Publication Type

Working Paper

Publication Date

3-2017

Abstract

The intercept of the binary response model is irregularly identified when the supports of both the special regressor V and the error term ε are the whole real line. This leads to the estimator of the intercept having potentially a slower than √n convergence rate, which can result in a large estimation error in practice. This paper imposes addition tail restrictions which guarantee the regular identification of the intercept and thus the √n-consistency of its estimator. We then propose an estimator that achieves the √n rate. Finally, we extend our tail restrictions to a full-blown model with endogenous regressors.

Keywords

Extremal quantile, Tail index

Discipline

Econometrics

Research Areas

Econometrics

First Page

1

Last Page

27

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Included in

Econometrics Commons

Share

COinS