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An Epidemiological Approach to Opinion and
Price-Volume Dynamics

Dong Hong Harrison Hong Andrei Ungureanu∗

June 2010

Abstract

We develop a simple and tractable model of opinions and price-volume dy-
namics based on a word-of-mouth communication process widely used in epidemi-
ology. Risk-averse investors have different opinions depending on whether they
heard the news from a friend. Opinions initially diverge and then converge over
time as news spreads, which leads to price adjustment and trading volume. News
released to many leads to an expected diffusion rate (the change in the fraction
of investors with the news) that declines with time. But news initially released
to few leads to an expected diffusion rate that initially increases in time and only
then decreases. The serial correlation of stock returns and trading volume are
proportional to the diffusion rate. The term structure of the serial correlation of
non-overlapping returns can be declining or hump-shaped in time depending on
whether the news was widely released. We test and verify these predictions and
show that this model is useful for understanding news and price momentum and
the dynamics of investor and analyst expectations around media events.

1 Introduction

In this paper, we study how word-of-mouth communication affects opinions and price-
flow dynamics in the context of asset markets. Scientists have long recognized its
importance in influencing the spread of disease, the adoption of new technologies, and
search in labor markets and developed models of such social processes. A key feature of
many such network models is the famous S-shaped plot of the fraction of the population

∗Dong Hong is at Lee Kong Chian School of Business, Singapore Management University. Harrison
Hong is at Department of Economics, Princeton University. Andrei Ungureanu is at Morgan Stanley.
We thank seminar participants at EDHEC, UCLA and Northwestern for helpful comments. Harrison
Hong acknowledges support from a National Science Foundation Grant. Please address inquiries to
hhong@princeton.edu.
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affected against time. The diffusion rate (or the change in the fraction of people affected)
is non-linear in time: low in the near term when there are few potential senders, high
in the medium term when there are more potential senders, and low in the long term
when most everyone is already affected. Yet, systematic studies of how this important
channel of non-market interaction affects opinions flow in economies are still limited.

Our focus on the stock market is motivated by a growing body of work on word-
of-mouth communication and gradual diffusion of information in asset markets.1 First,
many of these studies suggest that the word-of mouth mechanism is relevant for the
financial decisions of both retail and professional investors, though they do not point
to the equilibrium impact of this mechanism on the dynamics of information flow.
Second, there is wide agreement that there is price drift or momentum in markets
(Bernard and Thomas, 1989, 1990; Jegadeesh and Titman, 1993): firms with recent
positive earnings surprise or good price performance significantly outperform firms with
recent negative surprise or poor price performance over the next six to twelve months.
Third, there is also growing evidence to suggest that this price continuation phenomenon
is due to the gradual information diffusion hypothesis or the under-reaction of price to
news (Hong and Stein, 1999).2

We develop a model of opinions and price-volume dynamics based on a word-of-
mouth communication process that is widely used in epidemiology. In this model’s
network set-up an initial group of friends get the ”news” and each period, there is
some probability one runs into a friend and passes on the information—independence is
assumed across friends at a point in time and over time. (We initially think of the news
as real information as in an earnings announcement but in an extension we will also
consider potentially false information as in a rumor or a fad.) We begin by proving a
few results regarding the non-linearity of the gradual information process. This model
can generate an S-shaped plot of the fraction of friends with the news against time. The
intuition is the familiar one. If the initial fraction of friends with the news is small, the
diffusion rate (the change in the fraction of friends with the news) is low initially (since
there are few initial senders). Diffusion rate picks up as more friends have information
(since more potential senders in population). But the rate slows down over time as

1Surveys report that investors get ideas from friends (Shiller and Pound, 1989). Retirement plan
decisions are influenced by co-workers (Duflo and Saez, 2002; Madrian and Shea, 2000). Stock market
participation depends on friends and neighbors (Hong et al., 2004). Trades of managers and retail
investors from the same city or zip code are correlated (Hong et al., 2005; Ivkovic and Weisbenner,
2007; Kaustia and Knupfer, 2009). Managers’ best picks are companies whose CEOs went to same
college (Cohen et al., 2008)

2A striking example is (Huberman and Regev, 2001) on the gradual diffusion of news regarding
Entremed. Stocks with less analyst coverage (and perhaps less outlets to get the news out) are
more apt to exhibit price continuation (Hong et al., 2000). There is cross-firm or cross-industry price
continuation related to customers and suppliers (perhaps because of slow diffusion across markets or
clienteles) (Menzly and Ozbas, 2009; Cohen and Frazzini, 2008; Hong et al., 2007). The latter findings
might be interpreted as the slowness of news to travel across networks. Verardo (2009) find that there
is more momentum or drift in high analyst disagreement stocks.
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every one has information.
More importantly, we embed this word of mouth model in a simple model of stock

trading and pricing. Risk-averse investors have different opinions depending on whether
they heard the ”news” from a friend. We take a disagreement approach in which
investors agree to disagree and trade as the cross-sectional distribution of opinions
change.3 Our model can be given several interpretations. The first is as a form of
limited attention in which investors really get their news from friends. The second is
in the form of model based learning in which news is only understandable or inter-
pretable when a friend explains it you. So what gets passed along is not so much the
news but the interpretation of any given piece of news. The empirical evidence on
the gradual diffusion of information (cited in footnote 2) give ample support to both
interpretations.4

Opinions initially diverge and then converge over time as news spreads, which leads
to price adjustment and trading volume. Investors who initially receive good news buy
since price is below their forecasted terminal value for the asset. As they spread the
good news to their friends who then buy, the price rises and the trading occurs between
the new buyers as they buy shares from those who did not receive the news yet and from
those who already had received the news. There are only two groups of opinions at any
point in time: those with the news and those without. The cross-sectional dispersion in
opinion weighted by population weight is maximized when half the population has one
opinion and half has the other. After this threshold, opinions begin to converge again
with time as everyone at the end has the same opinion by the time news has spread to
all. Because investors are risk-averse (think of them as small with limited wealth), the
degree of price adjustment depends on the fraction of investors who have received the
news.

In this setting, we show that the serial correlation of stock returns is proportional to
the diffusion rate of information. Intuitively, suppose that a small fraction of investors
receive good news and they buy at time 1. Price adjusts partially to this buying and
we see that price has gone up between time 0 and time 1. Price continues to go up at
time 2 as more investors receive the news and buy. The degree to which it increases
at time 2 depends on the diffusion rate. If the diffusion rate is large then price adjusts
quicker since a large fraction of investors buy at time 2 and the greater is the correlation
between the price change between 0 and 1 and the price change between 1 and 2. If
the diffusion rate is very small and few investors buy, then there is little price change

3Early models of trading due to disagreement include Varian (1989); Harris and Raviv (1993);
Kandel and Pearson (1995) and pricing-volume dynamics have been explored in Hong and Stein (2003)
model of market crashes and Harrison and Kreps (1978); Scheinkman and Xiong (2003) models of
bubbles.

4See Hong and Stein (2007) for a review and interpretations of the disagreement approach to mod-
eling asset prices and trading volume. See Hou et al. (2009); Hirshleifer et al. (2009) for evidence that
attention plays a role in price and earnings momentum.
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between time 1 and 2 and little serial correlation between these consecutive returns.
Since serial correlation is proportional to the diffusion rate, the term structure of

serial correlation of non-overlapping returns inherits the non-linear properties of the
diffusion rate. This non-linearity is reflected in the following two testable implications
regarding price continuation. The first prediction is that for news not widely dissem-
inated (and hence there are few potential senders), the serial correlation of a stock
return at time t is highest for a non-overlapping return occurring at the medium term
compared to the near- and long-term. The second prediction is that for news widely dis-
seminated (and hence there are already many potential senders—the critical threshold
is at around half the population), the serial correlation of non-overlapping consecutive
price changes declines monotonically with time.

Another key feature of our model is that when a new release is not seen by too
many people, trading volume can be a measure of the degree of public-ness of the
news. (In the extreme, a news release seen by all will have no volume and only price
adjusts). As such, a third key prediction is that the hum-shaped term structure of the
serial correlation of non-overlapping returns is more prominent conditioned on returns
unexplained by news (earnings announcements) and accompanied by low turnover.

We confirm these three predictions using stock market data. We decompose stock
returns into a component based on earnings releases (public news) and a residual (pri-
vate news). We then follow some standard empirical methods in the large literature on
cross-sectional stock return predictability. Each month, we sort stocks into portfolios of
recent winners and recent losers (based on both the component due to public news and
the residual). The profits associated with buying the winners portfolio and selling the
losers portfolio is proportional to the serial correlation of returns due to public news and
to private news. For the returns due to public news, we find that the price continuation
profits decline monotonically with horizon. That is, this strategy’s profits come mostly
from the near term months and decline over time. In contrast, for the returns due to
private news, the profits are the greatest in the medium term.

We have to be careful that our private news residual may actually still contain a
public news component since we do not have data on all available public news, only some
proxies for earnings and analyst forecast reversions. As such, a clean measure of our
theory is to consider a difference-in-difference estimate in which we look at the difference
in the profit distributions across different months for the portfolio sorted public news
and the portfolio sorted on private news. There is an economically and statistically
significant difference that is consistent with our predictions. We also confirm the third
prediction that the hum-shaped term structure in the serial correlation of stock returns
is more prominent for initial price changes that occur with little turnover.

In this paper, we work with the explicit network model in which we model individual
friends as opposed to using the reduced form Bass model for a few reasons. We do so for
a few reasons. First, we are able to prove some new useful results. Second, the model
is simple and tractable. We provide some useful methods for solving the model. And
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third, this model yields trading or turnover implications that would not be possible if
we did not model individual friends and their trading behavior.

Our paper is closely related to Hong and Stein (1999) who originally proposed the
gradual diffusion mechanism as an explanation for price earnings drift and momentum.
Their paper assumed a constant diffusion rate and do not look at trading volume
implications. Our paper considers a more flexible and potentially non-linear diffusion
mechanism related to word-of-mouth and looks at equilibrium price and trading volume
implications simultaneously. But the models share a similar prediction that news that
is more widely seen or more quickly spread lead to less price of news drift or momentum.

Our work is also closely related to Carroll (2003) who argues that a similar epidemic
model fits macro-economic expectations better than a standard rational expectations
model. In a very interesting work by Shive (2008), she tests a similar epidemic model
in the context of holdings using detailed data from investors in Finland and she finds
support for the model. Both papers suggest that the mechanism is plausible at the level
of beliefs. Our model looks at the equilibrium price and trading implications of such
diffusion of opinions.

Finally, while we interpret and test our paper in the context of the spreading of
information, the model can as easily be interpreted as the spreading of rumors or fads.
As we discuss below, this yields additional testable implications. In this vein, our paper
contributes to a growing literature on the economics of social networks or non-market
interactions, including peer effects, multiple equilibria (tipping points), and information
cascades (Bikchandani et al., 1992). While this literature has yielded great insights on
the theoretical side, the empirical side has been plagued by identification problems. In
other words, when we see friends make the same investment decisions, are they engaging
in word of mouth or did they just get the same news. Our paper resolves to some degree
this problem by testing the dynamic price implications and hence of information flow
in a word of mouth model.

Our paper proceeds as follows. We develop the model in Section II. In Section III,
we discuss how to calculate relevant outcomes. In Section IV, we discuss the empirical
work. In Section V, we conclude with remarks on future research.

2 The Model

2.1 Communication Process

In describing this model and the results, most of the details are relegated to the Ap-
pendix. Suppose we have n friends who each have a probability p of running into
another friend each period. We assume that this chance is i.i.d. across friends and
time. Let G = {1, 2, ..., n} denote the set of friends. Suppose n0 of the friends initially
get the ”news”. We want to calculate the distribution over the set of friends with the
news at time t.

5



Let Π be power set of G: {{1} , {2} , ..., {n} , {1, 2} , {1, 3} , ..., {1, 2, 3} , ...} . An ele-
ment A of Π is the set of people with the news at t. Assume that the initial distribution
of friends with news is uniform over the sets A with size n0:

π0 (A) =
1(
n
n0

) (1)

Our i.i.d. assumptions imply that the elements of Π correspond to the states of a
Markov Chain. For simplicity we denote q = 1− p (this is the probability that a friend
does not run into another friend). We can then write the transition probability from a
set A to a set B as:

Pr (B,A) =

{ (
1− qb

)a−b
qb(n−a) B ⊂ A

0 otherwise
(2)

The transition matrix P has these probabilities as its entries. Note that the di-
mension of the matrix is given by dim (P ) = |G| = 2n − 1. We can now compute the
distribution over the set of people with news at time t by:

πt = π0 · P t (3)

With this, we can calculate the expected number of friends with news at time t
(which we denote by et). This involves multiplying transition matrix. The expected
fraction of friend with the news at a given time is our variable of interest. Its change
across a period is the diffusion rate: a high diffusion rate means that this expected
fraction has increased a lot from one period to the next.5

2.2 A 3 Friends Example

The basic elements of the model can be simply illustrated with the following simple
example. Suppose there are three friends. So in our notation above, this corresponds
to n = 3, G = {1, 2, , 3}, and n0 = 1. Then the power set is given by

Π = {{1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}} (4)

and the prior distribution is given by

π0 =
[

1
3

1
3

1
3

0 0 0 0
]

(5)

5And using Markov Chain Theory, we can compute the expected diffusion time (i.e. the time when
everybody has the information). This is the variable of interest for the literature but is less interesting
for us.
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Some simple probability calculations yield the following transition matrix:

P =



q2 0 0 q − q2 q − q2 0 (1− q)2

0 q2 0 q − q2 0 q − q2 (1− q)2

0 0 q2 0 q − q2 q − q2 (1− q)2

0 0 0 q 0 0 1− q
0 0 0 0 q 0 1− q
0 0 0 0 0 q 1− q
0 0 0 0 0 0 1


(6)

We provide some intuition for the transition probability entries in the first row. The
first row of this matrix denotes the set in which friend indexed by 1 has the information
this period. The first column of this matrix denotes the set in which friend 1 has the
information the next period. The probability of this occurring is that he did not meet
either friend 2 or friend 3 this period. Since these are independent draws, it is given by
the probability of not running into a friend (q) squared.

Continuing with this example, the second column denotes the set in which friend
2 has the information next period. The probability that friend 1 has the information
this period and that only friend 2 has the information next period is 0 since we assume
information once obtained cannot be lost. A similar logic explains how the third entry
in the first row is 0. The four entry is the situation in which only friend 2 gets the
information from friend 1 but not 3. The probability that friend 3 doesn’t get the
information is q and the probability that friend 2 gets the information is 1 − q. Since
these are independent events, the probability is q(1− q). Similar calculations yield all
the other entries.

We can calculate the updated probability distribution for the sets of friends with
the news by multiplying the P matrix with the prior distribution vector, which yields

πt =
[

q2

3
q2

3
q2

3
2(q−q2)

3
2(q−q2)

3
2(q−q2)

3
(1− q)2

]
(7)

With this updated distribution, we can calculate the expected number of friends with
the news by simply multiplying the probability of each of the sets with the number of
people in each set.

e1 = 1 · q
2

3
+ 1 · q

2

3
+ 1 · q

2

3
+ 2 · 2(q − q2)

3
+ 2 · 2(q − q2)

3
+ 2 · 2(q − q2)

3
+ 3 · (1− q)2

= 3− 2q (8)

This model can potentially deliver non-linear diffusion rates over time. To see this,
we prove three theorems (all details are in the Appendix).

Theorem 1 For certain set of values for p and small enough n0: d1 > d0 (i.e. serial
correlation of returns at medium-horizon higher than at short-horizon)

7



This proof relies on us calculating in closed form solutions for e1 and e2 . The
intuition is simply that as more friends get news, diffusion rate is higher.

Theorem 2 Keeping the same assumptions as in Theorem 1 and for t big enough:
ds < d1 and ds < d0 for all s > t (i.e. medium horizon serial correlation higher than
short- and long- horizons)

Here, we use inequalities to prove that the expected number of people converges to
n as t is high. The intuition is that when everyone has information, the diffusion rate
is low.

Theorems 1 and 2 basically yield the non-linear (hum-shaped) diffusion rate result,
which we test. Note that this result relies on a small initial group of investors having
the news and that the transmission probability is small.

What these results also suggest and we make clear in Theorem 3 is that when the
number of people with the news exceeds a critical threshold of n/2, then the diffusion
rate declines in time.

Theorem 3 For certain sets of values for p and for n0 ≥ n
2
: dt+1 < dt for all t (i.e.

serial correlation declining over time)
Here the recursion formula for the expected number of people allows us to prove this

theorem. The intuition is that if a high initial number of people get the news, similar
to everyone having information in the previous setting.

2.3 Computation Method

Since we cannot derive closed form solutions for the fraction of people with news,
it is helpful to calculate the model for various parameters to confirm our Theorems
and develop a feel for comparative statics. This turns out to be non-trivial for large
networks. The reason is that dim (P ) = |G| = 2n − 1 and hence computation becomes
very difficult. To deal with this issue, we make an observation that the transition
probability depends only on cardinality of the set. This will allow us to reduce the
dimensionality of the problem.

First, group all sets of the same cardinality together. Define the analog of Π to be

Π∗ = {Sa|a = 1, ..., n} (9)

where
Sa = {A : |A| = a} (10)

Then define the new initial distribution over Π∗ as

π∗0
(
S|A|
)

=
∣∣S|A|∣∣ π0 (A) (11)

The transition probability then becomes:

Pr (Sb, Sa) =

(
n− b
a− b

)
Pr (B,A) (12)

8



where the new transition matrix P ∗ has these as its elements.
Going back to our example, we can show that we obtain identical results for the

expected fraction of investors with the news at any given time are the same but the
setup is different. Using the method that we just outlined for the example with three
friends, let S1 = {{1} , {2} , {3}}, S2 = {{1, 2} , {1, 3} , {2, 3}}, and S3 = {{1, 2, 3}}.

Then the power set is defined as

Π∗ = {S1, S2, S3} (13)

and the prior distribution is given by

π∗0 =
[

1 0 0
]

(14)

The new transition matrix is then given by

P ∗ =

 q2 2q − 2q2 (1− q)2

0 q 1− q
0 0 1

 (15)

With this transition matrix and the prior distribution, we can calculate the proba-
bility distribution at time 1 as

π∗t =
[
q2 2q − 2q2 (1− q)2

]
(16)

and the expected fraction of investors as

et = 1 · q2 + 2 ·
(
2q − 2q2

)
+ 3 · (1− q)2 = 3− 2q (17)

Notice that the result is the same as before. This computation method greatly
simplifies computations and makes the model tractable.

2.4 Equilibrium Price and Trading Volume

With this analysis in hand, we now embed our word-of-mouth model in a simple asset-
pricing model. Assume that the stock pays a liquidating dividend of the form

D = ε+ µ (18)

where ε, the news that is released to some at time 0, is normal, N (0, σ2
ε ) and µ, the

remaining fundamental uncertainty, is normal, N (0, σ2
ε ) and independent of ε. Note

that E [D] = 0, E [D|ε] = ε, Var (D) = σ2
ε + σ2

µ, and Var (D|ε) = σ2
µ.

Assume that we have mean variance investors who either have news or they don’t
and they agree to disagree. They also have the usual static mean-variance demand
functions with a risk-aversion parameter of γ. As such, there are two groups of investors

9



or opinions in the market: those with the news and those without the news and their
demands are given by the following equations:

E [D]− Pt
γVar (D)

(19)

and
E [D|ε]− Pt
γVar (D|ε)

(20)

We assume that there is one share of stock outstanding.
Then the equilibrium condition to solve for the price each period is given by

(1− kt)
E [D]− Pt
γVar (D)

+ kt
E [D|ε]− Pt
γVar (D|ε)

= 1 (21)

where kt is the fraction with the news at time t. Note here that kt is the realization for
a given path (or draws of the i.i.d. word-of-mouth distribution), which we denote by
ω. The equilibrium price for a given path is then given by

Pt(kt) =
ktε− γσ2

µ

σ2
µ + σ2

εkt

(
σ2
ε + σ2

µ

)
(22)

The expected price is calculated by averaging across the different paths

Eω [Pt(kt)] =
n∑
i=1

π∗t (i)Pt(i) (23)

This expected price is easy to calculate since we have a simple formula for π∗t given
above.

Notice that the expected price is non-linear in kt. But when σ2
ε is small relative to

σ2
µ, it is approximately linear in kt (we will make this precise below). Suppose ε was

positive news, then price gradually adjusts to the right fundamental value over time as
the fraction of people with news approaches 1. It turns out that this intuition will hold
true for most parameter values when we fully solve the model below.

Now let mt = kt+1 − kt be the realized diffusion rate and then dt = et+1 − et be the
expected diffusion rate. Then it follows from simple calculations that

Rt (kt, kt−1) = Pt(kt)− Pt−1(kt−1) =
mt−1σ

2
µ (ε+ γσ2

ε )
(
σ2
ε + σ2

µ

)
yt

(24)

where yt =
(
σ2
µ + σ2

εkt
) (
σ2
µ + σ2

εkt−1

)
. Note that P−1 = −γ

(
σ2
µ + σ2

ε

)
and so

R0 =
d−1 (ε+ γσ2

ε )
(
σ2
ε + σ2

µ

)
σ2
µ + σ2

εd−1

(25)

10



We can then calculate the expected return at any time t conditioned on R0 by the
following:

E [Rt (kt, kt−1) |R0] =
mt−1σ

2
µ

(
σ2
εd−1 + σ2

µ

)
d−1yt

R0 (26)

Let ∆ = σ2
ε

σ2
µ
, which is the ratio of the variance of the news shock to the remaining

fundamental variance. We can rewrite equation 39 as:

E [Rt (kt, kt−1) |R0] =
1 + ∆d−1

d−1

mt−1

(1 + ∆kt) (1 + ∆kt−1)
R0 (27)

The serial correlation of non-overlapping returns is given by the regression coefficient

βt =
1 + ∆d−1

d−1

mt−1

(1 + ∆kt) (1 + ∆kt−1)
(28)

We can compute the expected serial correlation across the paths ω as we did for the
expected price:

Eω [E [Rt (kt, kt−1) |R0]] =
n∑
i=1

n∑
j=1

π∗i−1(i)p∗ijE [Rt (i, j) |R0] (29)

Notice again that when ∆ is near zero (the variance realized by news is small relative
to remaining fundamental variance), the serial correlation coefficient is proportional to
diffusion rate. In other words, the serial correlation coefficient given in equation 41
inherits the non-linear properties of the diffusion rate.

With these equilibrium prices and calculations in hand, we turn towards calculating
the equilibrium trading volume. Notice that at the equilibrium prices, we have two
groups. Those with the news per capita have a demand given by

θεt(kt) =
ε (1− kt) + γ

(
σ2
µ + σ2

ε

)
γ
(
σ2
µ + ktσ2

ε

) (30)

and those without the news per capita have a demand given by

θt(kt) =
−εkt + γσ2

µ

γ
(
σ2
µ + ktσ2

ε

) (31)

The turnover in this market is given by the following formula:

Tt =
1

2

[
kt−1

∣∣θεt − θεt−1

∣∣+mt−1 |θεt − θt−1|+ (1− kt) |θt − θt−1|
]

(32)

The formula has an intuitive interpretation. Trading can come from three groups:
guys with news at t − 1 and who still have news at t (this is in fraction kt−1), guys
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without news at t − 1 and who get the news at t (this is in fraction mt−1), and guys
without news at t − 1 and still without news at t (this is in fraction 1 − kt). We can
then calculate the equilibrium expected turnover across the paths given by

Eω [T (kt, kt−1)] =
n∑
i=1

n∑
j=1

π∗i−1(i)p∗ijTt (i, j) (33)

Intuitively, turnover will also be proportional to the diffusion rate. When a lot of
investors get the news, there will be more trading. So turnover should also inherit the
non-linear structure of the diffusion rate process. But one thing to keep in mind is
that at the extreme of everyone getting the news at the same time there will be little
turnover and lots of price adjustments. For a more gradual diffusion scenario, this is
less relevant.

We next prove that our intuition derived from the case where ∆ is small is a good
one. In Theorem 4, we show that the solution of the model is close to the solution of
the model in which ∆ is small when ∆ is small.

Theorem 4 : Let us denote the following c =
ε

γσ2
µ

. The following approximations

hold:

1. ∣∣∣∣E [Rt (kt, kt−1) |R0]

ERt (kt, kt−1) |R0

− 1

∣∣∣∣ ≤ 2∆ + ∆2 (34)

2.
|Tt (kt, kt−1)− |c|mt−1 (1−mt−1)| ≤ ∆ (1 + |c|) (35)

where E is the conditional expected return that is linear in the diffusion rate.
Theorem 4 tells us that when ∆ is small, the solution for the model will be close to

the solution in which the expected price is linear in the expected fraction of investors
with the news.

2.5 Calculations

We now calculate the expected fraction of people and the diffusion rates in Figures 1-4
to get some feel for the key predictions of our model and then calculate equilibrium
quantities for serial correlation and trading volume in Figures 5-6. For these calculations
we set n = 100 friends. We consider two scenarios. Suppose n0 = 1, so that only one
person initially has the news. We call this the private news scenario since few initial
friends get the news. The second scenario we consider is n0 = 50 (in other words,
half the population has the news). We this case the public news scenario. In Figure
1, we consider the private news case. We plot e on t (for various values of p — the
transmission probability — ranging from a high of .01 to a low of .0005). Notice that
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the S-shape is most apparent for intermediate values of p. For p very small, the fraction
of people with the news rises very slowly. Even after 120 periods, a large fraction of
the population still does not have the news. For p very large, the fraction of investors
with the news increases very quickly and the S-shape gets compressed into a short time
interval since the entire population gets the news very quickly when p is large enough.
It is as if the S gets compressed. For intermediate values, we see the nice S-shape.

In Figure 2, we plot the diffusion rate dt over time. Notice that we see the non-
linear diffusion rate as we discussed earlier. The diffusion rate peaks somewhere in the
middle periods for all cases. It is a bit hard to see the case with the smallest p since
the diffusion rate peaks at the very end of the 120 periods. Figure 2 makes clear that
the S-shaped pattern in levels that we see in Figure 1 corresponds to a non-linear hump
shaped pattern in the diffusion rate.

In Figures 3 and 4, we plot the fraction of people with the news and the diffusion
rate against time for the case second scenario of public news, respectively. For each of
the transmission probabilities, we do not see and S-shape any longer in Figure 3—now
we only see that the fraction increases most dramatically in the beginning and declines
as everyone eventually has the news. Indeed, in Figure 4, we see that diffusion rate
is highest in nearest term and monotonically declines in time, consistent with what is
observed in Figure 3.

In Figure 5, we plot the expected diffusion rate, equilibrium trading volume and
serial correlations over time. We focus on the case where n0 = 1, p = .001 and ∆ = .25.
In contrast to the Figures 1-4, we also plot here the initial change when the first person
gets the news (that’s why we see a spike at time 0). Notice that when the first guy
gets the news, there is a discrete jump in trading volume and also the diffusion rate.
We plot the expected serial correlation coefficient given above (but here we normalize
it by dt−1). Hence the initial jump in the serial coefficient is artificially induced by
our normalization to get the expected serial correlation and the expected diffusion rate
into the same scale. Notice that the serial correlation of non-overlapping returns and
trading volume follow the same hump-shaped pattern as the diffusion rate.

In Figure 6, we plot the same quantities except that we now consider the solution
for n0 = 10. We see a bigger turnover spike in the beginning but we now see a more
moderate hum-shaped pattern exactly because a larger fraction of investors had initially
already received the news. In sum, these plots provide numerical calculations for the
results in Theorems 1-3 and also for the equilibrium price (serial correlation) and volume
patterns. We will next look to the stock market data on price continuation to see if
indeed these predictions hold true.
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3 Empirical Work

We test the predictions of the model by re-examining the well-known price continua-
tion patterns associated with past price changes and earnings announcements. The key
facts about these two phenomena are well known: at a given point in time, a port-
folio of recent winners (past 1 to 12 months) or good news firms (whether measured
with earnings surprises or analysts forecast revisions) outperforms a portfolio of recent
losers or bad news firms over the next year by about 10%. There is no price contin-
uation pattern after a year. What is not known is how this 10% is distributed over
the year. Are the profits uniformly accumulated for each month up to a year as in
the theory of Hong and Stein (1999)? Or as our theory would suggest, the patterns
should differ depending on how widely released is the news: monotonically declining
for more widely disseminated news like earnings announcements and hump-shaped for
less widely disseminated news?

We test our predictions using a sample of all domestic common stocks listed on
NYSE, AMEX or NASDAQ from January 1976 to December 2007, excluding real estate
investment trusts (REITs), American Depository Receipts (ADRs), stocks with market
capitalization in the bottom quintile using NYSE-AMEX breakpoints, and stocks priced
below $5. We obtain daily and monthly stock returns and market capitalization data
from Chicago Research in Securities Prices (CRSP), the actual earnings announcement
dates and earnings from Compustat, and analyst earnings forecasts from the Institu-
tional Brokers’ Estimate System (IBES) summary file.

We utilize three pieces of public earnings news in the empirical implementation,
which we obtain from the literature on price continuation following earnings announce-
ments. The first is the cumulative market-adjusted stock returns from day -2 to day
+1 around each earnings announcement date (which we denote by ABR). The idea is
that the stock price reaction on an earnings date is a pure measure of the market’s
surprise at the release. If the market is not surprised at the firm’s release, then there is
no price change. The second is standardized unexpected earnings or SUE, where SUE
is the earnings this quarter minus the earnings from four quarters ago divided by the
standard deviation of this same unexpected earnings measure in each of the previous
eight quarters (not including the current one). This earnings surprise measure adjusts
for well-known seasonal patterns in corporate earnings. The downside of this measure
is that one requires a total of 12 quarters to calculate this measure. The third is an-

alyst forecast revision in month t defined as
Ft − Ft−1

Pt
, where Ft is forecast consensus

for fiscal year end (FY01) in month t and Pt is the price of the stock. We denote the
cumulative revision in the past J months as REV(J), which is the sum of the monthly
forecast revisions from month t-J+1 to month t. ABR and SUE are measures of actual
announced earnings, while REV is a measure of forecasted future earnings.

At the end of each month, we want to decompose a firm’s price change into a part
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that is explained by public news (which we measure with earnings releases or analyst
revisions) and a residual component, which is not explainable by public news, which
we will call private news. Here, we want to note that we use the term public versus
private in that public news is know to relatively more people, not necessarily to all.
There is a lot of anecdotal evidence cited in the introduction that lots of public news is
not received by all market participants at the time of release. In this set-up, we view
price changes or returns as being driven by a mix of public and private news. This is
a simplification since some of these price changes might be due to liquidity shocks. As
it turns out, we require fairly stringent data requirements to be able to perform this
decomposition that only fairly large stocks are able to satisfy. We will deal with how
the potential of liquidity shocks influencing price changes affects our interpretations
below.

More precisely, to perform this decomposition, we run a cross-sectional regression
of past J-month stock return on earnings news and forecast revisions to decompose this
price change (which we call totInfo) into the portion explainable by public information
(pubInfo) and a residual which is not explainable or the private information (privInfo)
component. For example, if we use past J = 6 months returns, then we run the following
cross-sectional regression:

Ret(J)i,t = a+ b1 · ABR(1)i,t + ...+ bJ/3 · ABR(J/3)i,t + c · REV(J)i,t + ei,t (36)

where Ret(J) is the J-month return, ABR(1), ..., ABR(J/3) are the ABR’s within
the J-month period, and REV(J) is the cumulative analyst forecast revision in the same
period. Note that for J=1,2, this regression will only have one ABR. Alternatively, the
ABR’s can be replaced with SUE’s. We obtain qualitatively identical results using SUE.

Each month we construct information portfolios (P1 to P5) after sorting stocks into
quintiles based on totInfo, pubInfo and privInfo respectively. Table 1 summarizes the
firm characteristics for portfolios (P1 (recent losers or bad news), P3, and P5 (recent
winners or good news)) for formation periods of J = 1, 2, 3, 6, 9, and 12. For brevity,
we do not report results for P2 and P4 since they do not factor into calculations. Take J
= 3 for example. Let’s first consider the total information portfolios. The first column
reports the number of stocks for each portfolio. There are 408 in each. The second
column reports the formation period returns for each of the portfolios. We will focus
on discussion on P1 and P5 portfolios since they are the ones with which we calculate
the profits from momentum and post-earnings drift strategies or equivalently, the price
continuation patterns. The spread between P1 (-20.79%) and P5 (33.96%) is 55%. The
third column reports the return predicted by public news from the above decomposition
regression for each of the portfolios. The spread between P1 (0.69) and P5 (7.78) is
about 7%. The third column reports the residuals from the regression for each of the
portfolios. The spread between P1 (-21.48%) and P5 (26.118%) is 48%. Roughly, we
can think of the 55% spread in returns as being decomposed along the lines of 7% being
due to earnings information and the remaining 48% as unexplained.
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Of course, we have to caveat that we do not have all sources of public information and
our private news measure is necessarily contaminated by public news. This observation
will be critical later on as we will need to look at a difference-in-difference estimate
between the reactions of price to public versus price news to test our hypotheses.

Continuing with the summary statistic table for total information portfolios for J=3
month returns, we also report for completeness the characteristics of the earnings data
(SUE, ABR and REV) for each of the portfolios and also the LogSize of the company
and the number of analyst estimates. Notice that P1 has on average poorer SUE, ABR
and REV statistics compared to P3 or P5. Also notice that companies in each of the
portfolios are very large due to our data restrictions. For J = 3, on average in each
month 2041 stocks are included in our portfolios, 5264 stocks are in the crsp universe.
So 61% of the stocks are excluded. Median market cap of the 2041 stocks is 267 million
on average, which places them at the 76 percentile of the whole CRSP universe in terms
of market cap. The mean market capitalization of the 2041 stocks is 1662 mil, which
is the 91 percentile of the whole CRSP universe in terms of market cap. Finally, not
surprisingly, these companies have on average around 7 analyst estimates each month
which is much larger than the typical stock which has little to no coverage.

Notice a few other key things regarding this summary statistics table. The first is
that for J=1 and 2, we have fewer stocks because to do our decomposition, we need
earnings information in that month or in those 2 months and this is much less likely
to occur for all stocks than within a quarter. In other words, firms are reporting their
numbers at different months within a quarter and hence in any given month, we are
picking up only one-third of the firms. Hence, J=3 is in some sense our preferred focus
of stocks since we have a larger sample to reduce measurement error. So it should not
come as a surprise that the J=1 and 2 results might be a bit noisier.

Also notice that we group together J=6, 9, 12 into a separate group of longer horizon
past returns. The logic of our model is most easily applied to short horizon returns
like one month or a quarter because one can plausibly think that these sorts of price
changes may reflect private news not noticed by many investors. In contrast, stocks
that have done extremely well or poorly for a longer horizon like 6 to 12 months, one
might worry that we are now actually capturing the end of a gradual diffusion process
rather than the beginning. In this instance, it is likely that perhaps many participants
already have the information — so here the diffusion rate even for what we call private
news will be high initially and monotonically declining. This is a testable prediction
we examine below with the J=6, 9, 12 decompositions.

Table 2 reports the return drift to past information for different formation period
J=1, 2, 3. Panel A, B, C reports the drift to public information, private information
and total information portfolios, respectively. After forming the information portfolios,
we skip one month, then hold them for twelve months. The reported numbers are the
average monthly return difference between P1 and P5 (the drift) in each of the twelve
months and the corresponding t-statistics in brackets. We can think of the return each
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month as being proportional to the diffusion rate of our model.
We begin by looking at the drift patterns for the public information portfolios.

Notice that for J=1,2, and 3, for the return drift to public information, the drift is
always the strongest in the first couple of months and then it weakens gradually over
the 12-month period. This is consistent with the prediction of the word-of-mouth
model to the extent that we view public news as being received by a large fraction of
investors. (In our Theorem 3, the critical fraction is half of the investors.) According
to our theory, the diffusion rate should be high initially and gradually declines. This
is roughly what we see. Now consider the return drift patterns to private information.
Here the monthly returns are actually highest somewhere in months 5-8. They are lower
in the first few months and in the last few months. Again, this is consistent with our
model since for news that is not widely released, we expect a non-linear hump shaped
diffusion rate or drift pattern in the data. The final panel reports the results for the
total information sort. We still see a bit of a hump shaped pattern but it is not as
pronounced as for the private information portfolios, which is very much to our point
that the total information portfolios is a mix of reactions to public and private news and
these reaction patterns are very different. But when combined, the total price reaction
patterns seem more constant over time than is reality.

Table 2 Panel B presents the formal tests on the downward sloping drift to public
information and the hump-shape drift to private information. As we argued earlier, it
is likely the case that the private information portfolio is still contaminated with public
information. One way to purge out these effects from the point of view of inference
is to consider the difference in the returns each month for the public and the private
information portfolios. One can think of this as a difference-in-difference estimate in
which we use the shape of the public information portfolio as a control group of what
the price reaction to a pure public news shock would be. We report the results for
J=1,2, and 3. To economize on space, we only report a few key statistics for the public
information portfolio and the private information portfolio: the month 6 (M6) return
minus the month 1 (M1) return, the month 12 minus the month 6 return, and the
month 12 minus the month 1 return. We then report the difference in these differences
for the private versus public portfolio. We also report the month with the largest return
for the private information portfolio (which we denote by Peak) and take the difference
with M1 and then look at the difference between M12 and Peak.

Starting at J=1, we see that M1 > M6 > M12 — in other words, there is a
monotonically declining return pattern for public information. Also, we report the
difference in Peak −M1 and M12− Peak and draw the same conclusion. In contrast,
for private information, we see that M6 > M1 and M6 > M12 while M1 is basically
equal to M12. More importantly, we see that Peak > M1 (a difference of 71 basis
points a month with a t-statistic of 2) and Peak > M12 (with a difference of 62 basis
points a month with a t-statistic of 2.71). In other words, there is a hump shaped
return pattern to the private information portfolios. These differences are all the more
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stark when we consider the difference-in-difference estimate. Relative to what a pure
public shock reaction would have been, M6 > M1 by 87 basis points with a t-statistic
of 3.26 and M6 > M12 by 96 basis points with a t-statistic of 3.4. A Similar conclusion
applies for Peak −M1, though the effect is smaller for Peak −M12.

Looking at J=2 and J=3, we come to pretty similar conclusions. If anything the
effects are much stronger and nicer for J=2 and 3 then when compared to J=1. In part,
this is because we have far fewer stocks when we look at J=1 results due to fewer firms
reporting earnings in any given month. We view the results in Table 2 as providing
some support for our model.

In Table 3, we worry about the following alternative hypothesis. Suppose that the
residual component of returns we are calling private news isn’t just driven by private
news but may also be capturing some liquidity component. A liquidity effect typically
gives rise of reversals in the short horizon. A poor performance this month reverses
itself the next month. Then what might be happening is that the returns for the
private information portfolio may have low returns the first few months because of this
reversal effect playing itself out. Our prior is that this effect is implausible for out
sample since we are essentially looking at the largest stocks in the CRSP universe due
to our data restrictions. Nonetheless, in this table, we report the results contained
Panel B of Table 2 but cut by firm size. That is, we divide our sample into three
groups, which we label small, medium and large firms and re-run all our analyses from
Table 2 and see how the diffusion patterns vary across these sub-groups. The idea here
is that we worry that liquidity effects are only a concern for smaller stocks. So if we do
not see striking differences across the sample, then we can be assured that our results
are not due to liquidity reversals in the short horizon.

Panel A reports the cuts for J=1. Results are noisier here not surprisingly but
we can discern similar patterns across all three groups. Looking at public information
portfolios, we see the monotonically declining pattern across all three cuts. Looking at
private information portfolios, we also see that the middle months yield higher returns
than the earlier months though the results look less stable when we compare the middle
or peak months to the M12 for small and medium size stocks. Things look more stable
and in the direction of our hypothesis when we look at large stocks. This is very re-
assuring since it is telling us that our effects are unlikely to be due to liquidity issues.
In Panel B, we report comparable results for J=2 and in Panel C the results for J=3.
J=2 results also look supportive in that there doesn’t seem to be much variation across
size cuts. The J=3 results in Panel C look less stable but are also generally in the same
direction as our hypothesis.

In Table 4, we examine the results from Table 2 but now for J=6, 9, 12 month
returns. For J=6 month results, it is surprising that they look similar to those of
J=1,2, and 3. In other words, even for returns up to 6 months, it appears that there is
still a non-linear hump shaped pattern in the diffusion rate. But for J=9 and 12, as we
suspected, there is not discernible difference between public and private news reactions.
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The diffusion rates are all monotonically declining in time.
In Figure 5, we now report the results for the case of J=3 by sub-groups of abnormal

turnover. That is, we see how the decompositions vary across low, medium and high
abnormal turnover sub-groups. We find that the hump-shaped pattern in the returns
for the private information sort are much more prominent for the low abnormal turnover
sub-group. This result is consistent with the model’s prediction that turnover is to a
degree a measure of whether the information that drove the price change was widely
observed. Information that is less observed is more likely generate the hump-shaped
pattern. And consistent with the model, there is no discernable difference for public
information cut presumably because this information has already been widely seen.

4 Extensions: Rumors and Fads

Up to this point, we have interpreted our model and the tests of it as the spreading of
news. But our model can as easily be used to explore the transmission of rumors and
fads. There are a couple of ways to model this. One route is to allow for some probability
that the news released be false. In this scenario, if revelation regarding whether the news
was real or a rumor occurs at a lower frequency than the diffusion of the information,
then the model can generate a reversal in long-horizon returns. Another way to model
this is to follow Demarzo et al. (2003) in which boundedly rational agents fail to account
for repetition in the information they hear. In our context, agents who already have
the news and hear it from a new friend do not change their expectations. But one
can allow for an agent who update even more strongly on his beliefs. This additional
layer of bounded rationality can lead to over shooting of price to news. Indeed, there
is well-known evidence that price momentum reverses at longer horizons. To see this,
notice that the returns at around 12 months after the formation period for private
information returns show negative average returns. This is the beginning of the reversal
phenomenon. Our model can naturally be extended to provide an account of this
reversal in the manner described above.

5 Conclusion

In this paper, we develop a simple and tractable model of the diffusion of opinions and
price-volume dynamics in asset markets that builds on a canonical model of word-of-
mouth with connected friends who have i.i.d. transmission probabilities. We derive a
number of novel predictions regarding the non-linearity of price drift and trading volume
for public versus private information. We tested these predictions in US stock market
data and find some support for these predictions. A novel finding is that conditioned
on price moves due to public news, the diffusion rate of information is highest in the
near term and declines gradually over time. In contrast, for price moves due to private
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news, the diffusion rate is low initially and peaks somewhere in the medium term of 5
to 9 months and then is low after.

We now suggest some avenues for further research. Other key parameters that are
important for understanding information flow in this model is the size of networks n
, how tight the network is (or the transmission probability p) and the initial fraction
of people with the news. Further empirical work to measure these key parameters
can yield potentially useful insights. In particular, earlier work by Hong et al. (2000)
showing that there is more momentum in stocks with greater analyst coverage (which
can be interpreted both as a measure of the tightness of networks or of the initial fraction
of people with the news) is example in this direction. Our own work has focused on
very large stocks and paid more attention to the nature of initial news releases in our
tests. But these two strands can perhaps be combined to yield additional insights.

Moreover, many of the empirical papers up to this point only test to see whether
there is more or less drift or momentum depending on stock characteristics related to
analyst or media coverage (as a sort of proxy for attention or disagreement) but our
model points a way toward understanding potentially richer patterns in the data that
will provide a deeper understanding of markets.

Finally, this model can also be used to study the dynamics of investor expectations
(perhaps as proxied by analyst forecasts as in Diether et al. (2002)). For instance,
the model generates interesting dynamics for the cross-sectional dispersion of opinions
that vary conditioned on public new releases that are widely seen versus those that are
less public or private, which can be tested. More generally, there is now rich data on
newspaper or broader media releases more generally that can be used to perform event
studies to understand how these releases affect the dispersion of opinion in markets
(see, e g., Chan (2003)). In sum, the preliminary evidence in this paper suggests that
this simple and highly stylized model can provide a very useful lens to understand the
diffusion of opinions and price-volume dynamics in asset markets.

6 Appendix

6.1 Calculating the Transition Probability Matrix

For two sets A and B in Π, we denote the transition probability from a set B to a set
A at time t by Pr (B,A, t). Note that Pr (B,A, t) = 0 if B 6⊂ A. We will now calculate
the transition probabilities for the case B ⊂ A. Unless otherwise specified we will use
a = |A|, b = |B| and q = 1− p. Let us denote the probability that information travels
from a set X to a set Y at time t by P (X → Y, t). We also denote by P (X 9 Y, t) the
probability that information does not reach any person in set Y at time t, given that
the people in set X have the information at time t−1. Note that X and Y do not have
to be states of the Markov Chain. By the i.i.d. word-of-mouth assumption, we have
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Pr (B,A, t) =
∏

i∈A−B

P (B → {i} , t) ·
∏
j /∈A

P (B 9 {j} , t)⇒

Pr (B,A, t) =
∏

i∈A−B

[1− P (B 9 {i} , t)] ·
∏
j /∈A

P (B 9 {j} , t)⇒

Pr (B,A, t) =
∏

i∈A−B

[
1−

∏
k∈B

P ({k}9 {i} , t)

]
·
∏
j /∈A

∏
k∈B

P ({k}9 {j} , t)⇒

Pr (B,A, t) =
[
1− (1− p)|B|

]|A−B| · (1− p)|B|·(n−|A|) ⇒
Pr (B,A, t) =

[
1− qb

]a−b · qb·(n−a)

These transition probabilities form the elements of the transition matrix, denoted
by P , of dimension |Π|. Let πt be the probability distribution over the power set at
time t. We know from the theory of Markov Chain that πt = π0P

t. One of the things
we are interested in, is the expected proportion of people who have the information at

time t, denoted by et, which is given by et =
∑
x∈Π

πt (X) · |X| .

6.2 Computationally Efficient Solution Method

A problem which arises in computing solutions to our model is that the dimension of
the transition matrix is exponential in the number of friends (dim (P) = |Π| = 2n− 1),
which makes computation difficult for a large n. As a solution, we will consider a new
Markov Chain which takes advantage of the fact that we are predominantly interested
in keeping track of the number of people having the information at time t and not
in the exact set of people. We define the state space for this new Markov Chain to
be Π∗ = {Sa|a ∈ 1, ..., n}, where Sa = {A|A ∈ Π; |A| = a}. If at time t the people in
the set A have the information, then the corresponding state of the Markov Chain is
S|A|. Furthermore the initial distribution π∗0 over the states in Π∗ can be seen as being
induced by the initial distribution π0 on Π, with π∗0

(
S|A|
)

= π0 (A) ·
∣∣S|A|∣∣.

Notice that the transition probability from the previous Markov Chain: Pr (B,A)
depends only on the cardinality of A and B. The probability distribution over states at
time t is π0 ·Pt . Since both π0 and P are function of sets only through their cardinality
then conditioned on being in a state Sa at time t each set A ∈ Sa is equally likely
to be the one with exactly those people who have the information at time t. We are
interested in computing the new transition probability Pr (Sb, Sa).

Pr (Sb, Sa) =
∑
A∈Sa

∑
B∈Sb

1

|Sb|
Pr (B,A) =

∑
A∈Sa

∑
B∈Sb;B⊂A

1

|Sb|
Pr (B,A)⇒
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Pr (Sb, Sa) =
∑
|A|=a

∑
B⊂A;|B|=b

1

|Sb|
Pr (b, a) =

Pr (b, a)

|Sb|
·
∑
|A|=a

∑
B⊂A;|B|=b

1⇒

Pr (Sb, Sa) =
Pr (b, a)

|Sb|
·
∑
|A|=a

(
a

b

)
=

Pr (b, a)

|Sb|
·
(
n

a

)
·
(
a

b

)
⇒

Pr (Sb, Sa) =

(
n− b
a− b

)
· Pr (b, a) =

(
n− b
a− b

)
·
[
1− qb

]a−b · qb·(n−a)

Since people do not forget information once they receive it Pr (Si, Sj) = 0 for all
i > j. The transition matrix P∗ is: p∗ij = Pr (Si, Sj) if i ≤ j and p∗ij = 0 otherwise,

∀i, j ∈ 1, n. It is worth noticing that the dimension of the transition matrix is now n,
linear as opposite to exponential in the number of agents of the network. We can now
write down the formula for the distribution over the states of the new Markov Chain
at time t: π∗t = π∗0 · (P∗)

t. It follows that the expected number of people who have the

information at time t, denoted by e∗t , is: e∗t =
∑
Sa∈Π∗

π∗t (Sa) · a = et.

6.3 Results need for proofs of Theorems 1-3

We now prove some results which will be used in the proofs of Theorems 1-3. Since we
are only interested in computing the expected number of friends with the information
at a particular time, we will use the framework for the computational efficient Markov

Chain model. Let π∗0 be the initial distribution as above and: g =


1
2
...
n


Let us define am(t) as the expected number of people that do not have the infor-

mation at time t given that m people do not have the information at time 0. Notice
that a0(t) = 0, trivially for all t since when everybody has the information at time 0,
everybody will have the information at any other time in the future.

Proposition 1: For all m ∈ {1, . . . , n− 1} there exist positive real number u such
that the following recursion holds:

am(t+ 1) =
m∑
k=0

um−k · vk ·
(
m

k

)
· am−k(t)

where v = 1− u.

Proof. Using the definition of the Markov Chain and that of am(t) we have:

(P∗)t · g = n ·

1
...
1

−
an−1(t)

...
a0(t)
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Because P∗ is a transition matrix for a Markov Chain the following holds:

(P∗)t ·

1
...
1

 =

1
...
1


We can now try to derive a recursive formula by looking at the one step update in

this matrix notation:

n ·

1
...
1

−
an−1(t+ 1)

...
a0(t+ 1)

 = (P∗)t+1 · g = P∗ ·

n ·
1

...
1

−
an−1(t)

...
a0(t)




= n ·

1
...
1

−P∗ ·

an−1(t)
...

a0(t)


But the above equality simplifies to:

P∗ ·

an−1(t)
...

a0(t)

 =

an−1(t+ 1)
...

a0(t+ 1)

⇒ P∗i ·

an−1(t)
...

a0(t)

 = an−i(t+ 1)

where we have denoted by P∗i the ith line of the matrix P∗.
Writing explicitly the formulas for the entries of P∗ we get:

an−i(t+ 1) =
n−i∑
k=0

(qi)n−i−k · (1− qi)k ·
(
n− i
k

)
· an−i−k(t)

Finally we can make the notation u = qi, v = 1 − u, m = n − i and the desired
recursion formula is proven:

am(t+ 1) =
m∑
k=0

um−k · vk ·
(
m

k

)
· am−k(t)

Corollary 1: The recursion stated in the previous proposition holds for the following
sequences as well: dm(t) = [n− am(t+ 1)]− [n− am(t)] and ddm(t) = dm(t+1)−dm(t).

Proof. The proof is straight forward. All we need to do is to explicitate dm(t) using
the recursion for am(t + 1) and am(t). Once the first claim is proved we use the same
method for the second claim.
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Proposition 2: The following close form formulas hold ∀m ∈ {1, . . . , n− 1}:

1. am(0) = m

2. am(1) = m · qn−m

3. am(2) = m · q2(n−m) ·
[
qn−m(1− q) + q

]m−1

Proof. Since we know that g =

1
...
n

 we can immediately derive am(0) = m ∀m ∈

{1, . . . , n− 1}.
We will use the recursion formula and the fact that am(0) = m to derive the equality

for am(1).

am(1) =
m∑
k=0

um−k · vk ·
(
m

k

)
· am−k(1)

=
m∑
k=0

um−k · vk ·
(
m

k

)
· (m− k)

=
m−1∑
k=0

u · um−1−k · vk ·
(
m− 1

k

)
·m

= u ·m · (u+ v)m−1 = m · qn−m

Let us now try to compute am(2) in the same manner:

am(2) =
m∑
k=0

um−k · vk ·
(
m

k

)
· am−k(2)

=
m∑
k=0

um−k · vk ·
(
m

k

)
· (m− k) · qn−m+k

=
m−1∑
k=0

u · um−1−k · (q · v)k ·
(
m− 1

k

)
·m · qn−m

= u ·m · qn−m · (u+ qv)m−1 = m · q2(n−m) ·
[
qn−m(1− q) + q

]m−1

Remark 1: Given our assumptions about the initial distribution, the expected
number of people having the information at time t is increasing in t. In our no-
tation this amounts to dm(t) > 0 for all m and t, which is obviously true because
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dm(0) = m
(
1− qn−m

)
> 0 and the recursion coefficients are positive. In the next

proposition we prove this result for a general π∗0.
Proposition 3: Given any initial probability distribution π∗0 over the number of people

having the information at time 0, the expected number of people having the information
at time t is a strictly increasing function of t.

Proof. Let us define a(t) =

 an−1(t)
...

a0(t)

 and d(t) =

 dn−1(t)
...

d0(t)

. All we need to

prove is that π∗0 · dt+1 > 0 for all t. Using the definition of d(t+ 1) this is equivalent to
π∗0 · (a(t)− a(t+ 1)) > 0 for all t and for all initial distributions π∗0. We know that:

a(t+ 1) = P∗ · a(t)⇒ a(t) = (P∗)t · a(0)⇒ a(t)− a(t+ 1) = (P∗)t · (a(0)− a(1))

Using proposition 2 we have am(0)−am(1) = m ·(1−qn−m) which is strictly positive
for all m ∈ {1, . . . , n− 1} and 0 for m = 0. On the other hand P∗ is an upper triangular
matrix with strictly positive entries. This readily implies that (P∗)t is also an upper
triangular matrix with strictly positive entries. Simple matrix multiplication leads to
the fact that the vector a(t)−a(t+1) = (P∗)t ·(a(0)− a(1)) has strictly positive entries,
except for the last one which is 0.

Since π∗0 is a probability distribution it has only nonnegative elements and since
π∗0(n) = 0 ∃i ∈ {1, . . . , n− 1} such that π∗0(i) > 0. This implies that π∗0 ·(a(t)− a(t+ 1))
is strictly positive.

6.4 Proof of Theorem 1

We want to show that: given k a positive integer, ddm(0) > 0 for all m > n−n0 (where

n0 =

[
n− 1

k + 1

]
) assuming that: qn0−1 <

k − 1

k
and qn0 + q2n0 > 1

First, using Proposition 2, observe that:

ddm(0) = 2qn0 − 1− q2n0 [qn0(1− q) + q]n−n0−1

where n0 = n −m. Now we want to show that [qn0(1− q) + q]n−n0−1 < qn0 . Initially
we will prove that [qn0(1− q) + q]k < q

Let xk = q, where x > 0. Let y =
k−2∑
i=0

xi. Since q < 1⇒ x < 1, we have

y > (k − 1)xk−1 ⇒ ky > (k − 1)
(
y + xk−1

)
⇒ 1− xk−1

1− xk
>
k − 1

k
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Using qn0−1 <
k − 1

k
we have:

1− xk−1

1− xk
> qn0−1 > xkn0−1 ⇒ xkn0

(
1− xk

)
< x− xk ⇒ [qn0(1− q) + q]k < q

Observe that n0 < n0 ≤
n− 1

k + 1
⇒ kn0 < n − n0 − 1. Since qn0(1 − q) + q < 1 we

derive: [qn0(1− q) + q]n−n0−1 < [qn0(1− q) + q]kn0 < qn0 .
Finally we can go back to our target quantity:

ddm(0) = 2qn0 − 1− q2n0 [qn0(1− q) + q]n−n0−1 ⇒

ddm(0) > 2qn0 − 1− q2n0qn0 = (1− qn0)(qn0 + q2n0 − 1) > 0

The last step follows from q < 1, n0 < n0 and qn0 + q2n0 > 1

6.5 Proof of Theorem 2

We want to show the following inequalities hold for any m ∈ {1, . . . , n− 1} and t > 0:

1. am(t) ≤ m · q(n−m)·t

2. am(t) ≥ m · q(n−m)·t · q(m−1)·(t−1)

The proof goes by induction on t. From Proposition 2 we know that the two inequal-
ities hold for any t = 1, t = 2 and ∀m ∈ {1, . . . , n− 1}. Now suppose the inequalities
hold for a given t and all m ∈ {1, . . . , n− 1} and let us prove that they hold for t + 1
as well.

We start from the recursion formula and we will use the first inequality for each
am−k(t).

am(t+ 1) =
m∑
k=0

um−k · vk ·
(
m

k

)
· am−k(t)

≤
m∑
k=0

um−k · vk ·
(
m

k

)
· (m− k) · q(n−m+k)·t

≤
m−1∑
k=0

um−1−k · (v · qt)k ·
(
m− 1

k

)
· u ·m · q(n−m)·t

≤ u ·m · q(n−m)·t · (u+ v · qt)m−1

But v = 1− u and q < 1 so this implies u+ v · qt < 1. Furthermore u = qn−m so we
get the first inequality for t+ 1.

am(t+ 1) ≤ m · q(n−m)·(t+1)

26



The idea for the proof of the second inequality is the same: start with the recursion
formula and apply the second inequality for am−k(t).

am(t+ 1) =
m∑
k=0

um−k · vk ·
(
m

k

)
· am−k(t)

≥
m∑
k=0

um−k · vk ·
(
m

k

)
· (m− k) · q(n−m+k)·t · q(m−k−1)·(t−1)

≥
m−1∑
k=0

um−1−k · (v · qt)k ·
(
m− 1

k

)
· u ·m · q(n−m)·t · q(m−1−k)·(t−1)

≥ qn−m ·m · q(n−m)·t
m−1∑
k=0

(u · qt−1)m−1−k · (v · qt)k ·
(
m− 1

k

)
≥ m · u · q(n−m)·t(u · qt−1 + v · qt)m−1

But we know that u = qn−m, v = 1− u and q < 1 so it follows that:

am(t+ 1) ≥ m · q(n−m)·(t+1)(u · qt + v · qt)m−1

≥ m · q(n−m)·(t+1)q(t+1−1)·(m−1)

This completes the induction step for the second inequality.
The inequalities derived above assure that the expected fraction of people that have

the information at time t converges to 1 exponentially fast as t goes to infinity for any
initial distribution π∗0 and a fixed number of agents n: lim

t→∞
π · e∗t = 1. This assures a

nonlinearity of the function e∗t in t.

6.6 Proof of Theorem 3

There are two facts we need to show to prove this theorem.
Fact 1: If ddm(0) < 0 for all m < m then ddm(t) < 0 for all t and m < m
The claim is easy to prove by induction. Assume the conclusion hold for t and let

us look what happens at time t + 1. The recursion formula says that ddm0(t + 1) is a
linear combination of ddm(t) with m’s less then m0. Knowing that the coefficients are
positive and that m0 < m ⇒ m ≤ m0 < m we can use the induction step to reach
ddm0(t+ 1) < 0 for any m0 < m.

Fact 2: Given that qn + qn/2 < 1, ddm(0) < 0 for any m < n/2.
Using Proposition 2 the following formula holds ddm(0) = 2qn0−1−q2n0 [qn0(1− q) + q]n−n0−1,

where n0 = n−m. We need to prove that 2qn0 < 1 + q2n0 [qn0(1− q) + q]n−n0−1.
First let us show that [qn0(1− q) + q]n−n0−1 > [qn0(1− q) + q]n0 .This follows im-

mediately from the following two observations qn0(1 − q) + q < (1 − q) + q = 1 and
m < n/2⇒ n0 = n−m > n/2⇒ n0 > n− n0 − 1.
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We are left to prove that 2qn0 < 1 + q2n0 [qn0(1− q) + q]n0 . Notice that 1 +
q2n0 [qn0(1− q) + q]n0 > 1 + q2n0qn0 = 1 + q3n0 . Since n0 > n/2 and q < 1 we have
qn0 + qn0/2 < qn + qn/2 < 1⇒ (1− qn0)(qn0 + qn0/2) < 1− qn0 ⇒ 1 + q3n0 > 2qn0 . This
concludes the proof of the second fact.

These two facts imply: given that qn + qn/2 < 1, ddm(t) < 0 for any m < n/2 and
for all t. This is a restatement of our theorem

6.7 Proof of Theorem 4

Now let mt = kt+1 − kt be the realized diffusion rate and then dt = et+1 − et be the
expected diffusion rate. Then it follows from simple calculations that

Rt (kt, kt−1) = Pt(kt)− Pt−1(kt−1) =
mt−1σ

2
µ (ε+ γσ2

ε )
(
σ2
ε + σ2

µ

)
yt

(37)

where yt =
(
σ2
µ + σ2

εkt
) (
σ2
µ + σ2

εkt−1

)
. Note that P−1 = −γ

(
σ2
µ + σ2

ε

)
and so

R0 =
d−1 (ε+ γσ2

ε )
(
σ2
ε + σ2

µ

)
σ2
µ + σ2

εd−1

(38)

We can then calculate the expected return at any time t conditioned on R0 by the
following:

E [Rt (kt, kt−1) |R0] =
mt−1σ

2
µ

(
σ2
εd−1 + σ2

µ

)
d−1yt

R0 (39)

Let ∆ =
σ2
ε

σ2
µ

, which is the ratio of the variance of the news shock to the remaining

fundamental variance. We can rewrite equation 39 as:

E [Rt (kt, kt−1) |R0] =
1 + δd−1

d−1

mt−1

(1 + δkt) (1 + δkt−1)
R0 (40)

The serial correlation of non-overlapping returns is given by the regression coefficient

βt =
1 + ∆d−1

d−1

mt−1

(1 + ∆kt) (1 + ∆kt−1)
(41)

We can compute the expected serial correlation across the paths ω as we did for the
expected price:

Eω [E [Rt (kt, kt−1) |R0]] =
n∑
i=1

n∑
j=1

π∗i−1(i)p∗ijE [Rt (i, j) |R0] (42)

Notice again that when ∆ is near zero (the variance realized by news is small relative
to remaining fundamental variance), the serial correlation coefficient is proportional to
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diffusion rate. In other words, the serial correlation coefficient given in equation 41
inherits the non-linear properties of the diffusion rate.

With these equilibrium prices and calculations in hand, we turn towards calculating
the equilibrium trading volume. Notice that at the equilibrium prices, we have two
groups. Those with the news per capita have a demand given by

θεt(kt) =
ε (1− kt) + γ

(
σ2
µ + σ2

ε

)
γ
(
σ2
µ + ktσ2

ε

) (43)

and those without the news per capita have a demand given by

θt(kt) =
−εkt + γσ2

µ

γ
(
σ2
µ + ktσ2

ε

) (44)

The turnover in this market is given by the following formula:

Tt =
1

2

[
kt−1

∣∣θεt − θεt−1

∣∣+mt−1 |θεt − θt−1|+ (1− kt) |θt − θt−1|
]

(45)

The formula has an intuitive interpretation. Trading can from three groups: guys
with news at t− 1 and who still have news at t (this is in fraction kt−1), guys without
news at t−1 and who get the news at t (this is in fraction mt−1), and guys without news
at t − 1 and still without news at t (this is in fraction 1 − kt). We can then calculate
the equilibrium expected turnover across the paths given by

Eω [T (kt, kt−1)] =
n∑
i=1

n∑
j=1

π∗i−1(i)p∗ijTt (i, j) (46)

Intuitively, turnover will also be proportional to the diffusion rate. When a lot of
investors get the news, there will be more trading. So turnover should also inherit the
non-linear structure of the diffusion rate process. But one thing to keep in mind is
that at the extreme of everyone getting the news at the same time there will be little
turnover and lots of price adjustments. For a more gradual diffusion scenario, this is
less relevant.

We next prove that our intuition derived from the case where ∆ is small is a good
one. In Theorem 4, we show that the solution of the model is close to the solution of
the model in which ∆ is small when ∆ is small.

Theorem 4
Let us denote the following c =

ε

γσ2
µ

. We can write the demand as:

θεt(kt) =
c(1− kt) + 1 + ∆

1 + ∆kt
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θt(kt) =
−ckt + 1

1 + ∆kt

Now we will approximate these quantities with their values for ∆ = 0. Let us define
the following approximations:

θ
ε

t(kt) =
ε(1− kt) + γσ2

ε

γσ2
µ

= c(1− kt) + 1

θt(kt) =
−εkt + γσ2

µ

γσ2
µ

= −ckt + 1

E [Rt(kt, kt−1)|R0] =
mt−1

d−1

R0

Using these quantities, we can show the following:

1.

∣∣∣∣E [[Rt(kt, kt−1)|R0]]

E [Rt(kt, kt−1)|R0]
− 1

∣∣∣∣ ≤ 2∆ + ∆2

2.

∣∣∣∣θεt(kt)θ
ε

t(kt)
− 1

∣∣∣∣ ≤ ∆

(
1 +

1

|1 + c(1− kt)|

)

3.

∣∣∣∣θt(kt)θt(kt)
− 1

∣∣∣∣ ≤ ∆

4.

∣∣∣∣Tt(kt, kt−1)− 1

2
(kt − kt−1)

∣∣∣∣ ≤ ∆ (1 + |c|)

The proofs are quite straight forward. Throughout we will use the following fact:
0 ≤ kt−1 ≤ kt ≤ 1

1. ∣∣∣∣E [[Rt(kt, kt−1)|R0]]

E [Rt(kt, kt−1)|R0]
− 1

∣∣∣∣ =

∣∣∣∣ 1 + ∆d−1

(1 + ∆kt) (1 + ∆kt−1)
− 1

∣∣∣∣
=

∣∣∣∣∆ (d−1 − kt − kt−1)−∆2ktkt−1

(1 + ∆kt) (1 + ∆kt−1)

∣∣∣∣
We can now use 1 + ∆kt > 1 and 1 + ∆kt−1 > 1 to get:∣∣∣∣∆ (d−1 − kt − kt−1)−∆2ktkt−1

(1 + ∆kt) (1 + ∆kt−1)

∣∣∣∣ ≤ |∆ (d−1 − kt − kt−1)|+
∣∣∆2ktkt−1

∣∣
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We know that d−1 = m−1 ≤ kt−1 ≤ kt ≤ 1, which gives the desired result:∣∣∣∣E [[Rt(kt, kt−1)|R0]]

E [Rt(kt, kt−1)|R0]
− 1

∣∣∣∣ ≤ |∆ (d−1 − kt − kt−1)|+
∣∣∆2ktkt−1

∣∣ ≤ 2∆ + ∆2

2. ∣∣∣∣θεt(kt)θ
ε

t(kt)
− 1

∣∣∣∣ =

∣∣∣∣ c(1− kt) + 1 + ∆

(1 + ∆kt) (1 + c(1− kt))
− 1

∣∣∣∣ =

∣∣∣∣ ∆ (1− kt − ckt(1− kt))
(1 + ∆kt) (1 + c(1− kt))

∣∣∣∣
Which gives:∣∣∣∣θεt(kt)θ

ε

t(kt)
− 1

∣∣∣∣ ≤ ∣∣∣∣ ∆kt
1 + ∆kt

∣∣∣∣+

∣∣∣∣ ∆

(1 + ∆kt) (1 + c(1− kt))

∣∣∣∣ ≤ ∆

(
1 +

1

|1 + c(1− kt)|

)

Notice that if c is positive (ε is positive) the last bound simplifies further to

∣∣∣∣θεt(kt)θ
ε

t(kt)
− 1

∣∣∣∣ ≤
2∆

3. ∣∣∣∣θt(kt)θt(kt)
− 1

∣∣∣∣ =

∣∣∣∣ 1

1 + ∆kt
− 1

∣∣∣∣ =

∣∣∣∣ ∆kt
1 + ∆kt

∣∣∣∣ ≤ ∆

4.
It is easy to derive the following∣∣∣θεt(kt)− θεt(kt)∣∣∣ =

∣∣∣∣c(1− kt) + 1 + ∆

1 + ∆kt
− (1 + c(1− kt))

∣∣∣∣
=

∣∣∣∣∆ (1− kt − ckt(1− kt))
1 + ∆kt

∣∣∣∣ ≤ ∆ (1 + |c|)

We can use part 3 of this theorem and the fact that
∣∣θt(kt)∣∣ = |−ckt + 1| ≤ 1 + |c|

to get the following inequality
∣∣θt(kt)− θt(kt)∣∣ ≤ ∆ (1 + |c|)

31



Finally we can prove the desired result:

Tt =
1

2

[
kt−1

∣∣θεt − θεt−1

∣∣+mt−1 |θεt − θt−1|+ (1− kt) |θt − θt−1|
]

≤ 1

2
kt−1

[∣∣∣θεt − θεt−1

∣∣∣+
∣∣∣θεt − θεt∣∣∣+

∣∣∣θεt−1 − θεt−1

∣∣∣]
+

1

2
mt−1

[∣∣∣θεt − θt−1

∣∣∣+
∣∣θt−1 − θt−1

∣∣+
∣∣∣θεt − θεt∣∣∣]

+
1

2
(1− kt)

[∣∣θt − θt−1

∣∣+
∣∣θt − θt∣∣+

∣∣θt−1 − θt−1

∣∣]

So:

Tt ≤
1

2

[
kt−1

∣∣∣θεt − θεt−1

∣∣∣+mt−1

∣∣∣θεt − θt−1

∣∣∣+ (1− kt)
∣∣θt − θt−1

∣∣]
+

1

2
(kt−1 +mt−1 + 1− kt) 2∆ (1 + |c|)

and

Tt ≥
1

2

[
kt−1

∣∣∣θεt − θεt−1

∣∣∣+mt−1

∣∣∣θεt − θt−1

∣∣∣+ (1− kt)
∣∣θt − θt−1

∣∣]
Since

1

2

[
kt−1

∣∣∣θεt − θεt−1

∣∣∣+mt−1

∣∣∣θεt − θt−1

∣∣∣+ (1− kt)
∣∣θt − θt−1

∣∣] =

= kt−1 |c| (kt − kt−1) +mt−1 |c+ c (kt − kt−1)|+ (1− kt) |c| (kt − kt−1)

= |c|mt−1 (kt−1 + 1 + kt−1 − kt + 1− kt)
= |c|mt−1 (2− 2mt−1)

we have
|c|mt−1 (1−mt−1) ≤ Tt ≤ |c|mt−1 (1−mt−1) + ∆ (1 + |c|)

which implies
|T − |c|mt−1 (1−mt−1)| ≤ ∆ (1 + |c|)
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Figure 1: Plot of the expected number of people with the news against time: n0 = 1.
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Figure 2: Plot of the expected incremental number of people with the news against
time: n0 = 1.
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Figure 3: Plot of the expected number of people with the news against time: n0 = 50.
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Figure 4: Plot of the expected incremental number of people with the news against
time: n0 = 50.
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Figure 5: Plot of the expected turnover, diffusion rate and serial correlation (regression
coefficient scaled by the diffusion rate at time -1): n0 = 1, p = 0.001,∆ = 0.25.
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Figure 6: Plot of the expected turnover, diffusion rate and serial correlation (regression
coefficient scaled by the diffusion rate at time -1): n0 = 10, p = 0.001,∆ = 0.25.
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Table 1: Information Portfolio Characteristics

This table summarizes the firm characteristics for each information portfolio using various formation periods ranging
from one month to twelve months. At the end of each month, we use the past J-month stock returns to proxy for total
information (totInfo), which is then decomposed into public information (pubInfo, stock returns that are explained by
earnings news in the past J-month) and private information (privInfo, stock returns that are orthogonal to earnings
news in the past J-month) components. The stocks are then assigned to quintiles according to totInfo, pubInfo, or
privInfo. The numbers reported are the time series means of the characteristics for each portfolio each month. numStks
is the average number of stocks in each portfolio. SUE is the average standardized unexpected quarterly earnings in
the formation period. ABR is the average abnormal returns from day t-2 to t+1 for each earnings announcement in the
formation period. REV is the average monthly revision in the analysts’ FY0 forecast consensus in the formation period,
deflated by the stock price. logSize is the log of the stock market capitalization (in thousands of dollars). And finally
numEst is the number of analysts providing earnings forecasts for each stock. The sample period is from January 1972
to December 2007.

numStks totInfo pubInfo privInfo SUE ABR REV LogSize numEst

Total P1 157 -14.62 -2.94 -11.68 -0.48 -4.81 -1.0352 11.89 5.84
Info P3 158 1.05 1.90 -0.85 0.16 0.38 -0.1904 12.52 7.13

P5 157 20.30 6.37 13.93 0.43 5.19 -0.0976 12.25 6.00

Public P1 157 -6.64 -6.78 0.14 -0.54 -9.08 -1.3271 11.96 5.91
J=1 Info P3 157 1.66 1.73 -0.08 0.16 0.17 -0.1851 12.54 7.12

P5 157 10.75 10.68 0.07 0.48 10.02 0.0799 12.14 5.95

Private P1 157 -11.66 2.36 -14.02 -0.24 0.82 -0.4904 11.91 5.76
Info P3 157 0.78 1.46 -0.68 0.13 -0.08 -0.4424 12.53 7.21

P5 157 18.02 2.21 15.81 0.24 0.75 -0.4327 12.22 5.97

Total P1 306 -18.28 -0.77 -17.51 -0.40 -2.94 -0.0124 11.99 6.40
Info P3 306 1.98 3.29 -1.30 0.18 0.36 -0.0020 12.70 7.84

P5 306 27.93 6.90 21.03 0.42 3.44 -0.0002 12.40 6.45

Public P1 306 -5.70 -5.75 0.05 -0.44 -7.11 -0.0166 12.07 6.34
J=2 Info P3 306 3.07 3.13 -0.05 0.20 0.19 -0.0016 12.74 7.91

P5 306 12.29 12.25 0.04 0.46 8.02 0.0027 12.26 6.39

Private P1 306 -15.86 3.77 -19.64 -0.20 0.73 -0.0061 12.01 6.35
Info P3 306 1.73 2.83 -1.10 0.17 -0.01 -0.0027 12.71 7.88

P5 306 26.16 3.57 22.58 0.28 0.76 -0.0049 12.38 6.42

Total P1 408 -20.79 0.69 -21.48 -0.35 -2.21 -0.0191 12.05 6.76
Info P3 408 2.83 4.56 -1.74 0.23 0.34 -0.0030 12.85 8.45

P5 408 33.96 7.78 26.18 0.46 2.72 -0.0005 12.54 6.89

Public P1 408 -5.08 -4.90 -0.18 -0.41 -6.11 -0.0257 12.14 6.67
J=3 Info P3 408 4.36 4.42 -0.05 0.27 0.20 -0.0021 12.88 8.54

P5 408 13.85 13.70 0.14 0.50 6.94 0.0039 12.37 6.81

Private P1 408 -18.55 5.02 -23.57 -0.16 0.64 -0.0096 12.08 6.77
Info P3 408 2.57 4.05 -1.48 0.21 0.01 -0.0037 12.85 8.46

P5 408 32.38 4.81 27.57 0.33 0.76 -0.0075 12.52 6.88
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Table 1 Cont’d

numStks totInfo pubInfo privInfo SUE ABR REV LogSize numEst

Total P1 375 -26.86 1.93 -28.79 -0.46 -1.86 -0.0401 12.01 6.98
Info P3 375 5.72 9.10 -3.38 0.27 0.31 -0.0045 12.94 8.82

P5 375 52.84 14.84 38.00 0.62 2.45 0.0034 12.69 7.27

Public P1 375 -7.05 -6.68 -0.37 -0.52 -5.11 -0.0509 12.12 6.78
J=6 Info P3 375 8.71 8.99 -0.28 0.30 0.22 -0.0036 13.01 9.07

P5 375 24.72 23.66 1.06 0.59 5.91 0.0100 12.44 7.00

Private P1 375 -22.55 10.38 -32.94 -0.19 0.95 -0.0176 12.10 7.10
Info P3 375 5.17 7.92 -2.75 0.23 -0.08 -0.0078 12.92 8.78

P5 375 49.98 9.59 40.39 0.46 0.71 -0.0113 12.66 7.23

Total P1 347 -30.75 3.09 -33.84 -0.55 -1.61 -0.0596 11.99 7.14
Info P3 347 8.56 13.95 -5.40 0.28 0.31 -0.0066 13.02 9.20

P5 347 70.69 22.24 48.45 0.71 2.23 0.0061 12.81 7.57

Public P1 347 -8.31 -8.03 -0.28 -0.56 -4.28 -0.0719 12.11 6.94
J=9 Info P3 347 12.97 13.78 -0.81 0.32 0.23 -0.0049 13.10 9.46

P5 347 36.09 33.61 2.48 0.64 5.08 0.0130 12.52 7.26

Private P1 347 -24.14 16.39 -40.53 -0.21 1.11 -0.0246 12.12 7.37
Info P3 347 7.62 11.81 -4.19 0.21 -0.15 -0.0118 12.98 9.10

P5 347 66.44 14.54 51.90 0.54 0.68 -0.0153 12.76 7.51

Total P1 348 -33.92 4.08 -38.00 -0.59 -1.42 -0.0790 11.95 7.14
Info P3 348 11.11 18.77 -7.66 0.30 0.30 -0.0088 13.07 9.43

P5 348 88.77 29.94 58.83 0.78 2.08 0.0083 12.90 7.82

Public P1 348 -9.65 -9.52 -0.13 -0.58 -3.73 -0.0913 12.10 6.99
J=12 Info P3 348 17.03 18.68 -1.65 0.33 0.24 -0.0075 13.15 9.72

P5 348 47.85 43.70 4.15 0.69 4.52 0.0154 12.59 7.47

Private P1 348 -24.82 22.81 -47.63 -0.21 1.22 -0.0316 12.13 7.48
Info P3 348 9.83 15.69 -5.86 0.22 -0.16 -0.0161 13.02 9.28

P5 348 82.91 19.49 63.41 0.59 0.64 -0.0184 12.84 7.72
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Table 2: Return Drift to Short-term Information

This table reports the drift to short term public, private and total information. I.e. formation period = 1, 2 and 3
months. After forming the information portfolios, we skip one month, then hold them for twelve months. In panel
A, the reported numbers are the average monthly return of the hedged portfolio where we long the top information
quintile and short the bottom quintile, and the corresponding t-statistics in brackets. Panel B tests the shape of the
drift to public information and private information. Namely, we investigate the differences of the returns of the hedged
portfolio in month 1, 6, 12 and the peak month when the maximum is obtained in the drift to private information. Such
differences are calculated for both the drifts to public information and to private information. Then we calculate the
corresponding difference-in-difference to test the difference of the shapes of the two drifts. The differences in panel B
are serially correlated and we use Newey-West t-statistics to adjust for the serial correlation.

Panel A: Return Drift to Total, Public and Private Information

Month 1 2 3 4 5 6 7 8 9 10 11 12

Return Drift to Public Information
J=1 1.07 1.08 0.20 0.35 0.63 0.66 0.47 0.46 0.01 -0.04 0.20 0.20

(7.12) (7.19) (1.36) (2.15) (4.12) (4.44) (2.99) (2.90) (0.08) (-0.27) (1.25) (1.67)
J=2 1.09 0.71 0.26 0.43 0.56 0.55 0.39 0.16 0.08 0.17 0.24 0.08

(9.21) (6.51) (2.15) (3.84) (4.82) (4.61) (3.40) (1.50) (0.78) (1.64) (2.47) (0.81)
J=3 0.84 0.44 0.46 0.55 0.51 0.43 0.25 0.12 0.08 0.2 0.15 0.05

(7.71) (4.19) (4.13) (5.14) (4.95) (4.17) (2.38) (1.23) (0.95) (2.32) (1.81) (0.57)

Return Drift to Private Information
J=1 -0.04 0.50 0.21 0.35 0.64 0.42 0.66 0.64 0.32 0.33 0.14 0.04

(-0.17) (2.22) (0.98) (1.73) (3.01) (1.90) (3.25) (2.93) (1.74) (1.99) (0.60) (0.25)
J=2 0.29 0.44 0.32 0.33 0.72 0.57 0.54 0.63 0.38 0.65 0.21 -0.34

(1.02) (1.70) (1.42) (1.51) (3.32) (2.48) (2.46) (3.01) (2.03) (3.38) (1.14) (-1.94)
J=3 0.33 0.39 0.59 0.61 0.56 0.57 0.70 0.56 0.71 0.40 0.04 -0.36

(1.06) (1.39) (2.28) (2.58) (2.24) (2.28) (3.02) (2.51) (3.38) (2.04) (0.23) (-1.84)

Return Drift to Total Information
J=1 0.42 1.04 0.31 0.43 0.79 0.53 0.83 0.85 0.30 0.29 0.07 0.05

(1.60) (4.31) (1.37) (1.98) (3.53) (2.33) (3.89) (3.49) (1.47) (1.61) (0.28) (0.31)
J=2 0.70 0.64 0.43 0.42 0.88 0.73 0.62 0.68 0.37 0.68 0.27 -0.28

(2.36) (2.41) (1.75) (1.86) (3.84) (3.01) (2.64) (3.03) (1.89) (3.36) (1.44) (-1.56)
J=3 0.57 0.55 0.69 0.74 0.68 0.67 0.74 0.62 0.70 0.41 0.09 -0.36

(1.81) (1.93) (2.51) (2.98) (2.59) (2.55) (3.01) (2.63) (3.25) (2.06) (0.48) (-1.61)
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Table 2 Cont’d

Panel B: Difference in the Drift to Public Information and to Private Information

Public Info Private Info Private-Public
profit t-stat profit t-stat profit t-stat

J=1 M6-M1 -0.41 (-2.31) 0.46 (1.52) 0.87 (3.26)
M12-M6 -0.46 (-2.38) -0.38 (-1.33) 0.09 (0.31)
M12-M1 -0.87 (-5.05) 0.08 (0.26) 0.96 (3.40)

Peak-M1 -0.60 (-2.79) 0.71 (2.00) 1.31 (4.93)
M12-Peak -0.27 (-1.37) -0.62 (-2.71) -0.35 (-1.31)

J=2 M6-M1 -0.54 (-3.96) 0.28 (1.05) 0.82 (3.52)
M12-M6 -0.47 (-3.71) -0.91 (-3.72) -0.43 (-1.98)
M12-M1 -1.01 (-7.56) -0.63 (-2.13) 0.39 (1.64)

Peak-M1 -0.93 (-6.30) 0.34 (1.14) 1.27 (4.94)
M12-Peak -0.09 (-0.73) -0.97 (-3.78) -0.88 (-3.69)

J=3 M6-M1 -0.42 (-3.03) 0.25 (0.83) 0.67 (2.48)
M12-M6 -0.38 (-3.43) -0.94 (-3.05) -0.56 (-2.05)
M12-M1 -0.80 (-5.89) -0.69 (-2.19) 0.11 (0.43)

Peak-M1 -0.76 (-5.74) 0.38 (1.23) 1.14 (3.87)
M12-Peak -0.04 (-0.31) -1.07 (-3.63) -1.03 (-4.18)
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Table 3: Return Drift to Short-term Information - Size Subsamples

This table reports the drift to short term public, private and total information. i.e. formation period = 1, 2 and 3 months
within each of the Large, Medium, Small subsamples according to the stock market capitalization. The results for each
subsample are reported in Panel A, B and C, respectively. After forming the information portfolios, we skip one month,
then hold them for twelve months. Panels tests the shape of the drift to public information and private information.
Namely, we investigate the differences of the returns of the hedged portfolio in month 1, 6, 12 and the peak month
when the maximum is obtained in the drift to private information. Such differences are calculated for both the drifts
to public information and to private information. Then we calculate the corresponding difference-in-difference to test
the difference of the shapes of the two drifts. The differences in panel B are serially correlated and we use Newey-West
t-statistics to adjust for the serial correlation.

Panel A: Difference in the Drifts to Past 1-month Public and Private Information

Public Info Private Info Private-Public
profit t-stat profit t-stat profit t-stat

Small M6-M1 -0.03 (-0.08) 0.15 (0.32) 0.18 (0.30)
M12-M6 -0.69 (-1.68) 0.36 (0.76) 1.05 (1.53)
M12-M1 -0.72 (-1.89) 0.51 (1.01) 1.23 (2.04)

Peak-M1 -0.70 (-1.73) 0.67 (1.31) 1.38 (2.25)
M12-Peak -0.02 (-0.05) -0.17 (-0.47) -0.15 (-0.35)

Med M6-M1 -0.63 (-2.42) 0.60 (1.38) 1.23 (2.69)
M12-M6 -0.43 (-1.58) -0.65 (-1.60) -0.22 (-0.51)
M12-M1 -1.05 (-4.24) -0.04 (-0.12) 1.01 (2.79)

Peak-M1 -0.38 (-1.34) 0.81 (1.97) 1.18 (3.23)
M12-Peak -0.68 (-2.49) -0.85 (-3.11) -0.17 (-0.48)

Large M6-M1 -0.49 (-1.78) 0.58 (1.43) 1.07 (2.40)
M12-M6 -0.29 (-1.02) -0.72 (-1.77) -0.43 (-0.98)
M12-M1 -0.78 (-2.54) -0.14 (-0.32) 0.64 (1.41)

Peak-M1 -0.62 (-1.90) 0.73 (1.71) 1.35 (2.79)
M12-Peak -0.16 (-0.58) -0.87 (-2.86) -0.71 (-1.89)

46



Table 3 Cont’d

Panel B: Difference in the Drifts to Past 2-month Public and Private Information

Public Info Private Info Private-Public
profit t-stat profit t-stat profit t-stat

Small M6-M1 -0.86 (-3.62) 0.02 (0.07) 0.89 (2.26)
M12-M6 -0.49 (-2.43) -1.03 (-4.04) -0.55 (-1.71)
M12-M1 -1.35 (-6.23) -1.01 (-3.23) 0.34 (1.14)

Peak-M1 -1.06 (-3.98) 0.20 (0.59) 1.27 (3.50)
M12-Peak -0.29 (-1.29) -1.22 (-4.58) -0.93 (-2.78)

Med M6-M1 -0.47 (-2.78) 0.43 (1.26) 0.90 (3.08)
M12-M6 -0.65 (-3.85) -1.05 (-3.72) -0.40 (-1.41)
M12-M1 -1.13 (-6.05) -0.62 (-1.81) 0.50 (1.63)

Peak-M1 -0.94 (-5.24) 0.48 (1.33) 1.42 (4.37)
M12-Peak -0.19 (-1.21) -1.10 (-3.85) -0.92 (-3.17)

Large M6-M1 -0.30 (-1.55) 0.34 (0.87) 0.64 (1.93)
M12-M6 -0.22 (-1.09) -0.58 (-1.69) -0.36 (-1.13)
M12-M1 -0.52 (-2.83) -0.24 (-0.68) 0.28 (0.82)

Peak-M1 -0.59 (-2.77) 0.72 (1.84) 1.31 (3.83)
M12-Peak 0.07 (0.35) -0.96 (-2.77) -1.03 (-2.96)

Panel C: Difference in the Drifts to Past 3-month Public and Private Information

Public Info Private Info Private-Public
profit t-stat profit t-stat profit t-stat

Small M6-M1 -0.89 (-5.50) 0.14 (0.41) 1.04 (3.18)
M12-M6 -0.32 (-2.03) -1.00 (-3.35) -0.68 (-2.26)
M12-M1 -1.22 (-6.92) -0.86 (-2.69) 0.36 (1.32)

Peak-M1 -1.00 (-6.28) 0.24 (0.63) 1.24 (3.35)
M12-Peak -0.22 (-1.37) -1.10 (-3.66) -0.88 (-3.03)

Med M6-M1 -0.33 (-2.08) 0.22 (0.61) 0.55 (1.77)
M12-M6 -0.43 (-3.41) -0.81 (-2.42) -0.38 (-1.17)
M12-M1 -0.76 (-4.69) -0.59 (-1.77) 0.18 (0.64)

Peak-M1 -0.60 (-4.19) 0.40 (1.04) 1.00 (2.99)
M12-Peak -0.16 (-1.26) -0.99 (-3.07) -0.83 (-2.80)

Large M6-M1 0.22 (1.25) 0.31 (0.83) 0.08 (0.23)
M12-M6 -0.33 (-1.75) -0.76 (-2.09) -0.43 (-1.25)
M12-M1 -0.10 (-0.71) -0.45 (-1.21) -0.35 (-0.97)

Peak-M1 0.04 (0.19) 0.41 (1.05) 0.37 (1.06)
M12-Peak -0.11 (-0.65) 0.47 (1.11) 0.59 (1.52)
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Table 4: Return Drift to Med- to Long-term Information

This table reports the drift to med to long-term total, public, and private information. I.e. formation period = 6, 9 and
12 months. After forming the information portfolios, we skip one month, then hold them for twelve months. In panel A,
the reported numbers are the average monthly return of the hedged portfolio where we long the top information quintile
and short the bottom quintile, and the corresponding t-statistics in brackets. Panel B tests the shape of the drift to
public information and private information. Namely, we investigate the differences of the returns of the hedged portfolio
in month 1, 6 and 12. Such differences are calculated for both the drifts to public information and to private information.
Then we calculate the corresponding difference-in-difference to test the difference of the shapes of the two drifts. The
differences in panel B are serially correlated and we use Newey-West t-statistics to adjust for the serial correlation.

Panel A: Return Drift to Total, Public and Private Information

Month 1 2 3 4 5 6 7 8 9 10 11 12

Return Drift to Public Information
J=6 0.84 0.69 0.58 0.56 0.35 0.31 0.27 0.14 0.11 0.09 0.02 -0.03

(6.80) (5.65) (4.51) (4.37) (2.85) (2.85) (2.51) (1.43) (1.14) (0.97) (0.16) (-0.34)
J=9 0.82 0.55 0.46 0.48 0.35 0.15 0.14 0.03 -0.01 -0.01 -0.04 -0.10

(5.63) (4.02) (3.43) (3.77) (2.84) (1.21) (1.18) (0.25) (-0.06) (-0.13) (-0.38) (-0.94)
J=12 0.67 0.50 0.40 0.34 0.25 0.11 0.08 -0.04 -0.05 -0.01 0.02 0.12

(4.84) (3.94) (3.11) (2.62) (2.03) (0.88) (0.66) (-0.37) (-0.51) (-0.12) (0.17) (1.21)

Return Drift to Private Information
J=6 0.68 0.67 0.86 0.85 0.90 0.86 0.58 0.45 0.14 -0.02 -0.23 -0.52

(2.12) (2.19) (2.96) (3.16) (3.58) (3.56) (2.57) (2.10) (0.66) (-0.08) (-1.14) (-2.56)
J=9 0.93 0.89 0.99 0.81 0.75 0.48 0.22 0.13 -0.05 -0.26 -0.40 -0.57

(2.92) (2.95) (3.50) (3.15) (3.05) (1.99) (0.94) (0.59) (-0.22) (-1.24) (-1.91) (-2.68)
J=12 0.80 0.77 0.59 0.48 0.41 0.18 -0.05 -0.11 -0.25 -0.38 -0.49 -0.44

(2.62) (2.70) (2.14) (1.83) (1.61) (0.75) (-0.21) (-0.49) (-1.10) (-1.80) (-2.29) (-2.10)

Return Drift to Total Information
J=6 1.00 0.89 1.03 1.02 0.95 0.89 0.62 0.45 0.13 -0.03 -0.23 -0.49

(2.94) (2.76) (3.27) (3.46) (3.46) (3.40) (2.56) (2.04) (0.60) (-0.14) (-1.06) (-2.01)
J=9 1.22 1.13 1.07 0.93 0.78 0.48 0.24 0.16 -0.09 -0.22 -0.41 -0.57

(3.46) (3.44) (3.41) (3.26) (2.95) (1.80) (0.95) (0.65) (-0.39) (-0.99) (-1.89) (-2.27)
J=12 1.04 0.94 0.63 0.54 0.44 0.16 -0.08 -0.13 -0.31 -0.39 -0.43 -0.39

(3.09) (3.04) (2.05) (1.90) (1.60) (0.62) (-0.32) (-0.52) (-1.31) (-1.68) (-1.88) (-1.74)

Panel B: Difference in the Drift to Public Information and to Private Information

Public Info Private Info Private-Public
profit t-stat profit t-stat profit t-stat

J=1 M6-M1 -0.54 (-3.77) 0.18 (0.71) 0.71 (2.77)
M12-M6 -0.34 (-2.30) -1.38 (-4.08) -1.04 (-3.92)
M12-M1 -0.88 (-6.30) -1.20 (-3.75) -0.32 (-1.26)

J=2 M6-M1 -0.67 (-4.08) -0.45 (-1.23) 0.22 (0.78)
M12-M6 -0.24 (-1.50) -1.05 (-3.03) -0.81 (-3.01)
M12-M1 -0.91 (-5.98) -1.50 (-4.70) -0.59 (-2.35)

J=3 M6-M1 -0.56 (-3.49) -0.62 (-1.70) -0.06 (-0.21)
M12-M6 0.02 (0.10) -0.62 (-1.80) -0.64 (-2.55)
M12-M1 -0.55 (-3.21) -1.24 (-3.42) -0.69 (-2.52)
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Table 5: Return Drift to Short-term Information (J=3) sliced along
Formation Period (3 Months) Abnormal Turnover Subsamples

This table reports the drift to short term public, private and total information for formation period = 3 months within
each of the Low, Medium, High subsamples according to the stocks abnormal turnover in the formation period. We
first calculate monthly turnover C monthly trading volume divided by total shares outstanding. Abnormal turnover is
the average monthly turnover in the formation period relative to the average monthly turnover in the 12 months prior
to the formation period. After forming the information portfolios, we sort the stocks into low, medium, high turnover
sub-samples (T1, T2, T3) within each information quintile according to their abnormal turnover in the formation period.
We skip one month, then hold them for twelve months. In panel A, the reported numbers are the average monthly return
of the hedged portfolio where we long the top information quintile and short the bottom quintile, and the corresponding
t-statistics in brackets. The drift for low abnormal turnover stocks is the difference of the returns of portfolio P1T1 and
portfolio P5T1, and similarly for medium and high abnormal turnover stocks. Panel B tests the shape of the drift to
public information and private information. Namely, we investigate the differences of the returns of the hedged portfolio
in month 1, 6, 12 and the peak month when the maximum is obtained in the drift to private information. Such differences
are calculated for both the drifts to public information and to private information. Then we calculate the corresponding
difference-in-difference to test the difference of the shapes of the two drifts. The differences in panel B are serially
correlated and we use Newey-West t-statistics to adjust for the serial correlation.

Panel A: Return Drift to Total, Public and Private Information

Month 1 2 3 4 5 6 7 8 9 10 11 12

Return Drift to Public Information
Low 0.85 0.45 0.52 0.56 0.41 0.38 0.33 0.01 0.06 0.18 0.27 0.21

(5.89) (3.45) (3.22) (3.71) (2.92) (2.73) (2.20) (0.05) (0.42) (1.43) (2.11) (1.64)
Med 0.68 0.27 0.33 0.43 0.55 0.36 0.14 0.14 0.13 0.20 0.09 0.05

(5.08) (2.10) (2.46) (3.30) (4.24) (2.82) (1.13) (1.18) (1.17) (1.74) (0.87) (0.40)
High 1.07 0.69 0.65 0.76 0.60 0.57 0.41 0.28 0.07 0.21 0.11 -0.02

(6.80) (4.53) (4.67) (5.44) (4.10) (4.23) (3.10) (2.07) (0.55) (1.77) (0.88) (-0.17)

Return Drift to Private Information
Low 0.05 0.22 0.50 0.28 0.36 0.50 0.71 0.47 0.65 0.48 0.21 -0.21

(0.15) (0.72) (1.75) (0.98) (1.18) (1.66) (2.60) (1.83) (2.76) (2.27) (1.03) (-0.97)
Med 0.27 0.36 0.58 0.71 0.61 0.55 0.64 0.61 0.54 0.37 -0.10 -0.44

(0.79) (1.17) (2.02) (2.69) (2.24) (1.98) (2.42) (2.42) (2.14) (1.58) (-0.46) (-1.97)
High 0.74 0.63 0.79 0.84 0.72 0.68 0.73 0.47 0.61 0.24 -0.02 -0.43

(2.31) (2.03) (2.80) (3.35) (2.76) (2.62) (3.06) (1.97) (2.54) (1.10) (-0.09) (-1.92)

Return Drift to Total Information
Low 0.40 0.32 0.55 0.38 0.40 0.60 0.74 0.50 0.64 0.43 0.25 -0.27

(1.10) (1.02) (1.75) (1.25) (1.28) (1.89) (2.55) (1.88) (2.54) (1.93) (1.21) (-1.20)
Med 0.46 0.48 0.67 0.82 0.79 0.67 0.67 0.64 0.52 0.41 0.03 -0.41

(1.35) (1.55) (2.24) (2.99) (2.76) (2.33) (2.45) (2.38) (2.16) (1.77) (0.15) (-1.79)
High 0.96 0.91 0.95 1.03 0.82 0.72 0.78 0.63 0.61 0.27 -0.10 -0.42

(2.96) (2.87) (3.27) (4.02) (3.10) (2.65) (3.06) (2.60) (2.53) (1.25) (-0.42) (-1.85)
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Table 5 Cont’d

Panel B: Difference in the Drift to Public Information and to Private Information

Public Info Private Info Private-Public
profit t-stat profit t-stat profit t-stat

Low M6-M1 -0.47 (-2.66) 0.45 (1.19) 0.92 (2.71)
M12-M6 -0.17 (-1.10) -0.72 (-2.12) -0.54 (-1.68)
M12-M1 -0.64 (-3.43) -0.27 (-0.74) 0.38 (1.20)

Peak-M1 -0.52 (-2.84) 0.66 (1.57) 1.18 (3.01)
M12-Peak -0.12 -0.79) -0.92 (-2.80) -0.80 (-2.39)

Med M6-M1 -0.33 (-1.68) 0.29 (0.75) 0.61 (1.71)
M12-M6 -0.31 (-1.88) -0.99 (-2.92) -0.68 (-2.11)
M12-M1 -0.64 (-3.77) -0.71 (-1.98) -0.07 (-0.23)

Peak-M1 -0.26 (-1.64) 0.44 (1.25) 0.70 (2.21)
M12-Peak -0.38 (-2.29) -1.15 (-3.57) -0.76 (-2.64)

High M6-M1 -0.50 (-2.64) -0.06 (-0.16) 0.44 (1.29)
M12-M6 -0.59 (-4.23) -1.11 (-3.10) -0.52 (-1.65)
M12-M1 -1.09 (-5.95) -1.17 (-3.32) -0.08 (-0.26)

Peak-M1 -0.31 (-1.63) 0.11 (0.33) 0.41 (1.36)
M12-Peak -0.78 (-5.21) -1.27 (-3.90) -0.49 (-1.68)
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