Publication Type

Conference Proceeding Article

Publication Date

7-2012

Abstract

Kernel-based online learning has often shown state-of-the-art performance for many online learning tasks. It, however, suffers from a major shortcoming, that is, the unbounded number of support vectors, making it non-scalable and unsuitable for applications with large-scale datasets. In this work, we study the problem of bounded kernel-based online learning that aims to constrain the number of support vectors by a predefined budget. Although several algorithms have been proposed in literature, they are neither computationally efficient due to their intensive budget maintenance strategy nor effective due to the use of simple Perceptron algorithm. To overcome these limitations, we propose a framework for bounded kernel-based online learning based on an online gradient descent approach. We propose two efficient algorithms of bounded online gradient descent (BOGD) for scalable kernel-based online learning: (i) BOGD by maintaining support vectors using uniform sampling, and (ii) BOGD++ by maintaining support vectors using non-uniform sampling. We present theoretical analysis of regret bound for both algorithms, and found promising empirical performance in terms of both efficacy and efficiency by comparing them to several well-known algorithms for bounded kernel-based online learning on large-scale datasets.

Discipline

Computer Sciences | Databases and Information Systems

Research Areas

Data Management and Analytics

Publication

Proceedings of the Twenty-Ninth International Conference on Machine Learning: June 26 - July 1, Edinburgh, Scotland

First Page

169

Last Page

176

ISBN

9781450312851

Publisher

International Machine Learning Society

City or Country

Madison

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Additional URL

http://icml.cc/2012/papers/108.pdf

Share

COinS