Publication Type

Journal Article

Publication Date

5-2013

Abstract

In environmentally-powered wireless sensor networks (EPWSNs), low latency wakeup scheduling and packet forwarding is challenging due to dynamic duty cycling, posing time-varying sleep latencies and necessitating the use of dynamic wakeup schedules. We show that the variance of the intervals between receiving wakeup slots affects the expected sleep latency: when the variance of the intervals is low (high), the expected latency is low (high). We therefore propose a novel scheduling scheme that uses the bit-reversal permutation sequence (BRPS) – a finite integer sequence that positions receiving wakeup slots as evenly as possible to reduce the expected sleep latency. At the same time, the sequence serves as a compact representation of wakeup schedules thereby reducing storage and communication overhead. But while low latency wakeup schedule can reduce per-hop delay in ideal conditions, it does not necessarily lead to low latency end-to-end paths because wireless link quality also plays a significant role in the performance of packet forwarding. We therefore formulate expected transmission delay (ETD), a metric that simultaneously considers sleep latency and wireless link quality. We show that the metric is left-monotonic and left-isotonic, proving that its use in distributed algorithms such as the distributed Bellman–Ford yields consistent, loop-free and optimal paths. We perform extensive simulations using real-world energy harvesting traces to evaluate the performance of the scheduling and forwarding scheme.

Keywords

Energy-harvesting, Wireless sensor network, Dynamic duty cycling, Dynamic wakeup scheduling, Sleep latency, Routing

Discipline

Computer and Systems Architecture | Software Engineering

Research Areas

Software and Cyber-Physical Systems

Publication

Ad Hoc Networks

Volume

11

Issue

3

First Page

1202

Last Page

1220

ISSN

1570-8705

Identifier

10.1016/j.adhoc.2013.01.005

Publisher

Elsevier

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Additional URL

http://dx.doi.org/10.1016/j.adhoc.2013.01.005

Share

COinS