Publication Type

Working Paper

Publication Date

1-2007

Abstract

This paper implements the Asymmetric AutoregressiveConditional Duration (AACD) model of Bauwens and Giot (2003) to analyzeirregularly spaced transaction data of trade direction, namely buy versus sellorders. We examine the influence of lagged transaction duration, lagged volumeand lagged trade direction on transaction duration and direction. Our resultsare applied to estimate the probability of informed trading (PIN) based on theEasley, Hvidkjaer and O’Hara (2002) framework. Unlike the Easley-Hvidkjaer-O’Hara model, which uses the daily aggregate number of buy and sellorders, the AACD model makes full use of transaction data and allows forinteractions between buy and sell orders.

Discipline

Finance

Research Areas

Econometrics

Publisher

Singapore Management University

City or Country

Singapore

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Included in

Finance Commons

Share

COinS