Publication Type

Journal Article

Publication Date

4-2015

Abstract

This paper presents a cross-layer approach for enabling high-throughput reliable multicast in multi-hop wireless mesh networks. The building block of our approach is a multicast routing metric, called the expected multicast transmission count (EMTX). EMTX is designed to capture the combined effects of MAC-layer retransmission-based reliability, wireless broadcast advantage, and link quality awareness. The EMTX of single-hop transmission of a multicast packet from a sender is the expected number of multicast transmissions (including retransmissions) required for its next-hop recipients to receive the packet successfully. We formulate the EMTX-based multicast problem with the objective of minimizing the sum of EMTX over all forwarding nodes in the multicast tree, aiming to reduce network bandwidth consumption while ensure high end-to-end packet delivery ratio for the multicast traffic. We provide rigorous mathematical formulations and methods to find near-optimal solutions of the problem computationally efficiently. We present centralized and distributed algorithms, and demonstrate their effectiveness in tackling the EMTX-based multicast problem with a combination of theoretical and numerical results. Simulation experiments show that, in comparison with two baseline approaches, EMTX-based multicast routing reduces the number of hop-by-hop transmissions per packet by up to 40 percent and yet improves the multicast throughput by up to 24 percent.

Keywords

Wireless mesh network, multicast algorithm, routing metric, cross-layer design

Discipline

Computer Sciences | Software Engineering

Research Areas

Software and Cyber-Physical Systems

Publication

IEEE Transactions on Mobile Computing

Volume

14

Issue

4

First Page

728

Last Page

741

ISSN

1536-1233

Identifier

10.1109/TMC.2014.2333731

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Additional URL

http://doi.org/10.1109/TMC.2014.2333731

Share

COinS