Title

Micro-review synthesis for multi-entity summarization

Publication Type

Journal Article

Publication Date

2-2017

Abstract

Location-based social networks (LBSNs), exemplified by Foursquare, are fast gaining popularity. One important feature of LBSNs is micro-review. Upon check-in at a particular venue, a user may leave a short review (up to 200 characters long), also known as a tip. These tips are an important source of information for others to know more about various aspects of an entity (e.g., restaurant), such as food, waiting time, or service. However, a user is often interested not in one particular entity, but rather in several entities collectively, for instance within a neighborhood or a category. In this paper, we address the problem of summarizing the tips of multiple entities in a collection, by way of synthesizing new micro-reviews that pertain to the collection, rather than to the individual entities per se. We formulate this problem in terms of first finding a representation of the collection, by identifying a number of “aspects” that link common threads across two or more entities within the collection. We express these aspects as dense subgraphs in a graph of sentences derived from the multi-entity corpora. This leads to a formulation of maximal multi-entity quasi-cliques, as well as a heuristic algorithm to find K such quasi-cliques maximizing the coverage over the multi-entity corpora. To synthesize a summary tip for each aspect, we select a small number of sentences from the corresponding quasi-clique, balancing conciseness and representativeness in terms of a facility location problem. Our approach performs well on collections of Foursquare entities based on localities and categories, producing more representative and diverse summaries than the baselines.

Keywords

Maximal quasi-clique, Micro-review synthesis, Multi-entity summarization

Discipline

Databases and Information Systems | Theory and Algorithms

Research Areas

Data Management and Analytics

Publication

Data Mining and Knowledge Discovery

Volume

31

Issue

5

First Page

1189

Last Page

1217

ISSN

1384-5810

Identifier

10.1007/s10618-017-0491-4

Publisher

Springer Verlag (Germany)

Additional URL

http://doi.org/10.1007/s10618-017-0491-4

This document is currently not available here.

Share

COinS