Publication Type

Conference Proceeding Article

Publication Date



Distributed constraint optimization problems (DCOPs) are well-suited for modeling multi-agent coordination problems. However, most research has focused on developing algorithms for solving static DCOPs. In this paper, we model dynamic DCOPs as sequences of (static) DCOPs with changes from one DCOP to the next one in the sequence. We introduce the ReuseBounds procedure, which can be used by any-space ADOPT and any-space BnB-ADOPT to find cost-minimal solutions for all DCOPs in the sequence faster than by solving each DCOP individually. This procedure allows those agents that are guaranteed to remain unaffected by a change to reuse their lower and upper bounds from the previous DCOP when solving the next one in the sequence. Our experimental results show that the speedup gained from this procedure increases with the amount of memory the agents have available.


Artificial Intelligence and Robotics | Business | Operations Research, Systems Engineering and Industrial Engineering

Research Areas

Intelligent Systems and Decision Analytics


AAMAS 2011: Proceedings of 10th International Conference on Autonomous Agents and Multiagent Systems: May 2-6, 2011, Taipei, Taiwan

First Page


Last Page






City or Country

Richland, SC

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Additional URL