Publication Type

Conference Proceeding Article

Publication Date



Several techniques have been developed for identifying similar code fragments in programs. These similar fragments, referred to as code clones, can be used to identify redundant code, locate bugs, or gain insight into program design. Existing scalable approaches to clone detection are limited to finding program fragments that are similar only in their contiguous syntax. Other, semantics-based approaches are more resilient to differences in syntax, such as reordered statements, related statements interleaved with other unrelated statements, or the use of semantically equivalent control structures. However, none of these techniques have scaled to real world code bases. These approaches capture semantic information from Program Dependence Graphs (PDGs), program representations that encode data and control dependencies between statements and predicates. Our definition of a code clone is also based on this representation: we consider program fragments with isomorphic PDGs to be clones. In this paper, we present the first scalable clone detection algorithm based on this definition of semantic clones. Our insight is the reduction of the difficult graph similarity problem to a simpler tree similarity problem by mapping carefully selected PDG subgraphs to their related structured syntax. We efficiently solve the tree similarity problem to create a scalable analysis. We have implemented this algorithm in a practical tool and performed evaluations on several million-line open source projects, including the Linux kernel. Compared with previous approaches, our tool locates significantly more clones, which are often more semantically interesting than simple copied and pasted code fragments.


program dependence graph, refactoring, software maintenance, clone detection


Software Engineering

Research Areas

Software and Cyber-Physical Systems


ICSE '08: ACM/IEEE 30th International Conference on Software Engineering: 10-18 May 2008, Leipzig, Germany

First Page


Last Page








City or Country

New York

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Additional URL