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Abstract

The desire of risk-averse households to hedge rent risk is thought to increase home
ownership and prices. While evidence for the ownership implication is compelling,
support for the price effect is mixed. We show that an important reason is search
frictions. Rent risk reduces outside options, leading to less-picky buyers and worse
home/buyer matches. This attenuates the rise in the price-to-rent ratio that would
otherwise occur without frictions. Consistent with our model, a house remains on the
market for fewer days when rent risk is higher. Accounting for frictions significantly
increases the effect of rent risk on home prices.
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1. Introduction

An influential theory of the determinants of homeownership involves the desire of risk-

averse households to hedge rent risk (Berkovec and Fullerton (1992), Ortalo-Magné and

Rady (2002), Sinai and Souleles (2005)). Households are short rents in the city where they

live and are therefore exposed to rent risk. To the extent that home prices are correlated

with rents, owning a home would then be a hedge against rent risk, reducing the variance of

a household’s wealth. A number of empirical studies strongly find that this hedging motive

is an important determinant of homeownership.1 This hedging benefit ought to then be

capitalized into home prices. The higher is the rent risk in a city, all else equal, the higher

should be the price-to-rent ratio in that city.

However, empirical studies confirming this implication of the hedging motive theory of

ownership for home prices have been harder to come by. The strongest estimate remains

Sinai and Souleles (2005), who finds that a one standard deviation increase in rent risk in a

Metropolitan Statistical Area (MSA), measured using the volatility of lagged rent growth,

is associated with an increase in the price-to-rent ratio in that MSA of between two to four

percent. But subsequent studies have found smaller and more mixed price effects.2

An important reason for this dissonance, as we will argue, is that the existing theoret-

ical and empirical work on rent risk assume a frictionless set-up where all homes are of a

homogeneous quality. But housing markets are characterized by homes of heterogeneous

quality and search frictions. Recent work on housing search points to the importance of

this heterogeneity (Piazzesi et al. (2015), Landvoigt et al. (2015)). For example, hot and

1Sinai and Souleles (2005) find that households who are likely to stay in a high rent risk MSA are 4.2
percent more likely to own a home compared to other households. Banks et al. (2004) find that households
who face higher housing price risk should and do own their first home at a younger age, live in larger homes,
and be less likely to refinance using comparable panel data from the United States and United Kingdom.
Han (2010) finds that rent risk affects the likelihood that existing homeowners to trade up to new homes.
Sinai and Souleles (2013) find when the covariance of homes prices are higher across cities that people often
move to, they are more likely to own in their present city.

2Bracke (2015), Melser and Lee (2014), and Dovman et al. (2012) find evidence of this price effect in
international markets but back of the envelope calculations suggestion that the estimates are smaller than
in Sinai and Souleles (2005). In contrast, Hatzvi and Otto (2008) and Lyons and Muellbauer (2015) find no
evidence for a rent risk effect on homes prices.
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cold housing markets across calendar years can emanate from such frictions (Diaz and Jerez

(2013), Novy-Marx (2009)). Similarly, the well-documented seasonality within a calendar

year in home prices (Case and Shiller (1987), Hosios and Pesando (1991)) and transactions

volume, both are higher in spring/summer than fall/winter months, is consistent with time-

varying search frictions associated with the school year calendar as households tend to move

in the spring/summer (Goodman (1993), Harding et al. (2003), Ngai and Tenreyro (2014)).

In this paper, we show that the effects of this hedging motive on housing markets depend

on such time-varying search frictions; in particular, accounting for these frictions is important

for accurately measuring the effect of rent risk on prices. Our paper has two parts. The first

part is a model where we extend the frictionless theory of the pricing of rent risk to account

for search frictions. In the standard frictionless set-up, risk-averse households hedge their

exposure to rent risk of a homogeneous housing good. In the typical housing search set-up,

buyers and sellers are risk-neutral and search and bargain over the price of heterogeneous

homes taking into account their outside options to continue searching. These outside options

are typically exogenously specified.

We integrate these two settings: the need of hedging rent risk and the need of buyers to

search for better matching quality. To do so, we build a framework based on the over-the-

counter asset trading literature (Duffie et al. (2007) and Gârleanu (2009)) and search-and-

matching models (Mortensen and Pissarides (1994)). The search of homes by risk-averse

households needing to hedge rent risk can be mapped into the standard search framework

where households are risk neutral but the outside option of renting is decreasing in rent risk.

More specifically, we consider a dynamic model where the arrival rate of sellers is char-

acterized by a two state Markov chain: a low arrival-rate-of-sellers state, which we can map

following the literature to fall/winter months, and a high arrival-rate-of-sellers state, which

we can map to spring/summer months. In a search model with homes of heterogeneous

quality, we show that the price-to-rent ratio depends on two factors. The first or traditional

frictionless factor is that the hedging-against-rent-risk benefits of ownership get impounded
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into a higher price-to-rent ratio: the higher the rent risk, the higher the price-to-rent ratio.

The second or search (matching) factor is that rent risk reduces outside options. This leads

to less picky buyers and worse home-buyer matches, attenuating the rise in the price-to-rent

ratio that would otherwise occur in a frictionless set-up. That is, the higher the rent risk,

the lower is the price-to-rent ratio because of the search factor. The overall effect of rent

risk on prices depends on the sum of these two offsetting factors.

Our model’s first prediction is regarding days on the market: i.e., the age of the inventory

of homes on the market. A higher rent risk, which leads to less picky buyers, should lead

to a lower days on the market all else equal. This should be true regardless of the state of

the arrival rate; that is, it holds across both spring/summer and fall/winter months. This

prediction is new to the literature in that rent risk has not been previously linked to days on

the market or housing market liquidity. Our model’s second prediction is that the sensitivity

of the price-to-rent ratio to rent risk is higher (i.e. more positive) in the spring/summer

months than in the other months. Intuitively, the spring/summer months with a better

distribution of potential matches and lower search frictions approximates the frictionless

setting. As a result, the first traditional frictionless factor dominates more and we expect a

stronger positive relationship between rent risk and price-to-rent ratios.

In the second part of the paper, we empirically test these two predictions using Zillow

housing data from 2011 to 2016. Our dependent variables of interest are monthly observations

of the days on the market and the price-to-rent ratio at the MSA level. Zillow also provides

data on monthly rents at the zip code level, which we can then use to create two rent risk

measures for each MSA. The first is a cross-sectional measure where we take the standard

deviation of monthly rent growth across the zip codes within an MSA. We then average

these monthly standard deviations over the previous twelve months to obtain the MSA-level

rent risk for a given month. The second is a time-series measure where we take the standard

deviation of the monthly rent growth for a zip code using the past twelve months. Then we

population weight these standard deviations to obtain the MSA-level rent risk for a given
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month.

For our days-on-the-market regression, we estimate a panel regression model with the

independent variables being the rent risk measure, MSA fixed effects and year-by-month

effects. That is, we use within MSA time series variation in these variables of interest that is

purged of a common time trend across MSAs flexibly estimated using year-by-month effects.

We find that a one standard deviation increase in rent risk leads to a drop in days on the

market of roughly 2 days, or a 5% decrease of days on the market relative the unconditional

standard deviation of days on the market. The estimate has a t-statistic of about 2 regardless

of the rent risk measure used. We consider additional robustness checks such as allowing

time-varying effects by Census regions or by the income per capita of MSAs.

We can compare our estimate of rent risk for days on the market to the existing literature,

which has largely sought to quantify how the quality of housing or the talent of the broker

affects how long a home remains on the market. Kang and Gardner (1989) find that, holding

other characteristics constant, older homes have higher DOM. Using their estimates, one

would have to lower the age of a home by 3 years to achieve the same decrease in DOM

on average. Haurin (1988) finds that more atypical houses have longer DOM. His estimates

suggest that a 30% of a standard deviation increase in his atypicality index moves DOM by

about 2 days. He also finds that the size of the real estate brokerage firm that a seller works

with lowers DOM. His estimates suggest to get a 2 day decrease in DOM, one would have

to have a broker that is 50% larger than the mean in his sample.

For the price-to-rent regression, we estimate a panel regression model with the indepen-

dent variables being the rent risk measure, the rent risk measure interacted with a dummy

variable for hot season (which we define broadly as either the spring and and summer months

or more narrowly as May, June, July, August), MSA fixed effects and year-by-month effects.3

Our results using either the broad or narrow hot season indicators are similar. Like the liter-

ature, we assume that there are exogenous differences in search frictions across these periods

3As we detail below in the data section, May, June, July and August are the months with the most
housing transactions.
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reflected in the high versus low arrival rate of sellers.

We first replicate the baseline findings in the literature. A one standard deviation in-

crease in rent risk is associated with a 4% increase of the price-to-rent ratio relative the

unconditional standard deviation of the price-to-rent ratio. The estimate has a t-statistic of

1.8 to 1.9 depending on the rent risk measure used. This estimate is almost identical to the

magnitude found by Sinai and Souleles (2005) when they include MSA fixed effects though

we have a more recent sample. We then find that the sensitivity of the price-to-rent ratio

to rent risk is significantly larger, almost twice as big, in spring/summer months than other

months. The t-statistic for the difference in these sensitivities across the hot versus cold

months is around 3.5 to 4. We consider additional specifications to verify the robustness

of these results. Note that these estimates are a lower bound on how much search frictions

might offset the effect of rent risk on home prices since there is bound to be nontrivial

search frictions even in spring/summer months. In short, accounting for search frictions

fundamentally alters the size of the estimates of rent risk on home prices.

Our first contribution is to the hedging rent risk literature. Our analysis builds on Sinai

and Souleles (2005) by integrating the motive for hedging rent risk into a search framework.

We show that search frictions significantly dampen the capitalization of rent risk into prices

and taking account of this dampening leads to an estimate of rent risk on price that is double

those found in the previous literature. Our analysis points to the importance of accounting

for seasonality in capturing the impact of rent risk on home prices.

Our second contribution is to the literature on the role of search and matching in housing

markets (see, e.g., Wheaton (1990), Williams (1995), Krainer (2001), Albrecht et al. (2007)).

The recent literature generally focuses on the comovement of prices and sales (for example,

Diaz and Jerez (2013), Novy-Marx (2009), Ngai and Tenreyro (2014)). In particular, our

work is closet to and builds on Ngai and Tenreyro (2014), who explain house price seasonality

in a model with search frictions. A hot season in their model, as in ours, is assumed to have

a better distribution of matching quality. They show a small driver of seasonality would
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trigger thick-market effects making it appealing to all other buyers and sellers to transact

in the hot season, amplifying seasonality in housing volume. Our model, on the other hand,

is interested in how search frictions affect the sensitivity of volume and prices with respect

to rent risk. Our empirical analysis suggests that demand side factors of home ownership in

the form of hedging demand against rent risk also play a significant role in driving days on

the market.

Our paper proceeds as follows. In Section 2, we present our model. In Section 3, we

provide the solution and derive the main predictions. In Section 4, we discuss our data. The

empirical findings are presented in Section 5. We conclude in Section 6.

2. Model

We consider an economy in which the cost of housing services (i.e., the rent) is uncertain in

the spirit of Sinai and Souleles (2005) and house prices are endogenous. Instead of assuming

a centralized housing market as in Sinai and Souleles (2005), we allow for a decentralized

housing market where buyers have heterogeneous preferences for houses, and, more impor-

tantly, the market is subject to search frictions. This allows us to provide a link between

trading volume (i.e., days on the market), house prices, and rent risk.

Rent Risk There is a unit continuum of households and a unit continuum of houses within

a city. All households living in the city require housing. If they do not own a house, they

must rent from a rental company. The rent follows an exogenous process, as in Sinai and

Souleles (2005)

dRt = R̄dt+ σdBt

where Bt is a standard Brownian motion, R̄ is the mean drift in the change of rents, and σ

is the volatility of rents, i.e. the rent risk parameter.

In the spirit of Sinai and Souleles (2005), households that do not own the asset must rent,
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thus being subject to rent fluctuations. The flow utility for an agent who has A ∈ {−1, 0, 1}

exposures to rent risks is given by an instantaneous mean-variance utility specification:

u(A) ≡ AR̄− 1

2
rγ
(
A2σ2

)
,

where r is the instantaneous risk-free rate and γ > 0 is the risk-aversion coefficient of

households. The flow utility for renters, who take one short position of rents is thus given

by −uR ≡ −R̄ − 1
2
rγσ2. That is, the flow value of renters is simply the expected rent with

adjusted risks. The higher is rent risk, the lower is the flow value since households are risk-

averse. Owners, on the other hand, have no exposure to rent risk (A = 0). Rental companies,

which we do not model, thus have long positions (A > 0). For simplicity, we do not allow

owners to rent their houses. Only rental companies can provide houses for rent and rented

houses are treated as homogeneous goods.

This utility specification is interpreted in terms of risk aversion, borrowed from Duffie

et al. (2007) and Gârleanu (2009). Since R̄ is the expected rental rate rather than the

realized rate, this flow value needs to be adjusted for risk, which is captured by the second

term involving γ and σ2. As established in Duffie et al. (2007), one can obtain this mean-

variance utility in an environment where households with CARA preferences trade a risky

asset over the counter and choose their consumption optimally to maximize their expected

utility. Furthermore, households’ value functions and asset prices can be approximately

solved in a risk-neutral agents setting using this risk-adjusted utility directly. Applying this

result, we can then solve the model with transferable utility, as is standard in search and

matching models.

Housing Market Renters are active buyers in the housing market, who seek a house that

is suitable for them. The process of searching for a house is costly. The search friction is

captured by the Poisson arrival rate at which a buyer can visit a house. We assume that

there are two states z ∈ {H,L} that have different arrival rates λz, where λH > λL. A hot
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season (i.e. spring/summer months) is thus modeled as the state with a high arrival rate λH .

A cold season (i.e. fall/winter months) is modeled as the state with a low arrival rate. We

further allow the probability of a change in the search friction. Specifically, we assume that

the arrival rate follows a continuous-time Markov process with a rate of transition between

the two states µ.

After visiting a house, a buyer then finds out his valuation of that house and decides

whether to purchase it or keep searching. We assume that the quality of a house is idiosyn-

cratic to the match between the house and potential buyer, which is denoted by h and is

drawn from a distribution F (h). Throughout the paper, we assume that the density function

is (1) continuously differentiable and (2) log-concave on some interval [h, h̄].4

If a buyer decides to buy a house with match value h, he then becomes an owner,

enjoying a flow value h until he receives a moving (preference) shock. This exogenous moving

(preference) shock is a standard assumption in the literature such as in Wheaton (1990).

Specifically, when an owner receives the moving shock, he immediately moves to another

location. Moreover, he puts his house for sale, becoming an active seller in the original

location. The continuation value in other locations (which we do not model) is normalized

to zero for all households.

The utility of an owner with matching quality h at state z, denoted by W z(h), is then

given by

rW z(h) = h+ δ (Jz −W z(h)) + µ(W z′(h)−W z(h)), (1)

where Jz represents the continuation value for a seller and W z′(h) represents the asset value

when he switches to the other state z′. The expression can be understood as follows: The

flow value of owning house is the quality h. With Poisson rate δ, he becomes a seller with

4Log-concavity is a property satisfied by many standard distributions. Commonly-used distributions
with log-concave density functions include, for example, uniform, normal, exponential, and extreme value
function. See Bagnoli and Bergstrom (2005) for a more complete list. It is only a sufficient set of conditions
for our results below.
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the continuation value Jz. The last term represents the change in the value when switching

to the other state z′.

Specifically, the continuation value for a seller yields:

rJz = λz
∫ h̄

h

max{pz(h)− Jz, 0}f(h)dh+ µ(Jz
′ − Jz), (2)

where pz(h) denotes the transaction price for a buyer with matching quality h at state z.

The max operator in the integral takes into account that a seller will only sell if the price is

higher than the continuation value.

Lastly, the continuation value for an active buyer (i.e., a renter), denoted by U z, is given

by:

rU z = −uR + λz
∫ h̄

h

max{W z(h)− pz(h)− U z, 0}f(h)dh+ µ(U z′ − U z)− δU z, (3)

where −uR = −R̄ − 1
2
rγσ2 represents a renter’s flow value, as he takes a short position

of rents. With arrival rate λz, he visits a house, where the matching quality h is drawn. A

buyer purchases a house if and only if the value of ownership minus the transaction price is

larger than his continuation value of keep searching, which thus explains the max operator

in the integral.

The transaction price is determined by Nash bargaining, where sellers’ bargain power is

given by β ∈ [0, 1]. Hence, the housing price is given by:

β(W z(h)− U z − pz(h)) = (1− β)(pz(h)− Jz). (4)

Lastly, we assume that, whenever a household moves out the city, he is replaced by a

new household who does not own a house (i.e., a renter). Thus, the measure of household

in the city remains one. Since there is also a unit measure of houses, the measure of houses

for sale must equal the mass of buyers. Let (νH , νS) denote the measure of matched owners
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and sellers, respectively. The law of motion of sellers (i.e., the stock of houses for sale) νS at

state z is then given by

dνzS = δνzH − λz(1− F (xz))νzS, (5)

where the first term corresponds to the houses that received a moving shock and hence were

put for sale and the second term corresponds to houses that found a matched buyer. 5

Reservation Quality Our main subject of interest here is how rent risk affects the trans-

action price and volume. In particular, as shown in Equations (2) and (3), conditional

on visiting a house, a transaction goes through if and only if both parties find it optimal

to trade (instead of keeping searching or waiting). That is, the total surplus, denoted by

Ωz(h) ≡ W z(h)− Jz − U z, is positive.

Specifically, adding up the value expressions (1), (2), (3) and making use of the sharing

rule (4), the joint surplus within the pair can be conveniently rewritten as

rΩz(h) = r(W z(h)− U z − Jz)

=

(
h+

(
R̄ +

1

2
rγσ2

))
− δ(W z(h)− U z − Jz) + µ(Ωz′(h)− Ωz(h))− λzΣz, (6)

where Σz ≡
∫ h̄
xz

Ωz(h)f(h)dh represents the average surplus in the market at the state z.

The first term represents the value of the gain from trade for each match h: an owner

receives the flow value of h and he saves uR, since he is no longer subject to rent risk. This

shows that the higher the rent risk the higher the surplus.

The second term captures the possibility that an owner needs to resell the house. The

third term takes into account the possibility of switching to a different state z′. The last term

captures the buyers’ and seller’s outside options of staying in the market. To see this, when

buying a house h, a buyer would give up the possibility of visiting another house, with the

expected surplus λ(1− β)Σz. On the other hand, the expected surplus for a seller to remain

5Similarly, the law of motion of matched owner is then given by dνH = −δνH + λ(1 − F (xz))νB , where
νB denotes the measure of buyers, which must equal the measure of sellers (i.e., νB = νS).
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in the market is then λzβΣz. This thus explains the last term λzΣz.

Since Ωz(h) is monotonically increasing in h, there is a unique reservation quality xz that

solves Ωz(xz) = 0. Hence, a transaction goes through if and only if the quality is higher than

the cutoff quality xz.

Equilibrium A stationary equilibrium can then be characterized by the cutoff quality xz:

a housing price pz(h) and value function (W z(h), Jz, U z) that jointly satisfy Equation (4)

and Ωz(xz) = 0 for z ∈ {H,L}. Furthermore, let (νH , νS, νB) denote the measure of matched

owners, sellers, and buyers, respectively. The law of motion of sellers (i.e., the stock of houses

for sale) νS is then given by dνS = δνH − λ(1− F (xz))νS, where the first term corresponds

to the houses that received a moving shock and hence were put for sale and the second term

corresponds to houses that found a matched buyer. In the steady state, from Equation (5),

δνzH = λz(1− F (xz))νzS and νzH + νzS = 1.

3. Model Predictions

3.1. Implications for Days on the Market

Our model captures the need of buyers to search for better matching quality in a frictional

environment. Our main subject of interest here is how rent risk affects households’ searching

decisions, which then endogenously determine the aggregate volume (and thus days on the

market (DOM)) that we observe. Specifically, a house at state z will then be sold at the rate

λz(1 − F (xz)). Hence, the expected duration of a listing house, which empirically maps to

DOM, is then given by

DOM z ≡ 1

λz(1− F (xz))
.

That is, a lower reservation quality xz (i.e., a less picky buyer) leads to a lower DOM.

DOM is thus determined by the reservation quality xz. Intuitively, an increase in the

rent risk (a higher σ) decreases the outside option of a renter, making him become more
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desperate and thus more willing to settle for a worse match. This can been seen clearly from

Equation (6), fixing any match quality h, an increase in the rent risk increases the trading

surplus. Since the reservation quality xz is such that a buyer is indifferent Ωz(xz) = 0, a

higher rent risk must then leads to a lower reservation quality xz, and thus a lower DOM.

Formally, for the sake of illustration, one can consider the simple case where µ = 0,

Equation (6) is reduced to

(r + δ)Ωz(h) = h+ uR − λzΣz,

where uR =
(
R̄ + 1

2
rγσ2

)
increase with rent risk (σ). Observe that Ωz

h(h) = 1
r+δ

. Hence, after

integration by parts, the cutoff rule xz must then solve:

0 = xz + uR −
(

λz

r + δ

∫
xz

(1− F (h))dh

)
. (7)

Thus, the higher rent risk (σ), the lower the cutoff:

∂xz

∂σ2
= −rγ

2

1{
1 + λz

r+δ
(1− F (xz))

} < 0 (8)

Clearly, the cutoff drops more when agents are more risk averse (i.e., a higher γ). In the

Appendix, we derive the results for any µ.

Proposition 1. An increase in rent risk leads to a lower DOM.

3.2. Rent Risk and Search Friction

We now turn to illustrate how the degree of search frictions (captured by λ) affect traders’

acceptance rates. Observe from Equation (7), one can easily see that a higher search friction

(i.e., a lower λz) decreases the cutoff rule. Intuitively, buyers are less picky when finding the

next one is hard. This thus shows the level effect of search friction: lower search friction

leads to a higher cutoff (i.e., a more picky buyer) xH > xL.
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Moreover, search frictions also affect the sensitivity of the cutoff respect to rent risk. To

understand this, imagine an extremely “frictional” environment where it is impossible to

find next house λz → 0 or agents are extremely impatient r →∞. In either case, the effect

of the last term in Equation (7) goes to zero, which thus suggests that the cutoff and the

rent risk must move one to one in the sense that the sum of this two must be close to zero:

{xz + uR} → 0.

On the other hand, in an environment with lower search frictions, an agent’s continuation

value of keep searching matters more. This is captured by the last term: an increase in the

cutoff xz now also increases his continuation value by λz

r+δ
(1− F (xz)). This thus shows that

the cutoff must move less in an environment with lower search friction, formalized by Lemma

1

Lemma 1. The cutoff drops less with lower search frictions (i.e., in the high arrival rate

state λH of house visits than in the low arrival rate state λL of house visits.):

∂xH

∂σ2
− ∂xL

∂σ2
< 0.

Notice that the change in the selling rate (i.e., the inverse of DOM), however, depends

on both the arrival rate λz and the change in the cutoff. That is

∂λz(1− F (xz))

∂σ2
= −λzF ′(xz)∂x

z

∂σ2
.

Thus, while the cutoff moves less in the hot season, any movement will be amplified by the

higher arrival rate λH . Hence, quantitatively, if the difference in the arrival rate dominates

the force of the cutoff movement, one would then observe a larger change in the selling rate

during the hot season. As such, our model does not have a definitive prediction regarding

how the relationship of DOM and rent risk varies with the season.

13



3.3. Implications for Price-to-Rent Ratios

But our model does have a clear prediction regarding how the price-to-rent ratio and rent

risk varies with the season. Given Equation (4), the price for each individual transaction

yields for µ = 0 yields

pz(h) = β(W z(h)− U z) + (1− β)Jz (9)

= β

(
h+ uR − λzΣz

r + δ

)
+ Jz. (10)

Hence, the average price is given by:

P z ≡ E[pz(h)|h ≥ xz] (11)

=
βuR
r + δ

+
βE[h|h ≥ xz]

r + δ
+
βδλzΣz

r(r + δ)
. (12)

The first term is the traditional frictionless capitalization of rent risk into prices due to the

hedging benefits of home ownership. Notice that the higher is rent risk σ2, the higher is the

price, and hence the higher is the price-to-rent ratio since we are holding fixed rent.

The second term captures the average quality conditional on the transaction taking place

and represents the quality of the match in the market. Since the rent risk decreases the cutoff,

an increase in rent risk leads to worse home-buyer matches, thereby attenuating the rise in

the price-to-rent ratio that would otherwise occur in a frictionless set-up. However, since the

rent risk increases the total surplus, the price must increase in rent risk. Thus, the offsetting

effect, however, will not overturn the standard effect.

Furthermore, according to Lemma 1, the cutoff drops less with lower search frictions,

suggesting a smaller matching effect. Hence, as established in the Proposition 2 below, the

sensitivity of price with respect to rent risk is higher for hot seasons. This result holds for

any µ.

Proposition 2. For a small moving probability (δ), the sensitivity of the price-to-rent ratio
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with respect to rent risk is higher with lower search frictions, i.e. dPH

dσ2 − dPL

dσ2 > 0.

Proposition 2 is the basis of our empirical work below on connecting rent risk to price-

to-rent ratios.

Notice that for the sensitivity of the price-to-rent ratio to rent risk analysis, the prediction

is that rent risk leads to a higher price-to-rent ratio in the high arrival state, proxied by the

summer months, than the low arrival state, proxied by non-summer months. Note that we

have not emphasized other more standard predictions of our model that are unconnected to

rent risk. First, the price-to-rent ratio should be higher and days on the market lower in

the high arrival states (spring/summer months) than low arrival states (fall/winter months).

These predictions have already been carefully derived and studied in earlier work such as

Ngai and Tenreyro (2014).

4. Data and Variable Construction

To empirically test our model, we need data on rents, house prices and other housing market

conditions for MSAs over time. Monthly rents come from Zillow, which provides the median

rental price per square foot of rental units at three levels of aggregation: zip code, county

and MSA. Monthly house prices also come from Zillow; again we use the median home price

per square foot at these three levels of aggregation. At the MSA level, we then have a panel

of these data for 236 MSAs from December 2011 to March 2016.6

Using these data at the MSA level, we construct the monthly Price to Rent Ratio of each

MSA. We also calculate for each MSA Days on Market using Zillow data. Measured monthly

at the MSA level, it is the median number of days that listings of homes that month have

been on the market. This age of inventory variable in the Zillow database is only available

6This is not a balanced panel. For the early months of our sample, 32 MSAs have missing rent or home
price information. Our results are qualitatively quite similar to what we present below if we only include
MSAs with complete rent and home price data over the entire sample.
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at the MSA level.7 8

We also use the rent data to create two measures of rent risk. The first is what we call

the Cross-Sectional Rent Risk measure. For each month, we first adjust our zip code level

rent measure to create a measure of real rent per square foot for each zip code by using the

CPI (excluding shelter). We then calculate the log change in real rent for a zip code from

month t-1 to month t. Finally, we calculate for each MSA the standard deviation of log

changes in real rent for the month across the zip codes in that MSA. For each month for our

sample of MSAs, we then calculate the simple average of this monthly cross-sectional rent

risk measure for the previous 12 months. This is risk measure is expressed in percentage

points.

Our second rent risk measure is what we call the Time-Series Rent Risk measure. To

calculate this, we again use the log change in real rent for each zip code. We then compute

for each zipcode the standard deviation of its real rent growth over the previous 12 months.

We take the average of this time-series standard deviation for all of the zip codes in a county

(equally-weighted). Then we take a population-weighted average of this county measure for

all the counties in a MSA. This risk measure is also expressed in percentage points.

Our Time-Series Rent Risk is close in spirit to the previous empirical rent risk measure

of Sinai and Souleles (2005), but we have fewer years of data compared to them. That

motivates our use of the Cross-Sectional Rent Risk measure, which economizes on data by

simply using the cross-sectional dispersion in rent growth across the zip codes of an MSA in

a given month. The latter measure can be thought of as capturing a common factor of rent

risk at the MSA level that can be captured by the cross-sectional dispersion in rent growth.

7This data series only starts in January 2012 and has sparser coverage of MSAs than the Zillow rent and
housing price data. Therefore, our analyses using this data will have fewer observations than the rest of the
analysis. We obtain qualitatively similar results to those presented below when we constrain our sample for
all our analyses to MSAs with this information.

8Zillow also has similar but different variable called the days on Zillow that measures the median days
on market of homes sold within a given month. The issue of this variable is that it conditions on sold homes
as opposed to also homes that did not sell. Our model’s DOM quantity can be best thought of applying to
all listings. In any event, we obtain qualitatively similar results to those presented below when we use the
days on Zillow instead of the age of inventory. These results are available from the authors.
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Table 1 presents summary statistics for these data. House prices are on average about 11

times average rents in our sample. The standard deviation of the price-to-rent ratio is 2.38.

The inventory of houses up for sale at a point in time has been on the market on average

about 84 days with a standard deviation of around 25 days. The mean Cross-Sectional

Rent Risk is 64 bps per month with a standard deviation of 29 bps. Annually, this would

translate to a 2.2% annual rent risk. The mean Time-Series Rent Risk is higher, at almost

1% monthly, which would translate to around 3.5% annual. But notice that there is a large

tail in that the maximum Time-Series Rent Risk is 4.66% monthly, which would be almost

7.5% annual.

For our empirical strategy, we need there to be substantial variation in our rent risk

measures within MSAs over time and not just across MSAs. To show whether this is true,

we create a transition matrix that measures how likely a MSA moves substantially across

the distribution of the rent risk measures year to year. That is, for both rent risk measures,

we calculate the average value for each MSA in our sample each calendar year. We then

classify each MSA/year rent risk observation into quartiles.

Table 2 presents the one-year transition matrix of MSAs across the quartiles. That is,

we calculate the probability that a MSA i observed in quartile j in year t is observed in year

t + 1 in the four quartiles of the distribution of the rent risk measures. Panel A of Table

2 shows the transition matrix for the Cross-Sectional Rent Risk measure. Not surprisingly,

there is persistence over time in these measures. The probabilities along the diagonal of the

matrix are always substantial. For instance, a MSA in the first (lowest) quartile of rent risk

in a given year t − 1 has an 81.88% chance of remaining in the first quartile in year t. But

there is a non-trivial chance, around 2.54% that it moves to the third quartile and .72% that

it moves to the highest quartile. For example, Portland was at the 90th percentile of the

Cross-Sectional Rent Risk measure in 2011, but by 2014 it was at the 31st percentile.

Panel B shows the same transition matrix for the Time-Series Rent Risk measure. The

off-diagonal elements of this matrix are typically larger than in Panel A. For instance, a
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MSA in the first quartile of rent risk in a given year t− 1 now only has a 66.67% chance of

remaining in the first quartile the next year. It has a 26.09% chance of moving to the second

quartile, a 6.88% chance of moving to the third quartile, and a 0.36%. Similarly, Houston

was at the 16th percentile of the Time-Series Rent Risk measure in 2011, but in 2014 it was

at the 50th percentile.

We next measure the seasonality of our housing market measures and relate them to

the literature. We regress the housing market measure on an indicator for various times in

the calendar year, year effects and MSA fixed effects. The coefficient on the times in the

calendar year indicator measures how the observations of that housing measure differ on

average compared to the rest of the calendar year.

Our first method of breaking up the calendar year is taken from Ngai and Tenreyro

(2014). They classify the 2nd and 3rd quarter of the calendar year (April, May, June, July,

August and September) as the hot season for the housing market. The remainder of the year

is the cold season. Figure 1 shows why this is a reasonable way to break up the calendar. It

shows the average monthly home sales transaction volume from a couple of sources. Panel A

shows the monthly average number of single-family home sales from 1989 to 2016 collected

by the National Association of Realtors. June, which is the month with the highest number

of transactions, has on average around 450,000 homes sold. Panel B shows a similar measure

using the Zillow home sales database from 2009 to 2015. Recall Zillow only has a subset

of the transactions in the market. June has in the Zillow data around 150,000 homes sold.

But the story is the same using either data source; transactions are on average substantially

higher during the middle of the calendar year compared to the ends.

We also construct a second method of breaking up the calendar year. As shown in Figure

1, the beginning and ending month (April and September) of the Ngai and Tenreyro (2014)

measure of the hot season has on average substantially fewer transactions compared to the

rest of the hot season. So we create a narrower measure of the hot season that omits April

and September from the definition.

18



The results of these OLS regressions are presented in Table 3. We first examine the

seasonality of the monthly cross-sectional rent risk measure. In our empirical analysis, we

will be using an average of lagged rent risk measures over the past year. But for this cursory

analysis, we want to examine the monthly rent risk which is measured at the MSA level

with the standard deviation of monthly rent growth across zip codes within that MSA. In

column (1), we measure how this rent risk measure differs in the broadly defined Hot Season

compared to the rest of the year. The coefficient on the Hot Season indicator is negative, but

it is very small in magnitude and not statistically different from zero. So on average, there is

little difference in the monthly cross-sectional risk measure in the broadly defined hot season

compared to the rest of the year. In column (2), we use our narrow definition of the hot

season instead. The conclusion is the same; there is no seasonality in the cross-sectional rent

risk measure. Finally, we add to the regression specification indicators for every month in

the calendar year. Rather than show the coefficients of this regression in a table, we graph

them. Figure 2 (Panel A) shows that the monthly rent risk measure is very stable over

the calendar year on average. All of our analyses suggest that there is little calendar year

cyclicality to our monthly cross-sectional rent risk measure.

In the subsequent columns of Table 3, we examine the seasonality of Price to Rent and

the Days on Market. For Price to Rent, there is no evidence of seasonality. But in Panel B of

Figure 2, where we show the graph of the month coefficients, there is some evidence that that

Price to Rent rises over the calendar year. This seasonality, however, is different than the

findings of earlier work such as Case and Shiller (1987) or Ngai and Tenreyro (2014), who find

that prices rise during the hot season. We believe that our different finding is mostly being

driven by the fact that on average MSA price to rents were increasing relatively steadily

over our short sample period. Therefore, later observations (even within a calendar year)

on average would have higher values than earlier, masking other seasonalities that might be

revealed with a longer data set.

For Days on Market, there is more of a seasonality within a calendar year cycle. There
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is on average a substantial dip in the days on the market during the hot season (using

either measure) relative to the rest of the year, which is consistent with the literature. The

coefficient on the broad hot season indicator is -20 with a t-statistic of -22. This big difference

between spring/summer and the rest of the months can be easily seen in Panel C of Figure

2.

5. Empirical Methodology and Results

In this section, we empirically examine the relationship between rent risk and housing out-

comes. We first test Proposition 1, which states that days on the market should fall with

rent risk. This establishes the underlying mechanism that a higher rent risk leads to less

picky buyers. We then test Proposition 2, which states that the price to rent should increase

more with rent risk in the hot season than the other parts of the year. Notice from our

summary statistics that there is not a lot of seasonality in either rent risk or the price to

rent ratio to begin with in our sample. So the seasonality of the sensitivity of price to rent

to rent risk is not simply a redux of seasonalities in housing markets per se.

5.1. Days on Market

We first measure how rent risk affects how long houses are on the market (Days on Market).

Our empirical strategy involves examining how Days on Market change in a MSA over time

as our measures of rent risk change in the MSA. Specifically, we estimate OLS regressions

of the following form using MSA-level data from December 2011 to March 2016:

Days on Marketi,t = α + β1Rent Riski,t + Y ear ×Month Effects

+MSA Fixed Effects+ εi,t, (13)

where Rent Riski,t is the measure of rent risk for MSA i in year×month t, Y ear×Month
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Effects is a full set of dummy variables for each month in the sample, and MSA fixed effects.

εi,t is an error term. The coefficient of interest is β1. It measures the sensitivity of housing

outcomes in a MSA to the rent risk in that MSA. Because we have included year-by-month

fixed effects and MSA fixed effects in the regression specification, β1 is identified by changes

over time in the rent risk in a MSA that are different than the national trend.

The results are presented in Table 5. In column (1), we show that the cross-sectional rent

risk measure on average has a negative and statistically significant effect on Days on Market.

The magnitude of the coefficient implies that a one standard deviation increase in rent risk

(0.29) lowers Days on Market by 4.441× 0.29 = 1.29 days. This is about 5.1 percent of the

standard deviation of Days on Market.

In column (2), we augment the year by month effects to allow these to vary by the

income quartile of the MSA. In other words, we are allowing the flexibly estimated time

trend (which was previously at the national level) to vary by the income quartile of the

MSA. The coefficient on rent risk is -5.184 and similarly to the result in column (1). In

column (3), we augment the year by month effects to allow these to vary by Census Regions.

The coefficient on rent risk and overall statistical significance are similar to column (1). These

three columns tell us that our findings are robust to a number of alternative explanations

having to do with time trends that vary by different parts of the population. Given that

this prediction and finding is new to the literature, we do not know of an obvious alternative

explanation.

In column (4), we just focus on the large MSA defined as the top quartile of MSAs in

terms of population. Our motivation for this subsample comes below when we look at how

rent risk affect the price to rent ratio. Our benchmark there will be Sinai and Souleles (2005)

who study a subsample of large MSAs. Here, we want to verify that the effect of rent risk

on days on the market remains strong in this subsample, which is indeed the case.

In columns (5)-(8) of Table 5, we show the estimates using the same specifications except

the Time-Series Rent Risk measure is used instead of the cross-sectional version. The pattern
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of estimates is very similar. In column (4), the overall effect of rent risk on Days on Market

is negative; the magnitude of the coefficient suggests that a one standard deviation increase

in rent risk lower Days on Market by about 0.96 days, or about 3.8 percent of the standard

deviation of Days on Market. This 3.8 percent figure is very close to the 5 percent figure we

obtained using the cross-sectional rent risk measure.

This finding is independent of the well-established fact that days on the market is lower

in the summer. We are effectively looking at how days on the market varies unconditionally

across a year depending on the rent risk measured in the previous year. In omitted tables,

we find that the the effect of rent on days on the market is stronger in the hot season. But

we omit this table since our model does not have definitive prediction on this quantity as it

is also directly affected by well-document seasonality in days on the market.

5.2. Price to Rent

We then allow the effect of rent risk on the price-to-rent ratio to vary over the calendar year.

Our regression specification is given by:

Price to Renti,t = α + β1Rent Riski,t + β2Calendar Indicatort

+ β3Rent Riski,t × Calendar Indicatort

+ Y ear ×Month Effects+MSA Fixed Effects+ εi,t (14)

where Calendar Indicatort is a dummy variable for the observation being in a certain part

of the year (the broad and narrow definition of the hot season), and the other variables are

the same as before. The coefficient of interest is β3. It measures whether the sensitivity

between rent risk and the housing outcomes is different during the hot season compared to

the rest of the year.

Column (1) of Table 5 shows the regression results using the cross-sectional rent risk

measure. The coefficient on rent risk is positive and statistically different than zero, imply-
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ing that higher rent risk increases the price-to-rent ratio of a MSA. The magnitude of the

coefficient suggests that a one standard deviation increase in the cross-sectional rent risk

measure (0.29) increases the price to rent of a MSA by 0.348× 0.29 = 0.10.

In column (2), we measure whether this sensitivity of price to rent to rent risk is different

in the broad measure of the hot season compared to the rest of the year. The coefficient

on the interaction of the rent risk measure and the spring/summer indicator is positive and

statistically different than zero, indicating that the sensitivity of price to rent to rent risk is

higher in the spring/summer. The estimates imply that a one standard deviation increase

in rent risk (0.29) increases price to rent in a MSA in the hot season by 0.414× 0.29 = .12.

This is about 5.0 percent of a standard deviation of price to rent. Or put another way, the

sensitivity of Price to Rent to changes in rent risk is about 41% higher in the hot season

than the rest of the year. We find similar results in column (3) when we use the narrower

definition of the hot season. The sensitivity of Price to Rent to changes in rent risk is about

36% higher in the hot season compared to the rest of the year using this alternative definition

of the hot season.

We also allow the sensitivity of rent risk to vary each calendar month. Rather than

show the monthly coefficients in a table, we graph them in Panel A of Figure 3. We also

plot the standard error bands for our monthly estimates. Again, the sensitivity of rent risk

is substantially higher in the spring/summer months compared to the rest of the year. If

we compare the months with the highest sensitivity to rent risk (May/June) to the cold

season months, the sensitivity in May/June is 50% higher. As far as statistical significance,

May/June differ from other months earlier in winter (January/February) or later in the fall

(November/December). Our model is simple in terms of allowing for probabilistic switches

between hot and cold seasons and hence cannot speak to the monthly variations within a

season. But the fact that May and June are the hottest months is intuitive and reasonable

since these are often the busiest months in terms of housing transactions as we showed above.

In columns (4) through (6) of Table 5, we repeat the analysis using our Time-Series Rent
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Risk measure instead of the cross-sectional version. The pattern of results is very similar.

In column (4), the effect of rent risk on price to rent is positive and marginally statistically

significant from zero. The coefficient implies that a one standard deviation increase in rent

risk (0.43) increases price to rent in a MSA by 0.165× 0.43 = .071. This is about 3 percent

of a standard deviation of price to rent.

In column (5), again we find that the sensitivity of rent risk is higher in the hot season

using the broad measure. The interaction term is positive and statistically different from

zero, suggesting that a one standard deviation increase in rent risk in the summer increases

price to rent by 0.243 × 0.43 = 0.10. This is about 4.4 percent of a standard deviation of

price to rent. Alternatively, the sensitivity of Price to Rent to changes in rent risk is about

102% higher in the hot season than the rest of the year.

For the narrow measure of the hot season in column (6), we find similar results; the

sensitivity of Price to Rent to changes in rent risk is about 84% higher in the hot season

than the rest of the year. The conclusion that the sensitivity of rent risk is higher in the

summer is also found when we allow the sensitivities to vary every calendar month (Panel

B of Figure 3). The highest sensitivity month (July) is 140% higher than in the cold season

months.

5.3. Alternative Explanations and Relation to Estimates in the

Literature

In Table 6, we modify our regression specifications to account for alternative explanations

and to better relate our estimates of the effect of rent risk on the price-to-rent ratio to those

in the literature. We use the broad definition of hot season. The results are similar if we use

the narrow definition. As in our days on the market specification, in columns (1) and (2),

we augment the year by month effects to allow these to vary by the income quartile of the

MSA and by the Census Region of the MSA, respectively. The coefficients are similar to the

baselines ones in Table 5. In the remaining columns, we present the robustness checks using
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the time-series measure of rent risk. The findings are largely the same as before.

In column (3), we just focus on the large MSA defined as the top quartile of MSAs

in terms of population. Our regression specification here in column (3) is closest to the

result presented in column 2 of Table III of Sinai and Souleles (2005). They find that a one

standard deviation increase in their measure of rent risk increases the price-to-rent ratio of

a MSA by about 1.3 percent, which is about a 4.6 percent increase relative to the standard

deviation of price to rent in their data. Our baseline estimate is similar to theirs. But we

find that the effect of rent risk on price-to-rent ratio is 1.5 as strong in the summer. That

is, accounting for seasonality is important in measuring the sensitivity of the price-to-rent

ratio to rent risk. As we discussed in the Introduction, these estimates are a lower bound

on how much search frictions might offset the effect of rent risk on home prices. We know

from the literature that there is nontrivial search frictions even in spring/summer months.

As such, fully accounting for search frictions is likely to fundamentally alter the size of the

estimates of rent risk on home prices. We leave this full accounting for future work.

6. Conclusion

An influential theory of homeownership is the desire of risk averse households to hedge rent

risk. Existing theory and empirical work assumes a frictionless set-up where all homes are

homogeneous quality. But housing markets are characterized by homes of heterogeneous

quality and search frictions. We integrate these two settings: the need of hedging rent risk

and the need of buyers to search for better matching quality. We show that the price-to-

rent ratio depends on two factors. The first or traditional frictionless factor is that the

hedging-against-rent-risk benefits of ownership gets impounded into a higher price-to-rent

ratio. The second or search (matching) factor is that rent risk reduces outside options. We

develop a series of predictions and empirical specifications to demonstrate the importance

of this off-setting search factor that attenuates the sensitivity of price to rent to rent risk.
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In particular, our model predicts that higher rent risk should lead to a lower days on the

market, which we find very strongly in the data.
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A. Appendix

A.1. Derivation for the Cutoff Value

Given that Ωz(h) = W z(h)− Jz − U z, we have

rΩz(h) = (h+ uR) + δ(Jz −W z(h)− U) + µ(Ωz′(h)− Ωz(h))− λzΣz, (A.15)

= (h+ uR)− δΩz(h) + µ(Ωz′(h)− Ωz(h))− λzΣz,

where Σz ≡
∫ h̄
xz

Ωz(h)dF (h).

The simple comparative statics suggests that the cutoff must be lower in the cold season:

xL < xH . Thus, the surplus for some quality h ∈ [xL, xH ] is positive only at the low state

but not at the high state. Thus from Equation (A.15), ΩL
h (h) = 1

r+δ+µ
, for h ∈ [xL, xH ].

For any h ≥ xH , the surplus is positive for both states. We thus have

(r + δ + 2µ)
(

Ωz(h)− Ωz′(h)
)

= −(λzΣz − λz′Σz′) (A.16)

Equation (A.15) implies Ωz
h(h) = Ωz′

h (h) = 1
r+δ

, for any h ≥ xH .

The solution {xL, xH} are then jointly determined, which solves Ωz(xz) = 0 for z ∈

{H,L}. Furthermore, the total surplus Σz for each state depends on the cutoffs. Given

Ωz
h(h), after integration by part, we thus have

ΣL(xL, xH) =
1

r + δ + µ

∫ xH

xL
(1− F (h))dh+

1

r + δ

∫
xH

(1− F (h))dh, (A.17)

and

ΣH(xL, xH) =
1

r + δ

∫
xH

(1− F (h))dh. (A.18)

Hence, for low state, ΩL(xL) = 0 implies:

0 = xL + uR − λLΣL, (A.19)
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where ΩH(xL) = 0, since xL < xH . For high state, ΩH(xH) = 0 implies:

0 = xH + uR − λHΣH + µ

(
xH − xL

r + δ + µ

)
. (A.20)

Hence, {xL, xH} must solve the following system of equations:

K(xL, xH , uR) ≡ xL + uR − λLΣL(xL, xH) = 0, (A.21)

G(xL, xH , uR) ≡
(
xH − xL

)(r + δ + 2µ

r + δ + µ

)
−
(
λHΣH(xL, xH)− λLΣL(xL, xH)

)
= 0. (A.22)

Note that Equation (A.21) is given by Equation A.19 and (A.22) is given by A.20-A.19.

A.2. Omitted Proofs

A.2.1. Lemma: The trading volume is higher in the hot season:λH(1−F (xH)) >

λL(1− F (xL)).

We first show this under the simple case where µ = 0. Let H be the right hand intergal

H(x) ≡
∫
h
(1− F (h))dh. Given that νz ≡ λz(1− F (xz)) = −λzH ′(xz),

∂ν

∂λ
= −H ′ −

λzH ′′ H
r+δ

1− λzH′

r+δ

=
−H ′ − λz

r+δ
(H ′′H −H ′H ′)

1− λzH′

r+δ

,

Given that f is log-concave, according to Bagnoli and Bergstrom (2005), H is also log

concave, and thus (lnH)′′ = H′′H−H′H′

H2 < 0, we have ∂ν
∂λ
> 0.

For any µ > 0, since a higher switching rate will make buyers in low (hot) season more

(less) picky ∂xL

∂µ
> 0 and ∂xH

∂µ
< 0, and as µ→∞, these two states are almost identical and

thus xL −→ xH . Hence, D(µ) ≡ λH(1− F (xH))− λL(1− F (xL)) must increase in µ. Given

that D(0) > 0, D(µ) > 0 ∀µ.
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A.2.2. Proof for Proposition 1

To derive ∂hz

∂uR
, we now apply cramer’s rule with Equation (A.21) and (A.22). Let Kj and Gj

denote the partial derivaties respect to the jth variable. From Equation A.17 and A.18, we

have ΣL
1 (xL, xH) = −

(
1−F (xL)
r+δ+µ

)
, ΣL

2 (xL, xH) = 1−F (xH)
r+δ+µ

− 1−F (xH)
r+δ

=
−µ(1−F (xH))
(r+δ+µ)(r+δ)

< 0, and

ΣH
2 = −

(
1−F (xH)
r+δ

)
. Hence, the expression for Kj and Gj yields:

K1 = 1 +
λL(1− F (xL))

r + δ + µ
> 0, K2 =

µ
(
1− F (xH)

)
(r + δ + µ) (r + δ)

> 0, K3 =
r + δ

r

and

G1 = −
(
r + δ + 2µ

r + δ + µ

)
− λL

(
1− F (xL)

r + δ + µ

)
< 0, G3 = 0,

G2 =

(
r + δ + 2µ

r + δ + µ

)
+ λ

(
1− F (xH)

r + δ

)
−

µλL
(
1− F (xH)

)
(r + δ + µ) (r + δ)

> 0

Thus, we have

∂xH

∂uR
=

−
(
r+δ
r

)
G1

−(K1G2 −K2G1)
∝ −

{(
r + δ + 2µ

r + δ + µ

)
+ λL

(
1− F (xL)

r + δ + µ

)}
< 0 (A.23)

and

∂xL

∂uR
=
−
(
r+δ
r

)
G2

K1G2 −K2G1︸ ︷︷ ︸
>0

∝ −

{(
r + δ + 2µ

r + δ + µ

)
+ λH

(
1− F (xH)

r + δ

)
−

µλL
(
1− F (xH)

)
(r + δ + µ) (r + δ)

}

(A.24)

=


(
r + δ + 2µ

r + δ + µ

)
+
(
1− F (xH)

) λH

r + δ
− µλL

(r + δ + µ) (r + δ)︸ ︷︷ ︸
>0


 > 0.

Since DOM decreases with the cutoff, this thus establishes that DOM decreases with rent

risk.
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A.2.3. Proof for Lemma 1

From Equation (A.23) and (A.24), we have

(
∂xH

∂u
− ∂xL

∂u

)
=

1

(K1G2 −K2G1)

{
λH
(

1− F (xH)

r + δ

)
− λL

(
1− F (xL)

r + δ + µ

)
−

µλL
(
1− F (xH)

)
(r + δ + µ) (r + δ)

}

∝ λH
(

1− F (xH)

r + δ

)
− λL

(
1− F (xL)

r + δ

)
− λL

(
1− F (xL)

r + δ + µ

)
..+ λL

(
1− F (xL)

r + δ

)
−

µλL
(
1− F (xH)

)
(r + δ + µ) (r + δ)

=
1

(K1G2 −K2G1)

{
λH
(

1− F (xH)

r + δ

)
− λL

(
1− F (xL)

r + δ

)
+
µλL

(
F (xH)− F (xL)

)
(r + δ + µ) (r + δ)

}
> 0

The inequality follows from the fact that λH(1 − F (xH)) > λL(1 − F (xL)), by Lemma

A.2.1.

A.2.4. Proof for Proposition 2

For general µ ≥ 0, the average price yields: given that pz(h) = βΩz(h) + Jz, we have

pz(h) =
β
{
h+ uR + µ

(
Ωz′(h)− Ωz(h)

)
− λzΣz

}
r + δ

+
βλzΣz + µ

(
Jz

′ − J
)

r

=
β {h+ uR}
r + δ

+
µ
(
β(Ωz′(h)− Ωz(h)) +

(
Jz

′ − Jz
))

(r + δ)
+
δ

r

(
βλzΣz + µ

(
Jz

′ − J
)

(r + δ)

)
.

Given that Equation (A.16) and (r + 2µ)
(
Jz

′ − Jz
)

= β(λz
′
Σz′ − λzΣz), we thus have,

for small δ, pz(h)→ β{h+uR}
r+δ

and

P z = E[pz(h)|h ≥ xz]→ βuR
r + δ

+
βE[h|h ≥ xz]

r + δ
.

Let v(x) ≡
∫
xz

(h− xz) dF (h)
1−F (xz)

= −H(xz)
H′(xz)

=
∫
xz

hdF (h)
1−F (xz)

− 1.
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{
∂PH

∂uR
− ∂PL

∂uR

}
∝
{(

1 + v′(xH)
) ∂xH
∂uR

−
(
1 + v′(xL)

) ∂xL
∂xR

}
=
(
1 + v′(xH)

)(∂xH
∂uR

− ∂xL

∂xR

)
+
(
v′(xH)− v′(xL)

) ∂xL
∂xR

> 0

Observe that v′(x) = −
(

(H′)2−HH′′

(H′)2

)
= −(1+q(x)), where q(x) ≡ H

H′

(
H′′

−H′

)
= H

H′

(
F ′(x)
1−F

)
<

0. Given that f is log concave, we have F ′(x)
1−F increases in x and H

H′ increases with x, and thus

q′(x) > 0 and v′′(x) < 0.

Since v′′(x) < 0 and ∂xH

∂uR
> ∂xL

∂uR
, we thus have ∂PH

∂uR
> ∂PL

∂uR
.
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Table 1: Summary Statistics

We report summary statistics of variables that we compute from Zillow data from December 2011 to March
2016. Price-to-Rent Ratio is the ratio of home price to rent price using the Zillow home price, expressed as
the median home value (psf) in a MSA in a month, and the Zillow rent price, expressed as the median rent
value (psf) in a MSA in a month. Days on Market is the median number of days all listings have been current
on Zillow. Cross-Sectional Rent Risk is the moving average of the standard deviation of 1 month lagged real
rent growth in zip codes within a MSA for past 12 months, using the Zillow rent price (psf). Time-Series
Rent Risk is the standard deviation of real rent growth in a MSA in the past 12 months. The standard
deviations of real rent growth for zip codes in a MSA using the Zillow rent price are equally weighted within
counties and then the county averages are population weighted to the MSA-level. We winsorize all variables
at 1% and 99% level by year-month.

Variables Obs Mean Std. Dev. Min Max

Days on Market 7678 84.01 25.48 17 166
Price-to-Rent Ratio 11826 10.84 2.38 6.87 21.01
Cross-Sectional Rent Risk 11826 0.64 0.29 0.16 3
Time-Series Rent Risk 11826 0.95 0.43 0.35 4.66
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Table 2: Transition Probability

We report year to year transition matrices of rent risks, the Price-to-Rent Ratio and Days on Market. Panel
A reports the transition matrix of the Cross-Sectional Rent Risk. In each year, we sort MSAs into quartile
groups by their average Cross-Sectional Rent Risk of the year. We then compute the transition probabilities
year to year between quartile groups. Panel B reports the transition matrix of the Time-Series Rent Risk.
Panel C reports the transition matrix of the Price-to-Rent Ratio. Panel D reports the transition matrix of
the Days on Market.

Panel A: Cross-Sectional Rent Risk
Quartile in Year t

1 2 3 4

Q
u

artile
in

Y
ear

t−
1

1 81.88 % 14.86 % 2.54 % 0.72 %

2 17.79 % 54.8 % 24.56 % 2.85 %

3 2.14 % 27.76 % 52.31 % 17.79 %

4 0 % 2.81 % 21.75 % 75.44 %

Panel B: Time-Series Rent Risk
Quartile in Year t

1 2 3 4

Q
u

artile
in

Y
ea

r
t−

1

1 66.67 % 26.09 % 6.88 % 0.36 %

2 24.56 % 47.69 % 24.56 % 3.2 %

3 9.61 % 24.91 % 47.69 % 17.79 %

4 0.35 % 3.51 % 20.35 % 75.79 %
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Table 2 Continues

Panel C: Price-to-Rent Ratio
Quartile in Year t

1 2 3 4

Q
u

artile
in

Y
ear

t−
1

1 86.96 % 12.32 % 0.72 % 0 %

2 13.52 % 77.58 % 8.19 % 0.71 %

3 0 % 9.96 % 82.96 % 7.12 %

4 0 % 0 % 7.72 % 92.28 %

Panel D: Days on Market
Quartile in Year t

1 2 3 4

Q
u

artile
in

Y
ear

t−
1

1 82.78 % 15.89 % 1.32 % 0 %

2 15.89 % 62.91 % 20.53 % 0.66 %

3 2.65 % 19.21 % 56.95 % 21.19 %

4 0 % 0.65 % 20 % 79.35 %
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Table 3: Seasonality of Variables

We report panel regression estimates of the seasonality of our variables of interest. We use MSA-year-month observations from December 2011 to

March 2016. The dependent variable in columns (1)-(2) is the Cross-Sectional Rent Risk (1m), the standard deviation of 1 month lagged real rent

growth in zip codes within a MSA using the Zillow rent price (psf). Column (1) includes the Hot Season (Broad), which is equal to 1 for April, May,

June, July, August and September, and 0 otherwise, MSA fixed effects and Year fixed effects. Column (2) includes the Hot Season (Narrow), which

is equal to 1 for May, June, July and August, and 0 otherwise. The dependent variable in columns (3)-(4) is Price-to-Rent Ratio, the ratio of home

price to rent price using the Zillow home price, expressed as the median home value (psf) in a MSA in a month, and the Zillow rent price, expressed

as the median rent value (psf) in a MSA in a month. The dependent variable in columns (5)-(6) is the Days on Market, the median number of days

all listings have been current on Zillow. Regression specifications are same as the columns (1)-(2). The table reports point estimates with t-statistics

in parentheses. All the standard errors are clustered at MSA level. ***, **, * denotes 1%, 5%, and 10% statistical significance.

(1) (2) (3) (4) (5) (6)
Variables Cross-Sectional Rent Risk (1m) Price-to-Rent Ratio Days on Market

Hot Season (Broad) -0.001 -0.003 -20.306***
(-0.14) (-0.66) (-25.88)

Hot Season (Narrow) 0.0002 -0.003 -17.891***
(0.02) (-0.75) (-23.37)

Observations 11,826 11,826 11,826 11,826 7,678 7,678
R-squared 0.496 0.496 0.931 0.931 0.745 0.700
MSA FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
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Table 4: The Effect of Rent Risk on Days on Market

We report panel regression estimates of the effect of Rent Risk on Days on Market. We use MSA by year by month observations from December 2011

to March 2016. The dependent variable is the Days on Market, the median number of days all listings have been current on Zillow. Columns (1)-(4)

use the Cross-Sectional Rent Risk. In column (1), the independent variables are the Cross-Sectional Rent Risk with Year-Month fixed effects and MSA

fixed effects. In column (2), the independent variables are the Cross-Sectional Rent Risk with Year-Month-Income Quartile fixed effects and MSA

fixed effects. We use the MSA total income in 2011 to create the Income Quartiles. In column (3), the independent variables are the Cross-Sectional

Rent Risk with Year-Month-Income Quartile fixed effects, Year-Month-Region fixed effects and MSA fixed effects. Region is the Census region where

MSA are located. In column (4), the regression specification is the same as in column (1) but we restrict our sample to large MSAs. Large MSAs are

the top quartile MSAs by 2011 MSA population. Columns (5)-(8) use the Time-Series Rent Risk. Regression specifications are otherwise the same as

in columns (1)-(4). The table reports point estimates with t-statistics in parentheses. All the standard errors are clustered at MSA level. ***, **, *

denotes 1%, 5%, and 10% statistical significance.

Cross-Sectional Rent Risk Time Series Rent Risk
Full Sample Large MSA Full Sample Large MSA

(1) (2) (3) (4) (5) (6) (7) (8)
Variable Days on Market

Rent Risk -4.411** -5.184** -4.299** -7.405** -2.244** -2.507** -2.354** -4.718*
(-2.04) (-2.41) (-1.99) (-2.10) (-2.08) (-2.25) (-2.03) (-1.68)

Observations 7,678 7,678 7,678 2,472 7,678 7,678 7,678 2,472
R-squared 0.825 0.832 0.861 0.863 0.825 0.832 0.861 0.863
MSA Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Year × Month Effects Yes — — Yes Yes — — Yes
Year × Month × Income Quartile Effects No Yes Yes No No Yes Yes No
Year × Month × Region Effects No No Yes No No No Yes No
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Table 5: The Effect of Rent Risk on Price-to-Rent Ratio

We report panel regression estimates of the effect of Rent Risk on Price-to-Rent Ratio. We use MSA by

year by month observations from December 2011 to March 2016. The dependent variable, Price-to-Rent

Ratio, is the ratio of home price to rent price using the Zillow home price, expressed as the median home

value (psf) in a MSA in a month, and the Zillow rent price, expressed as the median rent value (psf) in

a MSA in a month. Columns (1)-(3) use the Cross-Sectional Rent Risk. In column (1), the independent

variables are the Cross-Sectional Rent Risk with Year-Month fixed effects and MSA fixed effects. In column

(2), the independent variables are the Cross-Sectional Rent Risk and its interaction with the Hot Season

(Broad) Indicator, which is equal to 1 for April, May, June, July, August and September, and 0 otherwise. In

column (3), independent variables are the Cross-Sectional Rent Risk and its interaction with the Hot Season

(Narrow) Indicator, which is equal to 1 for May, June, July and August, and 0 otherwise. Columns (4)-(6)

use the Time-Series Rent Risk. Regression specifications are otherwise the same as in columns (1)-(3). The

table reports point estimates with t-statistics in parentheses. All the standard errors are clustered at MSA

level. ***, **, * denotes 1%, 5%, and 10% statistical significance.

Cross-Sectional Rent Risk Time-Series Rent Risk
Broad Narrow Broad Narrow

(1) (2) (3) (4) (5) (6)
Variables Price-to-Rent Ratio

Rent Risk 0.348** 0.294* 0.315* 0.165* 0.114 0.132
(2.00) (1.71) (1.82) (1.77) (1.25) (1.42)

Hot Season × Rent Risk 0.120*** 0.113*** 0.116*** 0.111***
(3.87) (3.79) (4.28) (4.25)

Observations 11,826 11,826 11,826 11,826 11,826 11,826
R-squared 0.933 0.933 0.933 0.933 0.933 0.933
MSA Fixed Effects Yes Yes Yes Yes Yes Yes
Year-Month Effects Yes Yes Yes Yes Yes Yes
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Table 6: The Effect of Rent Risk on Price-to-Rent Ratio – Additional Controls

We report panel regression estimates of the effect of Rent Risk on Price-to-Rent Ratio. We use MSA by year by month observations from December

2011 to March 2016. The dependent variable, Price-to-Rent Ratio, is the ratio of home price to rent price using the Zillow home price, expressed as

the median home value (psf) in a MSA in a month, and the Zillow rent price, expressed as the median rent value (psf) in a MSA in a month. Columns

(1)-(3) use the Cross-Sectional Rent Risk. In column (1), the independent variables are the Cross-Sectional Rent Risk and its interaction with the

Hot Season (Broad) Indicator, which is equal to 1 for April, May, June, July, August and September, and 0 otherwise. We include Year-Month-

Income Quartile fixed effects and MSA fixed effects, where we use the MSA total income in 2011 to create the Income Quartiles. In column (2), the

independent variables are the Cross-Sectional Rent Risk and its interaction with the Hot Season (Broad) Indicator, controlling Year-Month-Income

Quartile fixed effects, Year-Month-Region fixed effects and MSA fixed effects. Region is the Census region where MSA are located. In column (3),

the regression specification is the same as in column (3) of Table 5 but we restrict our sample to large MSAs. Large MSAs are the top quartile MSAs

by 2011 MSA population. Columns (4)-(6) use the Time-Series Rent Risk. Regression specifications are otherwise the same as in columns (1)-(3).

The table reports point estimates with t-statistics in parentheses. All the standard errors are clustered at MSA level. ***, **, * denotes 1%, 5%, and

10% statistical significance.

Cross-Sectional Rent Risk Time-Series Rent Risk
Full Sample Large MSA Full Sample Large MSA

(1) (2) (3) (4) (5) (6)
Variables Price-to-Rent Ratio

Rent Risk 0.306* 0.470*** 0.310 0.118 0.136** 0.042
(1.71) (3.85) (0.88) (1.29) (2.13) (0.12)

Hot Season × Rent Risk 0.119*** 0.061** 0.093** 0.122*** 0.106*** 0.110*
(3.82) (2.11) (2.30) (4.38) (4.58) (1.83)

Observations 11,826 11,826 2,984 11,826 11,826 2,984
R-squared 0.935 0.966 0.962 0.935 0.965 0.962
MSA Fixed Effects Yes Yes Yes Yes Yes Yes
Year-Month Effects No No Yes No No Yes
Year × Month × Income Quartile Effects Yes Yes No Yes Yes No
Year × Month × Region Effects No Yes No No Yes No
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Figure 1: Monthly Transaction Volume

The figure reports the variation in monthly transaction volume. In Panel A, we report the average monthly
home sales data from NAR from 1989 to 2016. NAR Home Sales Data includes single-family existing home
sales. The bars show the average number of monthly transactions in each month. In Panel B, we report
the average monthly home sales data from Zillow from Jan 2009 to Dec 2015. Zillow Home Sales Data
includes all new and existing single-family homes, condominium and co-ops, but excludes non-standard sales
such as bank takeovers of foreclosed properties, title transfers after a death or divorce and non arms-length
transactions.
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Figure 2: Seasonality

The figure reports the estimates of the seasonality in our variables of interest. Similar to Table 3, we run
a regression using our variables of interest as dependent variables and using calendar month dummy as
independent variables with MSA fixed effects and Year fixed effects. Panel A reports the coefficients using
the Cross-Sectional Rent Risk (1m), the standard deviation of 1 month lagged real rent growth in zip codes
within a MSA using the Zillow rent price (psf), Panel B reports the coefficients using the Price-to-Rent Ratio
as a dependent variable, and Panel C reports the coefficients using the Days on Market.
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Figure 3: The Coefficients of the Effect of Rent Risk on Price-to-Rent Ratio by
Month

The figure reports the estimates of the effect of Rent Risk on Price-to-Rent Ratio by calendar month. Similar
to Panel A of Table 5, we run a regression using the Price-to-Rent Ratio as the dependent variable on Rent
Risk and its interaction with calendar month dummies as independent variables in addition to MSA fixed
effects and Year-Month fixed effects. Panel A reports the coefficients using the Cross-Sectional Rent Risk
and Panel B reports the coefficients using the Time-Series Rent Risk. We report 95% confidence interval
with dotted lines.
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