
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2019

Faster first-order methods for stochastic non-convex optimization Faster first-order methods for stochastic non-convex optimization

on Riemannian manifolds on Riemannian manifolds

Pan ZHOU
Singapore Management University, panzhou@smu.edu.sg

Xiao-Tong YUAN

Jiashi FENG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Graphics and Human Computer Interfaces Commons

Citation Citation
ZHOU, Pan; YUAN, Xiao-Tong; and FENG, Jiashi. Faster first-order methods for stochastic non-convex
optimization on Riemannian manifolds. (2019). Proceedings of the 22nd International Conference on
Artificial Intelligence and Statistics, Naha, Okinawa, Japan, 2019 April 16-18. 1-20.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/9004

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F9004&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Faster First-Order Methods for Stochastic Non-Convex Optimization
on Riemannian Manifolds

Pan Zhou∗ Xiao–Tong Yuan† Jiashi Feng∗
∗National University of Singapore †Nanjing University of Information Science & Technology

pzhou@u.nus.edu xtyuan@nuist.edu.cn elefjia@nus.edu.sg

Abstract

SPIDER (Stochastic Path Integrated Differ-
ential EstimatoR) is an efficient gradient es-
timation technique developed for non-convex
stochastic optimization. Although having
been shown to attain nearly optimal com-
putational complexity bounds, the SPIDER-
type methods are limited to linear metric
spaces. In this paper, we introduce the Rie-
mannian SPIDER (R-SPIDER) method as a
novel nonlinear-metric extension of SPIDER
for efficient non-convex optimization on Rie-
mannian manifolds. We prove that for finite-
sum problems with n components, R-SPIDER
converges to an ε-accuracy stationary point
within O

(
min

(
n +

√
n
ε2 ,

1
ε3

))
stochastic gra-

dient evaluations, which is sharper in mag-
nitude than the prior Riemannian first-order
methods. For online optimization, R-SPIDER
is shown to converge with O

(
1
ε3

)
complexity

which is, to the best of our knowledge, the
first non-asymptotic result for online Rieman-
nian optimization. Especially, for gradient
dominated functions, we further develop a
variant of R-SPIDER and prove its linear con-
vergence rate. Numerical results demonstrate
the computational efficiency of the proposed
methods.

1 Introduction

We consider the following finite-sum and online non-
convex problems on a Riemannian manifoldM:

min
x∈M

f(x) :=

{
1
n

∑n
i=1 fi(x) (finite-sum)

E[f(x;π)] (online)
, (1)

where f : M 7→ R is a smooth non-convex loss func-
tion. For the finite-sum problem, each individual loss

fi(x) is associated with the i-th sample, while in on-
line setting, the stochastic component f(x;π) is in-
dexed by a random variable π. Such a formulation
encapsulates several important finite-sum problems
and their corresponding online counterparts, includ-
ing principle component analysis (PCA) [1], low-rank
matrix/tensor completion/recovery [2, 3, 4, 5], dictio-
nary learning [6, 7], Gaussian mixture models [8] and
low-rank multivariate regression [9], to name a few.

One classic approach for solving problem (1) (or its
convex counterpart) is to take it as a constrained opti-
mization problem in ambient Euclidean space and find
the minimizers via projected (stochastic) gradient de-
scent [12, 13, 14]. This kind of methods, however, tend
to suffer from high computational cost as projection
onto certain manifolds (e.g., positive-definite matrices)
could be expensive in large-scale learning problems [11].

As an appealing alternative, the Riemannian optimiza-
tion methods have recently gained wide attention in
machine learning [10, 11, 15, 16, 17, 18, 19]. In con-
trast to the Euclidean-projection based methods, the
Riemannian methods directly move the iteration along
the geodesic path towards the optimal solution, and
thus can better respect the geometric structure of the
problem in hand. Specifically, the Riemannian gradient
methods have the following recursive form:

xk+1 = Expxk
(−ηkgk) , (2)

where gk is the gradient estimate of the full Rieman-
nian gradient ∇f(xk), ηk denotes the learning rate,
and the exponential mapping Expx (y), as defined in
Section 2, maps y in the tangent space at x to Expx (y)
on the manifoldM along a proper geodesic curve. For
instance, Riemannian gradient descent (R-GD) uses
the full Riemannian gradient gk = ∇f(xk) in Eqn. (2)
and has been shown to have sublinear rate of conver-
gence in geodesically convex problems [16]. To boost
efficiency, Liu et al. [20] and Zhang et al. [15] further
introduced the Nesterov acceleration techniques [21]
into R-GD with convergence rate significantly improved
for geodesically convex functions.

ar
X

iv
:1

81
1.

08
10

9v
2

 [
m

at
h.

O
C

]
 2

4
N

ov
 2

01
8

Table 1: Comparison of IFO complexity for different Riemannian first-order stochastic optimization algorithms
on the noncovnex problem (1) under finite-sum and online settings. The ε-accuracy solution is measured by the
expected gradient norm E [‖∇f(x)‖] ≤ ε. Here L, σ and ζ respectively denote the gradient Lipschitz constant,
the gradient variance and the curvature parameter of the Riemannian manifold (see Section 2).

Non-convex Problem
general non-convex τ -gradient dominated

Finite-sum

R-SRG [10] O
(
n+ L2

ε4

)
O

(
(n+ τ2L2) log

(
1
ε

))
R-SVRG [11] O

(
n+ ζn

2
3

ε2

)
O

(
(n+ τLζ

1
2 n

2
3) log

(
1
ε

))
this work O

(
min

(
n+ L

√
n

ε2
, Lσ
ε3

))
O

(
min

(
(n+ τL

√
n) log

(
1
ε

)
, τLσ

ε

))
Online this work O

(
Lσ
ε3

)
O

(
τLσ
ε

)

To avoid the time-consuming full gradient computation
required in R-GD, Riemannian stochastic optimization
algorithms [10, 11, 17, 18, 19] leverage the decompos-
able (finite-sum) structure of problem (1). For instance,
Bonnabel et al. [17] proposed R-SGD that only evalu-
ates gradient of one (or a mini-batch) randomly selected
sample for variable update per iteration. Though with
good iteration efficiency, R-SGD converges slowly as
it uses decaying learning rate for convergence guaran-
tee due to its gradient variance. To tackle this issue,
Riemannian stochastic variance-reduced gradient (R-
SVRG) algorithms [11, 19] adapt SVRG [22] to prob-
lem (1). Benefiting from the variance-reduced tech-
nique, R-SVRG converges more stably and efficiently
than R-SGD. More recently, inspired by the variance-
reduced stochastic recursive gradient approach [23, 24],
the Riemannian stochastic recursive gradient (R-SRG)
algorithm [10] establishes a recursive equation to esti-
mate the full Riemannian gradient so that the computa-
tional efficiency can be further improved (see Table 1).

SPIDER (Stochastic Path Integrated Differential Esti-
matoR) [25] is a recursive estimation method developed
for tracking the history full gradients with significantly
reduced computational cost. By combining SPIDER
with normalized gradient methods, nearly optimal itera-
tion complexity bounds can be attained for non-convex
optimization in Euclidean space [25]. Though appeal-
ing in vector space problems, it has not been explored
for non-convex optimization in nonlinear metric spaces
such as Riemannian manifold.

In this paper, we introduce the Riemannian Stochastic
Path Integrated Differential EstimatoR (R-SPIDER) as
a simple yet efficient extension of the SPIDER from Eu-
clidean space to Riemannian manifolds. Specifically, for
a proper positive integer p, at each time instance k with
mod (k, p) ≡ 0, R-SPIDER first samples a large data
batch S1 and estimates the initial full Riemannian gra-
dient ∇f(xk) as vk = ∇fS1(xk) = 1

|S1|
∑
i∈S1 fi(xk).

Then at each of the next p− 1 iterations, it samples a

smaller mini-batch S2 and estimates/tracks ∇f(xk):

vk = ∇fS2(xk)− Pxk
xk−1

(∇fS2(xk−1)− vk−1), (3)

where the parallel transport Pz
x (y) (as defined in Sec-

tion 2) transports y from the tangent space at x to
that at the point z. Here the parallel transport opera-
tion is necessary since ∇fS2(xk−1) and ∇fS2(xk) are
located in different tangent spaces. Given the gradient
estimate vk, the variable is updated via normalized
gradient descent xk+1 = Expxk

(
− ηk vk

‖vk‖
)
. Note that

R-SRG [10] applies a similar recursion form as in (3)
for full Riemannian gradient estimation, and the core
difference between their method and ours lies in that
R-SPIDER is equipped with gradient normalization
which is missing in R-SRG. Then by carefully setting
the learning rate η and mini-batch sizes of S1 and
S2, R-SPIDER only needs to sample a necessary num-
ber of data points for accurately estimating Rieman-
nian gradient and sufficiently decreasing the objective
at each iteration. In this way, R-SPIDER achieves
sharper bounds of incremental first order oracle (IFO,
see Definition 2) complexity than R-SRG and other
state-of-the-art Riemannian non-convex optimization
methods.

Table 1 summarizes our main results on the computa-
tional complexity of R-SPIDER for non-convex prob-
lems, along with those for the above mentioned Rie-
mannian gradient algorithms. The following are some
highlighted advantages of our results over the state-of-
the-arts.

For the finite-sum setting of problem (1) with gen-
eral non-convex functions, the IFO complexity of R-
SPIDER to achieve E [‖∇f(x)‖] ≤ ε is O

(
min

(
n +

L
√
n

ε2 , Lσε3
))

which matches the lower IFO complexity
bound in Euclidean space [25]. By comparison, the
IFO complexity bounds of R-SRG and R-SVRG are

O
(
n+ L2

ε4

)
and O

(
n+ ζn

2
3

ε2

)
, respectively. It can be ver-

ified that R-SPIDER improves over R-SRG by a factor
of O

(
1
ε

)
and R-SVRG by a factor O

(
n1/6

)
regardless

of the relation between n and ε.

When f(x) is a τ -gradient dominated function with
finite-sum structure, R-SPIDER enjoys the IFO com-
plexity of O

(
min

((
n+ τL

√
n
)

log
(

1
ε

)
, τLσε

))
which is

again lower than the O
((
n+ τLζ

1
2n

2
3

)
log
(

1
ε

))
bound

for R-SVRG by a factor of O
(
n1/6

)
. Note that our IFO

complexity is not dependent on the curvature parame-
ter ζ(≥ 1) of the manifoldM, because our analysis does
not involve the geodesic trigonometry inequality on a
manifold. To compare with R-SRG with complexity
bound O

((
n+ τ2L2

)
log
(

1
ε

))
, R-SPIDER is more effi-

cient than R-SRG in large-sample-moderate-accuracy
settings, e.g., in cases when n dominates 1/ε.

For the online version of problem (1), we establish the
IFO complexity boundsO

(
Lσ
ε3

)
andO

(
τLσ
ε

)
for generic

non-convex and gradient dominated problems, respec-
tively. To our best knowledge, these non-asymptotic
convergence results are novel to non-convex online Rie-
mannian optimization. Comparatively, Bonnabel et
al. [17] only provided asymptotic convergence analysis
of R-SGD: the iterating sequence generated by R-SGD
converges to a critical point when the iteration number
approaches infinity.

Finally, our analysis reveals as a byproduct that R-
SPIDER provably benefits from mini-batching. Specif-
ically, our theoretic results imply linear speedups in
parallel computing setting for large mini-batch sizes.
We are not aware of any similar linear speedup results
in the prior Riemannian stochastic algorithms.

2 Preliminaries

Throughout this paper, we assume that the Riemannian
manifold (M, g) is a real smooth manifoldM equipped
with a Riemannian metric g. We denote the induced
inner product 〈y, z〉 of any two vectors y and z in the
tangent space TxM at the point x as 〈y, z〉 = g(y, z),
and denote the norm ‖y‖ as ‖y‖ =

√
g(y,y). Let

∇fi(x) be the stochastic Riemannian gradient of fi(x)
and also be a unbiased estimate to the full Riemannian
gradient ∇f(x), i.e. Ei[∇fi(x)] = ∇f(x).

The exponential mapping Expx (y) maps y ∈ TxM
to z ∈ M such that there is a geodesic γ(t) with
γ(0) = x, γ(1) = z and γ̇(0) = d

dtγ(t) = y. Here the
geodesic γ(t) is a constant speed curve γ : [0, 1]→M
which is locally distance minimized. If there exists a
unique geodesic between any two points onM, then the
exponential map has an inverse mapping Exp−1

x :M→
TxM and the geodesic is the unique shortest path
with the geodesic distance d (x, z) = ‖Exp−1

x (z) ‖ =
‖Exp−1

z (x) ‖ between x, z ∈M.

To utilize the historical and current Riemannian gra-

dients, we need to transport the historical gradients
into the tangent space of the current point such that
these gradients can be linearly combined in one tangent
space. For this purpose, we need to define the parallel
transport operator Pz

x : TxM → TzM which maps
y ∈ TxM to Pz

x(y) ∈ TzM while preserving the inner
product and norm, i.e., 〈y1,y2〉 = 〈Pz

x(y1),Pz
x(y2)〉

and ‖y‖ = ‖Pz
x(y)‖ for ∀y1,y2,y ∈ TxM.

We impose on the loss components fi(x) the assump-
tion of geodesic gradient-Lipschitz-smoothness. Such a
smoothness condition is conventionally assumed in ana-
lyzing Riemannian gradient algorithms [10, 11, 26, 27].

Assumption 1 (Geodesically L-gradient-Lipschitz).
Each loss fi(x) is geodesically L-gradient Lipschitz such
that Ei‖∇fi(x)− Px

y (∇fi(y))‖2 ≤ L2‖Exp−1
x (y) ‖2.

It can be shown that if each fi(x) is geodesically L-
gradient-Lipschitz, then for any x,y ∈M,

f(y) ≤ f(x) +
〈
∇f(x),Exp−1

x (y)
〉

+
L

2
‖Exp−1

x (y) ‖2.

We also need to impose the following boundness as-
sumption on the variance of stochastic gradient.

Assumption 2 (Bounded Stochastic Gradient Vari-
ance). For any x ∈M , the gradient variance of each
loss fi(x) is bounded as Ei‖∇fi(x)−∇f(x)‖2 ≤ σ2.

We further introduce the following concept of τ -gradient
dominated function [28, 29] which will also be investi-
gated in this paper.

Definition 1 (τ -Gradient Dominated Functions). f(x)
is said to be a τ -gradient dominated function if it satis-
fies f(x)− f(x∗) ≤ τ‖∇f(x)‖2 for any x ∈M, where
τ is a universal constant and x∗ = argminx∈M f(x) is
the global minimizer of f(x) on the manifoldM.

The following defined incremental first order oracle
(IFO) complexity is usually adopted as the computa-
tional complexity measurement for evaluating stochas-
tic optimization algorithms [10, 11, 18, 19].

Definition 2 (IFO Complexity). For f(x) in prob-
lem (1), an IFO takes in an index i ∈ [n] and a point
x, and returns the pair (fi(x),∇fi(x)).

3 Riemannian SPIDER Algorithm

We first elaborate on the Riemannian SPIDER algo-
rithm, and then analyze its convergence performance for
general non-convex problems. For gradient dominated
problems, we further develop a variant of R-SPIDER
with a linear rate of convergence.

3.1 Algorithm

The R-SPIDER method is outlined in Algorithm 1.
At its core, R-SPIDER customizes SPIDER to recur-
sively estimate/track the full Riemannian gradient in a
computationally economic way. For each cycle of p iter-
ations, R-SPIDER first samples a large data batch S1

by with-replacement sampling and views the gradient
estimate vk = ∇fS1(xk) = 1

|S1|
∑
i∈S1 fi(xk) as the

snapshot gradient. For the next forthcoming p− 1 iter-
ations, R-SPIDER only samples a smaller mini-batch
S2 and estimates the full Riemannian gradient ∇f(xk)
as vk = ∇fS2(xk)−Pxk

xk−1
(∇fS2(xk−1)− vk−1). Here

the parallel transport operator Pxk
xk−1

(·) is applied to
ensure that the Riemannian gradients can be linearly
combined in a common tangent space. If ‖vk‖ > 0.5ε,
then R-SPIDER performs normalized gradient descent
to update xk+1 = Expxk

(
− ηk vk

‖vk‖
)
. Otherwise, the

algorithm terminates and returns xk.

The idea of recursive Riemannian gradient estimation
has also been exploited by R-SRG [10]. Although
sharing a similar spirit in full gradient approximation,
R-SPIDER departs notably from R-SRG: at each itera-
tion, R-SPIDER normalizes the gradient vk and thus is
able to well control the distance d (xk,xk+1) between
xk and xk+1 by properly controlling the stepsize η,
while R-SRG directly updates the variable without
gradient normalization. It turns out that this normal-
ization step is key to achieving faster convergence speed
for non-convex problem in R-SPIDER, since it helps
reduce the variance of stochastic gradient estimation
by properly controlling the distance d (xk,xk+1) (see
Lemma 1). As a consequence, at each iteration, R-
SPIDER only needs to sample a necessary number of
data points to estimate Riemannian gradient and de-
crease the objective sufficiently (see Theorems 1 and 2).
In this way, R-SPIDER achieves lower overall compu-
tational complexity for solving problem (1).

3.2 Computational complexity analysis

The vanilla SPIDER is known to achieve nearly optimal
iteration complexity bounds for stochastic non-convex
optimization in Euclidean space [25]. We here show
that R-SPIDER generalizes such an appealing prop-
erty of SPIDER to Riemannian manifolds. We first
present the following key lemma which guarantees suf-
ficiently accurate Riemannian gradient estimation for
R-SPIDER. We denote I{E} as the indicator function: if
the event E is true, then I{E} = 1; otherwise, I{E} = 0.

Lemma 1 (Bounded Gradient Estimation Error). Sup-
pose Assumptions 1 and 2 hold. Let k0 = bk/pc and
k̃0 = k0p. The estimation error between the full Rie-
mannian gradient ∇f(xk) and its estimate vk in Algo-

Algorithm 1 R-SPIDER (x0, ε, η, p, |S1|, |S2|)
1: Input: initialization x0, accuracy ε, learning rate η,

iteration interval p, mini-batch sizes |S1| and |S2|.
2: for k = 0 to K − 1 do
3: if mod(k, p)= 0 then
4: Draw mini-batch S1 and compute vk =

∇fS1(xk);
5: else
6: Draw mini-batch S2 and compute ∇fS2(xk);
7: vk = ∇fS2(xk)−Pxk

xk−1
(∇fS2(xk−1)− vk−1);

8: end if
9: xk+1 = Expxk

(
−ηk vk

‖vk‖

)
;

10: end for
11: Output: x̃ which is chosen uniformly at random

from {xk}K−1
k=0 .

rithm 1 is bounded as

E
[
‖vk −∇f(xk)‖2 | xk̃0 , · · · ,xk̃0+p−1

]
≤ I{|S1|<n}

σ2

|S1|
+

L2

|S2|

k̃0+p−1∑
i=k̃0

d2 (xi,xi+1) ,

where d (xi,xi+1) is the distance between xi and xi+1.

Proof. The key is to carefully handle the exponential
mapping and parallel transport operators introduced
for vector computation. See details in Appendix A.

Lemma 1 tells that by properly selecting the mini-batch
sizes |S1| and |S2|, the accuracy of gradient estimate vk
can be controlled. Benefiting from the normalization
step, we have d (xk,xk+1) = ‖Exp−1

xk
(xk+1) ‖ = η.

As a result, the gradient estimation error can be
bounded as E

[
‖vk −∇f(xk)‖2 | xk̃0 , · · · ,xk̃0+p−1

]
≤

I{|S1|<n}
σ2

|S1| + pL2η2

|S2| . Based on this result, we are able
to analyze the rate-of-convergence of R-SPIDER.

Finite-sum setting. We first consider problem (1)
under finite-sum setting. By properly selecting parame-
ters, we prove that at each iteration, the sequence {xk}
produced by Algorithm 1 can lead to sufficient decrease
of the objective loss f(x) when ‖vk‖ is large. Based
on this results, we further derive the iteration number
of Algorithm 1 for computing an ε-accuracy solution.
The result is formally summarized in Theorem 1.
Theorem 1. Suppose Assumptions 1 and 2 hold. Let
s = min

(
n, 16σ2

ε2

)
, p = n0s

1
2 , ηk = min

(
ε

2Ln0
, ‖vk‖

4Ln0

)
,

|S1| = s, |S2| = 4s
1
2

n0
and n0 ∈ [1, 4s

1
2]. Then for

finite-sum problem (1), the sequence {xk} produced
by Algorithm 1 satisfies

E [f(xk+1)− f(xk)] ≤ − ε

64Ln0
(12E[‖vk‖]− 7ε) .

Moreover, to achieve E[‖∇f(x̃)‖] ≤ ε, Algorithm 1 will
terminate at most

(
14Ln0∆

ε2

)
iterations in expectation,

where ∆ = f(x0)− f(x∗) with x∗ = argminx∈M f(x).

Proof. The result comes readily from geodesically L-
gradient-Lipschitz of f and the variance bound in
Lemma 1. See Appendix B.1 for a complete proof.

Theorem 1 shows that Algorithm 1 only needs to run
at most

(
14Ln0∆

ε2

)
iteration to compute an ε-accuracy

solution x̃, i.e. E[‖∇f(x̃)‖] ≤ ε. This means the con-
vergence rate of R-SPIDER is at the order of O

(
Ln0∆
ε2

)
.

Besides, by one iteration loop of Algorithm 1, the objec-
tive value f(xk) monotonously decreases in expectation
when E[‖vk‖] is large, e.g. E[‖vk‖] ≥ 7ε

12 . By com-
parison, Kasai et al. [10] only proved the sublinear
convergence rate of the gradient norm E[‖∇f(x)‖2] in
R-SRG and did not reveal any convergence behavior of
the objective f(x). Moreover, Theorem 1 yields as a
byproduct the benefits of mini-batching to R-SPIDER.
Indeed, by controlling the parameter n0 in R-SPIDER,
the mini-batch size |S2| at each iteration can range from
1 to min

(
4
√
n, 16σ

ε

)
. Also, it can be seen from Theo-

rem 1 that larger mini-batch size allows more aggressive
step size ηk and thus leads to less necessary iterations
to achieve an ε-accuracy solution. More specifically,
the convergence rate bound O

(
Ln0∆
ε2

)
indicates that

at least in theory, increasing the mini-batch sizes in R-
SPIDER provides linear speedups in parallel computing
environment. In contrast, these important benefits of
mini-batching are not explicitly analyzed in the existing
Riemannian stochastic gradient algorithms [10, 11].

Based on Theorem 1, we can derive the IFO complexity
of R-SPIDER for non-convex problems in Corollary 1.

Corollary 1. Using the same assumptions and pa-
rameters in Theorem 1, the IFO complexity of Al-
gorithm 1 is O

(
min

(
n + L∆

√
n

ε2 , L∆σ
ε3

))
for achieving

E[‖∇f(x̃)‖] ≤ ε.

Proof. The result is obtained directly from a cumu-
lation of IFOs at each step of iteration. See Ap-
pendix B.2.

From Corollary 1, the IFO complexity of R-SPIDER
for non-convex finite-sum problems is at the order of
O
(

1
ε2 min

(√
n, 1

ε

))
. This result matches the state-of-

the-art complexity bounds for general non-convex opti-
mization problems in Euclidean space [25, 30]. Indeed,
under Assumption 1, Fang et al. [25] proved that the
lower IFO complexity bound for finite-sum problem (1)
in Euclidean space is O

(
n+ L∆

√
n

ε2

)
when the number n

of the component function obeys n ≤ O
(
L2∆2

ε4

)
. In the

sense that Euclidean space is a special case of Rieman-
nian manifold, our IFO complexity O

(
n+ L∆

√
n

ε2

)
for

finite-sum problem (1) under Assumption 1 is nearly
optimal. If Assumption 2 holds in addition, we can
establish tighter IFO complexity O

(
1
ε2 min

(√
n, 1

ε

))
.

This is because when the sample number n satisfies
n ≥ 16σ2

ε2 , by sampling |S1| = 16σ2

ε2 and |S2| = 16σ
n0ε

,
the gradient estimation error already satisfies E[‖vk −
∇f(xk)‖2] ≤ ε2

8 . Accordingly, if 1
K

∑K−1
k=0 E‖vk‖ ≤

0.5ε which is actually achieved after K iterations,
then E[‖f(x̃)‖] = 1

K

∑K−1
k=0 E‖∇f(xk)‖ ≤ 1

K

∑K−1
k=0

[E‖∇f(xk)− vk‖+ E‖vk‖] ≤ ε. So here it is only nec-
essary to sample |S1| = 16σ2

ε2 data points instead of the
entire set of n samples.

Kasai et al. [10] proved that the IFO complexity of
R-SRG is at the order of O

(
n + L2

ε4

)
to obtain an

ε-accuracy solution. By comparison, we prove that R-
SPIDER enjoys the complexity of O

(
1
ε2 min

(√
n, 1

ε

))
,

which is at least lower than R-SRG by a factor of 1
ε .

This is because the normalization step in R-SPIDER
allows us to well control the gradient estimation error
and thus avoids sampling too many redundant samples
at each iteration, resulting in sharper IFO complexity.
Zhang et al. [11] showed that R-SVRG has the IFO
complexity O

(
n+ ζ1/2n2/3

ε2

)
, where ζ ≥ 1 denotes the

curvature parameter. Therefore, R-SPIDER improves
over R-SVRG by a factor at least n1/6 in IFO com-
plexity. Note, here the curvature parameter ζ does not
appear in our bounds, since we have avoided using the
trigonometry inequality which characterizes the trigono-
metric geometric in Riemannian manifold [11, 16, 17].

The exponential mapping and parallel transport op-
erators used in R-SPIDER are respectively classical
instances of the more general concepts of retraction and
vector transport [31, 32]. We note that under identical
assumptions in [10], the convergence rate and IFO com-
plexity bounds for R-SPIDER generalize well to the
setting where exponential mapping and parallel trans-
port are replaced by retraction and vector transport
operators. Some specific ways of constructing retrac-
tion and vector transport are available in [31, 33, 34].

Online setting. Next we consider the online setting
of problem (1). Similar to finite-sum setting, we prove
in Theorem 2 that the objective f(x) can be sufficiently
decreased when the gradient norm is not too small.
Theorem 2. Suppose Assumptions 1 and 2 hold. Let
p= σn0

ε , ηk = min
(

ε
2Ln0

, ‖vk‖
4Ln0

)
, |S1|= 64σ2

ε2 , |S2|= 4σ
εn0

and n0 ∈ [1, 4σ/ε]. Then for problem (1) under online
setting, the sequence {xk} produced by Algorithm 1
satisfies

E [f(xk+1)− f(xk)] ≤ − ε

64Ln0
(12E[‖vk‖]− 7ε) .

Moreover, to achieve E[‖∇f(x̃)‖] ≤ ε, Algorithm 1 will
terminate at most

(
14Ln0∆

ε2

)
iterations in expectation,

where ∆ = f(x0)− f(x∗) with x∗ = argminx∈M f(x).

Proof. The proof mimics that of Theorem 1 with proper
adaptation to online setting. See Appendix B.3.

As a direct consequence of this result, the following
corollary establishes the IFO complexity of R-SPIDER
for the online optimization.

Corollary 2. Using the same assumptions and param-
eters in Theorem 2, the IFO complexity of Algorithm 1
is O

(
Lσ∆
ε3

)
to achieve E[‖∇f(x)‖] ≤ ε.

Proof. See Appendix B.4 for a proof of this result.

Bonnabel et al. [17] have also analyzed R-SGD under
online setting, but only with asymptotic convergence
guarantee obtained. By comparison, we for the first
time establish non-asymptotic complexity bounds for
Riemannian online non-convex optimization.

Algorithm 2 Riemannian Gradient Dominated SPI-
DER (R-GD-SPIDER)

1: Input: initial point x̃0, initial accuracy ε0, learning
rate η0, mini-batch sizes |S0

1 | and |S0
2 |, iteration

interval p0, final accuracy ε
2: for t = 1 to T do
3: x̃t = R-SPIDER(x̃t−1, εt−1, η

t, pt, |St1|, |St2|).
4: Set εt=0.5εt−1, and ηt, pt, |St1|, |St2| properly.
5: end for
6: Output: x̃t

3.3 On gradient dominated functions

We now turn to a special case of problem (1) with
gradient dominated loss function as defined in Defini-
tion 1. For instance, the strongly geodesically convex
(SGC) functions1 are gradient dominated. Some non-
strongly convex problems, e.g. ill-conditioned linear
prediction and logistic regression [35], and Riemannian
non-convex problems, e.g. PCA [11], also belong to
gradient dominated functions. Please refer to [29, 35]
for more instances of gradient dominated functions. To
better fit gradient dominated functions, we develop
the Riemannian gradient dominated SPIDER (R-GD-
SPIDER) as a multi-stage variant of R-SPIDER. A
high-level description of R-GD-SPIDER is outlined in
Algorithm 2. The basic idea is to use more aggressive
learning rates in early stage of processing and grad-
ually shrink the learning rate in later stage. With

1A strongly geodesically convex function satisfies f(y) ≥
f(x) +

〈
∇f(x),Exp−1

x (y)
〉
+ µ

2
‖Exp−1

x (y) ‖2, ∀x,y ∈ M,
for som µ > 0, which immediately implies f(x)− f(x∗) ≤
1
2µ
‖∇f(x)‖2 by Cauchy-Schwarz inequality.

the help of such a simulated annealing process, R-
GD-SPIDER exhibits linear convergence behavior for
finite-sum problems, as formally stated in Theorem 3.
For the t-th iteration in Algorithm 2, R-SPIDER uses
|St1| and |St2,k| samples to compute vk for k = bk/pc · p
and k 6= bk/pc · p, respectively.
Theorem 3. Suppose that function f(x) is τ -gradient
dominated, and Assumptions 1 and 2 hold. For finite-
sum setting, at the t-th iteration, set ε0 =

√
∆

2
√
τ
, εt = ε0

2t ,

st = min
(
n, 32σ2

ε2t−1

)
, pt = nt0

√
st, ηtk =

‖vt
k‖

2Ln0
, |St1| = st,

|St2,k|=min(
8pt‖vt

k−1‖
2

(nt
0)2ε2t−1

, n), where nt0 ∈ [1,
8
√
st‖vt

k−1‖
2

ε2t−1
].

(1) The sequence {x̃t} produced by Algorithm 2 satisfies

E [f(x̃t)− f(x∗)] ≤
∆

4t
and E[‖∇f(x̃t)‖] ≤

1

2t

√
∆

τ
,

where ∆ = f(x̃0)− f(x∗) with x∗ = argminx∈M f(x).
(2) To achieve E[‖∇f(x̃T)‖]≤ε, in expectation the IFO
complexity is O

(
min

(
(n+ τL

√
n) log

(
1
ε

)
, τLσε

))
.

Proof. The part (1) follows immediately from the up-
date rule of εt. The part (2) can be proved by es-
tablishing the IFO bound min

(
n+ τL

√
n, τLσεt+1

)
for

each stage t and then putting them together. See
Appendix C.1.

The main message conveyed by Theorem 3 is that
R-GD-SPIDER enjoys a global linear rate of con-
vergence and its IFO complexity is at the order
of O

(
min

(
(n+ τL

√
n) log

(
1
ε

)
, τLσε

))
. For R-SVRG

with τ -gradient dominated functions, Zhang et al. [11]
also established a linear convergence rate and an IFO
complexity bound O

(
(n+τLζ

1
2n

2
3) log

(
1
ε

))
. As a com-

parison, our R-GD-SPIDER makes an improvement
over R-SVRG in IFO complexity by a factor of n

1
6 .

For R-SRG [10], the corresponding IFO complexity
is O

(
(n+ τ2L2) log

(
1
ε

))
. Therefore, in terms of IFO

complexity, R-GD-SPIDER is superior to R-SRG when
the optimization accuracy ε is moderately small at a
huge data size n.

Turning to the online setting, R-GD-SPIDER also con-
verges linearly, as formally stated in Theorem 4.

Theorem 4. Suppose that f(x) is τ -gradient dom-
inated, and Assumptions 1 and 2 hold. For online
setting, at the t-th iteration, let ε0 =

√
∆

2
√
τ
, εt = ε0

2t ,

pt =
σnt

0

εt−1
, ηtk =

‖vt
k‖

2Lnt
0
, |St1|= 32σ2

ε2t−1
, |St2,k|=

8σ‖vt
k−1‖

2

ε3t−1n
t
0

,

where nt0 ∈ [1,
8σ‖vt

k−1‖
2

ε3t−1
].

(1) The sequence {x̃t} produced by Algorithm 2 satisfies

E [f(x̃t)− f(x∗)] ≤
∆

4t
and E[‖∇f(x̃t)‖] ≤

1

2t

√
∆

τ
,

0 15 30 45 60 75 90

−12

−10

−8

−6

−4

−2

0

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

a09

0 15 30 45 60 75 90
−14

−12

−10

−8

−6

−4

−2

0

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

satimage

0 15 30 45 60 75 90
−14

−12

−10

−8

−6

−4

−2

0

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

covtype

0 30 60 90
−14

−12

−10

−8

−6

−4

−2

0

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

protein

0 15 30 45 60 75 90

−14

−12

−10

−8

−6

−4

−2

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

0 10 20 30 40

−14

−12

−10

−8

−6

−4

−2

Algorithm Running Time (seconds)

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

epsilon

0 15 30 45 60 75 90

−14

−12

−10

−8

−6

−4

−2

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

0 10 20 30 40 50 60

−14

−12

−10

−8

−6

−4

−2

Algorithm Running Time (seconds)

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

ijcnn

Figure 1: Comparison among Riemannian stochastic gradient algorithms on k-PCA problem.

where ∆ = f(x̃0)− f(x∗) with x∗ = argminx∈M f(x).
(2) To achieve E[‖∇f(x̃T)‖] ≤ ε, in expectation the
IFO complexity is O

(
τLσ
ε

)
.

Proof. See Appendix C.2 for a proof of this result.

Such a non-asymptotic convergence result is new to
online Riemannian gradient dominated optimization.

4 Experiments

In this section, we compare the proposed R-SPIDER
with several state-of-the-art Riemannian stochastic gra-
dient algorithms, including R-SGD [17], R-SVRG [11,
18], R-SRG [10] and R-SRG+ [10]. We evaluate all
the considered algorithms on two learning tasks: the k-
PCA problem and the low-rank matrix completion prob-
lem. We run simulations on ten datasets, including six
datasets from LibSVM, three face datasets (YaleB, AR
and PIE) and one recommendation dataset (MovieLens-
1M). The details of these datasets are described in
Appendix D. For all the considered algorithms, we
tune their hyper-parameters optimally.

A practical implementation of R-SPIDER. To
achieve the IFO complexity in Corollary 1, it is sug-
gested to set the learning rate as η = ε

4Ln0
where ε is the

desired optimization accuracy. However, since in the ini-
tial epochs the computed point is far from the optimum
to problem (1), using a tiny learning rate could usually
be conservative. In contrast, by using a more aggressive
learning rate at the initial optimization stage, we can
expect stable but faster convergence behavior. Here
for R-SPIDER we design a decaying learning rate with

formulation ηk = αb
k
p c · β and call it “R-SPIDER-A”,

where α and β are two constants. In our experiments,
α is selected from {0.8, 0.85, 0.9, 0.95, 0.99} and β from
{5× 10−2, 10−2, 5× 10−3, 10−3}.

Evaluation on the k-PCA problem. Given
n data points, k-PCA aims at computing their
first k leading eigenvectors, which is formulated as
minU∈Gr(k,d)

1
n

∑n
i=1 a

>
i UUTai, where ai ∈ Rd de-

notes the i-th sample vector and Gr(k, d)={U ∈ Rd×k |
U>U = I} denotes the Grassmann manifold. For this
problem, we can directly obtain the ground truth U∗

by using singular value decomposition (SVD), and then
use f(U∗) as optimal value f∗ for sub-optimality es-
timation in Figures 1 and 2. In this experiment, we
compute the first ten leading eigenvectors.

From the experimental results in Figure 1, one can
observe that our R-SPIDER-A converges significantly
faster than other algorithms and R-SPIDER can also
quickly converge to a relatively high accuracy, e.g. 10−8.
In the initial epochs, R-SPIDER is comparable to other
algorithms, showing relatively flat convergence behav-
ior, mainly due to its very small learning rate and
gradient normalization. Then along with more iter-
ations, the computed solution becomes close to the
optimum. Accordingly, the gradient begins to vanish
and those considered algorithms without normalization
tend to update the variable with small progress. In
contrast, thanks to the normalization step, R-SPIDER
moves more rapidly along the gradient descent direction
and thus has sharper convergence curves. Meanwhile,
R-SPIDER-A uses a relatively more aggressive learning
rate in the initial epochs and decreases the learning
rate along with more iterations. As a result, it exhibits

0 15 30 45 60 75 90

−12

−10

−8

−6

−4

−2

0

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SRG
R−SRG−A
R−SRG+
R−SRG+A
R−SPIDER
R−SPIDER−A

a09

0 15 30 45 60 75 90
−14

−12

−10

−8

−6

−4

−2

0

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SRG
R−SRG−A
R−SRG+
R−SRG+A
R−SPIDER
R−SPIDER−A

satimage

0 15 30 45 60 75 90
−14

−12

−10

−8

−6

−4

−2

0

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SRG
R−SRG−A
R−SRG+
R−SRG+A
R−SPIDER
R−SPIDER−A

covtype

0 30 60 90
−14

−12

−10

−8

−6

−4

−2

0

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SRG
R−SRG−A
R−SRG+
R−SRG+A
R−SPIDER
R−SPIDER−A

protein

Figure 2: Comparison between R-SPIDER and R-SRG with adaptive learning rates on k-PCA problem.

0 50 100 150 200 250 300

−10

−8

−6

−4

−2

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

YaleB

0 50 100 150 200 250 300

−10

−8

−6

−4

−2

0

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

AR

0 50 100 150 200 250 300
−10

−8

−6

−4

−2

0

2

4

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

PIE

0 50 100 150 200 250 300
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

MovieLens−1M

Figure 3: Comparison among Riemannian stochastic gradient algorithms on low-rank matrix completion problem.

the sharpest convergence behavior. On epsilon and
ijcnn datasets (the bottom of Figure 1) we further plot
the sub-optimality versus running-time curves. The
main observations from this group of curves are con-
sistent with those of IFO complexity, implying that
the IFO complexity can comprehensively reflect the
overall computational performance of a first-order Rie-
mannian algorithm. See Figure 4 in Appendix D.2 for
more experimental results on running time comparison.

In Figure 2, we compare R-SPIDER-A more closely
with R-SRG-A and R-SRG+A which are respectively
the counterparts of R-SRG and R-SRG+ with adaptive
learning rate ηk = α(1 + αλαbkp c) [10]. Here α and λα
are tunable hyper-parameters. From the results, one
can observe that the algorithm with adaptive learning
rate usually outperforms the vanilla counterpart, which
demonstrates the effectiveness of such an implemen-
tation trick. Moreover, R-SPIDER-A is consistently
superior to R-SRG-A and R-SRG+A. See Figure 5 in
Appendix D.3 for more results in this line.

Evaluation on the low-rank matrix completion
(LRMC) problem. Given a low-rank incomplete
observation A ∈ Rd×n, the LRMC problem aims at
exactly recovering A. The mathematical formulation is
minU∈Gr(k,d),G∈Rk×n ‖PΩ(A)−PΩ(UG)‖2, where the
set Ω of locations corresponds to the observed entries,
namely (i, j) ∈ Ω if Aij is observed. PΩ is a linear op-
erator that extracts entries in Ω and fills the entries not
in Ω with zeros. The LRMC problem can be expressed
equivalently as minU∈Gr(k,d),Gi∈Rk

1
n

∑n
i=1 ‖PΩi

(Ai)−
PΩi

(UGi)‖2. Since there is no ground truth for the
optimum, we run Riemannian GD sufficiently long until

the gradient satisfies ‖∇f(x)‖/‖x‖ ≤ 10−8, and then
use the output as an approximate optimal value f∗
for sub-optimality estimation in Figure 3. We test the
considered algorithms on YaleB, AR, PIE and MovieLens-
1M, considering these data approximately lie on a union
of low-rank subspaces [10, 36]. For face images, we
randomly sample 30% pixels in each image as the ob-
servations and set k = 30. For MovieLens-1M, we use
its one million ratings for 3,952 movies from 6,040 users
as the observations and set k = 100.

From Figure 3, R-SPIDER-A and R-SPIDER show
very similar behaviors as those in Figure 1. More
specifically, R-SPIDER-A achieves fastest convergence
rate, and R-SPIDER has similar convergence speed as
other algorithms in the initial epochs and then runs
faster along with more epochs. All these results confirm
the superiority of R-SPIDER and R-SPIDER-A.

5 Conclusions

We proposed R-SPIDER, which is an efficient Rieman-
nian gradient method for non-convex stochastic opti-
mization on Riemannian manifolds. Compared to exist-
ing first-order Riemannian algorithms, R-SPIDER en-
joys provably lower computational complexity bounds
for finite-sum minimization. For online optimization,
similar non-asymptotic bounds are established for R-
SPIDER, which to our best knowledge has not been
addressed in previous study. For the special case of
gradient dominated functions, we further developed a
variant of R-SPIDER with improved linear rate of con-
vergence. Numerical results confirm the computational
superiority of R-SPIDER over the state-of-the-arts.

References
[1] S. Wold, K. Esbensen, and P. Geladi. Principal compo-

nent analysis. Chemometrics and intelligent laboratory
systems, 2(1-3):37–52, 1987. 1

[2] M. Tan, I. Tsang, L. Wang, B. Vandereycken, and
S. Pan. Riemannian pursuit for big matrix recovery. In
Proc. Int’l Conf. Machine Learning, pages 1539–1547,
2014. 1

[3] B. Vandereycken. Low-rank matrix completion by Rie-
mannian optimization. SIAM Journal on Optimization,
23(2):1214–1236, 2013. 1

[4] B. Mishra and R. Sepulchre. R3MC: A Riemannian
three-factor algorithm for low-rank matrix completion.
In Proc. IEEE Conf. on Decision and Control, pages
1137–1142, 2014. 1

[5] H. Kasai and B. Mishra. Low-rank tensor completion:
a Riemannian manifold preconditioning approach. In
Proc. Int’l Conf. Machine Learning, pages 1012–1021,
2016. 1

[6] A. Cherian and S. Sra. Riemannian dictionary learn-
ing and sparse coding for positive definite matrices.
IEEE trans. on Neural Networks and Learning Systems,
28(12):2859–2871, 2017. 1

[7] J. Sun, Q. Qu, and J. Wright. Complete dictionary
recovery over the sphere ii: Recovery by Riemannian
trust-region method. IEEE Trans. on Information
Theory, 63(2):885–914, 2017. 1

[8] R. Hosseini and S. Sra. Matrix manifold optimiza-
tion for Gaussian mixtures. In Proc. Conf. Neutral
Information Processing Systems, pages 910–918, 2015.
1

[9] G. Meyer, S. Bonnabel, and R. Sepulchre. Linear
regression under fixed-rank constraints: a Riemannian
approach. In Proc. Int’l Conf. Machine Learning, 2011.
1

[10] H. Kasai, H. Sato, and B. Mishra. Riemannian stochas-
tic recursive gradient algorithm with retraction and
vector transport and its convergence analysis. In Proc.
Int’l Conf. Machine Learning, pages 2521–2529, 2018.
1, 2, 3, 4, 5, 6, 7, 8, 19

[11] H. Zhang, S. Reddi, and S. Sra. Riemannian SVRG:
Fast stochastic optimization on Riemannian manifolds.
In Proc. Conf. Neutral Information Processing Systems,
pages 4592–4600, 2016. 1, 2, 3, 5, 6, 7

[12] E. Oja. Principal components, minor components, and
linear neural networks. Neural networks, 5(6):927–935,
1992. 1

[13] J. da Cruz Neto, L. De Lima, and P. Oliveira. Geodesic
algorithms in Riemannian geometry. Balkan Journal
of Geometry and its Applications, 3(2):89–100, 1998. 1

[14] R. Badeau, B. David, and G. Richard. Fast approxi-
mated power iteration subspace tracking. IEEE Trans.
on Signal Processing, 53(8):2931–2941, 2005. 1

[15] H. Zhang and S. Sra. An estimate sequence for geodesi-
cally convex optimization. In Proc. Conf. on Learning
Theory, pages 1703–1723, 2018. 1

[16] H. Zhang and S. Sra. First-order methods for geodesi-
cally convex optimization. In Proc. Conf. on Learning
Theory, pages 1617–1638, 2016. 1, 5

[17] S. Bonnabel. Stochastic gradient descent on Rie-
mannian manifolds. IEEE Trans. Automatic Control,
58(9):2217–2229, 2013. 1, 2, 3, 5, 6, 7

[18] H. Kasai, H. Sato, and B. Mishra. Riemannian stochas-
tic variance reduced gradient on Grassmann manifold.
arXiv preprint arXiv:1605.07367, 2016. 1, 2, 3, 7

[19] H. Kasai, H. Sato, and B. Mishra. Riemannian stochas-
tic quasi-Newton algorithm with variance reduction
and its convergence analysis. Prof. Int’l Conf. Artificial
Intelligence and Statistics, 2018. 1, 2, 3

[20] Y. Liu, F. Shang, J. Cheng, H. Cheng, and L. Jiao.
Accelerated first-order methods for geodesically convex
optimization on Riemannian manifolds. In Proc. Conf.
Neutral Information Processing Systems, pages 4868–
4877, 2017. 1

[21] Y. Nesterov. Introductory lectures on convex optimiza-
tion: A basic course. Springer Science & Business
Media, 2006. 1

[22] R. Johnson and T. Zhang. Accelerating stochastic
gradient descent using predictive variance reduction.
In Proc. Conf. Neutral Information Processing Systems,
pages 315–323, 2013. 2

[23] L. Nguyen, J. Liu, K. Scheinberg, and M. Takáč.
SARAH: A novel method for machine learning prob-
lems using stochastic recursive gradient. Proc. Int’l
Conf. Machine Learning, 2018. 2

[24] L. Nguyen, J. Liu, K. Scheinberg, and M. Takáč.
Stochastic recursive gradient algorithm for noncon-
vex optimization. arXiv preprint arXiv:1705.07261,
2017. 2

[25] C. Fang, C. Li, Z. Lin, and T. Zhang. SPIDER:
Near-optimal non-convex optimization via stochastic
path integrated differential estimator. arXiv preprint
arXiv:1807.01695, 2018. 2, 4, 5, 11

[26] W. Huang, P. Absil, and K. Gallivan. A Riemannian
symmetric rank-one trust-region method. Mathemati-
cal Programming, 150(2):179–216, 2015. 3

[27] W. Huang, K. Gallivan, and P. Absil. A broyden class
of quasi-Newton methods for Riemannian optimization.
SIAM Journal on Optimization, 25(3):1660–1685, 2015.
3

[28] B. Polyak. Gradient methods for the minimisation of
functionals. USSR Computational Mathematics and
Mathematical Physics, 3(4):864–878, 1963. 3

[29] Y. Nesterov and B. Polyak. Cubic regularization of
Newton method and its global performance. Mathe-
matical Programming, 108(1):177–205, 2006. 3, 6

[30] D. Zhou, P. Xu, and Q. Gu. Stochastic nested variance
reduction for nonconvex optimization. arXiv preprint
arXiv:1806.07811, 2018. 5

[31] R. Adler, J. Dedieu, J. Margulies, M. Martens, and
M. Shub. Newton’s method on Riemannian manifolds
and a geometric model for the human spine. IMA
Journal of Numerical Analysis, 22(3):359–390, 2002. 5

[32] P. Absil, R. Mahony, and R. Sepulchre. Optimization
algorithms on matrix manifolds. Princeton University
Press, 2009. 5

[33] P. Absil and J. Malick. Projection-like retractions
on matrix manifolds. SIAM Journal on Optimization,
22(1):135–158, 2012. 5

[34] Z. Wen and W. Yin. A feasible method for optimization
with orthogonality constraints. Mathematical Program-
ming, 142(1-2):397–434, 2013. 5

[35] H. Karimi, J. Nutini, and M. Schmidt. Linear con-
vergence of gradient and proximal-gradient methods
under the polyak-łojasiewicz condition. In Joint Euro-
pean Conference on Machine Learning and Knowledge
Discovery in Databases, pages 795–811. Springer, 2016.
6

[36] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust
principal component analysis? Journal of the ACM,
58(3):11, 2011. 8

[37] A. Georghiades, P. Belhumeur, and D. Kriegman. From
few to many: Illumination cone models for face recogni-
tion under variable lighting and pose. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 23:643–660,
Jun. 2001. 18

[38] A. Martinez and R. Benavente. The AR face database.
CVC Tech. Rep. 24, Jun. 1998. 18

[39] T. Sim, S. Baker, and M. Bsat. The CMU pose, illu-
mination, and expression database. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 25:1615–
1618, Dec. 2003. 18

Faster First-Order Methods for Stochastic Non-Convex Optimization
on Riemannian Manifolds

(Supplementary File)

This supplementary document contains the technical proofs of convergence results and some additional
numerical results of the manuscript entitled “Faster First-Order Methods for Stochastic Non-convex
Optimization on Riemannian Manifolds”. It is structured as follows. The proof of the key lemma, namely
Lemma 1 in Section 3.2, is presented in Appendix A. Then Appendix B.1 provides the proofs of the main
results for general finite-sum non-convex problems in Section 3.2, including Theorem 1 and Corollary 1.
Next, Appendix B.3 gives the proof of the results for online setting, including Theorem 2 and Corollary 2.
For gradient dominated results in Section 3.3, including Theorems 3 and 4, are given in Appendix C.1.
Finally, the detailed descriptions of datasets and more experimental results are provided in Appendix D.

A Proofs of Lemma 1

Before proving Lemma 1, we first present an useful lemma from [25]. Let Q(x) denote arbitrary determinstic
vector and ξk(x0:k) denote the unbiased estimate Q(xk)−Q(xk−1). Namely, E[ξk(x0:k)|x0:k] = Q(xk)−Q(xk−1).
Then we aim to use the stochastic differential estimate to approximate Q(xk) as follows:

Q̃(xk) = Q̃(x0) +

k∑
i=1

ξi(x0:i),

where Q̃(x0) is the estimation of Q(x0).

Lemma 2. [25] For any vector h, we have

E‖Q̃(xk)−Q(xk)‖2 ≤ E‖Q̃(x0)−Q(x0)‖2 +

k∑
i=1

E‖ξi(x0:i)− (Q(xi)−Q(xi−1))‖2.

Let Ai map any vector x to a random vector esimate Ai(x) such that

E[Ai(xk)−Ai(xk−1)|x0:k] = Vk − Vk−1, (4)

where Vk is defined below. Assume AS = 1
|S|
∑
i∈S Ai where S denote the sampled data of sample number |S|.

Besides, Ai satisfies
Ei‖Ai(x)−Ai(y)‖22 ≤ L2‖Exp−1

x (y) ‖2.

Then we define Vk = AS(xk)−AS(xk−1) + Vk−1 and V0 is the estimate of A(x0). Based on Lemma 2, we can
further conclude:

Lemma 3. Assume d (xk−1,xk) = ‖Exp−1
xk

(xk−1) ‖ = ρk−1. Then we have

E‖Vk −A(xk)‖2 ≤ E‖V0 −A(x0)‖2 + L2
t∑
i=1

I{|Si|<n}
ρ2
i−1

|Si|
. (5)

Proof. The proof here mimics that of Lemma 4 in [25]. For completeness, we provide the proof. Assume for the

k-th sampling, the seleced sample set is denoted by Sk. Then, we have

E‖Vk −A(xk)‖2 =E‖ASk(xk)−ASk(xk−1) + Vk−1 −A(xk)‖2

=E‖ASk(xk)−ASk(xk−1)−A(xk) +A(xk−1) + Vk−1 −A(xk−1)‖2

=E‖ASk(xk)−ASk(xk−1)−A(xk) +A(xk−1)‖2 + E‖Vk−1 −A(xk−1)‖2

+ E〈ASk(xk)−ASk(xk−1)−A(xk) +A(xk−1),Vk−1 −A(xk−1)〉
¬
=E‖ASk(xk)−ASk(xk−1)−A(xk) +A(xk−1)‖2 + E‖Vk−1 −A(xk−1)‖2

=
1

|Sk|
E‖Ai(xk)−Ai(xk−1)−A(xk) +A(xk−1)‖2 + E‖Vk−1 −A(xk−1)‖2

≤ 1

|Sk|
E‖Ai(xk)−Ai(xk−1)‖2 + E‖Vk−1 −A(xk−1)‖2

®
≤ L2

|Sk|
‖Exp−1

xk
(xk−1) ‖2 + E‖Vk−1 −A(xk−1)‖2

≤
L2ρ2

k−1

|Sk|
+ E‖Vk−1 −A(xk−1)‖2,

where ¬ holds since E〈ASk(xk)−ASk(xk−1)−A(xk) +A(xk−1),Vk−1 −A(xk−1)〉 = 0 in which the expectation
is taken on the random set Sk (Vk−1 −A(xk−1) is constant); holds due to E‖x− E(x)‖2 ≤ E‖x‖2; ® holds
since fi(x) is L-gradient Lipschitz, namely Ei‖∇fi(x)−Γx

y (∇fi(y)) ‖22 ≤ L‖Exp
−1
x (y) ‖2. Notice, when |Sk| ≥ n,

in ¬, we have E‖ASk(xk)−ASk(xk−1)−A(xk) +A(xk−1)‖2 + E‖Vk−1 −A(xk−1)‖2 = 0. In this case, we can
obtain E‖Vk −A(xk)‖2 = E‖Vk−1 −A(xk−1)‖2. Therefore, consider these two cases and sum up k = 0, 1, · · · , t,
we have

E‖V(xt)−A(xt)‖2 ≤ E‖V0 −A(x0)‖2 + L2
t∑
i=1

I{|Si|<n}
ρ2
i−1

|Si|
.

The proof is completed.

Lemma 4. Suppose Assumptions 1 and 2 hold. Let k0 = bk/pc and k̃0 = k0p. Assume that for k = bk/pc · p,
we select |S1| samples to estimate vk and for k 6= bk/pc · p, we select |S2,k| samples to estimate vk. Then the
estimation error between the full Riemannian gradient ∇f(xk) and its estimate vk in Algorithm 1 is bounded as

E
[
‖vk −∇f(xk)‖2 | xk̃0 , · · · ,xk̃0+p−1

]
≤ I{|S1|<n}

σ2

|S1|
+ L2

k̃0+p−1∑
i=k̃0

I{|S2,i+1|<n}
d2 (xi,xi+1)

|S2,i+1|
,

where d (xi,xi+1) is the distance between xi and xi+1.

Proof. Here we construct an auxiliary sequence

v̂t =

t∑
i=1

(
Pxk
xi

(∇fS2(xi))− Pxk
xi−1

(∇fS1(xi−1))
)

+ Pxk
x0

(∇fS1(x0))

=Pxk
xt

(∇fS2(xt))− Pxk
xt−1

(∇fS2(xt−1)) + v̂t−1,

where xk is a given point and v̂0 = Pxk
x0

(∇fS1(x0)). In this way, let AS(xt) = Pxk
xt

(
∇fSt

2
(xt)

)
. Then we have

v̂t = AS(xt)−AS(xt−1) + v̂t−1. Accordingly, we can obtain

Ei‖Ai(xt)−Ai(xt−1)‖22 =Ei
∥∥∥Pxk

xt
(∇fi(xt))− Pxk

xt−1
(∇fi(xt−1))

∥∥∥2

=Ei
∥∥∥Pxk

xt−1

(
Pxt−1
xt

(∇fi(xt))
)
− Pxk

xt−1
(∇fi(xt−1))

∥∥∥2

=Ei
∥∥∥Pxk

xt−1

(
Pxt−1
xt

(∇fi(xt))−∇fi(xt−1)
)∥∥∥2

¬
=Ei

∥∥Pxt−1
xt

(∇fi(xt))−∇fi(xt−1)
∥∥2

≤L2‖Exp−1
xt−1

(xt) ‖2,

where ¬ holds as the parallel transport Py
x preserves the norm. On the other hand, all Ai(xt) (t = 0, · · · , k) are

located in the tangent space at the point xk. Thus, Lemma 3 is applicable to the sequence v̂t.

Let k0 = bK/pc. For simplicity, we use V0,V1, · · · ,Vk to respectively denote Vk0 ,Vk0+1, · · · ,Vk0+k. For V0, we
have V0 = Pxk

xk0
(∇fS1(xk0)). Then it yields

E‖V0 −A(x0)‖2 =E‖Pxk
xk0

(∇fS1(xk0))− Pxk
xk0

(∇f(xk0))‖2

=E‖∇fS1(xk0)−∇f(xk0)‖2

=
1

|S1|
E‖∇fi(xk0)−∇f(xk0)‖2

¬
≤ σ2

|S1|
,

where ¬ holds since the gradient variance is bounded in Assumption 2. On the other hand, since xk+1 =

Expxk

(
−ηk vk

‖vk‖

)
, we have

d2 (xk+1,xk) =
∥∥Exp−1

xk
(xk+1)

∥∥ .
Therefore, we have

E‖v̂t − Pxk
xt

(∇f(xt))‖2 ≤ L2
t−1∑
i=0

I{|S2,i+1|<n}
d2 (xi,xi+1)

|S2,i+1|
+

σ2

|S1|
.

By setting t = k and noting t ≤ p for each epoch, we establish

E‖vk −∇f(xk)‖2 = E‖v̂k − Pxk
xk

(∇f(xk))‖2 ≤ σ2

|S1|
+ L2

k0+p−1∑
i=k0

I{|S2,i+1|<n}
d2 (xi,xi+1)

|S2,i+1|
.

Notice, when we sample all n samples, we have E‖V0 −A(x0)‖2 = 0 and thus

E‖vk −∇f(xk)‖2 ≤ L2

k0+p−1∑
i=k0

I{|S2,i+1|<n}
d2 (xi,xi+1)

|S2,i+1|
.

So by combining the two case together, we can obtain the result in Lemma 1. The proof is completed.

Now we are ready to prove Lemma 1.

Proof of Lemma 1. To prove Lemma 1, we can directly set |S2,k| in Lemma 4 as |S2| in Lemma 1 and obtain
the results in Lemma 1. The proof is completed.

B Proof of the Results in Section 3.2

B.1 Proof of Theorem 1

Proof. For brevity, let η̃k = ηk
‖vk‖ . Then by using the L-gradient Lipschitz, we have

f(xk+1) ≤f(xk) + 〈∇f(xk),Exp−1
xk

(xk+1)〉+
L

2
‖Exp−1

xk
(xk+1) ‖2

≤f(xk)− η̃k〈∇f(xk),vk〉+
η̃2
kL

2
‖vk‖2

≤f(xk)− η̃k〈∇f(xk)− vk,vk〉 − η̃k
(

1− η̃kL

2

)
‖vk‖2

≤f(xk)− η̃k〈∇f(xk)− vk,vk〉 − η̃k
(

1− η̃kL

2

)
‖vk‖2

≤f(xk) +
η̃k
2
‖∇f(xk)− vk‖2 −

η̃k
2

(1− η̃kL) ‖vk‖2.

(6)

Since we have xk+1 = Exp−1
xk

(
−ηk vk

‖vk‖

)
, we can obtain

d (xk+1,xk) = ηk = min

(
ε

2Ln0
,
‖vk‖
4Ln0

)
≤ ε

2Ln0
. (7)

Now we consider the two cases: (1) k is not an integer multiple of p; (2) k is an integer multiple of p. We can
consider case (1) as follows. If s = n, then by Lemma 1 and Eqn. (7), we have

E‖vk −∇f(xk)‖2 ≤ L2

|S2|

k0+p−1∑
i=k0

d2 (xi,xi+1) ≤ pL2

|S2|
ε2

4L2n2
0

= n0s
1
2L2 n0

4s
1
2

ε2

4L2n2
0

=
1

16
ε2.

If s = 16σ2

ε2 , then Lemma 1 gives

E‖vk −∇f(xk)‖2 ≤ pL2

|S2|
ε2

4L2n2
0

+
σ2

|S1|
= n0s

1
2L2 ε2

4L2n2
0

n0

4s
1
2

+
ε2

16
=

1

8
ε2. (8)

For case (2), namely when k is an integer multiple of p, we have E‖vk −∇f(xk)‖2 ≤ pL2η2k
|S2| + σ2

|S1| = 0 + ε2

16 ≤
1
8ε

2.

At the same time, since ηk = min
(

ε
2Ln0

, ‖vk‖
4Ln0

)
, we have η̃k = ηk

‖vk‖ = min
(

ε
2Ln0‖vk‖ ,

1
4Ln0

)
≤ 1

4Ln0
and

η̃k(1− η̃kL)‖vk‖2 ≥
3η̃k
4
‖vk‖2 =

3

8
min

(
ε

Ln0‖vk‖
,

1

2Ln0

)
‖vk‖2 =

3ε2

16Ln0
min

(
2‖vk‖
ε

,
‖vk‖2

ε2

)
¬
≥ 3ε(2‖vk‖ − ε)

16Ln0
,

where ¬ uses x2 ≥ 2|x| − 1 for ∀x. So by taking expectation, we have

E [f(xk+1)− f(xk)] ≤ 1

2

1

4Ln0

ε2

8
− 1

2

3ε(2‖vk‖ − ε)
16Ln0

= − ε

64Ln0
(12E‖vk‖ − 7ε) .

In this way, we have

1

K

K−1∑
k=0

E‖vk‖ ≤
7ε

64
+

16Ln0

3Kε
E [f(x0)− f(xK)] ≤ 7ε

64
+

16Ln0∆

3Kε
,

where we use E [f(x0)− f(xK)] ≤ E [f(x0)− f(x∗)] ≤ f(x0)− f(x∗) ≤ ∆. It means that after running at most
K = 14Ln0∆

ε2 iterations, the algorithm will terminate, since

E‖∇f(x̃)‖ =
1

K

K−1∑
k=0

E‖∇f(xk)‖ ≤ 1

K

K−1∑
k=0

[E‖∇f(xk)− vk‖+ E‖vk‖]
¬
≤ 1

K

K−1∑
k=0

√
E‖∇f(xk)− vk‖2 +

ε

2

≤ ε,

where ¬ uses the Jensen’s inequality; holds since E‖∇f(x)− vk‖2 ≤ ε2

8 in Eqn. (8). The proof is completed.
The proof is completed.

B.2 Proof of Corollary 1

Proof. According to Theorem 1, we know that after running at most K = 14Ln0∆
ε2 iterations, the algorithm will

terminate. In this way, we can compute the stochastic gradient complexity as

O
(
K

p
|S1|+K|S2|

)
= O

(
Ln0∆

ε2

(
s

1

n0s1/2
+
s1/2

2n0

))
= O

(
min

(
n+

L∆
√
n

ε2
,
L∆σ

ε3

))
.

The proof is completed.

B.3 Proof of Theorem 2

Proof. For brevity, let η̃k = ηk
‖vk‖ . From Eqn. (6), we can obtain the following inequality:

f(xk+1) ≤ f(xk) +
η̃k
2
‖∇f(xk)− vk‖2 −

η̃k
2

(1− η̃kL) ‖vk‖2. (9)

Now we consider the two cases: (1) k is not an integer multiple of p; (2) k is an integer multiple of p. We
can consider case (1) as follows. By setting p = σn0

ε , ηk = min
(

ε
2Ln0

, ‖vk‖
4Ln0

)
, |S1| = 16σ2

ε2 , S2 = σ
2εn0

, where
n0 ∈ [1, 2σ/ε], Lemma 1 gives

E‖vk −∇f(xk)‖2 ≤ pL2η2
k

|S2|
+

σ2

|S1|
=
σn0

ε
L2 ε2

4L2n2
0

εn0

4σ
+
ε2

16
=

1

8
ε2. (10)

For case (2), namely when k is an integer multiple of p, we have E‖vk −∇f(xk)‖2 ≤ pL2η2

|S2| + σ2

|S1| = 0 + ε2

16 ≤
1
8ε

2.

Then similar to proof in Sec. B.1, since ηk = min
(

ε
2Ln0

, ‖vk‖
4Ln0

)
, we have η̃k = ηk

‖vk‖ = min
(

ε
2Ln0‖vk‖ ,

1
4Ln0

)
≤ 1

4Ln0

and

η̃k(1− η̃kL)‖vk‖2 ≥
3η̃k
4
‖vk‖2 =

3

8
min

(
ε

Ln0‖vk‖
,

1

2Ln0

)
‖vk‖2 =

3ε2

16Ln0
min

(
2‖vk‖
ε

,
‖vk‖2

ε2

)
¬
≥ 3ε(2‖vk‖ − ε)

16Ln0
,

where ¬ uses x2 ≥ 2|x| − 1 for ∀x.

So by taking expectation, we have

E [f(xk+1)− f(xk)] ≤ 1

2

1

4Ln0

ε2

8
− 1

2

3ε(2‖vk‖ − ε)
16Ln0

= − ε

64Ln0
(12E‖vk‖ − 7ε) .

In this way, we have

1

K

K−1∑
k=0

E‖vk‖ ≤
7ε

64
+

16Ln0

3Kε
E [f(x0)− f(xK)] ≤ 7ε

64
+

16Ln0∆

3Kε
,

where we use E [f(x0)− f(xK)] ≤ E [f(x0)− f(x∗)] ≤ f(x0)− f(x∗) ≤ ∆. It means that after running at most
K = 14Ln0∆

ε2 iterations, the algorithm will terminate, since

E‖∇f(x̃)‖ =
1

K

K−1∑
k=0

E‖∇f(xk)‖ ≤ 1

K

K−1∑
k=0

[E‖∇f(xk)− vk‖+ E‖vk‖]
¬
≤ 1

K

K−1∑
k=0

√
E‖∇f(xk)− vk‖2 +

ε

2

≤ ε,

where ¬ uses the Jensen’s inequality; holds since E‖∇f(x)− vk‖2 ≤ ε2

8 in Eqn. (8). The proof is completed.
The proof is completed.

B.4 Proof of Corollary 2

Proof. We adopt similar proof sketch of Corollary 1. According to Theorem 2, we know that after running at
most K = 14Ln0∆

ε2 iterations, the algorithm will terminate. In this way, we can compute the stochastic gradient
complexity as

O
(
K

p
|S1|+K|S2|

)
= O

(
Ln0∆

ε2

(
σ2

ε2
ε

σn0
+

σ

εn0

))
= O

(
Lσ∆

ε3

)
.

The proof is completed.

C Proofs of the Results in Section 3.3

Before proving Theorems 3 and 4, we first prove Lemma 5 which is a key lemma to prove Theorems 3 and 4.

Lemma 5. Assume function f(x) is τ -gradient dominated. Let E denotes the event:

E =
{
E‖∇f(x̃)‖2 ≤ ε2 and E [f(x̃)− f(x∗)] ≤ τε2.

}
(1) For online-setting, we have p= σn0

ε , ηk = ‖vk‖
2Ln0

, |S1|= 32σ2

ε2 , |S2,k|= 8σ‖vk−1‖2
ε3n0

. To let the event E happen,
Algorithm 1 runs at most K = 64Ln0∆

ε2 iterations and the IFO complexity is

O
(
L∆σ

ε3

)
, where ∆̃ = f(x0)− f(x∗).

(2) For finite-sum setting, we let s=min
(
n, 32σ2

ε2

)
, p=n0s

1
2 , ηk = ‖vk‖

2Ln0
, |S1|=s, |S2,k|= min

(
8p‖vk−1‖2

n2
0ε

2 , n
)
. To

let the event E happen, Algorithm 1 runs at most K = 64Ln0∆
ε2 iterations and the IFO complexity is

O
(

min

(
n+

L∆
√
n

ε2
,
L∆σ

ε3

))
, where ∆ = f(x0)− f(x∗).

Proof. For brevity, let η̃k = ηk
‖vk‖ = 1

2Ln0
. Then similar to Eqn. (6), by using the L-gradient Lipschitz, we have

f(xk+1) ≤f(xk) + 〈∇f(xk),Exp−1
xk

(xk+1)〉+
L

2
‖Exp−1

xk
(xk+1) ‖2

≤f(xk)− η̃k〈∇f(xk),vk〉+
η̃2
kL

2
‖vk‖2

≤f(xk)− η̃k〈∇f(xk)− vk,vk〉 − η̃k
(

1− η̃kL

2

)
‖vk‖2

≤f(xk)− η̃k〈∇f(xk)− vk,vk〉 − η̃k
(

1− η̃kL

2

)
‖vk‖2

≤f(xk) +
η̃k
2
‖∇f(xk)− vk‖2 −

η̃k
2

(1− η̃kL) ‖vk‖2

¬
≤f(xk) +

1

4Ln0
‖∇f(xk)− vk‖2 −

1

8Ln0
‖vk‖2,

where ¬ holds since n0 ≥ 1. By summing up this equation from 0 to K − 1 and taking expectation, we can obtain

1

K

K−1∑
k=0

E‖vk‖2 ≤
2

K

K−1∑
k=0

E‖vk −∇f(xk)‖2 +
8Ln0

K
[f(x0)− f(xK)]

¬
≤ 2

K

K−1∑
k=0

E‖vk −∇f(xk)‖2 +
8Ln0∆

K
,

where ¬ uses E [f(x0)− f(xK)] ≤ E [f(x0)− f(x∗)] ≤ f(x0)− f(x∗) ≤ ∆.

Now we use Lemma 4 to bound each E‖vk −∇f(xk)‖2 for both online and finite-sum setting. For online-setting,
we have p= σn0

ε , ηk = ‖vk‖
2Ln0

, |S1|= 32σ2

ε2 , |S2,k|= 8σ‖vk−1‖2
ε3n0

. From Lemma 4, we can establish

E‖vk−∇f(xk)‖2 ≤ I{|S1|<n}
σ2

|S1|
+L2

k0+p−1∑
i=k0

I{|S2,i+1|<n}
d2 (xi,xi+1)

|S2,i+1|
≤ σ2 ε2

32σ2
+L2

k0+p−1∑
i=k0

‖vi‖2

4L2n2
0

ε3n0

8σ‖vi‖2
≤ ε2

16
,

where we use d2 (xk+1,xk) =
∥∥Exp−1

xk
(xk+1)

∥∥2
= η2

k since xk+1 = Expxk

(
−ηk vk

‖vk‖

)
. For finite-sum setting, we

let s=min
(
n, 32σ2

ε2

)
, p=n0s

1
2 , ηk = ‖vk‖

2Ln0
, |S1|=s, |S2,k|= min

(
8p‖vk−1‖2

n2
0ε

2 , n
)
. In this case, we also have

E‖vk−∇f(xk)‖2 ≤ I{|S1|<n}
σ2

|S1|
+L2

k0+p−1∑
i=k0

I{|S2,i+1|<n}
d2 (xi,xi+1)

|S2,i+1|
≤ σ2 ε2

32σ2
+L2

k0+p−1∑
i=k0

‖vi‖2

4L2n2
0

n2
0ε

2

8p‖vi‖2
≤ ε2

16
.

Meanwhile, we set K = 64Ln0∆
ε2 , which gives

1

K

K−1∑
k=0

E‖vk‖2 ≤
2

K

K−1∑
k=0

E‖vk −∇f(xk)‖2 +
8Ln0∆

K
≤ ε2

4
.

It means that after running at most K = 14Ln0∆
ε2 iterations, the algorithm will terminate, since

E‖∇f(x̃)‖2 =
1

K

K−1∑
k=0

E‖∇f(xk)‖2 ≤ 1

K

K−1∑
k=0

[
2E‖∇f(xk)− vk‖2 + 2E‖vk‖2

]
≤ ε2.

Then we use the definition of τ -gradient dominated function, we have

E[f(x̃)− f(x∗)] =
1

K

K−1∑
k=0

E[f(xk)− f(x∗)] ≤
τ

K

K−1∑
k=0

E‖∇f(xk)‖2 = τE‖∇f(x̃)‖2 ≤ τε2.

Now consider the IFO complexity for both online and finite-sum settings. For online setting, its IFO complexity is

O

(
K

p
|S1|+

K−1∑
k=0

E|S2,k|

)
= O

(
L∆σ

ε3
+

σ

n0ε3

K−1∑
k=0

E‖vk‖2
)
≤ O

(
L∆σ

ε3
+

σ

n0ε3
K · ε

2

4

)
= O

(
L∆σ

ε3

)
.

similarly, we can compute the expectation IFO complexity for finite-sum setting:

O

(
K

p
|S1|+

K−1∑
k=0

E|S2,k|

)
= O

(
min

(
n+

L∆
√
n

ε2
,
L∆σ

ε3

))
.

The proof is completed.

C.1 Proof of Theorems 3

Now we are ready to prove Theorem 3.

Proof. We first consider the t iteration in Algorithm 2. By Lemma 5, we obtain that by using εt−1 with proper
other parameters, the IFO complexity of Algorithm 1 for computing E[‖∇f(x̃t)‖2] ≤ ε2t−1 is

O
(

min
(
n+

L∆t
√
n

ε2t−1

,
L∆tσ

ε3t−1

))
,

when the parameters satisfy st = min
(
n, 32σ2

ε2t−1

)
, pt =nt0s

1
2
t , ηtk =

‖vt
k‖

2Ln0
, |St1|= st, |St2,k|= min(

8pt‖vt
k−1‖

2

(nt
0)2ε2t−1

, n) and

Kt =
64Lnt

0∆t

ε2t−1
. Then the initial point x0 at the t iteration is the output x̃t−1 of the (t− 1)-th iteration, which

gives the distance ∆t = E[f(x0)− f(x∗)] = E[f(x̃t−1)− f(x∗)] ≤ τε2t−2 by using Lemma 5. On the other hand,
εt = ε0

2t . So the IFO complexity of the t-th iteration is

O
(

min
(
n+

L∆t
√
n

ε2t−1

,
L∆tσ

ε3t−1

))
= O

(
min

(
n+

Lτε2t−2

√
n

ε2t−1

,
Lστε2t−2

ε3t−1

))
= O

(
min

(
n+ τL

√
n,
τLσ

εt−1

))
.

So to achieve εT ≤ ε0
2T ≤ ε, T satisfies T ≥ log

(
ε0
ε

)
. So for the T iterations, the total complexity is

O

(
min

((
n+ τL

√
n
)

log

(
1

ε

)
, τLσ

T∑
t=1

1

εt−1

))
= O

(
min

((
n+ τL

√
n
)

log

(
1

ε

)
,
τLσ

ε

))
.

Meanwhile, we can obtain

E‖∇f(x̃t)‖ ≤
√
E‖∇f(x̃t)‖2 ≤ εt−1 =

ε0
2t−1

=
1

2t

√
∆

τ
and E [f(x̃t)− f(x∗)] ≤ τε2t−1 =

τε20
4t−1

=
∆

4t
,

where we set ε0 = 1
2

√
∆
τ . The proof is completed.

C.2 Proof of Theorem 4

Proof. The proof here is very similar to the strategy in Section C.1 for proving Theorem 3. The main idea is to
use the result in Lemma 5, to achieve

E‖∇f(x̃)‖2 ≤ ε2 and E [f(x̃)− f(x∗)] ≤ τε2,

the IFO complexity is

O
(
L∆σ

ε3

)
, where ∆̃ = f(x0)− f(x∗).

Then following the proof in Section C.1 for proving Theorem 3, we can obtain the IFO complexity for achieving
E‖∇f(x̃t)‖2 ≤ ε2t−1:

O
(
τLσ

ε

)
,

when the parameters obey pt=
σnt

0

εt−1
, ηtk =

‖vt
k‖

2Lnt
0
, |St1|= 32σ2

ε2t−1
, |St2,k|=

8σ‖vt
k−1‖

2

ε3t−1n
t
0

, and Kt =
64Lnt

0∆t

ε2t−1
.

Meanwhile, we can obtain

E‖∇f(x̃t)‖ ≤
√
E‖∇f(x̃t)‖2 ≤ εt−1 =

ε0
2t−1

=
1

2t

√
∆

τ
and E [f(x̃t)− f(x∗)] ≤ τε2t−1 =

τε20
4t−1

=
∆

4t
,

where we set ε0 = 1
2

√
∆
τ . The proof is completed.

D More Experimental Results

D.1 Descriptions of Testing Datasets

We first briefly introduce the ten testing datasets in the manuscript. Among them, there are six datasets,
including a9a, satimage, covtype, protein, ijcnn1 and epsilon, that are provided in the LibSVM website1. We also
evaluate our algorithms on the three datasets: YaleB [37], AR [38] and PIE [39], which are very commonly used
face classification datasets. Finally, we also test those algorithms on a movie recommendation dataset, namely
MovieLens-1M2. Their detailed information is summarized in Table 2. From it we can observe that these datasets
are different from each other due to their feature dimension, training samples, and class numbers, etc.

Table 2: Descriptions of the ten testing datasets.

#class #sample #feature #class #sample #feature

a9a 2 32,561 123 epsilon 2 40,000 2000
satimage 6 4,435 36 YaleB 38 2,414 2,016
covtype 2 581,012 54 AR 100 2,600 1,200
protein 3 14,895 357 PIE 64 11,554 1,024
ijcnn1 2 49,990 22 MovieLens-1M — 6,040 3,706

D.2 Comparison of Algorithm Running Time

In this subsection, we present more experimental results to show the algorithm running time comparison among
the compared algorithms in the manuscript. The experimental results in Figure 1 only provides the algorithm
running time comparison of the ijcnn and epsilon datasets. Here we provide the comparison of all remaining
datasets in Figure 4 which respond to Figures 1 and 3 in the manuscript. From the curves of comparison of
optimality gap vs. algorithm running time, one can observe that our R-SPIDER-A is the fastest method and
R-SPIDER can also quickly converge to a relatively high accuracy, e.g. 10−8. We have discussed these results in
the manuscript. Besides, all these results are consistent with the curves of the comparison of optimality gap vs.
IFO, since the IFO complexity can comprehensively reflect the overall computational performance of a first-order
Riemannian algorithm.

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2https://grouplens.org/datasets/movielens/1m/

0 10 20 30 40

−12

−10

−8

−6

−4

−2

0

Algorithm Running Time (seconds)

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

a09

0 0.5 1 1.5 2 2.5 3
−14

−12

−10

−8

−6

−4

−2

0

Algorithm Running Time (seconds)

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

satimage

0 10 20 30 40 50 60
−14

−12

−10

−8

−6

−4

−2

0

Algorithm Running Time (seconds)

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

covtype

0 5 10 15 20 25 30
−14

−12

−10

−8

−6

−4

−2

0

Algorithm Running Time (seconds)

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

protein

(a) Comparison among Riemannian stochastic gradient algorithms on k-PCA problem.

0 200 400 600 800

−10

−8

−6

−4

−2

Algorithm Running Time (seconds)

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

YaleB

0 50 100 150 200 250

−10

−8

−6

−4

−2

0

Algorithm Running Time (seconds)

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

AR

0 500 1000 1500
−10

−8

−6

−4

−2

0

2

4

Algorithm Running Time (seconds)

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

PIE

0 1000 2000 3000

−6

−4

−2

0

2

Algorithm Running Time (seconds)

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SGD
R−SVRG
R−SRG
R−SRG+
R−SPIDER
R−SPIDER−A

MovieLens−1M

(b) Comparison among Riemannian stochastic gradient algorithms on low-rank matrix completion problem.
Figure 4: Comparison of algorithm running time of Riemannian stochastic gradient algorithms.

D.3 Comparison between Riemannian Stochastic Gradient Algorithms with Adaptive Learning
Rate

Here we provide more comparison among our proposed R-SPIDER-A, R-SRG-A and R-SRG+A. R-SRG-A and
R-SRG+A are respectively the counterparts of R-SRG and R-SRG+ with adaptive learning rate of formulation
ηk = α(1 + αλαbkp c) [10]. Notice, the reason that we do not compare all algorithms together is to avoid too many
curves in one figure, leading to poor readability.

By observing Figure 5, we can find that the algorithm with adaptive learning rate usually outperforms the
vanilla counterpart, which demonstrates the effectiveness of the strategy of adaptive learning rate. Moreover,
R-SPIDER-A also consistently shows sharpest convergence behaviors compared with R-SRG-A and R-SRG+A.
All these results are consistent with the experimental results in the manuscript. All results shows the advantages
of our proposed R-SPIDER and R-SPIDER-A.

0 15 30 45 60 75 90

−14

−12

−10

−8

−6

−4

−2

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SRG
R−SRG−A
R−SRG+
R−SRG+A
R−SPIDER
R−SPIDER−A

epsilon

0 15 30 45 60 75 90

−14

−12

−10

−8

−6

−4

−2

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SRG
R−SRG−A
R−SRG+
R−SRG+A
R−SPIDER
R−SPIDER−A

ijcnn

(a) Comparison among Riemannian stochastic gradient algorithms on k-PCA problem.

0 50 100 150 200 250 300

−10

−8

−6

−4

−2

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SRG
R−SRG−A
R−SRG+
R−SRG+A
R−SPIDER
R−SPIDER−A

YaleB

0 50 100 150 200 250 300

−10

−8

−6

−4

−2

0

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SRG
R−SRG−A
R−SRG+
R−SRG+A
R−SPIDER
R−SPIDER−A

AR

0 50 100 150 200 250 300
−10

−8

−6

−4

−2

0

2

4

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SRG
R−SRG−A
R−SRG+
R−SRG+A
R−SPIDER
R−SPIDER−A

PIE

0 50 100 150 200 250 300

−6

−4

−2

0

2

IFO/n

O
bj

ec
tiv

e
D

is
ta

nc
e

lo
g(

f−
f

*)

R−SRG
R−SRG−A
R−SRG+
R−SRG+A
R−SPIDER
R−SPIDER−A

MovieLens−1M

(b) Comparison among Riemannian stochastic gradient algorithms on low-rank matrix completion problem.
Figure 5: More comparison between R-SPIDER and R-SRG with adaptive learning rates.

	Faster first-order methods for stochastic non-convex optimization on Riemannian manifolds
	Citation

	tmp.1721895391.pdf.uzTfC

