Publication Type

Conference Proceeding Article

Publication Date

8-2017

Abstract

Semantic visualization integrates topic modeling and visualization, such that every document is associated with a topic distribution as well as visualization coordinates on a low-dimensional Euclidean space. We address the problem of semantic visualization for short texts. Such documents are increasingly common, including tweets, search snippets, news headlines, or status updates. Due to their short lengths, it is difficult to model semantics as the word co-occurrences in such a corpus are very sparse. Our approach is to incorporate auxiliary information, such as word embeddings from a larger corpus, to supplement the lack of co-occurrences. This requires the development of a novel semantic visualization model that seamlessly integrates visualization coordinates, topic distributions, and word vectors. We propose a model called GaussianSV, which outperforms pipelined baselines that derive topic models and visualization coordinates as disjoint steps, as well as semantic visualization baselines that do not consider word embeddings.

Discipline

Databases and Information Systems | Data Storage Systems

Research Areas

Data Management and Analytics

Publication

IJCAI-17: Proceedings of the 26th International Joint Conference on Artificial Intelligence

First Page

2074

Last Page

2080

Identifier

10.24963/ijcai.2017/288

City or Country

Melbourne, Australia

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Additional URL

https://doi.org/10.24963/ijcai.2017/288

Share

COinS