Face recognition is a paradigm which 

has few training samples but a lot of real applications, such as 

biometrics, information security, access control, law enforcement, 

smart cards and surveillance system (see [38] for a review). We 

focus our experiments on face recognition and do the same or 

similar experiments to compare with those sparse coding and 

dictionary learning methods. Currently, like all the compared 

methods, we focus on low-resolution images. We choose four 

datasets: Extended Yale B [39] , PIE [40] , AR [41] , and FRGC [42] , 

shown in Fig. 5 sequentially. The first three datasets have 

also been used by compared methods [7,8,10,14] . We use the same 

or similar training samples and image scales on these datasets to 

compare with them. The three datasets have different difficulties. 

The faces in Extended Yale B are under different illuminations 

which are hard to be linearly represented. The PIE dataset is taken 

under different poses. The main challenge of AR is that it contains 

different facial expressions and occlusions (sunglasses and scarf). 

We use the FRGC dataset to test our method when the training 

samples are few (only five images for each person). 

In the above recognition tasks, we compare our method with 

the existing state-of-the-art sparse coding and dictionary learning 

feature learning methods: D-KSVD [12] , LC-KSVD [14] , Task-Driven 

Dictionary Learning (TDDL) [13] , and Low-Rank Representations 

Classification (LRRC) [10] . All these methods use Ridge Regression 

for classification. So the differences in recognition performance 

reflect the effectiveness of feature learning. We do not compare 

our model with the old PDE based methods [34,35] which use 

the PDE as a pre-processing for classification, since we find that 

their results are inferior to those sparse coding methods, such as 

SRC [8] . We also compare our method with representative face 

recognition methods: k-Nearest Neighbors [43] , Kernel Support 

Vector Machine [30] , SRC [8] , and Low-Rank Structural Incoherence 

Classification (LRC and LRSIC) [7] , since all the experiments are 
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Fig. 5. Sample images from (a) YaleB, (b) PIE, (c) AR, and (d) FRGC, respectively. 

Table 4 

Recognition accuracies (%) on Extended Yale B, with 10, 15, and 20 training sam- 

ples. 

Type Method # training samples 

10 15 20 

Feature learning + ridge regression L-PDE (ours) 96.3 98.1 98.8 

CNN-GD 21.6 24.1 28.4 

CNN-AD 85.0 89.3 90.8 

LC-KSVD1 88.0 91.2 93.2 

LC-KSVD2 89.2 92.4 94.2 

TDDL 84.7 89.5 93.8 

LRRC 84.8 91.6 93.6 

Others kNN 54.8 63.8 69.8 

K-SVM 87.8 93.1 95.1 

SRC 87.9 93.6 96.4 

LRC 87.7 92.3 94.6 

LRSIC 88.2 94.0 95.1 

conducted on the face datasets. 6 LRC and LRSIC [7] are regarded as 

face recognition methods because they use SRC [8] for recognition. 

We also compare our method with CNN in all experiments. The 

architecture is shown in Figs. 2 and 4 . The CNN model has a 

similar configuration to our L-PDE. The parameter number of our 

PDE in each processing cell is H × W × 5, where H and W are 

the height and the width of images, respectively, while that of the 

CNN model is 6 × 3 × 3 + 11 × 6 + 5 × 11 + 3 × 3 × 5 = 220 in each 

processing cell. However, the parameters to be learned in our PDE 

are only { a i } and the linear classifier W . We first train the CNN 

model through the standard Stochastic Gradient Descent. We set 

the learning rate as ηt = η0 (1 + η′ ) −1 . The momentum is set to be 

0.9, and the batchsize is searched from 10 0, 20 0, or the number of 

training samples. However, we find that CNN trained by Stochastic 

Gradient Descent will face seriously overfitting and achieve pool 

results. It seems that training CNN by Stochastic Gradient Descent 

achieves a very good generalization property in practice only 

when there are huge training samples. As training CNN is a typical 

non-convex problem, the optimization method does have some 

influence on the test error [45] . However, we find that training 

CNN through Alternate Descent (as our LPDE’s) can improve the 

recognition accuracies a lot when the training samples are limited. 

In experiments, we also compare with the CNN model optimized 

6 The codes for D-KSVD and LC-KSVD are downloaded from the authors’ websites. 

SVM is from libSVM [44] . kNN is a function in Matlab. Other methods are our own 

implementations. 

by Alternate Descent, where we alternately update the parameters 

in the kernels and the linear classifier. We use CNN-GD to denote 

the recognition accuracies of CNN trained by Stochastic Gradient 

Descent, and use CNN-AD to denote the recognition accuracies of 

CNN trained by Alternate Descent. Throughout the experiments, 

our method and CNN work on the raw data, while we normalize 

the Frobenius norm of each image to 1 when testing other meth- 

ods. We choose a Gaussian kernel in SVM (K-SVM). For dictionary 

learning methods, including LC-KSVD [14] , TDDL [13] , and LRRC 

[10] , we choose the number of atoms to be 5 for each class. For 

each algorithm, parameters are tuned to the best. And for each 

experiment, we repeat 10 times and report the average accuracy. 

The platform is Matlab 2013a under Windows 7 on a PC equipped 

with a 3.4 GHz CPU and 8GB memory. 

5.1. Extended Yale B dataset 

We first test our method on the Extended Yale B dataset [39] . 

There are 2,414 frontal-face images of 38 people with a cropped 

and normalized size of 192 × 168. The faces are captured under 

various laboratory-controlled lighting conditions [46] . Following 

[7,10] , for each person we randomly select 10, 15, and 20 images 

for training and the others for testing. As the dimension of the 

images is high, we down sample each image by 1/4. 

We choose λ = 1 . 5 and η = 0 . 5 in our method. The experimen- 

tal results are summarized in Table 4 . Our approach outperforms 

all the methods in all cases and the advantages are more when 

the train samples are fewer. CNN-GD achieves poor recognition 

results due to serious overfitting. Our method achieves higher 

recognition accuracies than CNN-AD since our method maintains 

invariant properties through the evolution process. We also find 

K SVD methods, including LC-K SVD [14] , achieve inferior results 

than SRC [8] . The same phenomenon is also observed in [12] . 

Fig. 1 shows the evolution process of our learned PDE on three 

persons. One can see that the lighter faces gradually become 

darker and the darker faces change to lighter during the evolution 

of PDE. So the features U 

N 
i 

become invariant under different 

illuminations. This demonstrates that our methods are robust 

to illumination variation. This phenomenon may be due to two 

reasons. First, we add a nonlinear mapping g(x ) = 

x 
1+ | x | on each 

fundamental differential invariant which is nearly constant when 

| x | is large. So the fundamental differential invariants are nearly 

invariant under gray-level scaling. Second, our PDE is learned 

to obtain good recognition results. The training dataset provides 
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Table 5 

Recognition accuracies (%) on PIE, with 10, 15, and 20 training samples. 

Type Method # training samples 

10 15 20 

Feature learning + ridge regression L-PDE (ours) 84.1 88.9 90.9 

CNN-GD 19.3 19.8 22.0 

CNN-AD 69.3 76.1 79.6 

LC-KSVD1 35.8 36.8 65.0 

LC-KSVD2 36.2 37.7 65.3 

TDDL 78.4 84.4 87.9 

LRRC 79.8 85.2 89.1 

Others kNN 29.0 29.3 31.1 

K-SVM 73.4 82.9 85.7 

SRC 77.3 87.2 90.5 

LRC 79.1 84.7 88.3 

LRSIC 82.4 87.7 90.6 

training samples that are under different illuminations. So feature 

is learned to be invariant under these variants. 

5.2. PIE dataset 

The PIE dataset [40] consists of 41,368 images of 68 individuals. 

Each individual has 4 different expressions, 13 different poses and 

43 different illumination conditions. Like [47] , a subset (C05, C07, 

C09, C27, C29) of PIE contains 5 near frontal poses and all the 

images under different illuminations and expressions are chosen 

for experiment. Thus, each subject has about 170 images. Like [47] , 

we also randomly select 10, 15, and 20 images for training and the 

others for testing. Each image is down sampled to 32 × 32. 

We choose λ = 1 . 5 and η = 0 . 5 in our method. The experimen- 

tal results are summarized in Table 5 . Our method also obtains the 

best recognition rates at different numbers of training samples. 

Since the dataset is relatively hard, some feature learning methods 

perform poorly. The experiment demonstrates the robustness of 

our method to different poses. 

5.3. AR dataset 

The AR dataset [41] consists of over 40 0 0 frontal images of 126 

people. For each individual, images are separated into 2 sessions 

with different difficulties, including illumination, expression, and 

facial occlusion/disguise. All images are at the size of 165 × 120. 

For each session, there are 3 images obscured by sunglasses, 3 

images obscured by scarves, and 7 clean images with expressions 

and illuminations variations. Following [7,8,10] , in our experiments 

we select a subset of the AR dataset consisting of 50 men and 50 

women and down sample each image by 1/5. Following [7,10] , the 

experiments are under the following scenarios: 

• Sunglasses : We consider the case where images are only oc- 

cluded by sunglasses. We use 7 clean images and 1 image with 

sunglasses (randomly chosen) from session 1 for training. The 

testing images consist of 4 sunglasses images (2 from session 1 

and 3 from session 2) and 7 remaining clean images (all from 

session 2). 
• Mixed : We consider the case where images are both occluded 

by sunglasses and scarf. We select all 7 clean images from 

session 1 and 2 corrupted images (occluded by sunglasses and 

the scarf, respectively) for training. The rest of 19 images are 

for testing. 
• Hybrid : In this case, we choose images from session 1 for 

training and session 2 for testing. The numbers of training and 

testing images are all 13 for each person. 

We choose λ = 45 and η = 0 . 15 in our method. The experimen- 

tal results are summarized in Table 6 . Our approach obtains the 

Table 6 

Recognition accuracies (%) on AR (S.G. is short for Sunglasses). 

Type Method Scenario 

S.G. Mixed Hybrid 

Feature learning + ridge regression L-PDE (ours) 88.9 87.1 87.2 

CNN-GD 36.7 35.3 36.5 

CNN-AD 83.1 83.5 85.4 

D-KSVD 76.6 69.5 71.4 

LC-KSVD1 78.0 79.5 79.7 

LC-KSVD2 79.2 80.8 81.3 

TDDL 83.6 82.7 83.5 

LRRC 86.1 82.7 83.4 

Others kNN 66.9 61.6 61.1 

K-SVM 81.6 79.9 81.2 

SRC 88.6 83.9 85.0 

LRC 84.7 81.3 82.6 

LRSIC 87.2 83.5 84.0 

best results in all three scenarios. This shows that the occlusion 

problem can be relieved by learning discriminative local feature. 

5.4. FRGC dataset 

We also conduct our experiment on Experiment 4 in the 

FRGC 2.0 dataset [42] . Experiment 4 is the most challenge FRGC 

experiment. In the query set, the dataset consists of 8,014 single 

uncontrolled still images of 466 individuals. Like [4 8,4 9] , we 

search all images of each person in this set and take the first 60 

images of the first 60 individuals, whose number of facial images 

is more than 60. Thus, we collect 3,600 facial images for our 

experiments. We down sample the images to a size of 32 × 36. 

For each person, we only randomly choose 5 images for training. 

The rest 55 images are for testing. 

We choose λ = 1 . 6 and η = 0 . 1 in our method. The experimen- 

tal results are summarized in Table 7 . Our method also gets the 

best results in the case of few samples. 

5.5. Comparison of computation time and hyper-parameter selection 

We compare the average training and testing time of our 

method with those dictionary learning and sparse coding meth- 

ods. The average training or testing time is the total training or 

testing time divided by the number of training or testing sam- 

ples. Since SRC [8] have no training time, and LRC [7] and LRSIC 

[7] only use the low rank ingredient as a dictionary, their training 

times can be ignored. So we only compare the average training 

time with dictionary learning methods. Tables 8 and 9 show the 

average training time and testing time for each image, respectively. 

We can see that our model is fast in both training and testing 

processes. As a result, the whole training and testing time on 

each database are no more than 5 min. This is due to the low 

complexity ( O (5 mp + p 3 ) for one iteration) of our method. The 

results show the practicability and efficiency of our PDE method. 

Our method has two hyper-parameters, λ and η, to tune. One 

may notice that we use different parameters in the different 

datasets. The settings of hyper-parameters that we use in the 

experiments are tuned to obtain the best recognition perfor- 

mances of our method. We have also tuned the parameters to 

be best for the compared methods. So the experiments are fair. 

Our method has two hyper-parameters, λ and η, to tune. Now 

we give suggestions on how to set the hyper-parameters. λ is a 

regularization parameter in the linear classifier. Since the training 

samples are limited, λ is critical in the performance. We suggest 

λ be chosen from {1, 5, 10, 50, 100}. η is the step size during 

optimization. We suggest setting η from {0.1, 0.3, 0.5, 0.7, 0.9}. 

There are 25 selections to choose the pairs of hyper-parameters. 
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Table 7 

Recognition accuracies (%) on FRGC (Acc. stands for the recognition accuracy). 

Type Method Acc. Type Method Acc. 

Feature learning + ridge regression L-PDE (ours) 92.3 Others. kNN 54.4 

CNN-GD 17.3 K-SVM 85.4 

CNN-AD 81.5 SRC 87.8 

D-KSVD 60.2 LRC 85.6 

LC-KSVD1 63.4 LRSIC 87.6 

LC-KSVD2 88.7 

TDDL 91.3 F. + R. LRRC 87.6 

Table 8 

Average training time (s), normalized by the training sam- 

ples, on the four database. 

Dataset 

Method Yale B PIE AR FRGC 

D-KSVD 1.0368 1.3521 0.9949 0.8757 

LC-KSVD1 0.2634 0.4008 0.2445 0.2036 

LC-KSVD2 0.2758 0.4079 0.2593 0.2191 

L-PDE (ours) 0.0519 0.0549 0.0424 0.0593 

Table 9 

Average testing time (s), normalized by the testing samples, 

on the four database. 

Dataset 

Method Yale B PIE AR FRGC 

D-KSVD 0.0151 0.0298 0.0135 0.0088 

LC-KSVD1 0.0144 0.0287 0.0123 0.0063 

LC-KSVD2 0.0141 0.0264 0.0121 0.0059 

SRC 0.3936 0.3499 0.1245 0.0133 

LRC 0.3527 0.5479 0.2482 0.0183 

LRSIC 0.3617 0.6658 0.2799 0.0182 

L-PDE (ours) 0.0027 0.0010 0.0014 0.0011 

Fig. 6. The effects of hyper-parameters on recognition accuracy on the Extend Yale 

B dataset. 

Fig. 6 shows the effects of hyper-parameters on recognition 

accuracy on the Extended Yale B dataset. Table 10 reports the 

recognition accuracies on Extended Yale B, PIE, and AR using the 

suggested parameters. We can see that the recognition accuracies 

drop less than 1% in all experiments. 

Table 10 

Recognition accuracies using the suggested pa- 

rameters. 

Extended Yale B 10 15 20 

L-PDE 96.1 97.8 98.7 

PIE 10 15 20 

L-PDE 83.3 88.0 90.0 

AR S.G. Mixed Hybrid 

L-PDE 88.5 86.6 86.5 

5.6. Comparison with pre-trained neural networks on low-resolution 

images 

Deep neural networks trained on large dataset are observed to 

have a great generalization ability to extract discriminative feature 

for images. It is shown in [50] that the classification accuracy 

obtained by pre-trained CNN surpasses around 20% than the tra- 

ditional method which uses SIFT [2] to extract the feature on the 

Caltech 101 dataset. In this subsection, we compare our method 

with the pre-trained VGG-Face [51] model to demonstrate the 

effectiveness of our method on low-resolution images. VGG-Face 

is originally trained on the dataset with 2.6 M images, and has 

achieved the state-of-art performance for face recognition. In this 

experiment, the network is used out-of-box in order to produce 

a discriminant feature of facial images. The facial images are first 

normalized to the sizes that are used in all other methods (48 ×
42 in Extended Yale B, 32 × 32 in PIE, 33 × 24 in AR, and 32 × 32 

in FRGC) and then back to 224 × 224 in order to match the input 

size of pre-trained VGG-Face net. The normalized images then go 

through the pre-trained VGG-Face 7 model. We apply Ridge Regres- 

sion on the outputs of the last feature layer for classification. We 

conduct experiments on the four datasets. The recognition results 

are shown in Table 11 . Our PDE model achieves higher recognition 

accuracies on low-resolution images. The advantages are more on 

Extended Yale B and AR. 

5.7. Training with more samples 

The previous experiments have demonstrated the effectiveness 

of our method when there are few training samples. It is also 

interesting to explore the case when there are more training 

samples. We conduct an experiment on the PIE dataset. Fig. 7 

shows the recognition accuracy against the number of training 

samples on the PIE dataset. We choose the PIE dataset, since we 

have achieved very high recognition accuracies on Extended Yale 

B, and the rest datasets (AR and FRGC) do not have enough train- 

ing samples. Due to the time limit, we only compare our method 

with Low-Rank Structural Incoherence Classification (LRSIC) [7] , 

because LRSIC achieves the best recognition accuracies among all 

compared methods when the training samples are 10, 15, and 20. 

Compared with LRSIC, the improvement of our method through 

7 The model is downloaded from the website: http://www.robots.ox.ac.uk/ ∼vgg/ 

software/vgg _ face/ . 

http://www.robots.ox.ac.uk/~vgg/software/vgg_face/
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Table 11 

Comparison with pre-trained VGG-Face on Extended Yale B, PIE, AR and FRGC. 

Dataset 

Method Extended Yale B PIE AR FRGC 

# training samples # training samples Scenario 

10 15 20 10 15 20 S.G. Mixed Hybrid 

L-PDE (ours) 96.3 98.1 98.8 84.1 88.9 90.9 88.9 87.1 87.2 92.3 

VGG-Face 81.5 84.5 85.0 83.3 86.2 88.8 77.2 79.1 83.5 91.2 

10 15 20 25 30 35 40 45 50 55 60

training samples

82
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Fig. 7. The recognition accuracy against the number of training samples on PIE. The 

horizontal axis represents the number of training samples for each person. LRSIC 

achieves the best results among the compared methods when the training samples 

are 10, 15, and 20. So we only compare with it. 

the increase of training samples is not remarkable. This may be 

due to the limited parameters in our PDE. We are going to extend 

our PDE to a system of PDEs which is the most effective way to 

increase the number of parameters in the future. 

6. Conclusions 

In this paper, we propose a novel PDE method for feature 

learning. We model the feature extraction process as an evolution 

process governed by a PDE. The PDE is assumed to be a linear 

combination of fundamental differential invariants under transla- 

tion and rotation, which is transformed by a nonlinear mapping 

to achieve the invariance with respect to gray-level scaling. The 

experiments with few training samples show that our approach 

achieves the best performance in various settings. It should be 

mentioned that our approach could be applied to not only face 

recognition problems but also general image classification prob- 

lems. In the future, we will extend our PDE to a system of PDEs 

and carry out some theoretical analysis. 

Acknowledgments 

Zhouchen Lin is supported by National Basic Research Program 

of China (973 Program) (grant no. 2015CB352502), National Nat- 

ural Science Foundation (NSF) of China (grant nos. 61625301 and 

61231002 ), and the Okawa Foundation. Zhenyu Zhao is supported 

by NSF China (grant nos. 61473302 ). 

Supplementary material 

Supplementary material associated with this article can be 

found, in the online version, at 10.1016/j.patcog.2017.03.034 . 

References 

[1] Y. Bengio , A. Courville , P. Vincent , Representation learning: a review and new 

perspectives, IEEE Trans. Pattern Anal. Mach. Intell. 35 (8) (2013) 1798–1828 . 

[2] D. Lowe , Object recognition from local scale-invariant features, in: Proceed- 
ings of the IEEE International Conference on Computer Vision, vol. 2, 1999, 

pp. 1150–1157 . 
[3] N. Dalal , B. Triggs , Histograms of oriented gradients for human detection, in: 

Proceedings of the IEEE Conference on Automatic Face and Gesture Recogni- 
tion, 2005, pp. 886–893 . 

[4] J. Bruna , S. Mallat , Invariant scattering convolution networks, IEEE Trans. Pat- 

tern Anal. Mach. Intell. 35 (8) (2013) 1872–1886 . 
[5] R. Basri , D. Jacobs , Lambertian reflectance and linear subspaces, IEEE Trans. 

Pattern Anal. Mach. Intell. 25 (2) (2003) 218–233 . 
[6] G. Liu , Z. Lin , S. Yan , J. Sun , Y. Yu , Y. Ma , Robust recovery of subspace struc- 

tures by low-rank representation, IEEE Trans. Pattern Anal. Mach. Intell. 35 (1) 
(2013) 171–184 . 

[7] C.-F. Chen , C.-P. Wei , Y.-C.F. Wang , Low-rank matrix recovery with structural 

incoherence for robust face recognition, in: Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition, 2012, pp. 2618–2625 . 

[8] J. Wright , A. Yang , A. Ganesh , S. Sastry , Y. Ma , Robust face recognition via 
sparse representation, IEEE Trans. Pattern Anal. Mach. Intell. 31 (2) (2009) 

210–227 . 
[9] Y. Li , J. Liu , Z. Li , Y. Zhang , H. Lu , S. Ma , Learning low-rank representations with 

classwise block-diagonal structure for robust face recognition, in: Proceedings 
of the AAAI Conference on Artificial Intelligence, 2014 . 

[10] Y. Zhang , Z. Jiang , L. Davis , Learning structured low-rank representations for 

image classification, in: Proceedings of the IEEE Conference on Computer Vi- 
sion and Pattern Recognition, 2013, pp. 676–683 . 

[11] F. Wu , X.Y. Jing , X. You , D. Yue , R. Hu , J.Y. Yang , Multi-view low-rank dictionary 
learning for image classification, Pattern Recognit. 50 (2015) 143–154 . 

[12] Q. Zhang , B. Li , Discriminative K-SVD for dictionary learning in face recogni- 
tion, in: Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, IEEE, 2010, pp. 2691–2698 . 

[13] J. Mairal , F. Bach , J. Ponce , Task-driven dictionary learning, IEEE Trans. Pattern 
Anal. Mach. Intell. 34 (4) (2012) 791–804 . 

[14] Z. Jiang , Z. Lin , L. Davis , Label consistent K-SVD: learning a discriminative dic- 
tionary for recognition, IEEE Trans. Pattern Anal. Mach. Intell. 35 (11) (2013) 

2651–2664 . 
[15] P. Liu , H. Zhang , K. Zhang , C. Luo , W. Zuo , Class relatedness oriented discrimi- 

native dictionary learning, Pattern Recognit. 546 (2015) 335–343 . 

[16] W. Ou , X. You , D. Tao , P. Zhang , Y. Tang , Z. Zhu , Robust face recognition via 
occlusion dictionary learning, Pattern Recognit. 47 (4) (2014) 1559–1572 . 

[17] H.D. Liu , M. Yang , Y. Gao , Y. Yin , L. Chen , Bilinear discriminative dictionary 
learning for face recognition, Pattern Recognit. 47 (5) (2014) 1835–1845 . 

[18] A. Wagner , J. Wright , A. Ganesh , Z. Zhou , Y. Ma , Towards a practical face recog- 
nition system: robust registration and illumination by sparse representation, 

IEEE Trans. Pattern Anal. Mach. Intell. 34 (2) (2012) 597–604 . 

[19] G. Hinton , R. Salakhutdinov , Reducing the dimensionality of data with neural 
networks, Science 313 (5786) (2006) 504–507 . 

[20] G. Hinton , L. Deng , D. Yu , G.E. Dahl , A.-R. Mohamed , N. Jaitly , A. Senior , V. Van- 
houcke , P. Nguyen , T.N. Sainath , et al. , Deep neural networks for acoustic mod- 

eling in speech recognition: the shared views of four research groups, IEEE 
Signal Process Mag. 29 (6) (2012) 82–97 . 

[21] A. Krizhevsky , I. Sutskever , G. Hinton , Imagenet classification with deep con- 

volutional neural networks, in: Proceedings of the Conference on Neural Infor- 
mation Processing Systems, 2012, pp. 1097–1105 . 

[22] Y. LeCun , L. Bottou , Y. Bengio , P. Haffner , Gradient-based learning applied to 
document recognition, Proc. IEEE 86 (11) (1998) 2278–2324 . 

[23] R. Liu , Z. Lin , W. Zhang , Z. Su , Learning PDEs for image restoration via opti- 
mal control, in: Proceedings of the European Conference on Computer Vision, 

Springer, 2010, pp. 115–128 . 
[24] R. Liu , Z. Lin , W. Zhang , K. Tang , Z. Su , Toward designing intelligent PDEs 

for computer vision: an optimal control approach, Image Vis. Comput. 31 (1) 

(2013) 43–56 . 
[25] R. Liu , J. Cao , Z. Lin , S. Shan , Adaptive partial differential equation learning for 

visual saliency detection, in: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, 2014, pp. 3866–3873 . 

[26] Z. Zhao , C. Fang , Z. Lin , Y. Wu , A robust hybrid method for text detection in 
natural scenes by learning-based partial differential equations, Neurocomput- 

ing 168 (2015) 23–34 . 

[27] P. Perona , J. Malik , Scale-space and edge detection using anisotropic diffusion, 
IEEE Trans. Pattern Anal. Mach. Intell. 12 (7) (1990) 629–639 . 

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.1016/j.patcog.2017.03.034
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0001
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0001
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0001
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0001
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0002
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0002
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0003
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0003
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0003
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0004
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0004
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0004
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0005
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0005
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0005
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0006
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0006
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0006
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0006
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0006
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0006
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0006
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0007
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0007
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0007
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0007
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0008
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0008
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0008
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0008
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0008
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0008
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0009
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0009
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0009
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0009
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0009
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0009
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0009
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0010
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0010
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0010
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0010
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0011
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0012
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0012
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0012
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0013
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0013
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0013
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0013
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0014
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0014
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0014
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0014
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0015
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0015
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0015
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0015
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0015
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0015
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0016
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0016
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0016
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0016
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0016
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0016
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0016
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0017
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0017
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0017
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0017
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0017
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0017
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0018
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0018
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0018
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0018
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0018
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0018
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0019
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0019
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0019
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0020
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0021
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0021
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0021
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0021
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0022
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0022
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0022
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0022
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0022
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0023
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0023
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0023
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0023
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0023
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0024
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0024
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0024
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0024
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0024
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0024
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0025
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0025
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0025
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0025
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0025
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0026
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0026
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0026
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0026
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0026
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0027
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0027
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0027


24 C. Fang et al. / Pattern Recognition 69 (2017) 14–25 

[28] J. Weickert , Anisotropic Diffusion in Image Processing, Teubner Stuttgart, 1996 . 
[29] P. Olver , Applications of Lie Groups to Differential Equations, Springer-Verlarg, 

1993 . 
[30] B. Boser , I. Guyon , V. Vapnik , A training algorithm for optimal margin classi- 

fiers, in: Proceedings of the Annual Acm Workshop on Computational Learning 
Theory, vol. 5, 1996, pp. 144–152 . 

[31] K. Weinberger , J. Blitzer , L. Saul , Distance metric learning for large margin 
nearest neighbor classification, in: Proceedings of the Conference on Advances 

in Neural Information Processing Systems, 2005, pp. 1473–1480 . 

[32] X. Wang , B. Wang , X. Bai , W. Liu , Z. Tu , Max-margin multiple-instance dic- 
tionary learning, in: Proceedings of the International Conference on Machine 

Learning, 2013, pp. 846–854 . 
[33] R. Williams , G. Hinton , Learning representations by back-propagating errors, 

Nature 323 (6088) (1986) 323–533 . 
[34] W. Yin , D. Goldfarb , S. Osher , The total variation regularized L 1 model for mul- 

tiscale decomposition, Multiscale Model. Simul. 6 (1) (2007) 190–211 . 

[35] T. Chen , W. Yin , X.S. Zhou , D. Comaniciu , T. Huang , Illumination normalization 
for face recognition and uneven background correction using total variation 

based image models, in: Proceedings of the IEEE Conference on Computer Vi- 
sion and Pattern Recognition, 2005, pp. 532–539 . 

[36] Y. Jia , E. Shelhamer , J. Donahue , S. Karayev , J. Long , R. Girshick , S. Guadarrama , 
T. Darrell , Caffe: convolutional architecture for fast feature embedding, in: Pro- 

ceedings of the 22nd ACM International Conference on Multimedia, ACM, 2014, 

pp. 675–678 . 
[37] C. Ronan , Torch: A Modular Machine Learning Software Library, Technical Re- 

port, 2002 . 
[38] W. Zhao , R. Chellappa , J. Phillips , A. Rosenfeld , Face recognition: a literature 

survey, ACM Comput. Surv. 35 (4) (2003) 399–458 . 

[39] A. Georghiades , P. Belhumeur , D. Kriegman , From few to many: illumination 
cone models for face recognition under variable lighting and pose, IEEE Trans. 

Pattern Anal. Mach. Intell. 23 (6) (2001) 643–660 . 
[40] T. Sim , S. Baker , M. Bsat , The CMU pose, illumination, and expression (PIE) 

database, in: Proceedings of the IEEE Conference on Automatic Face and Ges- 
ture Recognition, 2002, pp. 46–51 . 

[41] A. Martinez , The AR Face Database, CVC Technical Report vol. 24 (1998) . 
[42] J. Phillips , P. Flynn , T. Scruggs , K. Bowyer , J. Chang , K. Hoffman , J. Marques , 

J. Min , W. Worek , Overview of the face recognition grand challenge, in: Pro- 

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
vol. 1, IEEE, 2005, pp. 947–954 . 

[43] K. Fukunaga , P. Narendra , A branch and bound algorithm for computing k-n- 
earest neighbors, IEEE Trans. Comput. C-24 (7) (1975) 750–753 . 

[44] C.-C. Chang , C.-J. Lin , LIBSVM: a library for support vector machines, ACM 

Trans. Intell. Syst. Technol. 2 (3) (2011) 389–396 . 

[45] J. Martens , Deep learning via Hessian-free optimization, in: Proceedings of the 

International Conference on Machine Learning, 2010, pp. 735–742 . 
[46] K.-C. Lee , J. Ho , D. Kriegman , Acquiring linear subspaces for face recognition 

under variable lighting, IEEE Trans. Pattern Anal. Mach. Intell. 27 (5) (2005) 
684–698 . 

[47] P. Zhou , Z. Lin , C. Zhang , Integrated low-rank-based discriminative feature 
learning for recognition, IEEE Trans. Neural Netw. Learn. Syst. (2015) . 

[48] W. Zhang , Z. Lin , X. Tang , Learning Semi-Riemannian metrics for semisuper- 

vised feature extraction, IEEE Trans. Knowl. Data Eng. 23 (4) (2011) 600–611 . 
[49] R. Liu , Z. Lin , Z. Su , K. Tang , Feature extraction by learning Lorentzian metric 

tensor and its extensions, Pattern Recognit. 43 (10) (2010) 3298–3306 . 
[50] M.D. Zeiler , R. Fergus , Visualizing and understanding convolutional networks, 

in: European Conference on Computer Vision, 2014, pp. 818–833 . 
[51] O.M. Parkhi , A. Vedaldi , A. Zisserman , Deep face recognition, in: British Ma- 

chine Vision Conference, vol. 1, 2015, p. 6 . 

http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0028
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0028
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0029
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0029
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0030
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0030
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0030
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0030
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0031
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0031
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0031
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0031
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0032
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0032
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0032
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0032
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0032
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0032
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0033
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0033
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0033
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0034
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0034
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0034
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0034
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0035
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0035
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0035
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0035
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0035
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0035
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0036
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0036
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0036
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0036
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0036
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0036
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0036
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0036
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0036
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0037
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0037
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0038
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0038
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0038
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0038
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0038
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0039
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0039
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0039
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0039
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0040
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0040
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0040
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0040
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0041
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0041
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0042
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0042
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0042
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0042
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0042
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0042
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0042
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0042
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0042
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0042
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0043
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0043
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0043
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0044
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0044
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0044
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0045
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0045
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0046
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0046
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0046
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0046
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0047
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0047
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0047
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0047
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0048
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0048
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0048
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0048
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0049
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0049
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0049
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0049
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0049
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0050
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0050
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0050
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0051
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0051
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0051
http://refhub.elsevier.com/S0031-3203(17)30144-9/sbref0051


C. Fang et al. / Pattern Recognition 69 (2017) 14–25 25 

Cong Fang received the bachelor’s degree in electronic Science and technology (for optoelectronic technology) from Tianjin University in 2014. He is currently pursuing 
the Ph.D. degree with the School of Electronics Engineering and Computer Science, Peking University. His research interests include computer vision, pattern recognition, 

machine learning and optimization. 

Zhenyu Zhao received the B.S. degree in mathematics from University of Science and Technology in 2009, and the M.S. degree in system science from National University of 
Defense and Technology in 2011. He received the Ph.D. degree in applied mathematics, National University of Defense and Technology in 2016. His research interests include 

computer vision, pattern recognition and machine learning. 

Pan Zhou received Master Degree in computer science from Peking University in 2016. Now He is a Ph.D. candidate at the Vision and Machine Learning Lab, Department 
of Electrical and Computer Engineering (ECE), National University of Singapore, Singapore. His research interests include computer vision, machine learning, and pattern 

recognition. 

Zhouchen Lin received the PhD degree in applied mathematics from Peking University in 20 0 0. Currently, he is a professor at the Key Laboratory of Machine Perception 
(MOE), School of Electronics Engineering and Computer Science, Peking University. He is also a chair professor at Northeast Normal University. His research interests include 

computer vision, image processing, machine learning, pattern recognition, and numerical optimization. He is an associate editor of IEEE T. Pattern Analysis and Machine 
Intelligence and International J. Computer Vision and a senior member of the IEEE. He is an IAPR Fellow. 


	Feature learning via partial differential equation with applications to face recognition
	Citation

	Feature learning via partial differential equation with applications to face recognition
	1 Introduction
	2 PDE based feature learning model
	2.1 General PDE model
	2.2 Formulate the PDE
	2.2.1 Translational and rotational invariants
	2.2.2 Nonlinear mapping

	2.3 Classification
	2.4 The whole PDE based feature learning model

	3 Algorithm for solving (7)
	3.1 Discretization
	3.2 Updating W
	3.3 Updating A
	3.4 Complexity

	4 Discussions
	4.1 Distinction from other PDE based methods
	4.2 Relation with CNN

	5 Experiments
	5.1 Extended Yale B dataset
	5.2 PIE dataset
	5.3 AR dataset
	5.4 FRGC dataset
	5.5 Comparison of computation time and hyper-parameter selection
	5.6 Comparison with pre-trained neural networks on low-resolution images
	5.7 Training with more samples

	6 Conclusions
	 Acknowledgments
	 Supplementary material
	 References


