Publication Type

Conference Proceeding Article

Publication Date



Comparisons in text, such as in online reviews, serve as useful decision aids. In this paper, we focus on the task of identifying whether a comparison exists between a specific pair of entity mentions in a sentence. This formulation is transformative, as previous work only seeks to determine whether a sentence is comparative, which is presumptuous in the event the sentence mentions multiple entities and is comparing only some, not all, of them. Our approach leverages not only lexical features such as salient words, but also structural features expressing the relationships among words and entity mentions. To model these features seamlessly, we rely on a dependency tree representation, and investigate the applicability of a series of tree kernels. This leads to the development of a new context-sensitive tree kernel: Skip-node Kernel (SNK). We further describe both its exact and approximate computations. Through experiments on real-life datasets, we evaluate the effectiveness of our kernel-based approach for comparison identification, as well as the utility of SNK and its approximations.


Computer Sciences | Databases and Information Systems

Research Areas

Data Management and Analytics


Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing: July 27-31, 2015, Beijing

First Page


Last Page






City or Country

New York

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. (20 kB)
Tree-SVM: Tool for SVM optimization on tree data structures (195 kB)
Corpus of Comparisons in Product Reviews

Additional URL