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Summary

Singapore's market for new privately developed apartments exhibits wide
quasi-experimental variation in ownership tenure. We develop an empirical
model in which prices are decomposed into the utility of housing services and
a factor that shifts with asset tenure and the discount rate schedule, which we
discipline to vary smoothly over time. We estimate discount rates that decline
over time and, to accommodate the observed price differences, fall to 0.5–1.5%
p.a. by year 400. The finding that households making sizable transactions do
not entirely discount benefits accruing centuries from today is relevant, with the
appropriate risk adjustment, for evaluating climate-change investments.
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1 INTRODUCTION

Public policies generally have dynamic implications, so the choice of how to discount ensuing costs and benefits over time
is critical. The relevant horizon may extend over decades, and even centuries into the future. In particular, economic anal-
ysis of climate change mitigation relies heavily on the assumed structure of discount rates (Cline, 1992; Nordhaus, 1994).
Nordhaus (2007a,b) criticizes the use of a 1.4% p.a. consumption discount rate in the Stern Review (2007), which made
distant climate damage loom large and called for immediate action (Stern, 2013; Stern & Taylor, 2007). Weitzman (2007a)
notes that “what to do about global warming depends overwhelmingly on the imposed interest rate” (p. 715). U.S. gov-
ernment guidelines prescribe constant discount rates of 3% p.a. when evaluating regulations that affect households, and
“sensitivity analysis using a lower but positive discount rate [in the presence of] important intergenerational benefits
or costs” (Greenstone et al., 2011; OMB, 2003). Since a 3% rate values $1 one century from now at only 5 cents today,
IWG (2010) cites “ethical objections that have been raised about rates of 3% or higher” (p. 23). Drupp et al. (2018) find
that academics “who place more emphasis on market-based rates of return recommend higher social discount rates”
(p. 17). Cropper et al. (2014) compare U.S. rates that are flat over the investment horizon to declining discount rates
(DDR) adopted by some European governments. NAS (2017) recommends that estimates of the social cost of carbon for
U.S. federal rulemaking “incorporate the relationship between discount rates and economic growth to help account for
uncertainty surrounding discount rates over long time periods” (p. 3).

Urged on by this climate policy debate, a growing body of theory addresses how consumption should be discounted over
the long run. According to an expert panel (Arrow et al., 2012), “theory provides compelling arguments for a declining
certainty-equivalent discount rate” (p. 21), for instance, through uncertainty in future consumption growth and a
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precautionary motive in a Ramsey model.1 In contrast, there is a dearth of evidence on how economic agents actually
make trade-offs between today and the distant future. Empirical work is rare, because markets for assets or claims with
long-run maturities are rarely observed. Groom et al. (2005) survey the DDR literature and write: “The difficulty in the long
run is the absence of financial assets whose maturity extends to the horizon associated with… global warming. Govern-
ment bonds, for example, do not extend beyond 40 years in general” (p. 465). Another empirical challenge is how to apply
time preferences inferred from prices in one imperfectly substitutable asset class, such as bonds or real estate, to another,
such as climate-change mitigation assets, with different risk profiles and price paths (Giglio et al., 2018; Gollier, 2010;
Gollier, 2016; Sterner & Persson, 2008; Weitzman, 2013).

A small empirical literature, starting with Fry and Mak (1984), estimates households' discount rates from price dif-
ferences across residential assets of varying lease lengths. Fry and Mak (1984) estimated a high 11% p.a. discount rate
from multi-decade housing contracts purchased by credit-constrained households in Hawaii. More recently, studies have
examined housing markets in the United Kingdom and its former colonies Hong Kong and Singapore, where the right
to the property is either held in perpetuity—a perpetual lease—or reverts to the lessor following initial horizons of 50 to
999 years. Intuitively, by comparing prices for two leases of different remaining length (and otherwise comparable prop-
erties), this literature infers whether households today value differential benefits that begin to accrue on the date the first
lease expires.

Contributions to this literature include Wong et al. (2008), Bracke et al. (2018), Gautier and van Vuuren (2014), and
Giglio et al. (2015). Wong et al. (2008) compare transaction prices between 99-year and 999-year leases in Hong Kong,
inferring a discount rate of 4.3% p.a. The authors assume, rather than test, that the “999-year tenure is long enough to… be
taken as a proxy for freehold interests” (p. 287). Bracke et al. (2018), using flat sales in Central London, estimate discount
rates that decline from 5% to 6% for nearly expired leases to close to 3% for leases with nearly one century remaining.
Gautier and van Vuuren (2014) use land-lease contracts in Amsterdam, with initial duration of about 50 years, to esti-
mate a quasi-hyperbolic discounting model. Giglio et al. (2015) examine sales of used and new houses and apartments
in the United Kingdom and Singapore. As do Wong et al. (2008) for Hong Kong, they group properties of broadly similar
remaining lease length into lease range bins, then use OLS regression with hedonic controls to estimate how transaction
prices co-vary with dummy variables for the different bins. For example, U.K. lease bins are 80–99, 100–124, 125–149,
150–300, 700–999 year, and perpetual leases. Based on their earlier work, Giglio et al. (2018) adopt a “discount rate for
real estate cash flows 100 or more years in the future [of] about 2.6%” (p. 3).

We differ from the literature by developing a tractable empirical model of residential property prices as the discounted
value of a long-run stream of housing services, which we take to transaction data to directly estimate a discount rate sched-
ule. We use a 20-year sample of fairly homogeneous new apartment transactions for Singapore and exploit the wide range
in lease length, from perpetual to multi-century to multi-decade leases. We provide a direct empirical test of whether the
discount rate declines over the very long run. Using nonlinear least squares, we fit smoothly varying parametric forms
to the discount rate as a function of time. As with the use of polynomials in distributed lag models (Almon, 1965), the
alternative parametric forms for the discount rate only discipline it to vary smoothly from one period to the next, yet the
variation over time can be downward, upward, or nonexistent. We also fit nonparametric structures in which the discount
rate is a step function of time and some smoothness is imposed through a trend acceleration penalty as in the HP filter
(Phillips & Jin, 2015). Besides focusing on new construction (of which Singapore has had a steady supply) and apartments
(more heterogeneous houses comprise 6% of Singapore's residences), we correct for a rich and novel set of property char-
acteristics. These characteristics include apartment story and sales/payments ahead of construction/delivery, which we
find to shift the utility of housing services in densely urbanized, high-rise Singapore. All these aspects, including sam-
ple, empirical model, estimation approach, and results, allow us to build on previous work. In particular, Giglio et al.'s
(2015) Singapore exercise does not control for apartment story and sales ahead of construction delivery, and includes used
property and houses.

Compared with the literature that backs out discount rates from hedonic regressions of transaction prices on lease
contract type and other property characteristics, the discount rates we estimate directly from the detailed new apartment
sample not only vary smoothly but also tend to be lower, raising the value of payoffs in the far-distant future, for a

1Theory models serial correlation or uncertainty in the consumption growth rate (Gollier, 2002; Gollier, 2008; Gollier, 2014; Gollier, 2016; Weitz-
man, 2007b) or in the discount rate (Gollier & Weitzman, 2010; Weitzman, 1998; Weitzman, 2001). Gollier (2010) models uncertainty in (economic)
consumption and environmental quality—two goods of limited substitutability—and Hoel and Sterner (2007) make shifting relative prices explicit. Of
relevance to the different rates in U.S. guidelines, Li and Pizer (2019) consider a setting in which taxes shift the shadow price of capital (and there is no
benefit uncertainty), with the social discount rate converging over long horizons to the consumption rate of interest.
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similar asset horizon and risk. Specifying the discount rate either as a step function or as an exponential function of time,
discount rates are estimated at about 3% (p.a.) up to year 100, and thereafter drop to 0.5% by year 400–500. For other
mathematically different parametric forms—in which either the discount rate is a logarithmic function of time, or the
logarithm of the discount rate is a linear function of the logarithm of time—estimated discount rates dip below 2% by
year 100, and thereafter fall more gradually to about 1.5% by year 400-500. The latter specifications are closer to the 2.6%
used by Giglio et al. (2018) for real estate cash flows beyond one century. Our alternative DDR schedules are intermedi-
ate to those simulated from different time-series models of long-term U.S. government bond yields (Freeman et al., 2015;
Groom et al., 2007; Newell & Pizer, 2003).

Our key result of DDR estimated directly from property transaction data is very robust to model specification and sample
composition. Because discount rates fall sufficiently fast and sufficiently low, there is some evidence that new apartments
on historical multi-century leases trade at a non-zero discount relative to property owned in perpetuity. The approach is
simple, transparent, and thus appealing.2

Beyond real estate, van Binsbergen et al. (2012); van Binsbergen et al. (2014) document DDR in equity. These studies
use data from derivatives markets (options, futures) to recover the prices of dividend strips at varying horizons up to a
decade, and find that short-term dividends have a higher risk premium than long-term dividends. The empirical find-
ings are consistent with the Lettau and Wachter (2007) model, whereby mean reversion in risky cash flows generates a
downward-sloping term structure for the equity risk premium. van Binsbergen and Koijen (2017) review work on the
term structure of equities and extend the evidence to other asset classes such as Treasuries and corporate bonds. Giglio
et al. (2018) also use the Lettau and Wachter (2007) model to rationalize, through mean reversion in risky real-estate cash
flows, DDR in real estate—a sector they argue faces “substantial exposure to both consumption risk and climate risk”
(p. 36).

In the remainder of the paper, Section 2 discusses the institutions and the data. Section 3 develops the empirical model
and estimation. Section 4 reports estimates, and Section 5 concludes, comparing our estimated discount rate schedules to
schedules that are effective in policy today. All section, table, and figure numbers referenced below that are preceded by
an “A,” as in A.1, A.2, and so on, are contained in Fesselmeyer et al. (2020) as an Online Appendix, which is available on
the Journal of Applied Econometrics website.

2 INSTITUTIONAL BACKGROUND AND DATA

2.1 Choice of sample

Singapore's residential housing market consists of three types of properties: (i) apartments in high-rise buildings devel-
oped by a government agency, the Housing and Development Board (HDB); (ii) apartments in buildings, often high-rise,
developed by private companies; and (iii) detached and semi-detached houses, which are also developed by private compa-
nies. New HDB apartments are purchased only by Singaporeans and at subsidized prices. Privately developed apartments
are purchased at market prices, mainly by Singaporeans but also by foreigners. Following local practice, we refer to these
privately developed apartments—as opposed to HDB apartments—as condominiums. Houses are sold to citizens and
sometimes, with permission from the Singapore Land Authority, to permanent residents and foreigners.

There are 1.3 million housing units in Singapore. Home ownership among households headed by a citizen or perma-
nent resident is a high 90% (Department of Statistics, 2015). In this nation of owner-occupiers, residential property is a
widespread component of wealth, accounting for one-half of household net worth (Agarwal & Qian, 2017; Department of
Statistics, 2018; Phang, 2001). Of these 1.3 million units, 75.1% are HDB apartments, 18.3% are privately developed (con-
dominium) apartments, and 5.7% are houses (0.9% are unclassified). We examine condominiums, as their purchases are
not subsidized or restricted (Appendix A.6). To control for aging, we also focus our sample on purchases of new, rather
than new and used, construction. New detached and semi-detached houses are a small share of the market and may vary
in unobservable ways. Our sample consists of new condominium purchases over the January 1995 to January 2015 period.
It is for this relatively homogeneous sample that we exploit quasi-experimental variation in ownership tenure.

2We model the discount rate in reduced form, abstracting away from uncertainty, but the approach is amenable to imposing restrictions derived from
embedding discounting in a growth model that also models uncertainty.
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Singapore residential property ownership comprises “freeholds” and “leaseholds.” Freeholds are assets owned in per-
petuity, in contrast to leaseholds, in which the land and the housing infrastructure built on the leased land revert to the
lessor—typically the state—when the lease expires. This land tenure system dates to the early 1800s, when Singapore
was under British colonial rule (Lornie, 1921). Pursuant to the Letters Patent issued on November 27, 1826, the land title
system under English law became the basis of Singapore's land law (Taylor Wessing, 2012). Much of the land that was
developed over the 19th and much of the 20th centuries was in the form of perpetual leases and, in relatively smaller
volume, leases with typical initial tenure of 999 years. The tenure remaining on these multi-century leases that survived
to our 1995–2015 sample period ranges from 825 to 986 years. In practice, developers acquire rights to these lands (with
no land rents payable subsequent to acquisition), build new condominiums on them, and sell them to households at
their remaining tenure—say, 875 years. Our analysis characterizes each property by its exact remaining tenure from the
moment housing services begin.

Following independence in 1965, the government embarked on a large-scale program to buy back some privately held
land (Phang & Kim, 2011). The aim was to expand the housing stock and redevelop derelict areas. After the 1992 State
Lands Act, a 99-year term became the norm for state-leased land, whether for new development or redevelopment, by
the housing agency and private developers alike. The majority of condominiums built on land subsequently released by
the government had a tenure of 99 years from the date a property developer acquired the rights. In contrast, the majority
of condominiums built on privately owned land, whose titles were often issued by the British colonial government, were
either perpetual or multi-century leases.

History has thus shaped a unique context in which new condominium projects under varying ownership
tenure—ranging from perpetual to multi-century to multi-decade leases—are built by the same developers, in close prox-
imity, both in space and in time. By “project,” we refer to a collection of adjacent buildings or towers, each with many
apartments that share a land parcel, name, and facilities such as a street entrance. Within a project, there is no variation
in lease contract. For example, the Botannia, completed in 2009 on a 956-year lease from 1928, consists of 11 apartment
towers. Next door to the Botannia, the 8-tower, aptly named Infiniti is a perpetual lease and was completed in 2008.

Hedonic analysis requires that the empiricist specify the granularity at which to control for spatial heterogeneity. Our
specifications vary between 5-digit and 3-digit location controls, for example, 12772x or 127xxx. With tight controls, 96%
of 5-digit locations contain a single lease type—perpetual, multi-century, or multi-decade, for example, location 12772x
comprises only Botannia apartments and perfectly predicts their “956-years-from-1928” lease. Appendix Figure A.1(a)
shows projects in the 100 − 96 = 4% of 5-digit locations that contain more than one lease type. With less granular con-
trols, 58% of 3-digit locations contain more than one lease type (Appendix Figure A.1(b)). In the example, location 127xxx
encompasses both Botannia's multi-century lease and Infiniti's perpetual lease, thus preserving variation of interest. For-
tunately, our finding of DDR is not sensitive to how we control for location. Appendix A.2 and Figure A.2 show that
even 3-digit fixed effects control for location at quite a granular level. Because residences in the city-state agglomerate in
100 km2 (14% of its land area), each 3-digit location corresponds, on average, to a square of side less than 1 km.

Figure 1 depicts the location of condominium projects in 5-year intervals. Each triangle, square, or circle marks a project
on a perpetual, multi-century, or multi-decade lease, respectively, with new apartment sales recorded in a subperiod. The
figure illustrates a key feature of the data: whenever a new apartment under one lease type was sold, new apartments in
neighboring projects and under other lease types tended to be sold. Local neighborhoods with new apartments on per-
petual and multi-century leases, with their shared colonial history, have also offered new apartments on multi-decade
leases, thanks to the government's land acquisition program. This enables us to identify the effect of tenure length on
value—and thus the discount rate schedule—separately from the effect of location and time. The figure also shows that
greenfield projects, on land assigned for residential development after the 1992 State Lands Act, mostly had initial tenure
of 99 years; see the more scattered, peripheral parts of the city-state, such as the northeast, that house relatively more
projects on multi-decade leases. For this reason, we complement our analysis of the full sample by considering a sub-
sample of areas with availability of (at least) perpetual and multi-century leases; these residential areas tend to be more
central and established.

2.2 Data

We extract private residential property transactions between January 1995 and January 2015 from the Urban Redevelop-
ment Authority's Real Estate Information System (REALIS), which contains nearly the universe of new condominium
transactions (Appendix A.1). According to this agency, the stock of condominium apartments grew from 53,429 in 1994
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FIGURE 1 Condominium project location by lease type and period of sale.
CBD marks the Central Business District, centered at One Raffles Place. (a)
Projects with new apartments sold in 1995–1999. (b) Projects with new
apartments sold in 2000–2004. (c) Projects with new apartments sold in
2005–2009. (d) Projects with new apartments sold in 2010–2015

to 237,274 in 2014, that is, an increase of 183,845 units. Reassuringly, REALIS contains 179,505 new sale records. Focus-
ing on new property allows us to better control for unobserved quality. With used property, we would need to disentangle
the price effects of highly correlated depreciation and remaining lease. The quality of used apartments traded with iden-
tical observed characteristics could differ considerably due to maintenance. In contrast, quality differences between new
apartments—for instance, a perpetual lease and a neighboring 875-year lease—purchased at about the same time, are
likely to be small.

We observe the date and price of the transaction, the year building construction was completed, the initial duration
of land tenure, and the date on which tenure was originally granted. For example, one observation pertains to a condo-
minium apartment purchased on 4/4/2008 for S$ 2,817,000 (Singapore dollars), with construction completed in 2007 and
a lease of “998 Yrs From 12/27/1875.” For this transaction, we compute the remaining tenure at the date of purchase to
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be 998 − (2008 − 1875) = 865 years. We also observe the apartment's size in m2 and address, from which we extract the
story and the 6-digit postal code (that identifies the building), and the condominium project's name. Our sample consists
of 179,218 units (99.9% of the 179,505 new sale records in REALIS), pertaining to 1672 unique condominium projects.

We adjust nominal prices to account for variation in Singapore's Consumer Price Index (CPI), converting transaction
prices to January 2014 Singapore dollars. Units are typically sold during construction. In the sample, 83% of transactions
for perpetual and multi-century leases alike happen no later than the year before the apartment is delivered.3 For such
transactions, the median time between purchase and delivery is 3 years, with buyers following a graduated payment
schedule until construction is completed and the keys are handed over, at which time the remaining balance is due in full.
We follow the typical payment schedule and use the CPI to compound (upward adjust) the prepaid components of the
purchase price to the time construction is completed and the flow of housing services begins (Appendix A.3). Intuitively,
making partial payment on an apartment years before it is delivered and housing benefits start accruing is akin to paying
a higher price when the property is delivered. To control for unobserved heterogeneity (e.g., the best views “sell like
hotcakes”), our analysis also corrects for the time between apartment purchase and construction completion, using 1-year
bins from the negative to the positive domain. As expected, we find that prices are higher for apartments sold in the early
phase of construction.

In the majority case in which apartments are purchased during construction, we take the time between construction
completion (not sales) to lease expiry for the purpose of calculating the remaining asset life. For example, the 2010 pur-
chase of a unit in the Interlace, on a “99 Yrs From 2/11/2009” lease, with construction completed in 2013, amounts to
99 − (2013 − 2009) = 95 years of remaining lease length when housing benefits begin (not 99 − (2010 − 2009) = 98
years). These data-handling procedures, such as correcting for the CPI and accounting for the fact that most new units
are purchased ahead of delivery, should increase estimation precision.

Panel I of Table 1 summarizes the density of remaining lease against transaction year across the full sample of 179,218
purchases. We also summarize a subsample of 31,072 purchases that we use for sensitivity analysis: We restrict purchased
apartments (of any lease type) to 3-digit areas in which at least perpetual and multi-century leases were traded. The ratio
of multi-century to perpetual leases is higher in this subsample than in the full sample, as these areas are located in
Singapore's more established neighborhoods (Figure 1). Over time, condominium sales have grown and the proportion of
new units with 876 to 986 years remaining on the lease has fallen, while the proportion of leases with 825 to 875 remaining
years has risen.

Panel II of Table 1 shows that mean apartment size and purchase price are, respectively, 108 m2 and S$ 1.4 million, or
about US$ 1 million. Across transactions, the number of apartments within the same project averages 370, and 70% of
apartments are developed on large land parcels, according to an official designation. The average apartment is on the 9th
story; the sample includes high-rises up to 70 stories. Our analysis allows these characteristics to shift the utility of housing
services. For example, high stories may provide better views or quieter environments; at the same time, a high story may
be associated with a large land parcel or large project size, and more households in the condominium can potentially lead
to management issues. Our analysis thus controls for apartment story, project size and large land parcel. The data further
indicate that condominiums are developed quickly; for example, the median time to completion is 4 years.

Appendix Figure A.3 shows similar distributions by lease type over apartment size, distance to a mall (as a further proxy
for localized neighborhood characteristics), building height, and buyer age, particularly for perpetual and multi-century
leases. Building height distributions exhibit modes at 8 stories or so, and the distribution for multi-decade leases exhibits
a second mode at 16 stories. Underscoring the longer lease types' proximity, given their shared colonial history, buyers of
Chinese ethnicity accounted for 94% and 93%, and purchases with a mortgage accounted for 70% and 71%, respectively,
of perpetual and multi-century leases in a 2000–2009 sample (He et al., 2020).

While a homeowner cannot expect (himself or his near descendants) to be alive to enjoy the stream of housing services
produced by his residential asset one century (or a few centuries) in the future, Singapore has a very active resales market.
For example, 40% of the new apartments sold in the first half of our sample period were resold within a decade, as home-
owners trade up or liquidate their residential assets for cash. Relatedly, in a subsample of transactions for which buyer
age is observed, it is not the case that older buyers choose shorter tenure rights (Appendix Figure A.3(d)). In robustness
tests, we control for shared property amenities such as a swimming pool, and allow the discount rate schedule to vary
according to buyer age where available (Appendix Tables A.3 and A.10).

3For example, 89% of apartments in the multi-century-lease Botannia and 98% of apartments in the perpetual-lease Infiniti were purchased before
construction was completed. Appendix Table A.1 shows a similar pattern across lease types.
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TABLE 1 Descriptive statistics for transactions of new privately developed apartments

Panel I: Sales volume over time and by lease years remaining
Year new apartment was sold: Total
1995–1999 2000–2004 2005–2009 2010–2015 (# of units)

Full sample: All areas
Perpetual leases 13,599 10,989 27,206 21,040 72,834

Multi-century leases
876 to 986 years 3093 825 353 0 4271
825 to 875 years 657 330 2524 1372 4883

Multi-decade leases
91 to 99 years 18,932 16,207 15,630 45,336 96,105
87 to 90 years 0 44 9 835 888
56 to 63 years 0 0 14 223 237

Total (# of units) 36,281 28,395 45,736 68,806 179,218
Areas w/ sales of at least multi-century and perpetual leases

Perpetual leases 5384 2583 6775 4417 19,159
Multi-century leases

876 to 986 years 1931 763 347 0 3041
825 to 875 years 388 272 2147 1242 4049

Multi-decade leases
91 to 99 years 1125 935 536 2192 4788
87 to 90 years 0 33 2 0 35
56 to 63 years 0 0 0 0 0

Total (# of units) 8828 4586 9807 7851 31,072
Panel II: Other transaction variables N Mean Std. Dev. Minimum Maximum
Transaction price (S$) 179,218 1,336,314 1,181,158 308,248 43,396,372

Apartment size (m2) 179,218 107.999 47.440 24 1186
Price per m2 (S$) 179,218 12,374 5530 2670 78,068
Apartment story 179,218 8.999 7.590 1 70
On 1st story (1 = yes) 179,218 0.059 0.236 0 1
On top story (1 = yes) 179,218 0.086 0.280 0 1
Project size (# of units) 179,218 367.563 266.034 1 1371
Large land parcel (1 = yes) 179,218 0.703 0.457 0 1
Sold ≥ 1 year after complete 179,218 0.035 0.185 0 1
Sold during construction 179,218 0.869 0.337 0 1
Distance to the nearest shopping mall (km) 179,218 0.949 0.654 0 3.098
Project includes a swimming pool (1 = yes) 177,689 0.754 0.431 0 1
Project includes a gym (1 = yes) 177,689 0.770 0.421 0 1
Project includes a tennis court (1 = yes) 177,689 0.598 0.490 0 1
Buyer age (years) 54,548 42.143 9.526 18 93

Note: Purchases of new privately developed apartments from 1995 to 2015. Statistics are shown for the full sample of transactions
across areas (N = 179,218) and for a subsample in more homogeneous areas, defined as 3-digit areas in which at least multi-century
and perpetual leases were traded in sample (N = 31,072). In panel I, we group the joint density into cells of similar remaining lease
only for ease of exposition. Prices in S$ (base CPI January 2014). Apartments on the 1st story may be next door to common areas.
Apartments on the top story tend to have a larger recorded size, including less valuable external balcony space that depresses the
price per m2. Project size is the number of apartments transacted within the condominium project, for which caveats were lodged
with the Singapore Land Authority (Appendix A.1). Large land parcel is a project-specific dummy variable as defined by the Urban
Redevelopment Authority, namely a parcel at least 0.4 ha in land area. We observe buyer age for a subset of transactions (taking the
average when there is more than one buyer, e.g., two spouses).

Our assumption regarding respect for contracts—namely, that lessees enjoy the right to full term on their assets prior
to the lessor's taking over—implies that the residual value of maturing properties is zero at the end of the land tenure.4
Households pay a premium for longer leases because they generate a longer utility stream. We note that the expiration of

4Unmodeled subsidized extensions (or benefits) on nearly expired contracts would bias estimated discount rates upward, making them conservative.
The Singapore Land Authority states that general government policy is to allow leases to expire without extension. A developer who acquires aging
property on ongoing yet unexpired 99-year leases, to be torn down and developed anew, can request from the government, for a fee, a “top up” to a
99-year lease.
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the shorter leases in our sample is not imminent, and contract expiry is not salient to agents. The margin we examine is
not that associated with longer leases versus nearly expired leases, as found in Bracke et al. (2018).

3 EMPIRICAL MODEL: DISCOUNTED VALUE OF HOUSING SERVICES

We specify apartment i's time-invariant flow utility from housing services, ui, as shifting with property characteristics, Xi,
such as the size of the unit, the story it is on, and its detailed location:

ui = u (Xi; 𝜃) ,

where 𝜃 is a row vector of parameters to be estimated. We lay out the empirical model in discrete time; thus, ui is the
value of housing services per year, valued at the start of that year. Index the first year in which these benefits accrue to
the buyer by t = 1. Housing benefits accrue over a finite or infinite lease of Li ∈ [2,∞] years, and are modeled as certain.
The other primitive in the model is the schedule of annual discount rates, rt > 0, which can vary over time and on which
we subsequently impose alternative structures. The sum of discounted value of the utility stream at t = 1—the moment
that construction is completed and the buyer takes hold of the asset—is

V (Xi,Li; 𝜃, r) = u (Xi; 𝜃)𝜙 (Li; r) = u (Xi; 𝜃)

(
1 +

Li∈[2,∞]∑
t=2

1∏s=t−1
s=1 (1 + rs)

)
,

where r = (r1, r2, …). Thus, for example, the present value of housing services in the first, second, and third periods are
ui, ui(1+ r1)−1, and ui(1+ r1)−1(1+ r2)−1, respectively (by present value we mean value at the start of t = 1). As modeled,
discount rate rt discounts benefits from year t+ 1 to year t; it is a forward rate, as in Arrow et al. (2014).5

Identification follows from the fact that the value function V (Xi,Li; 𝜃, r) factors into the flow utility of housing, which
shifts with property characteristics, and a second factor that shifts with lease length and the discount rate schedule. We
denote this second factor 𝜙 (Li; r). As the discounted sum of a stream of unitary flows, it can be interpreted as the asset's
price multiple, that is, a price-flow utility ratio.

We model the transaction price of the property, pim, as the underlying value scaled by an exponential function of the
sum of two unobservable shocks: a shock that varies across transactions but is common to the market m in which the
transaction took place, denoted 𝜉m; and an idiosyncratic mean-zero shock to the transaction of property i in market m,
denoted 𝜀im:

pim = V (Xi,Li; 𝜃, r) e𝜉m+𝜀im . (1)

The market effect 𝜉m may be due, for example, to the business cycle (the state of the economy) and to seasonality,
to be captured by year fixed effects and quarter-of-year fixed effects, respectively. According to (1), prices are the dis-
counted value of housing services, which are determined by property characteristics, and are subject to market shocks.
The estimating equation is

ln pim = ln u (Xi; 𝜃) + ln𝜙 (Li; r) + 𝜉m + 𝜀im. (2)

In an alternative model, the relationship between the transaction price and underlying value is

pim = V (Xi,Li; 𝜃, r) + 𝜉m + 𝜀im = u (Xi; 𝜃)𝜙 (Li; r) + 𝜉m + 𝜀im. (3)

How 𝜙 (Li; r) varies across properties provides a measure of the transaction price variation in the data that is explained
by differences in tenure valued from the present day. An apartment on a 875-year lease should roughly trade at a fraction
𝜙 (Li = 875; r) ∕𝜙 (Li → ∞; r) of the price of a comparable apartment on a perpetual lease. A 94-year lease should trade at
a 𝜙 (Li = 94; r) ∕𝜙 (Li → ∞; r) fraction of a comparable perpetuity. Fixing property and market characteristics, Xi and 𝜉m,

5Were housing services to decline with tenure—e.g., due to poor maintenance—this would conservatively overstate the implied discount rate, which
we already find to be low. To see this, imagine two new properties, one with a 69-year lease, the other with 99 years (but otherwise identical), and
assume that beginning in year 70, poor maintenance renders the second property unlivable. Both new properties would then transact at the same price
(at t = 1), implying high discount rates out into the future in a model with time-invariant service flow such as ours.
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it is this co-variation between tenure and prices that reveals how households discount many decades and centuries into
the future.

3.1 Estimation algorithm

Let vector 𝛾 parameterize the discount rate schedule. We write rt = r (t; 𝛾) and r= r(𝛾). Models (2) and (3) can be estimated
by nonlinear least squares (NLLS). Specifically, we, respectively, solve

argmin
𝛾,𝜃,𝜉

N∑
i=1

(ln pim − ln u (Xi; 𝜃) − ln𝜙 (Li; r) − 𝜉m)2, (4)

or, argmin
𝛾,𝜃,𝜉

N∑
i=1

(pim − u (Xi; 𝜃)𝜙 (Li; r) − 𝜉m)2, (5)

subject to r = (r1(𝛾), r2(𝛾), …) > 0.

where we collect all market fixed effects in a row vector 𝜉 = (𝜉m). The constrained optimization searches for param-
eters that minimize, across the N transacted properties in the sample, the sum of squared residuals (RSS). The key
primitive of interest is the discount rate schedule, r = (r1, r2, …), which we allow to vary over time either paramet-
rically or nonparametrically. (For notational convenience, in the remainder of this section we omit the rate schedule
parameters 𝛾 from r.)

To reduce the computational burden, on implementing each model, we further specify the flow utility of housing such
that the estimating equation is linear in flow-utility parameters. Specifically, u (Xi; 𝜃) is given by eXi𝜃 in model (2) where log
price is the dependent variable, and by Xi𝜃 in model (3) where price is the dependent variable. Fixing r, each estimation
equation is now linear in the remaining parameters, 𝜃 and 𝜉m, which need not be included in the nonlinear search.

For example, consider model (3). Express the scalar 𝜉m as 𝜉D′
i , where Di is a row vector of market dummies for property

i, stack all observations, and use matrix notation to write6

p = [𝜙 (L; r)X D] [𝜃 𝜉]′ + 𝜀 = Z (r) 𝛼 + 𝜀,

where Z (r) ∶= [𝜙 (L; r)X D] and vector 𝛼 = [𝜃 𝜉]′ contains flow-utility parameters and property-market shocks. The
RSS function to be minimized is then

(p − Z (r) 𝛼)′ (p − Z (r) 𝛼) .

The first-order condition with respect to 𝛼 is linear in 𝛼, so during estimation the 𝜃 and 𝜉 parameters can be concentrated
out, that is, 𝛼 (r) =

(
Z(r)′Z (r)

)−1Z(r)′p. The optimization routine then searches only over the rate schedule parameters 𝛾 :

argmin
𝛾

(p − Z (r(𝛾)) 𝛼 (r(𝛾)))′ (p − Z (r(𝛾)) 𝛼 (r(𝛾))) .

A similar procedure applies to our implementation of model (2) with u (Xi; 𝜃) = eXi𝜃 . Fixing r, ln pim − ln𝜙 (Li; r) is linear
in 𝜃 and 𝜉m.

3.2 Incidental parameters problem

Estimation of a nonlinear panel data model that includes fixed effects is subject to the incidental parameters problem
(Arellano & Bonhomme, 2011). Regarding our models with location fixed effects (in X) and year and quarter fixed effects
(in 𝜉), one may ask whether there are enough observations per fixed effect, particularly per 5-digit location, to render any
bias small.

Several papers develop jackknife methods to mitigate incidental parameters bias when estimating nonlinear panel data
models. A common scenario is when, relative to the number of individual fixed effects J in the cross-section dimension,

6We abuse notation by writing 𝜙 (L; r)X , meaning that we multiply every N× 1 column in X by the N× 1 column vector 𝜙 (L; r), element by element.

FESSELMEYER ET AL.338



the time dimension T is small. In the 1995-2015 sample, J/T averages 13 with 1516 narrow 5-digit fixed effects (i.e.,
1516/(179,218/1516)) and a more favorable 0.2 with 187 less narrow 3-digit fixed effects. Hahn and Newey (2004) use the
variation in the fixed-effects estimator as each time period is dropped (and then replaced), one at a time, to compare with
the estimate from the entire sample, thus estimating and adjusting for any bias. Dhaene and Jochmans (2015) propose
a jackknife adjustment that uses variation over subpanels of consecutive observations and allows for dependence in the
time dimension. Fernandez-Val and Weidner (2016) consider models that include both cross-section fixed effects and time
fixed effects. They modify Dhaene and Jochmans (2015), splitting data into subpanels in the cross-sectional dimension
and in the time dimension, to minimize the bias caused by estimating both individual fixed effects and time fixed effects.

Following Fernandez-Val and Weidner (2016), let 𝛾̂JT be the fixed-effects estimator and define cross-sectional indices
A and time-series indices B. Let 𝛾̃J,T∕2 be the average of the 2-split jackknife estimators in the subpanels with A =
{1, 2, … , J}, and B1 = {1, 2, … ,T∕2} or B2 = {T∕2 + 1,T∕2 + 2, … ,T}. Let 𝛾̃J∕2,T be the average of the 2-split jackknife
estimators in the subpanels with B = {1, 2, … ,T}, and A1 = {1, 2, … , J∕2} or A2 = {J∕2 + 1, J∕2 + 2, … , J}.7 The
bias-corrected estimator that we implement is then 𝛾̃bc

JT = 3𝛾̂JT − 𝛾̃J,T∕2 − 𝛾̃J∕2,T .

3.3 Penalized nonlinear least squares

The empirical model can be implemented with different forms for the discount rate schedule; for example, by restricting
the discount rate to be a step function of time. In this case, to allow multiple steps in the rate schedule, we can impose
some smoothness on the objective function. Similar in spirit to the Hodrick-Prescott (HP) filter (Phillips & Jin, 2015),
we impose smoothness by penalizing second-order differences (i.e., changes in the change in discount rates). Under
model (2), optimization problem (4) is augmented by a rate acceleration (or deceleration) penalty:

argmin
𝛾,𝜃,𝜉

N∑
i=1

(ln pim − ln u (Xi; 𝜃) − ln𝜙 (Li; r) − 𝜉m)2 + 𝜆
∑

t
((rt+2 − rt+1) − (rt+1 − rt))2, (6)

where 𝜆 is a smoothing (or tuning) parameter and, again, discount rate rt discounts benefits from year t+ 1 to year t. We
fix weight 𝜆 by first solving (4) (with 𝜆 = 0) to find the no-penalty RSS, then solve the augmented problem (6) setting 𝜆 at
twice this RSS. In practice, the sum of squared second differences in rates is a small number, so the penalty term is small
relative to the first term (the RSS) and but sufficient to impose some discipline on the nonparametric rate structure.8

4 RESULTS

4.1 Discount rate as a smooth function of time

Table 2 shows results when we allow the discount rate schedule to vary smoothly over time. We fit three different
parametric forms for r= r(𝛾), such as an exponential function of time:

rt = r (t; 𝛾) =
{

max (𝛾1 exp (𝛾2 (t − 1)) , 𝛾3) for 1 < t ≤ 106

max
(
𝛾1 exp

(
𝛾2
(
106 − 1

))
, 𝛾3

)
for t > 106 (exponential)

Parameter 𝛾1 > 0 corresponds to the discount rate in period 1, that is, r1. We fix the year-1 rate at 4% p.a. and subse-
quently show sensitivity to estimating this parameter, or to fixing it at levels other than 4% p.a. In simulations of estimated
time-series models of U.S. government bond yields, Newell and Pizer (2003), Groom et al. (2007), and Freeman et al. (2015)
fix the starting rate at 4% p.a.—that is, the pattern of decline is estimated, but not the starting point.

Parameter 𝛾2 ≷ 0 defines the slope of the rate schedule, that is, declining if negative, rising if positive, or flat (constant
discount rate). 𝛾2 is the key parameter of interest. We fix parameter 𝛾3 > 0, which sets a floor to the discount rate.
Specifically, we impose the regularity condition that discount rates are bounded from below at 𝛾3 = 0.01% p.a. and provide

7We randomly allocate an equal number of locations to A1 and A2, and repeat 10 times, yielding 20 subpanels. Thus 𝛾̃J∕2,T is an average over 20 estimates.
8The weighting—how much “smoothness” is desired—is rather arbitrary. We report the components of the optimized objective function and conduct
robustness tests.
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TABLE 2 Discount rate as a smooth function of time

Function of time: rt exponential rt logarithmic rt hyperbolic
Location controls: 5-digit 3-digit 5-digit 3-digit 5-digit 3-digit
Dependent variable: Log price (1a) (2a) (3a) (4a) (5a) (6a)
Slope parameter, 𝛾2 −0.0046 −0.0046 −0.0102 −0.0097 −0.1537 −0.1430

(0.0001) (0.0001) (0.0005) (0.0004) (0.0119) (0.0078)
Avg. 𝜙̂i 825-986y/avg. 𝜙̂i perp. 0.94 0.94 1.00 1.00 1.00 1.00
Avg. 𝜙̂i 87-99y/avg. 𝜙̂i perpetual 0.86 0.87 0.85 0.87 0.85 0.87
Jackknife estimator −0.0046 −0.0046 −0.0103 −0.0100 −0.1535 −0.1492
Model cross-valid. mean squared

error (×106 S$/m2 squared) 2.1205 6.8195 2.1184 6.8392 2.1184 6.8397
Dependent var.: Price per m2 (1b) (2b) (3b) (4b) (5b) (6b)
Slope parameter, 𝛾2 −0.0048 −0.0046 −0.0111 −0.0095 −0.1750 −0.1380

(0.0003) (0.0003) (0.0010) (0.0016) (0.0258) (0.0264)
Avg. 𝜙̂i 825-986y/avg. 𝜙̂i perp. 0.91 0.94 1.00 1.00 1.00 1.00
Avg. 𝜙̂i 87-99y/avg. 𝜙̂i perpetual 0.83 0.86 0.82 0.87 0.82 0.87
Jackknife estimator −0.0047 −0.0052 −0.0110 −0.0132 −0.1595 −0.1974
Model cross-valid. mean squared

Error (×106 S$/m2 squared) 2.2966 6.9002 2.2932 6.9133 2.2931 6.9132

Note: This table reports the slope parameter, 𝛾2, when the discount rate is a smooth parametric function of time under 12 alternative
specifications. Standard errors, in parentheses, are clustered by building. In the top panel (columns 1a–6a), the dependent variable is
the natural logarithm (log) of the apartment's transaction price per square meter of floor area. In the bottom panel (columns 1b-6b),
the dependent variable is the apartment's transaction price per square meter of floor area (S$/m2). Across columns, the discount rate
is a smooth exponential, logarithmic, or hyperbolic function of time, and we further vary the granularity of location controls. With
5-digit controls, 96% of 1516 locations (e.g., 12772x) contain a single lease type (multi-decade, multi-century or perpetual). With
3-digit controls, a lower 42% of 187 locations (e.g., 127xxx) contain a single lease type. All specifications are estimated by NLLS on
the full sample of 179,218 new apartment purchases from 1995 to 2015 and, besides location, include as housing utility shifters and
market effects: apartment size and its square; apartment story and its square; an indicator for apartment on 1st story; an indicator
for apartment on top story (and interactions with apartment size and its square); project size and its square; a project-specific
indicator for a large land parcel; purchase-to-completion bins of width 1 year; year-of-purchase fixed effects; and quarter-of-year
fixed effects. Solver Knitro using the interior-point algorithm with the year-1 discount rate 𝛾1 fixed at 4% p.a. and the lower bound to
the discount rate 𝛾3 fixed at 0.01% p.a. Estimates are robust to using optimization with a global search algorithm. See the text for the
jackknife adjustment. For model cross validation (Appendix A.4), we randomly partition the data (within 5-digit or 3-digit location)
into 10 folds; we take 9 folds as the training set and 1 fold as the test set, repeating ten times as we shift the test set to the next fold.
We report the mean squared error over observations in all 10 test sets.

some sensitivity analysis around this normalization. As the discount rate approaches 0, the value of an infinite utility
stream increases arbitrarily. Finally, to make estimation computationally tractable, we impose a flat rate schedule beyond
year 1,000,000, restricting rt for t> 106 to be equal to the estimated discount rate for year 1,000,000. Appendix A.4 provides
expressions for the other two functional forms of time—logarithmic and hyperbolic—for which parameters (𝛾1, 𝛾2, 𝛾3)
have the same interpretation.

Besides reporting on different forms for r (which enters 𝜙), Table 2 specifies alternative location fixed effects (which
enter u through X) and implements model variants (2) and (3) (which relate observables and unobservables). For all
combinations of rate schedule form, location controls, and model, we obtain discount rates that decline over time. The
rate decline in time is slightly steeper (𝛾2 slightly more negative) with 5-digit than with 3-digit locations. Compared with
model (3) in the bottom panel of Table 2, the cross-validation mean squared error is lower for model (2) in the top panel.
This suggests that the model with log price as the dependent variable and u (Xi; 𝜃) given by eXi𝜃 provides a better fit. With
5-digit controls, we are able to reject equality in favor of the model with log price as the dependent variable (Appendix
Table A.4, panel I)—Appendix A.4 details the cross-validation procedure. Unsurprisingly, the mean squared error is lower
with more granular 5-digit than with 3-digit fixed effects.

Across the three functional forms for r, shown in different columns of Table 2, the mean squared error is similar. With
5-digit fixed effects (and the log price model), the square root of these mean squared errors across parametric structures
are within 1 S$/m2 of one another, yet we are still able to reject equality in favor of the logarithmic form (Appendix
Table A.4, panel II). With 3-digit fixed effects, the exponential rt exhibits statistically significantly lower mean squared
error, but the square root is within 4 S$/m2—a limited difference—of that of the other parametric structures. Even with
fewer transactions per 5-digit location (a higher J/T), bias-corrected jackknife estimates 𝛾̃bc

JT suggest that any incidental
parameters bias remains small (Table 2, row labeled “Jackknife estimator”).
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FIGURE 2 Estimated discount rate as a smooth (a) exponential, (b) logarithmic,
and (c) hyperbolic function of time, plotted on a log time scale. The discount rate rt

discounts benefits from year t + 1 to year t. Source: Table 2 estimates based on the
full sample, varying the model and location fixed effects (within panel), with the
year-1 discount rate 𝛾1 and the lower bound to the discount rate 𝛾3 fixed at 4% p.a.
and 0.01% p.a., respectively. (a) rt as an exponential function of time. (b) rt as a
logarithmic function of time. (c) rt as a hyperbolic function of time

To summarize Table 2, a cross-validation exercise suggests that model (2) (with log price as the dependent variable)
outperforms model (3), though the decline in discount rates (slope 𝛾2) is similar across the two models. The decline in
discount rates is similar irrespective of the granularity of location controls. The choice of functional form for the rate
schedule matters, as Figure 2 illustrates (and Appendix Table A.4 reports), yet the schedule is firmly declining and the
mean squared error varies little. As a result of discount rates falling to 0.5% by year 400–500, the fitted exponential rt
predicts a 6% price discount for multi-century leases relative to comparable perpetual leases.9 Consistent with this find-
ing, OLS regressions of apartment prices on coarse bins defined by lease length (and controls including 3-digit location)
indicate that multi-century leases trade at a 4–6% discount relative to comparable perpetual leases (Appendix Tables A.2
and A.3).

9See the row labeled “avg 𝜙̂i 825-986y∕avg 𝜙̂i perpetual” in the top panel of Table 2, columns 1a–2a showing 0.94. Appendix Table A.6 and Figure A.4
show that DDR again obtain—and the schedules are somewhat steeper—in the subsample of transactions in more established areas that are home to
both perpetual and multi-century leases.
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FIGURE 3 Estimated discount rate as a smooth (a) exponential, (b) logarithmic,
and (c) hyperbolic function of time, plotted on a log time scale. Instead of fixing the
year-1 discount rate 𝛾1 at 4% p.a., here we estimate this parameter (along with the
slope parameter) subject to the constraint that it lies between 0.01% and 10%. The
discount rate rt discounts benefits from year t + 1 to year t. Source: Appendix Table
A.5 estimates based on the full sample, varying the location fixed effects (within
panel), with the lower bound to the discount rate 𝛾3 fixed at 0.01% p.a. (a) rt as an
exponential function of time. (b) rt as a logarithmic function of time. (c) rt as a
hyperbolic function of time

Figure 3 shows what happens when we no longer fix the year-1 rate at 4% p.a. but rather jointly estimate this parameter
(subject to the constraint that it lies between 0.01% and 10% p.a.) and the slope parameter 𝛾2. 𝛾̂1 ranges between 2.5 and
8.4% p.a., depending mostly on the functional form for rt, but the result that discount rates decline over time is robust,
and the mean squared error is similar (Appendix Table A.5). With 𝛾̂1 = 6.5% p.a., rates under the logarithmic rt (and
3-digit controls) fall sufficiently by year 500 to predict a 3% price difference between multi-century and perpetual leases.
Appendix Figure A.5 fixes 𝛾1 at levels other than 4% p.a. As the short-run discount rate decreases from 6% to 3% p.a., the
slope of the rate schedule flattens to compensate. Under exponential rt, rates change less over the first few decades, to fall
sharply thereafter. Rates under hyperbolic rt decline sharply in the first decade but remain above 1% p.a. one millennium
into the future. Rates under logarithmic rt display an intermediate pattern to that of the other structures.

Appendix Figure A.6 illustrates the sensitivity with regard to the lower-bound rate. We plot fitted exponential rt only,
since estimates for the other structures are not sensitive to varying the lower bound 𝛾3 in the considered range. Even for
the exponential, the differences are not large as we alternatively fix 𝛾3 at 0.1%, 0.01%, or 0.001% p.a.

FESSELMEYER ET AL.342



One question that may arise is whether there is disutility from time-limited home ownership per se. The sensitivity
analysis reported in Appendix Table A.7 includes an indicator for a perpetual lease in vector Xi, allowing for a differential
flow utility of housing services when the asset is “owned forever.” Identification follows from how long-run multi-century
leases are valued relative to the multi-decade ones, and how these maturities are valued relative to perpetuities. Our DDR
result is robust, with similar slopes relative to Table 2, and lower (but still high) precision. As we vary the model and the
functional form for the rate schedule, 𝜃̂𝑓orever, the “asset owned forever” shifter, varies in sign and is mostly insignificant
at conventional levels. This is consistent with discount rates declining smoothly over the lease length range, rather than
any disutility from time-limited home ownership being significant.

4.2 Discount rate restricted to be flat over time

Current policy analysis in different countries adopts a constant discount rate (US), or a discount rate that is a step function
of time (U.K., France). Table 3, columns 1–2, provide a constant discount rate benchmark: On specifying rt = r = 𝛾

(one parameter), we obtain 2.1% p.a. with 5-digit and 2.2% p.a. with 3-digit location controls. Similar to above, estimated
rates come out slightly lower with 5-digit fixed effects, and from here we focus on model variant (3), with log price as the
dependent variable.

The remaining columns of Table 3 provide empirical motivation for time-varying discount rates. Here we let the discount
rate be a step function of time, starting with a single jump at 100 years in columns 3–4, or at 800 in columns 5–6. Formally,
we specify

rt = r (t; 𝛾) =
{

𝛾1 for 1 < t < t1
𝛾2 for t ≥ t1

with the single cutoff at t1 = 100 or t1 = 800. In all cases, point estimates indicate DDR, 𝛾̂2 < 𝛾̂1. For the jump-at-year-800
form, the estimated jump is sufficiently large and precise that we are able to reject at the 1% significance level the hypoth-
esis that 𝛾1 (2.1–2.4% p.a.) and 𝛾2 (0.0–0.6% p.a.) are equal. In column 6, with 𝛾2 falling to close to zero, the price-flow
utility ratio for 825–986 year leases is 4% lower than for a comparable perpetual lease.

TABLE 3 Discount rate restricted to be flat over time

Function of time: r constant Jump at t = 100 Jump at t = 800
Location controls: 5-digit 3-digit 5-digit 3-digit 5-digit 3-digit

(1) (2) (3) (4) (5) (6)
Dependent variable: Log price
Discount rate (p.a.) 0.0205 0.0215

(0.0011) (0.0008)
Disc. rate, up to year 100 (p.a.) 0.0276 0.0284

(0.0079) (0.0057)
Disc. rate, year 100 on (p.a.) 0.0121 0.0128

(0.0074) (0.0059)
Disc. rate, up to year 800 (p.a.) 0.0205 0.0240

(0.0011) (0.0020)
Disc. rate, year 800 on (p.a.) 0.0059 0.0000

(0.0010) (0.0000)
Jump in rates at year 100 or 800 −0.0155 −0.0157 −0.0146 −0.0240

(p.a.) (0.0152) (0.0116) (0.0022) (0.0020)
Avg. 𝜙̂i 825–986 y /avg. 𝜙̂i perp. 1.00 1.00 1.00 1.00 1.00 0.96
Avg. 𝜙̂i 87–99 y/avg. 𝜙̂i perpetual 0.85 0.87 0.85 0.87 0.85 0.86
Model cross-valid. mean squared

Error (×106 S$/m2 squared) 2.1185 6.8413 2.1182 6.8366 2.1185 6.8407

Note: This table reports constant discount rates under 6 alternative specifications. Standard errors, in parentheses, are clustered by building. The
dependent variable is the log of the apartment's transaction price per square meter of floor area. Across columns, we allow jumps at t = 100 or
t = 800, and we further vary the granularity of location controls. Other housing utility shifters and market effects as in Table 2. All specifications
are estimated by NLLS on the full sample of 179,218 new apartment purchases from 1995 to 2015. Solver Knitro using the interior-point algorithm
with the discount rate r = 𝛾 (or discount rates r1 = 𝛾1 and r2 = 𝛾2) constrained between 0 and 10% p.a. (i.e., 0.1). For model cross validation
(Appendix A.4), we randomly partition the data (within 5-digit or 3-digit location) into 10 folds; we take 9 folds as the training set and 1 fold as
the test set, repeating ten times as we shift the test set to the next fold. We report the mean squared error over observations in all 10 test sets.
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TABLE 4 Discount rate as a step function of time with a rate acceleration penalty

Function of time: 10 steps 5 steps
Location controls: 5-digit 3-digit 5-digit 3-digit

(1) (2) (3) (4)
Dependent variable: Log price
Discount rate, year 1 to 100 (p.a.) 0.0248 0.0349 0.0247 0.0320

(0.0011) (0.0010) (0.0008) (0.0001)
Discount rate, year 101 to 200 (p.a.) 0.0173 0.0195 0.0172 0.0196

(0.0008) (0.0007) (0.0008) (0.0001)
Discount rate, year 201 to 300 (p.a.) 0.0114 0.0058 0.0114 0.0081

(0.0011) (0.0005) (0.0008) (0.0001)
Discount rate, year 301 to 400 (p.a.) 0.0075 0.0000 0.0077 0.0017

(0.0018) (0.0003) (0.0008) (0.0001)
Disc. rate, year 401 to 500, or year 401 on (p.a.) 0.0053 0.0000 0.0059 0.0012

(0.0026) (0.0002) (0.0008) (0.0001)
Discount rate, year 501 to 600 (p.a.) 0.0044 0.0000

(0.0034) (0.0002)
Discount rate, year 601 to 700 (p.a.) 0.0045 0.0000

(0.0042) (0.0004)
Discount rate, year 701 to 800 (p.a.) 0.0052 0.0000

(0.0050) (0.0006)
Discount rate, year 801 to 900 (p.a.) 0.0062 0.0000

(0.0058) (0.0009)
Discount rate, year 901 on (p.a.) 0.0073 0.0028

(0.0067) (0.0011)
Average 𝜙̂i 825–986 y/average 𝜙̂i perpetual 1.00 0.97 1.00 0.97
Average 𝜙̂i 87–99 y/average 𝜙̂i perpetual 0.85 0.86 0.85 0.86
Objective function components (at fitted parameters):
Smoothing parameter, 𝜆 (fixed) 3027 3027 3027 3027
Sum of squared second differences (SSSD) 0.000013 0.000106 0.000014 0.000061
Rate acceleration penalty, 𝜆 × SSSD 0.0382 0.3197 0.0438 0.1856
Residual sum of squares (RSS) 1513.43 3712.40 1513.43 3713.41
Objective = RSS + 𝜆 × SSSD 1513.47 3712.72 1513.47 3713.60
Model cross-validation mean squared

Error (×106 S$/m2 squared) 2.1183 6.8189 2.1183 6.8225

Note: This table shows discount rates as a step function of time under 4 alternative specifications. Standard errors, in
parentheses, are clustered by building. The dependent variable is the log of the apartment's transaction price per square
meter of floor area. Across columns, we allow jumps at steps one century wide until the fifth or tenth century, and we
further vary the granularity of location controls. Other housing utility shifters and market effects as in Table 2. All
specifications are estimated by penalized NLLS on the full sample of 179,218 new apartment purchases from 1995 to
2015. Solver Knitro using the interior-point algorithm with discount rates r1 to r10 constrained between 0 and 10% p.a.
(i.e., 0.1). As explained, the objective function adds to the RSS a rate acceleration penalty given by a smoothing
parameter 𝜆 times the sum of squared second differences, i.e., ((r3 − r2)− (r2 − r1))2 + (r4 − r3)− (r3 − r2))2 + … where
r1, r2, r3, … denote annual discount rates from year 1 to 100, year 101 to 200, year 201 to 300, . . . . We fix 𝜆 = 3027,
which is twice the no-penalty RSS for a specification with 5-digit controls (see Appendix Table A.11 and Figure A.7 for
other 𝜆). As shown, the rate acceleration penalty accounts for a small fraction of the optimized objective function, for
example, 0.04 out of 1513.43 in column 3. For model cross validation (Appendix A.4), we randomly partition the data
(within 5-digit or 3-digit location) into 10 folds; we take 9 folds as the training set and 1 fold as the test set, repeating ten
times as we shift the test set to the next fold. We report the mean squared error over observations in all 10 test sets.

Table 4 reports on estimated forms for the rate schedule when we allow for multiple steps in rt, namely, 10 or 5 steps one
century wide, and impose some smoothness through an HP-like filter (objective function (6) and Appendix A.4). With
5-digit location controls, we obtain a discount rate of 2.5% p.a. in the first century, falling to 0.5% by year 500. With 3-digit
controls, the discount rate starts a little higher, at 3.2–3.5% p.a. in the first century, and the decline is steeper. Figure 4
plots the fitted step functions of Table 4. Appendix Table A.11 and Figure A.7 show that our findings are fairly robust to
changes in the specified smoothing parameter: doubling (resp., halving) 𝜆 slightly compresses (resp., decompresses) the
discount rate schedule, and the cross-validation mean squared error slightly increases. Table 4 indicates that, at the fitted
parameters, the rate deceleration penalty is a small number relative to the RSS. A cross-validation exercise suggests that
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FIGURE 4 Estimated discount rate as a step function of time with a rate
acceleration penalty similar in spirit to the HP filter, plotted on a linear time
scale. We allow jumps at steps one century wide until (a) the fifth century, and
(b) the tenth century, with a constant discount rate thereafter. The discount
rate rt discounts benefits from year t + 1 to year t. Source: Table 4 estimates
based on the full sample, varying the location fixed effects (within panel). (a)
rt as a step function of time (10 steps). (b) rt as a step function of time (5 steps)

the 5-step rate schedule of Table 4 outperforms many but not all of the parametric forms of Table 2 (Appendix Table A.4,
panel III).

By way of a summary, Figure 5a jointly plots the three smooth rt schedules of Table 2 and the 5-step schedule of Table 4
(5-digit fixed effects). The step function tracks the logarithmic and hyperbolic rt in years 1 to 200 and the exponential
rt in years 201 to 400, which may suggest that the parametric structures are too restrictive for the entire horizon. We
return to Figure 5 in the Discussion. Finally, while our analysis has focused on time preferences, estimates on housing
utility shifters are intuitive and reflective of Singapore's market. For example, a 1% increase in size is associated with an
apartment price increase of 0.9%; price increases with story; and apartments purchased in the early phase of construction
command higher prices—for example, they have the best views. Overall, our key result that discount rates decline over
time is robust to the structure imposed on the discount rate schedule, model specification, and location fixed effects.

5 CONCLUSION AND POLICY IMPLICATIONS

We summarize our contributions and briefly discuss their relevance, in particular, to policy on climate change. The
empirical model we develop partials out from transaction prices, in a tractable yet theoretically appealing way, property
characteristics such as location and time-varying market conditions. We use a wide range of lease lengths in a 20-year
sample of new Singaporean apartment purchases to estimate a nonlinear discount rate schedule directly, which is a dis-
tinctive feature of our work. Singapore's local neighborhoods have offered new apartments on perpetual and multi-century
leases with shared colonial history—as well as on multi-decade leases—at similar points in time, allowing us to separate
out the effects of location and time. We amass a rich set of property characteristics, some of which were not used in
previous work on discounting in this leading Asian city-nation's residential property markets. These include building
story—which tends to be high relative to the U.S. and Europe—and the time difference between purchase and
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FIGURE 5 Estimated DDR based on (a) specifications in Tables 2
and 4, and compared with discount rate schedules (“forward rates”)
(b) used by U.K. and French governments to evaluate policy (HM
Treasury, 2003; HM Treasury, 2008; Lebègue, 2005; Quinet, 2013),
and (c) estimated by Newell and Pizer (2003) (autoregressive random
walk) and Groom et al. (2007) (AR process with time-dependent
parameters). We specify location controls at the tight 5-digit level, but
findings are similar with less granular fixed effects. The discount rate
rt discounts benefits from year t + 1 to year t. Time in linear scale. We
thank Richard Newell and Billy Pizer for sending us their simulated
discount factors, from which we computed the plotted discount rate
schedule. Groom et al. discount rates were obtained from an earlier
2004 working paper (Table 2), that listed certainty-equivalent
discount rates for an illustrative grid of horizons, to which we fitted
smooth polynomials for the purpose of plotting the rate schedule. We
draw the revised French schedule's “gradual decline to 1.5 percent in
the more distant future” as linear through year 400. (a) Estimated
discount rate schedules. (b) Comparison to U.K. and France
discounting policy schedules. (c) Comparison to Newell and
Pizer (2003) and Groom et al. (2007)

construction completion, which correlates with unobserved quality. Recognizing important drivers of value such as these
affords us estimation precision.10

We provide compelling evidence that in these fairly homogeneous private-housing markets, discount rates decline over
long horizons. Our key DDR result is very robust to model specification, including the granularity of location controls,
ranging from very tight 5-digit postal codes (1516 locations over a 100 km2 residential area, or 0.07 km2 per fixed effect)
to less granular, but still quite fine, 3-digit controls (0.53 km2 per fixed effect). We discipline rates to vary smoothly over
long benefit horizons according to alternative parametric and nonparametric structures. While slopes differ somewhat
in magnitude and rate of change, discount rates decline in all cases and the schedules are overlaid on one another. This

10Future studies can collect data on buyer characteristics to study heterogeneity in discounting (Appendix Table A.10), thus contributing to a literature
on individual (or personal) discount rates (Frederick et al., 2002; Warner & Pleeter, 2001). This literature has used individual choices in real-world
markets, typically over shorter horizons than ours, to examine mechanisms and applications such as liquidity constraints and lifecycle consumption
(Zeldes, 1989; Gourinchas & Parker, 2004), the value of a statistical life (Moore & Viscusi, 1989; Moore & Viscusi, 1990; Viscusi & Moore, 1989), and the
energy efficiency gap (Gillingham & Palmer, 2014; Hausman, 1979; Train, 1985).
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is a very robust feature in our work. Importantly, the sign of slopes is not imposed; this can be positive or zero, and
negative slopes are estimated as a test of DDR. Because discount rates fall sufficiently fast and sufficiently low for some
specifications, there is some evidence that new apartments on historical multi-century leases trade at a non-zero discount
relative to property owned in perpetuity.

Figure 5b compares our alternative fitted structures for the discount rate schedule to schedules that guide public policy
in the United Kingdom, including the standard rates and reduced rates recommended for sensitivity analysis (HM Trea-
sury, 2003; HM Treasury, 2008), and the 2005 and revised 2013 rates used in France (Lebègue, 2005; Quinet, 2013). To
emphasize, the plotted discount rate rt discounts benefits from year t+ 1 back to year t—that is, the forward rate (not the
“effective term structure,” which is the rate that would discount benefits from year t back to year 0). The fitted exponential
rt tracks the U.K. schedule until the U.K. schedule levels off beyond year 300 at 1% p.a., while the schedule, we estimate
continues to decline through 0.5% p.a. over subsequent centuries. The fitted step function also declines to 0.5% p.a. by
year 400. The fitted logarithmic and hyperbolic structures drop fast early on, in line with the French schedule, then level
off from year 200 at about 1–1.5% p.a., above the fitted exponential and nonparametric rt. Our result provides empirical
support to governments that adopt DDRs to evaluate public policies that yield benefits over very long horizons. Bracke
et al. (2018) argue that better understanding of housing market discount rates can be useful also in long-horizon policy
settings including pension financing and infrastructure investments, which have features in common with housing such
as low liquidity and location specificity.

Figure 5c compares our estimated schedules against DDRs simulated by Newell and Pizer (2003) and Groom
et al. (2007), based on fitting alternative reduced-form time-series models to historical interest rates for long-term U.S.
government bonds. The DDR schedules proposed by studies in this empirical “Expected Net Present Value” literature
follow from the serial correlation in government bond yield uncertainty (Arrow et al., 2014; Weitzman, 1998). The DDRs
we estimate from Singapore residential property prices are, beyond the first century, intermediate to Newell and Pizer's
random walk model and subsequent studies that used more flexible econometric models, for example, Groom et al.'s state
space model.11 The fitted logarithmic and hyperbolic rt track the Groom et al. schedule over the first four centuries.

In a Policy Forum for Science, Arrow et al. (2013) compare a constant 4% p.a. to the DDR schedules in Newell and
Pizer (2003), Groom et al. (2007), and Freeman et al. (2015). Arrow and his 12 co-authors state: “In these studies, esti-
mates of the social cost of carbon are increased by as much as twofold to threefold by using a DDR, compared with
using a constant discount rate of 4%, the historic mean return on U.S. Treasury bonds” (p. 350). Gollier (2010) shows
that the intertemporal pricing of two asset classes—one paying out monetary benefits and the other environmental
amenities—depends on their substitutability and on the uncertainty that surrounds their future growth rates, which
offers arguments in favor of an “ecological” discount rate that is smaller than the economic discount rate. Even so, these
unknown preference and risk factors aside, Figure 5 suggests that the DDR we directly estimate from households' observed
choices in a real-world market for new property would similarly raise the social cost of carbon substantially.
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