Publication Type

Conference Proceeding Article

Publication Date

10-2013

Abstract

Bug resolution refers to the activity that developers perform to diagnose, fix, test, and document bugs during software development and maintenance. It is a collaborative activity among developers who contribute their knowledge, ideas, and expertise to resolve bugs. Given a bug report, we would like to recommend the set of bug resolvers that could potentially contribute their knowledge to fix it. We refer to this problem as developer recommendation for bug resolution. In this paper, we propose a new and accurate method named DevRec for the developer recommendation problem. DevRec is a composite method which performs two kinds of analysis: bug reports based analysis (BR-Based analysis), and developer based analysis (D-Based analysis). In the BR-Based analysis, we characterize a new bug report based on past bug reports that are similar to it. Appropriate developers of the new bug report are found by investigating the developers of similar bug reports appearing in the past. In the D-Based analysis, we compute the affinity of each developer to a bug report based on the characteristics of bug reports that have been fixed by the developer before. This affinity is then used to find a set of developers that are “close” to a new bug report. We evaluate our solution on 5 large bug report datasets including GCC, OpenOffice, Mozilla, Netbeans, and Eclipse containing a total of 107,875 bug reports. We show that DevRec could achieve recall@5 and recall@10 scores of 0.4826-0.7989, and 0.6063-0.8924, respectively. We also compare DevRec with other state-of-art methods, such as Bugzie and DREX. The results show that DevRec on average improves recall@5 and recall@10 scores of Bugzie by 57.55% and 39.39% respectively. DevRec also outperforms DREX by improving the average recall@5 and recall@10 scores by 165.38% and 89.36%, respectively.

Keywords

Developer Recommendation, Multi-label Learning, Topic Model, Composite Method

Discipline

Software Engineering

Research Areas

Software Systems

Publication

Proceedings: 20th Working Conference on Reverse Engineering (WCRE 2013)

First Page

72

Last Page

81

ISBN

0875908882

Identifier

10.1109/WCRE.2013.6671282

Publisher

IEEE

City or Country

Koblenz, Germany

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Additional URL

http://dx.doi.org/10.1109/WCRE.2013.6671282

Share

COinS