Publication Type

Conference Proceeding Article

Publication Date



Users face a dazzling array of choices on the Web when it comes to choosing which product to buy, which video to watch, etc. The trend of social information processing means users increasingly rely not only on their own preferences, but also on friends when making various adoption decisions. In this paper, we investigate the effects of social correlation on users’ adoption of items. Given a user-user social graph and an item-user adoption graph, we seek to answer the following questions: 1) whether the items adopted by a user correlate to items adopted by her friends, and 2) how to incorporate social correlation in order to improve prediction of unobserved item adoptions. We propose the Social Correlation model based on Latent Dirichlet Allocation (LDA) that decomposes the adoption graph into a set of latent factors reflecting user preferences, and a social correlation matrix reflecting the degree of correlation from one user to another. This matrix is learned (rather than pre-assigned), has probabilistic interpretation, and preserves the underlying social network structure. We further devise a Hybrid model that combines a user’s own latent factors with her friends’ for adoption prediction. Experiments on Epinions and LiveJournal data sets show that our proposed models outperform the approach based on latent factors only (LDA).


Databases and Information Systems | E-Commerce | Numerical Analysis and Scientific Computing

Research Areas

Data Management and Analytics


2011 SIAM International Conference on Data Mining: 28-30 April, Mesa, AZ: Proceedings

First Page


Last Page








City or Country

Philadephia, PA

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Additional URL