Publication Type

Journal Article

Version

Preprint

Publication Date

9-2013

Abstract

The method of generalized estimating equations (GEE) is a popular tool for analysing longitudinal (panel) data. Often, the covariates collected are time-dependent in nature, for example, age, relapse status, monthly income. When using GEE to analyse longitudinal data with time-dependent covariates, crucial assumptions about the covariates are necessary for valid inferences to be drawn. When those assumptions do not hold or cannot be verified, Pepe and Anderson (1994, Communications in Statistics, Simulations and Computation 23, 939–951) advocated using an independence working correlation assumption in the GEE model as a robust approach. However, using GEE with the independence correlation assumption may lead to significant efficiency loss (Fitzmaurice, 1995, Biometrics 51, 309–317). In this article, we propose a method that extracts additional information from the estimating equations that are excluded by the independence assumption. The method always includes the estimating equations under the independence assumption and the contribution from the remaining estimating equations is weighted according to the likelihood of each equation being a consistent estimating equation and the information it carries. We apply the method to a longitudinal study of the health of a group of Filipino children.

Keywords

Empirical likelihood, Estimating functions, Generalized estimating equations, Longitudinal data

Discipline

Econometrics | Medicine and Health Sciences

Research Areas

Econometrics

Publication

Biometrics

Volume

69

Issue

3

First Page

624

Last Page

632

ISSN

1541-0420

Identifier

10.1111/biom.12039

Publisher

Wiley

Copyright Owner and License

Authors

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Additional URL

http://doi.org/10.1111/biom.12039

Share

COinS