Publication Type

Conference Proceeding Article

Publication Date



We propose BreathPrint, a new behavioural biometric signature based on audio features derived from an individual's commonplace breathing gestures. Specifically, BreathPrint uses the audio signatures associated with the three individual gestures: sniff, normal, and deep breathing, which are sufficiently different across individuals. Using these three breathing gestures, we develop the processing pipeline that identifies users via the microphone sensor on smartphones and wearable devices. In BreathPrint, a user performs breathing gestures while holding the device very close to their nose. Using off-the-shelf hardware, we experimentally evaluate the BreathPrint prototype with 10 users, observed over seven days. We show that users can be authenticated reliably with an accuracy of over 94% for all the three breathing gestures in intra-sessions and deep breathing gesture provides the best overall balance between true positives (successful authentication) and false positives (resiliency to directed impersonation and replay attacks). Moreover, we show that this breathing sound based biometric is also robust to some typical changes in both physiological and environmental context, and that it can be applied on multiple smartphone platforms. Early results suggest that breathing based biometrics show promise as either to be used as a secondary authentication modality in a multimodal biometric authentication system or as a user disambiguation technique for some daily lifestyle scenarios.


Authentication, Breathing gestures, Security, Usability


Databases and Information Systems | Information Security

Research Areas

Intelligent Systems and Decision Analytics


MobiSys '17: Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services: June 19-23, Niagara Falls

First Page


Last Page








City or Country

New York

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Additional URL