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Abstract

We consider a new model of appointment scheduling where customers are given the earli-
est possible appointment times under the service level constraint that the expected waiting
time of each individual customer cannot exceed a given threshold. We apply the theory of
majorization to analytically characterize the structure of the optimal appointment sched-
ule. We show that, the optimal inter-appointment times increase with the order of arrivals.
That is, the optimal inter-arrival time between two customers later in the arrival process is
longer than that between two customers earlier in the arrival process. We study the limiting
behavior of our system, and prove that, when customer service times follow an exponen-
tial distribution, our system converges asymptotically to the D/M/1 queueing system as the
number of arrivals approaches infinity. We also extend our analysis to systems with multiple
servers.
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1 Introduction

In this paper, we tackle the classical appointment scheduling problem from a completely new

angle. We study an appointment system where a finite number of customers are scheduled to

arrive in such a way that (1) the expected waiting time of each individual customer cannot exceed

a given threshold, and (2) the appointment times are set as early as possible (without breaking

the waiting time constraint). Using a transient queueing analysis approach, we analytically

characterize the structure of the optimal appointment schedule and prove the limiting behavior

of our system. Compared with the literature, our paper brings unique features in both modeling

perspectives and analysis methods. We discuss in detail these new features in the following

subsections.

1.1 Modeling Perspective

The fundamental principle of appointment scheduling is on the balance between servers’ idling

(when appointments are scheduled far from each other) and customers’ waiting (when appoint-

ments are scheduled close to each other). For decades, appointment scheduling has drawn

significant attention in the queueing, optimization, operations management, and health care

research communities; see Cayirli and Veral (2003) and Mondschein and Weintraub (2003) for

comprehensive reviews of the literature. As pointed out by Cayirli and Veral (2003), the over-

whelming majority of the studies assign unit costs (weights) to servers’ idling and customers’

waiting and then search appointment schedules that minimize the expected total system cost

which is a linear combination of servers’ idling time and customers’ waiting time. Mondschein

and Weintraub (2003) notice that other objective function forms used in the literature (including

those with servers’ overtime cost) are equivalent to the one above.

Despite the fruitful results available in academia, the implementation or guidance of ap-

pointment scheduling in practice is still very limited. Many service firms are still using simple

rules of thumb. The authors have discussed with practitioners in different service industries

and found out, among others, four main concerns that obstruct the application of results from

academic literature to industry.

First, as the optimal appointment schedules are found through minimizing the sum of server-

s’ idling cost and customers’ waiting cost, it is obviously true that the resulting schedules depend

critically on the relative costs of servers’ idling and customers’ waiting. Therefore, obtaining

accurate cost parameters becomes a crucial issue in the application of theoretical results. How-

ever, from personal communication with practitioners, there is a lack of methods or guidelines
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for estimating customers’ waiting cost. Fries and Marathe (1981) relate the difficulty in esti-

mating waiting cost to the connection between customers’ waiting and the issues of goodwill as

well as the cost of society. We also notice that long waiting times would lead to reneging and

negative word of month, which further complicates the estimation of the cost.

Second, most of the literature models customers’ waiting cost as a linear function of waiting

time. However, in reality, the magnitude of customers’ annoyance from waiting may not be

proportional to the length of waiting time. From recent empirical studies (see, e.g., Baron et al.

2016), in various service encounters, customers’ perception of waiting reveals a threshold type

behavior in time. That is, customers are generally satisfied with their waiting experience if they

wait no more than a certain time length (e.g. 20 minutes), and their patience declines rapidly

when their waiting time exceeds that threshold. In many service industries, this acceptance

threshold can be obtained from customer satisfaction or complaint surveys (see, e.g., Baron et

al. 2016). The firms usually consider the acceptance thresholds as their performance targets.

Third, and very importantly, a schedule that minimizes the total system cost may not lead

to equal waiting experiences for each individual customer. Hassin and Mendel (2008) provide

numerical results showing that for both the dome-shape system (appointment intervals initially

increase and then decrease) and the equal-space system (appointment intervals stay fixed),

customers who are scheduled to come later wait longer than those who are scheduled to come

earlier. Cayirli and Veral (2003) highlight that the increasing waiting trend is observed under

most commonly studied appointment systems. The inequity in waiting time among customers

certainly leads to fairness issues, which would clearly create problems in practice.

Fourth, besides the usual concept of waiting time which describes the duration from the

time when a customer arrives and joins the queue to the time when she starts her service, there

is another important measure which captures the duration from the time a customer requests

service to the time when she arrives (i.e., her appointment time). This can be viewed as the

indirect waiting time. Indirect waiting time is often ignored in the literature. This is because the

indirect waiting cost is considered to be much lower than the direct waiting cost; for example,

customers are less inconvenienced waiting at home before arriving to service systems. However,

longer indirect waiting time could in fact lead to higher probability of no-show. From personal

communication with practitioners, no-show is more frequently seen at the end of a work day

than at the beginning of a work day. That is, customers who are given later appointment

times and therefore with longer indirect waiting time are less likely to show up. When there

are alternative service providers available, indirect waiting time is quite often a major selection
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criterion for customers.

Unlike a traditional appointment system that minimizes the sum of servers’ idling cost

and customers’ waiting cost, in this paper, we study an appointment system under a specific

service level constraint, that is, the expected waiting time of each individual customer must

be less than a certain value. Customers are then given the earliest possible appointment times

without breaking the service level constraint. Our model resolves the above four concerns

simultaneously. (1) Our model only deals with time, and cost is never involved. Thus, our

results can be applied in practice without any cost estimation. This resolves the first concern.

(2) A unique feature of our model is the service level constraint which gives the upper limit of

the expected waiting time of each individual customer. As a result, our appointment schedule

ensures fairness among customers. None of the customers wait longer than the acceptance

threshold in expectation. This resolves the second and third concerns. (3) Since each individual

customer is scheduled to arrive as early as possible, her indirect waiting time is minimized.

This resolves the fourth concern. In addition to these, our model has many other advantages.

(4) When customers are given the earliest possible appointment times, the servers’ idling time

and overtime are automatically minimized (without breaking the service level constraint). (5)

Our model can be viewed as both prospective scheduling (while the appointment times of all

the customers are decided together at once) and sequential scheduling (while the appointment

time of each customer is set one after another at the time when service is requested). The

interpretation of our problem in the prospective scheduling setting is to find the earliest possible

appointment times for all the customers such that the service level constraint is fulfilled, while

the interpretation in the sequential scheduling setting is, given that all the previous inter-

appointment times are minimized while keeping the service level constraint valid, we need

to find the shortest inter-appointment time for the next customer such that the service level

constraint is still valid. It is easy to see but worth mentioning that, under our model, for two

systems, one with m customers and the other with n customers (m < n), with the same service

level constraint, the optimal appointment times of the first m customers in the two systems

coincide.

Our modeling immediately raises several interesting and important questions: (1) What

is the structure of the optimal inter-appointment times? Are they constant, increasing, or

decreasing with the order of arrivals? (2) Should the length of the optimal inter-appointment

times be equal to the length of the expected service time of a customer? (3) If the optimal

inter-appointment times are not constant, are there any simple upper and lower bounds? (4)
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How are the optimal inter-appointment times affected by the service level constraint?

1.2 Analysis Method

In the past few years, there has been a growing body of literature on appointment scheduling

from the optimization community (see, e.g., Kong et al. 2013 and the references therein). The

studies there mainly focus on applying optimization techniques (e.g. robust optimization) to

develop computationally tractable programming models (or approximations) for searching the

optimal appointment schedules. On the other hand, appointment scheduling has received rel-

atively less recent attention in the queueing community. This is, in part, due to the nature of

appointment systems that (1) there is only a finite number of arrivals; and (2) the inter-arrival

times between customers may not be equal. These features create difficulties in applying stan-

dard queueing methodology which relies on steady state analysis (and therefore assumes infinite

arrivals) and requires homogeneous inter-arrival times. As a matter of fact, very few analytical

results exist on the structural properties of optimal schedules.

In this paper, we take the queueing approach to explore the structure of optimal appointment

schedules. We study a system with a single server and a finite number of customers to schedule.

Customer service times are i.i.d. and follow an Erlang distribution. Note that compared with

the exponential service time distribution which is assumed in most literature, the Erlang service

time distribution, while still holding the Markov property in someway that helps mathematical

tractability, is a tremendously relaxed assumption. It largely increases the applicability of the

results and managerial insights obtained from our study. Wang et al. (2014) use an embedded

Markov chain approach to study a queueing system with finite arrivals where customer inter-

arrival times are stochastic and heterogeneous. They characterize performance measures such

as the average expected waiting time and examine the effect of heterogeneity in inter-arrival

and service times. We follow their embedded Markov chain approach to obtain the waiting time

distribution for each individual customer. We then apply the theory of majorization to analyze

structural properties of the optimal schedule (which, to the best of our knowledge, is the first of

its kind in the literature). We prove that, to keep the expected waiting time of each individual

customer less than a certain threshold, the minimum inter-appointment times required increase

with the order of arrivals. That is, the inter-appointment time between the mth and (m+ 1)th

arrivals is no less than the inter-appointment time between the (m − 1)th and mth customers.

We also identify several additional properties of the optimal schedule. For example, other than

for the first few arrivals, the expected service time of a customer is a lower bound of the optimal

4



inter-appointment times; and later arrivals have higher chances to see an empty system. For

the case where service time is exponentially distributed, we prove the convergence of our system

to the D/M/1 queueing system as the number of arrivals approaches infinity. We also discuss

the extension of our results to systems with multiple servers.

To help understanding and for notational convenience, we start the analysis with the case

where service time is exponentially distributed. We then prove, later in the text, that the

main results also hold for Erlang service time distributions. Throughout the paper, “in-

crease/decrease” means “nondecrease/nonincrease”. The rest of the paper is organized as

follows. In Section 2, we describe the model with exponential service time distributions and

analyze the structure of the optimal appointment schedule. In Section 3, we extend the analysis

to the case with Erlang service time distributions and discuss the robustness of our results in

systems with multiple servers. In Section 4, we provide concluding comments.

2 Problem Description and Analysis

We consider a service system with a single server and M customers to be scheduled to come

over time. We index customers by the order of their appointments, so that customer m, for

m = 1, ...,M , is the mth customer to arrive. All customers show up punctually. We denote by

Am, for m = 1, ...,M , the appointment time of customer m. The server begins service (i.e., the

system starts) at time 0, and we have 0 ≤ Am−1 ≤ Am. Customer service times are i.i.d. and

follow an exponential distribution with a finite mean 1
µ . Upon arrival, a customer starts her

service immediately if the server is available. If not, the customer joins the queue and waits.

Customers waiting in queue are served on a first-come, first-served basis (i.e., the same order

of their appointment times). There is a service level constraint on the waiting time of each

individual customer; namely, the expected waiting time of each customer must be less than or

equal to a certain value s. The system provides each customer the earliest possible appointment

time fulfilling the waiting time constraint. In Table 1, we summarize the main notations used

in the analysis.

2.1 Preliminary Results

Let A∗m denote the optimal appointment time of customer m. It is easy to see that the optimal

appointment time of the first customer is A∗1 = 0. We denote by Tm, for m = 2, ...,M , the

inter-appointment time between customers m − 1 and m. That is, Tm = Am − Am−1. Let

T∗ = (T ∗2 , ..., T
∗
M ) denote the optimal schedule (shortest inter-appointment times satisfying the
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Am Appointment time of customer m
A∗
m Optimal appointment time of customer m

Tm Inter-appointment time between customers m− 1 and m
T ∗
m Optimal inter-appointment time between customers m− 1 and m
Wm(x) Expected waiting time in queue of customer m, with Tm = x and Tn = T ∗

n for
n = 2, ...,m− 1

W ∗
m Wm(T ∗

m)
Rm(x) Number of customers found in system by customer m, upon her arrival, with

Tm = x and Tn = T ∗
n for n = 2, ...,m− 1

R∗
m Rm(T ∗

m)
pm,i(x) Pr{Rm(x) = i}
p∗m,i Pr{R∗

m = i}

Pm,n(x)
m−1∑
i=n

pm,i(x)

P ∗
m,n

m−1∑
i=n

p∗m,i

ci(x) (µx)i

i! e−µx

c∗m,i
(µT∗

m)i

i! e−µT
∗
m

Table 1: Notations

service level constraint). That is, for any schedule T = (T2, ..., TM ), if
m∑
i=2

Ti <
m∑
i=2

T ∗i (i.e.,

Am < A∗m) for some m = 2, ...,M , then the expected waiting time of some customer n, for

n = 2, ...m, must be greater than s (the service level constraint is broken). We now analyze the

properties of (T ∗2 , ..., T
∗
M ).

Define Wm(x) to be the expected waiting time in queue of customer m, with Tm = x and

Tn = T ∗n for n = 2, ...,m − 1. We also define W ∗m = Wm(T ∗m). Since A∗1 = 0, we have W ∗1 = 0.

From the service level constraint, W ∗m ≤ s for m = 2, ...,M .

Lemma 1. Wm(x) is decreasing in x, and T ∗m is decreasing in s.

First, it is trivial to show that, with fixed schedule of previous customers, for the next

customer, the later she comes, the less she waits.

Next, if customers m− 1 and m are scheduled to arrive together, then the expected waiting

time of customer m equals the expected waiting time of customer m−1 plus the expected service

time of customer m − 1. Therefore, if customers 1, 2, ...,m are scheduled to arrive together at

time 0, then the expected waiting time of customer m equals m−1
µ . Let bxc denote the largest

integer not greater than x.

Lemma 2. T ∗m = 0 for m = 2, ..., bµsc+ 1, and W ∗m = s for m = bµsc+ 2, ...,M .

Proof: For each customer m, we are searching for the smallest x such that Wm(x) ≤ s. Since

(bµsc+1)−1
µ ≤ s and bµsc+1

µ > s, it is optimal to schedule customers 1, 2, ..., bµsc+ 1 together at
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time 0. From customer bµsc + 2, since Wm(x) is decreasing in x (Lemma 1), T ∗m is such that

W ∗m = s.

Lemma 2 says that it is optimal to schedule the first bµsc+ 1 customers together at time 0.

The rest would have expected waiting time equal to s. Since the service time of each customer

is exponentially distributed with mean 1
µ , the expected waiting time of a customer depends on

the number of customers found in system (in queue or in service) upon her arrival. We denote

Rm(x) as the random variable describing the number of customers found in system by customer

m, upon her arrival, with Tm = x and Tn = T ∗n for n = 2, ...,m − 1, and let E[Rm(x)] be its

expected value. The total number of customers in system immediately after Am is Rm(x) + 1.

Now, for i = 0, ...,m− 1 and m = 1, ...,M , let pm,i(x) = Pr{Rm(x) = i} refer to the probability

that the mth customer finds, upon arrival, i customers in system, with Tm = x and Tn = T ∗n for

n = 2, ...,m− 1. We also define R∗m = Rm(T ∗m) and p∗m,i = Pr{R∗m = i}.

When a customer finds i customers in system upon arrival, her expected waiting time is

equal to i
µ . Therefore, we have Wm(x) =

m−1∑
i=1

pm,i(x) iµ = E[Rm(x)] 1µ and W ∗m =
m−1∑
i=1

p∗m,i
i
µ =

E(R∗m) 1
µ . The service level constraint on waiting time (W ∗m ≤ s) can then be interpreted as

E(R∗m) ≤ µs. That is, the expected number of customers found in system upon each arrival is

not greater than µs. From Lemma 2, except for the first bµsc+1 customers who are scheduled to

arrive together at time 0, the expected number of customers found in system upon each arrival

equals µs. Suppose now customers 1, ...,m−1 are scheduled optimally and R∗m−1 is equal to µs.

The goal is to find the smallest inter-appointment time T ∗m such that E[Rm(T ∗m)] is also equal

to µs. Notice that the earliest available appointment time of customer m is the appointment

time of customer m− 1, that is Tm = 0. If customer m arrives together with customer m− 1,

then E[Rm(0)] = E(R∗m−1) + 1 = µs + 1 > µs. The constraint is broken. Therefore, we need

customer m to arrive later, not together with customer m− 1.

Lemma 3. The expected number of service completions during the time interval (A∗m−1, A
∗
m)

equals 1 for m = bµsc+ 3, ...,M .

From Lemma 3, the optimal inter-appointment time Tm is such that, the expected number

of customers who complete the service and leave the system during Tm exactly equals 1. This is

because, the expected number of customers in system immediately after A∗m−1 is µs+ 1. After

the system completes 1 customer, the number of customers in system will return to µs again.

So, searching the optimal inter-appointment time is equivalent to asking how long it takes the

system to complete one service. A specious guess to this question could be 1
µ (i.e., the expected

service time of a customer).
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Lemma 4. T ∗m ≥ 1
µ for m = bµsc+ 3, ...,M .

Lemma 4 states that except for the first bµsc+ 2 customers, the optimal inter-appointment

times have a lower bound 1
µ . The reason is that, for a system with exponential service rate µ,

if the server is always busy during a time interval with length 1
µ , then the expected number

of service completions is equal to 1. However, if the server is not always busy, the expected

number of service completions is less than 1.

To further analyze the properties of (T ∗2 , ..., T
∗
M ), we need to find the relationship between

T ∗m and T ∗m−1. Conditioning on the number of customers found, upon arrival, by customer

m− 1, we obtain

pm,i(x) =

m−2∑
j=i−1

p∗m−1,jPr{Rm(x) = i | R∗m−1 = j} (1)

for 1 ≤ i ≤ m− 1, and

pm,0(x) = 1−
m−1∑
i=1

pm,i(x)

for 2 ≤ m ≤M . Similarly,

p∗m,i =
m−2∑
j=i−1

p∗m−1,jPr{R∗m = i | R∗m−1 = j}, (2)

and

p∗m,0 = 1−
m−1∑
i=1

p∗m,i.

For the mth customer to find i customers given that the (m − 1)th customer finds j, there

must be exactly j−i+1 service completions during the time interval (A∗m−1, Am) with length x.

Since service time is exponentially distributed with rate µ, the number of service completions

during a time interval with length x is Poisson distributed with rate µx. Define

ci(x) =
(µx)i

i!
e−µx

and

c∗m,i =
(µT ∗m)i

i!
e−µT

∗
m .

Then,

Pr{Rm(x) = i | R∗m−1 = j} = cj−i+1(x)

and

Pr{R∗m = i | R∗m−1 = j} = c∗m,j−i+1.
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Equations (1) and (2) become

pm,i(x) =

m−2∑
j=i−1

p∗m−1,jcj−i+1(x) (3)

and

p∗m,i =
m−2∑
j=i−1

p∗m−1,jc
∗
m,j−i+1.

Now, define

Pm,n(x) =

m−1∑
i=n

pm,i(x)

and

P ∗m,n =
m−1∑
i=n

p∗m,i

for n = 0, ...,m− 1. Then, we have

Wm(x) =
1

µ

m−1∑
i=1

Pm,i(x)

and

W ∗m =
1

µ

m−1∑
i=1

P ∗m,i.

From Equation (3), we have Pm,n(x) =
m−1∑
i=n

m−2∑
j=i−1

p∗m−1,jcj−i+1(x) =
m−2∑
i=n−1

ci−n+1(x)
m−2∑
j=i

p∗m−1,j .

That is,

Pm,n(x) =
m−2∑
i=n−1

P ∗m−1,ici−n+1(x). (4)

Similarly,

P ∗m,n =
m−2∑
i=n−1

P ∗m−1,ic
∗
m,i−n+1. (5)

Next, we apply the theory of majorization to show the relationship between T ∗m and T ∗m−1.

We firstly introduce the concepts of majorization.

2.2 Majorization

For an n-dimensional vector x = (x1, ..., xn), we denote by (x(1), ..., x(n)) the vector with the

same components but sorted in increasing order (i.e., x(1) ≤ ... ≤ x(n)), and by (x[1], ..., x[n])

the vector with the same components but sorted in decreasing order (i.e., x[1] ≥ ... ≥ x[n]).

Definition 1. For x,y ∈ Rn, x is majorized by y (y majorizes x), denoted by x ≺ y, if{ j∑
i=1

x[i] ≤
j∑
i=1

y[i] for j = 1, ..., n− 1,

n∑
i=1

x[i] =
n∑
i=1

y[i],
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or, equivalently, { j∑
i=1

x(i) ≥
j∑
i=1

y(i) for j = 1, ..., n− 1,

n∑
i=1

x(i) =
n∑
i=1

y(i).

Definition 2. A square matrix D = (dij) is a doubly stochastic matrix if dij ≥ 0 and
∑
i
dij =∑

j
dij = 1, ∀i, j.

Lemma 5. For x,y ∈ Rn, the following conditions are equivalent

(1) x ≺ y,

(2)
n∑
i=1

xi =
n∑
i=1

yi and
n∑
i=1

(xi − z)+ ≤
n∑
i=1

(yi − z)+, ∀z ∈ R,

(3)
n∑
i=1
|xi − z| ≤

n∑
i=1
|yi − z|, ∀z ∈ R,

(4) x = Dy for some doubly stochastic matrix D.

The proof of Lemma 5 and more properties of majorization can be found in Marshall et al.

(2011).

Proposition 1. (P ∗m,m−1, P
∗
m,m−2, ..., P

∗
m,0) ≺ (0, P ∗m−1,m−2, ..., P

∗
m−1,0) for m = bµsc+3, ...,M .

Proof: Let u = (P ∗m,m−1, P
∗
m,m−2, ..., P

∗
m,0)

T and v = (0, P ∗m−1,m−2, ..., P
∗
m−1,0)

T , and define

D =



1− c∗m,0 c∗m,0 0 ... 0

1−
1∑
i=0

c∗m,i c∗m,1 c∗m,0 ... 0

1−
2∑
i=0

c∗m,i c∗m,2 c∗m,1 ... 0

...
...

...
...

d 1−
m−2∑
i=0

c∗m,i 1−
m−3∑
i=0

c∗m,i ... 1− c∗m,0


where d satisfies d+ (1−

m−2∑
i=0

c∗m,i) + (1−
m−3∑
i=0

c∗m,i) + ...+ (1− c∗m,0) = 1.

First, note that P ∗m,0 = P ∗m−1,0 = 1,
m−1∑
i=1

P ∗m,i =
m−2∑
i=1

P ∗m−1,i = µs, and

(1−
m−2∑
i=0

c∗m,i)P
∗
m−1,m−2 + (1−

m−3∑
i=0

c∗m,i)P
∗
m−1,m−3 + ...+ (1− c∗m,0)P ∗m−1,0

=

m−2∑
i=0

P ∗m−1,i −
m−2∑
i=0

P ∗m−1,i(

i∑
j=0

c∗m,i−j)

=1 + µs− µs = 1.

From Equation (5), we have u = Dv.

Now, notice that D = (dij) satisfies
∑
i
dij =

∑
j
dij = 1. If d ≥ 0, then D is a doubly

stochastic matrix. By Lemma 5, we have u ≺ v.

10



If d < 0, then D is not a doubly stochastic matrix. Since
m∑
i=1

ui =
m∑
i=1

vi = 1 + µs, we prove

u ≺ v by showing that
m∑
i=1

(ui − z)+ ≤
m∑
i=1

(vi − z)+, ∀z ∈ R (Lemma 5).

First, for any z ≤ 0, we have
m∑
i=1

(ui − z)+ =
m∑
i=1

(ui − z) =
m∑
i=1

ui + mz =
m∑
i=1

vi + mz =

m∑
i=1

(ui − z) =
m∑
i=1

(ui − z)+. For any z > 0, since um = vm = 1, we only need to show that

m−1∑
i=1

(ui − z)+ ≤
m−1∑
i=1

(vi − z)+.

Now, for matrix D, since
∑
j
dij = 1, we have Dem = em, where em = (1, ..., 1)T is the

m-dimensional identity column vector. Define Dm−1 as the matrix that consists of the first

m− 1 rows of D. Since (ui − z)+ = (u− zem)+i = (Dv − zDem)+i ≤ [D(v − zem)+]i, we have
m−1∑
i=1

(ui − z)+ ≤
m−1∑
i=1

[D(v − zem)+]i = eTm−1Dm−1(v − zem)+ =
m−1∑
j=1

(eTm−1Dm−1)j(vj − z)+ =

m−1∑
j=2

(eTm−1Dm−1)j(vj − z)+, where the last equality is due to the fact that v1 = 0 and therefore

(v1 − z)+ = 0, ∀z > 0. Notice that (eTm−1Dm−1)j =
m−1∑
i=1

dij ≤ 1 for j = 2, ...,m − 1, we have

m−1∑
i=1

(ui− z)+ ≤
m−1∑
j=2

(eTm−1Dm−1)j(vj − z)+ ≤
m−1∑
j=2

(vj − z)+ =
m−1∑
j=1

(vj − z)+. This completes the

proof.

2.3 Structure of Optimal Inter-Appointment Times

Now, we are ready to show the main result regarding the structure of the optimal inter-

appointment times.

Theorem 1. T ∗m+1 ≥ T ∗m.

Proof: From Lemma 2, T ∗m = 0 for m = 2, ..., bµsc+1; and from Lemma 1, Wm(x) is decreasing

in x. Therefore, to prove T ∗m+1 ≥ T ∗m, we only need to show that Wm+1(T
∗
m) ≥ Wm(T ∗m) =

W ∗m = s for m = bµsc+ 2, ...,M .

From Equation (4), we have

Wm+1(T
∗
m) =

1

µ

m∑
i=1

Pm+1,i(T
∗
m)

=
1

µ

m∑
i=1

m−1∑
j=i−1

P ∗m,jcj−i+1(T
∗
m)

=
1

µ

m∑
i=1

m−1∑
j=i−1

P ∗m,jc
∗
m,j−i+1

=
1

µ

m−1∑
i=0

c∗m,i

m−1∑
j=i

P ∗m,j

11



=
1

µ
(

m−2∑
i=0

c∗m,i

m−1∑
j=i

P ∗m,j + c∗m,m−1P
∗
m,m−1),

and W ∗m = 1
µ

m−2∑
i=0

c∗m,i
m−2∑
j=i

P ∗m−1,j . Comparing Wm+1(T
∗
m) with W ∗m, we see that it is sufficient

to prove
m−1∑
j=i

P ∗m,j ≥
m−2∑
j=i

P ∗m−1,j for i = 0, ...,m− 2 and m = bµsc+ 2, ...,M .

For m = bµsc+ 3, ...,M , from Proposition 1, (P ∗m,m−1, P
∗
m,m−2, ..., P

∗
m,0) ≺ (0, P ∗m−1,m−2, ...,

P ∗m−1,0). Therefore, by Definition 1, we have
m−1∑
j=i

P ∗m,j ≥
m−2∑
j=i

P ∗m−1,j for i = 0, ...,m− 2.

Last, for m = bµsc+ 2, we have m− 1 = bµsc+ 1 and A∗m−1 = 0. Then, p∗m−1,m−2 = 1, and

p∗m−1,i = 0 for i = 0, ...,m − 3. Therefore, P ∗m−1,n = 1 for n = 0, ...,m − 2, and
m−2∑
j=i

P ∗m−1,j =

m− 1− i. We now prove
m−1∑
j=i

P ∗m,j ≥ m− 1− i for i = 0, ...,m− 2 by induction. First, for i = 0,

m−1∑
i=0

P ∗m,i =
m−1∑
i=1

P ∗m,i + P ∗m,0 = µs+ 1 ≥ bµsc+ 1 = m− 1. Now, suppose
m−1∑
j=i

P ∗m,j ≥ m− 1− i

for i = 0, ..., n, where n ≤ m − 1. Then, for i = n + 1,
m−1∑
j=n+1

P ∗m,j =
m−1∑
j=n

P ∗m,j − P ∗m,n ≥

m−1∑
j=n

P ∗m,j − 1 ≥ m− 1− n− 1 = m− 1− (n+ 1). This completes the proof.

From Lemma 2 and Theorem 1, we see that, the optimal appointment schedule has the

structure that (1) the first bµsc+1 customers are scheduled to come together at time 0; and (2)

from customer bµsc+ 2, the inter-appointment time increases. The optimal schedule has some

other interesting properties. Denote w∗m as the random variable describing the waiting time in

queue of customer m under the optimal schedule (W ∗m = E(w∗m)).

Corollary 1. For m = bµsc+ 2, ...,M , the following hold

(a) p∗m+1,0 ≥ p∗m,0,

(b) Pr{w∗m+1 ≤ 1
µ} ≥ Pr{w∗m ≤ 1

µ}.

Proof: (a) Since (P ∗m+1,m, P
∗
m+1,m−1, ..., P

∗
m+1,0) ≺ (0, P ∗m,m−1, ..., P

∗
m,0), by Definition 1, we

have P ∗m+1,0 + P ∗m+1,1 ≤ P ∗m,0 + P ∗m,1. That is, 1 + 1− p∗m+1,0 ≤ 1 + 1− p∗m,0, or p∗m+1,0 ≥ p∗m,0.

(b) If the mth customer finds i customers (i ≥ 1) in system upon arrival, her waiting time

in queue is Erlang distributed with shape i and rate µ, and therefore, Pr{w∗m ≤ 1
µ |R

∗
m = i} =

1−
i−1∑
j=0

1
j!e
−1 = 1−

i−1∑
j=0

Cj , where Cj = 1
j!e
−1. Thus,

Pr{w∗m ≤
1

µ
} =p∗m,0 +

m−1∑
i=1

p∗m,i(1−
i−1∑
j=0

Cj)

=1−
m−1∑
i=1

p∗m,i

i−1∑
j=0

Cj

=1− (C0P
∗
m,1 + C1P

∗
m,2 + ...+ Cm−2P

∗
m,m−1)

12



=1− (C0

1∑
j=1

P ∗m,j − C1

1∑
j=1

P ∗m,j + C1

2∑
j=1

P ∗m,j − C2

2∑
j=1

P ∗m,j

+ ...+ Cm−3

m−2∑
j=1

P ∗m,j − Cm−2
m−2∑
j=1

P ∗m,j + Cm−2

m−1∑
j=1

P ∗m,j)

=1− [(C0 − C1)

1∑
j=1

P ∗m,j + (C1 − C2)

2∑
j=1

P ∗m,j + ...+ (Cm−3 − Cm−2)
m−2∑
j=1

P ∗m,j

+ Cm−2

m−1∑
j=1

P ∗m,j ]

=1− [

m−2∑
i=1

(Ci−1 − Ci)
i∑

j=1

P ∗m,j + Cm−2

m−1∑
j=1

P ∗m,j ].

It is easy to see that Cj is decreasing in j. That is, Ci ≥ Ci+1. Now, (P ∗m+1,m, P
∗
m+1,m−1, ...,

P ∗m+1,0) ≺ (0, P ∗m,m−1, ..., P
∗
m,0), so

i∑
j=0

P ∗m+1,j ≤
i∑

j=0
P ∗m,j for i = 0, ...,m − 1, and

m∑
j=0

P ∗m+1,j ≤

m−1∑
j=0

P ∗m,j . Since P ∗m+1,0 = P ∗m,0 = 1, we have
i∑

j=1
P ∗m+1,j ≤

i∑
j=1

P ∗m,j for i = 1, ...,m − 1, and

m∑
j=1

P ∗m+1,j ≤
m−1∑
j=1

P ∗m,j . This implies

Pr{w∗m+1 ≤
1

µ
} = 1− [

m−1∑
i=1

(Ci−1 − Ci)
i∑

j=1

P ∗m+1,j + Cm−1

m∑
j=1

P ∗m+1,j ]

≥ 1− [

m−1∑
i=1

(Ci−1 − Ci)
i∑

j=1

P ∗m,j + Cm−1

m−1∑
j=1

P ∗m,j ]

= 1− [
m−2∑
i=1

(Ci−1 − Ci)
i∑

j=1

P ∗m,j + (Cm−2 − Cm−1)
m−1∑
j=1

P ∗m,j + Cm−1

m−1∑
j=1

P ∗m,j ]

= 1− [
m−2∑
i=1

(Ci−1 − Ci)
i∑

j=1

P ∗m,j + Cm−2

m−1∑
j=1

P ∗m,j ]

= Pr{w∗m ≤
1

µ
}.

Corollary 1 states that, upon arrival, while seeing the equal expected number of customers,

a later arrival has a higher chance to find an empty system and is more likely to wait shorter

than the duration of her expected service time. These results are intuitively true noticing that

a later arrival also has a higher chance to see a longer queue (e.g. the 10th arrival could see 9

customers in system while the 5th arrival could see 4 at most).

It is worth highlighting here the fact that, p∗m,0 increases with m can be viewed as the reason

why T ∗m increases with m. As we explained earlier after Lemma 4, during a time interval with

fixed length, the expected number of service completions depends on the proportion of time

while the server is busy (working). As m increases, p∗m,0 increases, that is, the proportion of

server-busy time decreases, and therefore it takes longer to complete 1 service.
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2.4 Asymptotic Analysis

In this section, we study the limiting behavior of our system. We prove that our system

converges to the D/M/1 queueing system as the number of arrivals approaches infinity.

First, since T ∗m+1 ≥ T ∗m, lim
M→∞

T ∗M exists (can be infinity). Let T ∗ = lim
M→∞

T ∗M , and c∗i =

lim
M→∞

c∗M,i = lim
M→∞

ci(T
∗
M ) = ci( lim

M→∞
T ∗M ). Define p∗m,i = P ∗m,i = 0 for i ≥ m. We now prove

that lim
M→∞

p∗M,i exists.

Lemma 6. lim
M→∞

p∗M,i exists for i = 0, 1, ....

Proof: We prove this by induction on i. First, notice that p∗M,i ≤ 1, ∀i ∀M . For i = 0, from

Corollary 1, p∗M+1,0 ≥ p∗M,0 for M ≥ bµsc+ 2. Since p∗M,0 ≤ 1, ∀M , we conclude that lim
M→∞

p∗M,0

exists. Now, suppose lim
M→∞

p∗M,i exists for i = 0, 1, ..., n. Then, for i = n + 1, since p∗M,i = 0

for i ≥ M , we have P ∗M,j =
M−1∑
i=j

p∗M,i =
∞∑
i=j

p∗M,i for j = 0, ...,M − 1; and since P ∗M,i = 0 for

i ≥ M , we have P ∗M,j =
∞∑
i=j

p∗M,i for j = 0, 1, .... This implies that (P ∗M,j , P
∗
M,j−1, ..., P

∗
M,0) ≺

(P ∗M−1,j , P
∗
M−1,j−1, ..., P

∗
M−1,0) for j ≥M and M ≥ bµsc+3. As a result,

i∑
j=0

P ∗M,j ≤
i∑

j=0
P ∗M−1,j

for all i ≥ 0 and M ≥ bµsc+ 3. Let i = n+ 2, we have
n+2∑
j=0

P ∗M,j ≤
n+2∑
j=0

P ∗M−1,j , that is,

P ∗M,0 + P ∗M,1 + ...+ P ∗M,n+2 ≤ P ∗M−1,0 + P ∗M−1,1 + ...+ P ∗M−1,n+2,

or
M−1∑
i=0

p∗M,i +
M−1∑
i=1

p∗M,i + ...+
M−1∑
i=n+2

p∗M,i ≤
M−2∑
i=0

p∗M−1,i +
M−2∑
i=1

p∗M−1,i + ...+
M−2∑
i=n+2

p∗M−1,i.

This leads to

1 + (1− p∗M,0) + ...+ (1−
n+1∑
i=0

p∗M,i) ≤ 1 + (1− p∗M−1,0) + ...+ (1−
n+1∑
i=0

p∗M−1,i),

or −
n+1∑
i=0

(n+ 2− i)p∗M,i ≤ −
n+1∑
i=0

(n+ 2− i)p∗M−1,i.

Define Q∗M,n =
n+1∑
i=0

(n + 2 − i)p∗M,i. We have Q∗M,n ≥ Q∗M−1,n (for M ≥ bµsc + 3). Since

Q∗M,n ≤
n+1∑
i=0

(n + 2 − i) =
n+2∑
i=1

i = (n+2)(n+3)
2 , we conclude that lim

M→∞
Q∗M,n exists. Now, notice

that p∗M,n+1 = Q∗M,n −
n∑
i=0

(n+ 2− i)p∗M,i, and therefore

lim
M→∞

p∗M,n+1 = lim
M→∞

[Q∗M,n −
n∑
i=0

(n+ 2− i)p∗M,i] = lim
M→∞

Q∗M,n −
n∑
i=0

(n+ 2− i) lim
M→∞

p∗M,i.

Since lim
M→∞

Q∗M,n, lim
M→∞

p∗M,0, lim
M→∞

p∗M,1,..., lim
M→∞

p∗M,n all exist and are all finite, we conclude

that lim
M→∞

p∗M,n+1 exists. This completes the induction and the proof.

Theorem 2. T ∗ = lim
M→∞

T ∗M = s(1 + 1
µs) ln(1 + 1

µs), and p
∗
i = lim

M→∞
p∗M,i = 1

1+µs(
µs

1+µs)
i for

i = 0, 1, ....
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Proof: Recall that p∗M,i =
M−2∑
j=i−1

p∗M−1,jc
∗
M,j−i+1 for 1 ≤ i ≤ M − 1, and p∗M,0 = 1 −

M−1∑
i=1

p∗M,i.

Since p∗M,i = 0 for i ≥ M , we have p∗M,i =
∞∑

j=i−1
p∗M−1,jc

∗
M,j−i+1 for i = 1, 2, ..., and p∗M,0 =

1−
∞∑
i=1

p∗M,i. Let M goes to infinity, we have

p∗i = lim
M→∞

∞∑
j=i−1

p∗M−1,jc
∗
M,j−i+1 =

∞∑
j=i−1

p∗jc
∗
j−i+1 =

∞∑
j=0

p∗j+i−1c
∗
j =

∞∑
j=0

p∗j+i−1
(µT ∗)j

j!
e−µT

∗
,

for i = 1, 2, ..., and p∗0 = 1−
∞∑
i=1

p∗i .

Now, for M ≥ bµsc + 2, we have
∞∑
i=1

ip∗M,i =
∞∑
i=1

P ∗M,i =
m−1∑
i=1

P ∗M,i = µs. Again, let M goes

to infinity, we get
∞∑
i=1

ip∗i = µs.

Thus, we have 

p∗0 = 1−
∞∑
i=1

p∗i ,

∞∑
i=1

ip∗i = µs,

p∗i =
∞∑
j=0

p∗j+i−1
(µT ∗)j

j! e−µT
∗

for i = 1, 2, ....

We now verify that T ∗ = s(1 + 1
µs) ln(1 + 1

µs) and p∗i = 1
1+µs(

µs
1+µs)

i for i = 0, 1, ... is the

solution of the above system of equations.

For the first equation, LHS (left hand side) = p∗0 = 1
1+µs . RHS (right hand side) = 1−

∞∑
i=1

p∗i =

1−
∞∑
i=1

1
1+µs(

µs
1+µs)

i = 1− 1
1+µs

∞∑
i=1

( µs
1+µs)

i = 1− 1
1+µs

µs
1+µs

1− µs
1+µs

= 1− µs
1+µs = 1

1+µs . LHS = RHS.

For the second equation, define α =
∞∑
i=1

ip∗i . LHS =
∞∑
i=1

ip∗i =
∞∑
i=1

i 1
1+µs(

µs
1+µs)

i =

1
1+µs

∞∑
i=1

i( µs
1+µs)

i. That is,

α =
1

1 + µs

∞∑
i=1

i(
µs

1 + µs
)i. (6)

Then, µs
1+µsα = µs

1+µs
1

1+µs

∞∑
i=1

i( µs
1+µs)

i. That is,

µs

1 + µs
α =

1

1 + µs

∞∑
i=1

i(
µs

1 + µs
)i+1. (7)

From (6) and (7), we obtain 1
1+µsα = 1

1+µs

∞∑
i=1

( µs
1+µs)

i = µs
1+µs , and therefore α = µs. LHS =

RHS.

For the third equation, 1
1+µs(

µs
1+µs)

i =
∞∑
j=0

1
1+µs(

µs
1+µs)

j+i−1 (µT ∗)j

j! e−µT
∗
. So, 1

1+µs(
µs

1+µs)
i =

1
1+µs(

µs
1+µs)

i
∞∑
j=0

( µs
1+µs)

j−1 (µT ∗)j

j! e−µT
∗
, and therefore

∞∑
j=0

( µs
1+µs)

j−1 (µT ∗)j

j! e−µT
∗

= 1. That is,

∞∑
j=0

( µs
1+µs)

j (µT
∗)j

j! = µs
1+µse

µT ∗
, or

∞∑
j=0

(µsµT
∗

1+µs
)j

j! = µs
1+µse

µT ∗
. Since ex =

∞∑
j=0

xj

j! , we have e
µsµT∗
1+µs =

15



µs
1+µse

µT ∗
. This implies that ln(e

µsµT∗
1+µs ) = ln( µs

1+µse
µT ∗

), or µsµT ∗

1+µs = µT ∗ + ln( µs
1+µs). Thus,

we have µ
1+µsT

∗ = − ln( µs
1+µs), and so T ∗ = −1+µs

µ ln( µs
1+µs) = 1+µs

µ ln[( µs
1+µs)

−1] = (s +

1
µ) ln(1+µsµs ) = s(1 + 1

µs) ln(1 + 1
µs).

Now, we conclude that T ∗ = lim
M→∞

T ∗M = s(1 + 1
µs) ln(1 + 1

µs), and p∗i = lim
M→∞

p∗M,i =

1
1+µs(

µs
1+µs)

i for i = 0, 1, ....

Theorem 2 shows that as the number of arrivals approaches infinity, our system converges

asymptotically to a D/M/1 queueing system having deterministic inter-arrival times with length

s(1 + 1
µs) ln(1 + 1

µs) and exponential service times with rate µ.

As a result of Theorem 1 together with Theorem 2, we see that T ∗m has an upper bound that

is equal to s(1 + 1
µs) ln(1 + 1

µs), for m = 1, ...,M . Recall Lemma 4 that T ∗m has a lower bound

that is equal to 1
µ , for m = bµsc+ 3, ...,M . Therefore, we have obtained both upper and lower

bounds of T ∗m for m = bµsc+ 3, ...,M , in explicit forms.

3 Extension

In this section, we study two extensions of our system, one with Erlang service time distributions

and the other with multiple servers.

3.1 Erlang Service Time Distribution

When customer service times follow an Erlang distribution with shape I (a finite positive integer)

and rate µ (a finite positive real number), each customer has I phases of service, and the duration

for each phase of service follows an exponential distribution with rate µ. Now, the expected

waiting time of a customer depends on the number of phases found in system upon her arrival,

instead of the number of customers. First, it is easy to see that the corresponding Lemma 1-4

still hold for the Erlang case.

Lemma 7. For systems with Erlang service time distributions, the following hold

(1) Wm(x) is decreasing in x, and T ∗m is decreasing in s,

(2) T ∗m = 0 for m = 2, ..., bµsI c+ 1, and W ∗m = s for m = bµsI c+ 2, ...,M ,

(3) The expected number of phase completions during the time interval (A∗m−1, A
∗
m) equals I for

m = bµsI c+ 3, ...,M ,

(4) T ∗m ≥ I
µ for m = bµsI c+ 3, ...,M .

We keep the same notations but switching from the “the number of customers” to “the

number of phases”. Namely, we denote Rm(x) as the random variable describing the number
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of phases found in system by customer m, upon her arrival, with Tm = x and Tn = T ∗n for

n = 2, ...,m− 1. The total number of phases in system immediately after Am is Rm + I. Then,

for i = 0, ..., (m − 1)I and m = 1, ...,M , let pm,i(x) = Pr{Rm(x) = i} refer to the probability

that the mth customer finds, upon arrival, i phases in system, with Tm = x and Tn = T ∗n for

n = 2, ...,m− 1. We also define R∗m = Rm(T ∗m) and p∗m,i = Pr{R∗m = i}.

When a customer finds i phases in system upon arrival, her expected waiting time is equal to

i
µ . Therefore, we have Wm(x) =

m−1∑
i=1

pm,i(x) iµ = E[Rm(x)] 1µ and W ∗m =
m−1∑
i=1

p∗m,i
i
µ = E(R∗m) 1

µ .

The service level constraint on waiting time (W ∗m ≤ s) can then be interpreted as E(R∗m) ≤ µs.

That is, the expected number of phases found in system upon each arrival is no more than µs.

To compute pm,i(x), we separate into two cases, I ≤ i ≤ (m − 1)I and 1 ≤ i < I. If the

mth customer finds i phases, for I ≤ i ≤ (m − 1)I, then the (m − 1)th customer must at least

find i − I phases. On the other hand, if the mth customer finds i phases, for 1 ≤ i < I, then

the (m − 1)th customer could find 0 phases. Under both cases, for the mth customer to find

i customers given that the (m − 1)th customer finds j, there must be exactly j − i + I phase

completions during the time interval (A∗m−1, Am) with length x. Since service time is Erlang

distributed with shape I and rate µ, the number of phase completions during a time interval

with length x is Poisson distributed with rate µx. Thus, we have

pm,i(x) =

(m−2)I∑
j=i−I

p∗m−1,jcj−i+I(x) (8)

for I ≤ i ≤ (m− 1)I,

pm,i(x) =

(m−2)I∑
j=0

p∗m−1,jcj−i+I(x) (9)

for 1 ≤ i < I, and

pm,0(x) = 1−
(m−1)I∑
i=1

pm,i(x).

Similarly,

p∗m,i =

(m−2)I∑
j=i−I

p∗m−1,jc
∗
m,j−i+I

for I ≤ i ≤ (m− 1)I,

p∗m,i =

(m−2)I∑
j=0

p∗m−1,jc
∗
m,j−i+I

for 1 ≤ i < I, and

p∗m,0 = 1−
(m−1)I∑
i=1

p∗m,i.
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Now, define

Pm,n(x) =

(m−1)I∑
i=n

pm,i(x)

and

P ∗m,n =

(m−1)I∑
i=n

p∗m,i

for n = 0, ..., (m− 1)I. Then, we have

Wm(x) =
1

µ

(m−1)I∑
i=1

Pm,i(x)

and

W ∗m =
1

µ

(m−1)I∑
i=1

P ∗m,i.

When n ≥ I, from Equation (8), we have

Pm,n(x) =

(m−1)I∑
i=n

(m−2)I∑
j=i−I

p∗m−1,jcj−i+I(x) =

(m−2)I∑
i=n−I

ci−n+I(x)

(m−2)I∑
j=i

p∗m−1,j .

That is,

Pm,n(x) =

(m−2)I∑
i=n−I

P ∗m−1,ici−n+I(x).

Similarly,

P ∗m,n =

(m−2)I∑
i=n−I

P ∗m−1,ic
∗
m,i−n+I . (10)

When n < I, from Equation (9), we have

Pm,n(x) =

I−1∑
i=n

(m−2)I∑
j=0

p∗m−1,jcj−i+I(x) +

(m−1)I∑
i=I

(m−2)I∑
j=i−I

p∗m−1,jcj−i+I(x).

Similarly

P ∗m,n =

I−1∑
i=n

(m−2)I∑
j=0

p∗m−1,jc
∗
m,j−i+I +

(m−1)I∑
i=I

(m−2)I∑
j=i−I

p∗m−1,jc
∗
m,j−i+I ,

Note that the first term equals

I−1∑
i=n

(m−2)I∑
j=0

p∗m−1,jc
∗
m,j−i+I

=c∗m,1p
∗
m−1,0 + c∗m,2(p

∗
m−1,1 + p∗m−1,0) + ...+ c∗m,I−n(p∗m−1,I−n−1 + ...+ p∗m−1,0) + c∗m,I−n+1

(p∗m−1,I−n + ...+ p∗m−1,1) + ...+ c∗m,(m−1)I−(I−1)(p
∗
m−1,(m−2)I + ...+ p∗m−1,(m−3)I+n+1)

+ c∗m,(m−1)I−I+2(p
∗
m−1,(m−2)I + ...+ p∗m−1,(m−3)I+n+2) + ...+ c∗m,(m−1)I−n−1(p

∗
m−1,(m−2)I

+ p∗m−1,(m−2)I−1) + c∗m,(m−1)I−np
∗
m−1,(m−2)I

=c∗m,1(P
∗
m−1,0 − P ∗m−1,1) + c∗m,2(P

∗
m−1,0 − P ∗m−1,2) + ...+ c∗m,I−n(P ∗m−1,0 − P ∗m−1,I−n)
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+ c∗m,I−n+1(P
∗
m−1,1 − P ∗m−1,I−n+1) + c∗m,I−n+2(P

∗
m−1,2 − P ∗m−1,I−n+2) + ...+ c∗m,(m−1)I−(I−1)

(P ∗m−1,(m−3)I+n+1 − 0) + c∗m,(m−1)I−I+2P
∗
m−1,(m−3)I+n+2 + ...+ c∗m,(m−1)I−n−1P

∗
m−1,(m−2)I−1

+ c∗m,(m−1)I−nP
∗
m−1,(m−2)I

=

(m−2)I∑
i=0

c∗m,i−n+IP
∗
m−1,i + P ∗m−1,0

I−n−1∑
i=1

c∗m,i −
(m−2)I∑
i=1

c∗m,iP
∗
m−1,i,

and the second term equals
(m−1)I∑
i=I

(m−2)I∑
j=i−I

p∗m−1,jc
∗
m,j−i+I = P ∗m,I =

(m−2)I∑
i=0

P ∗m−1,ic
∗
m,i. Thus, we

have for n < I,

P ∗m,n =

(m−2)I∑
i=0

P ∗m−1,ic
∗
m,i−n+I + P ∗m−1,0

I−n−1∑
i=0

c∗m,i.

Define Ĩ = I(I−1)
2 , then we have the following proposition which corresponds to Proposition

1 for the case with exponential service time distributions.

Proposition 2. (P ∗m,(m−1)I , P
∗
m,(m−1)I−1, ..., P

∗
m,(m−2)I+1, P

∗
m,(m−2)I , ..., P

∗
m,1, ĨP

∗
m,0) ≺

(0, 0, ..., 0, P ∗m−1,(m−2)I , ..., P
∗
m−1,1, ĨP

∗
m−1,0) for m = bµsc+ 3, ...,M .

Proof: Let u = (P ∗m,(m−1)I , P
∗
m,(m−1)I−1, ..., P

∗
m,(m−2)I+1, P

∗
m,(m−2)I , ..., P

∗
m,1, ĨP

∗
m,0)

T and v =

(0, 0, ..., 0, P ∗m−1,(m−2)I , ..., P
∗
m−1,1, ĨP

∗
m−1,0)

T , and define

D =



1− c∗m,0 0, ..., 0 c∗m,0 0 ... 0 0

1−
1∑
i=0

c∗m,i 0, ..., 0 c∗m,1 c∗m,0 ... 0 0

...
...

...
...

...
...

1−
(m−2)I−1∑

i=0
c∗m,i 0, ..., 0 c∗m,(m−2)I−1 c∗m,(m−2)I−2 ... c∗m,0 0

1−
(m−2)I∑
i=1

c∗m,i − 1
Ĩ
c∗m,0 0, ..., 0 c∗m,(m−2)I c∗m,(m−2)I−1 ... c∗m,1

1
Ĩ
c∗m,0

1−
(m−2)I+1∑

i=2
c∗m,i − 1

Ĩ

1∑
i=0

c∗m,i 0, ..., 0 c∗m,(m−2)I+1 c∗m,(m−2)I ... c∗m,2
1
Ĩ

1∑
i=0

c∗m,i

...
...

...
...

...
...

1−
(m−1)I−1∑

i=I

c∗m,i − 1
Ĩ

I−1∑
i=0

c∗m,i 0, ..., 0 c∗m,(m−1)I−1 c∗m,(m−1)I−2 ... c∗m,I
1
Ĩ

I−1∑
i=0

c∗m,i

d 1, ..., 1 1−
(m−1)I−1∑

i=0
c∗m,i 1−

(m−1)I−2∑
i=0

c∗m,i ... 1−
I∑
i=0

c∗m,i 1− 1
Ĩ
(
I−1∑
i=0

c∗m,i + ...+
1∑
i=0

c∗m,i + c∗m,0)



where d satisfies d+
(m−1)I−1∑

i=I

(1−
i∑

j=0
c∗m,i) + I − 1

Ĩ

I−1∑
i=0

i∑
j=0

c∗m,i = 1.

First, note that P ∗m,0 = P ∗m−1,0 = 1, and
(m−1)I∑
i=1

P ∗m,i =
(m−2)I∑
i=1

P ∗m−1,i = µs. Now, consider

(1−
(m−1)I−1∑

i=0
c∗m,i)P

∗
m−1,(m−2)I + (1−

(m−1)I−2∑
i=0

c∗m,i)P
∗
m−1,(m−2)I−1 + ...+ (1−

I∑
i=0

c∗m,i)P
∗
m−1,1 +

(1 − 1
Ĩ

I−1∑
i=0

c∗m,i − 1
Ĩ

I−2∑
i=0

c∗m,i − ... − 1
Ĩ

1∑
i=0

c∗m,i − 1
Ĩ
c∗m,0)ĨP

∗
m−1,0. The sum of the negative terms

equals

[(

I−1∑
i=0

c∗m,i)P
∗
m−1,0 + c∗m,IP

∗
m−1,1 + c∗m,I+1P

∗
m−1,2 + ...+ c∗m,(m−1)I−1P

∗
m−1,(m−2)I ]
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+[(

I−2∑
i=0

c∗m,i)P
∗
m−1,0 + c∗m,I−1P

∗
m−1,1 + c∗m,IP

∗
m−1,2 + ...+ c∗m,(m−1)I−2P

∗
m−1,(m−2)I ]

+...+ [c∗m,0P
∗
m−1,1 + c∗m,1P

∗
m−1,2 + ...+ c∗m,(m−2)I−1P

∗
m−1,(m−2)I ]

=P ∗m,1 + P ∗m,2 + ...+ P ∗m,(m−1)I =

(m−1)I∑
i=1

P ∗m,i = µs.

Thus,

(1−
(m−1)I−1∑

i=0

c∗m,i)P
∗
m−1,(m−2)I + (1−

(m−1)I−2∑
i=0

c∗m,i)P
∗
m−1,(m−2)I−1 + ...+ (1−

I∑
i=0

c∗m,i)P
∗
m−1,1

+(1− 1

Ĩ

I−1∑
i=0

c∗m,i −
1

Ĩ

I−2∑
i=0

c∗m,i − ...−
1

Ĩ

1∑
i=0

c∗m,i −
1

Ĩ
c∗m,0)ĨP

∗
m−1,0

=

(m−2)I∑
i=1

P ∗m−1,i + ĨP ∗m−1,0 − µs = µs+ Ĩ − µs = Ĩ = ĨP ∗m,0.

Then, from Equation (10), we have u = Dv.

The rest of the proof is the same as that for Proposition 1, and is therefore omitted for the

sake of brevity.

Following Proposition 2, we obtain results correspond to those for the case with exponential

service time distributions.

Theorem 3. T ∗m+1 ≥ T ∗m for systems with Erlang service time distributions.

Proposition 3. For systems with Erlang service time distributions, the following hold

(a) p∗m+1,0 ≥ p∗m,0 for m = bµsI c+ 2, ...,M ,

(b) Pr{w∗m+1 ≤ I
µ} ≥ Pr{w∗m ≤ I

µ} for m = bµsI c+ 2, ...,M ,

(c) lim
M→∞

p∗M,i exists for i = 0, 1, ....

The proof for Theorem 3 and Proposition 3 is similar to the proof for Theorem 1, Corollary

1, and Lemma 6, and is therefore omitted for the sake of brevity. We see that all the results hold

for the case with Erlang service time distributions, and the system converges asymptotically to

a D/Er/1 queueing system as the number of arrivals approaches infinity.

3.2 Multiple Servers

Consider a system with N (a finite positive integer) parallel and identical servers. Customer

service times are i.i.d. and follow an exponential distribution with rate µ (a finite positive

real number). An arriving customer starts service immediately if there is an available server.

Otherwise, she waits in the queue and will be served by the first available server. We continue

to use similar notations.
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Since there are N servers, it is optimal to schedule the first N customers to arrive together at

time 0, and their waiting time equals 0. Notice that, when n servers are occupied (n customers

are under service) simultaneously, the time it takes to complete one service is exponentially

distributed with rate µn. So, if customers 1, 2, ...,m are scheduled to arrive together at time 0,

the expected waiting time of customer m equals (m−N)+

µN . The following Lemma corresponds to

Lemma 1-4 for the single server case.

Lemma 8. For systems with N servers, the following hold

(1) Wm(x) is decreasing in x, and T ∗m is decreasing in s,

(2) T ∗m = 0 for m = 2, ..., bµNsc+N , and W ∗m = s for m = bµNsc+N + 1, ...,M ,

(3) The expected number of service completions during the time interval (A∗m−1, A
∗
m) equals 1

for m = bµNsc+N + 2, ...,M ,

(4) T ∗m ≥ 1
µN for m = bµNsc+N + 2, ...,M .

As for the single server case, we first characterize the probability Pr{R∗m = i | R∗m−1 = j}

for bµNsc + N + 1 ≤ m ≤ M , 1 ≤ i ≤ m − 1, and i − 1 ≤ j ≤ m − 2. For the mth customer

to find i customers given that the (m − 1)th customer finds j, there must be exactly j − i + 1

service completions during the time interval (Am−1, Am). We distinguish the following three

cases.

Case 1, N ≤ i ≤ j+1: In this case, all the servers are busy during the time interval (Am−1, Am).

Therefore, the departure process is Poisson with rate µN . So,

Pr{R∗m = i | R∗m−1 = j} =
(µNT ∗m)j−i+1

(j − i+ 1)!
e−µNT

∗
m .

Case 2, 1 ≤ i ≤ j + 1 ≤ N : In this case, both the mth and the (m + 1)th customers start

service immediately upon arrival, and Pr{R∗m = i | R∗m−1 = j} corresponds to the probability

that exactly j − i + 1 among j + 1 customers complete their service during the time interval

(Am−1, Am) (and the other i customers do not complete). The service time of each customer is

exponentially distributed with rate µ. Noticing that
(
j+1
j−i+1

)
= (j+1)!

i!(j−i+1)! , we have

Pr{R∗m = i | R∗m−1 = j} =
(j + 1)!

i!(j − i+ 1)!
(1− e−µT ∗

m)j−i+1(e−µT
∗
m)i.

Case 3, 1 ≤ i < N < j + 1: In this case, all the servers are busy immediately after Am−1

and there are j −N + 1 queued customers. However, some servers become idle and the queue

is empty at Am. To have j − i + 1 service completions, we need the following two events to

happen during the time interval (Am−1, Am); (1) the first j − N + 1 queued customers leave

the queue and enter service, which implies that j − N + 1 customers complete their service;

(2) N − i customers complete their service afterwards. The departure process during (1) is the
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same as that in Case 1. The time it takes to complete the first j − N + 1 services (when all

the servers are busy) is Erlang distributed with shape j −N + 1 and rate µN . The departure

process during (2) is same as that in Case 2. Exactly N − i among N customers complete their

service. Suppose the time duration for (1) equals t for t ∈ (0, T ∗m), then the time duration for

(2) equals T ∗m − t. Thus,

Pr{R∗m = i | R∗m−1 = j} =
T ∗
m∫
0

[
N !

i!(N−i)!(1− e
−µ(T ∗

m−t))N−ie−µ(T
∗
m−t)i

]
(µN)j−N+1tj−Ne−µNt

(j−N)! dt.

As a result, we have

p∗m,i =

N−1∑
j=i−1

p∗m−1,j
(j + 1)!

i!(j − i+ 1)!
(1− e−µT ∗

m)j−i+1(e−µT
∗
m)i

+
m−2∑
j=N

p∗m−1,j

T ∗
m∫

0

[
N !

i!(N − i)!
(1− e−µ(T ∗

m−t))N−ie−µ(T
∗
m−t)i

]
(µN)j−N+1tj−Ne−µNt

(j −N)!
dt (11)

for i = 1, ..., N − 1, and

p∗m,i =
m−2∑
j=i−1

p∗m−1,j
(µNT ∗m)j−i+1

(j − i+ 1)!
e−µNT

∗
m (12)

for i = N, ...,m − 1. As for the single server case, p∗m,0 = 1 −
m−1∑
i=1

p∗m,i for m = bµNsc + N +

1, ...,M . Notice also that pbµNsc+N,bµNsc+N−1 = 1, and pbµNsc+N,i = 0 for i 6= bµNsc+N − 1.

Now, W ∗m = (m−N)+

µN for m = 1, ..., bµNsc + N . For m = bµNsc + N + 1, ...,M , when a

customer finds i customers in system upon arrival, her expected waiting time equals 0 if i < N ,

and i−N+1
µN if i ≥ N . Therefore, we have W ∗m =

m−1∑
i=N

p∗m,i
i−N+1
µN .

Due to the complexity of Equations (11) and (12), it is difficult to apply the theory of

majorization here. However, through extensive numerical experiments (see Figure 1 for an

illustration of a system with M = 30, N = 4, µ = 0.5, and s = 10), we see that the main results

(e.g. T ∗m increases and converges) also hold for the case with multiple servers.

4 Concluding Comments

We summarize the contributions of our paper as follows:

• We bring a new modeling perspective to appointment scheduling by considering a system

that minimizes servers’ idling time under a constraint on customers’s waiting time. Our

model avoids the well-known difficulty in estimating customers’ waiting cost.

• Our waiting time constraint captures the threshold type behavior in customers’ perception

of waiting (patience to wait), which is empirically observed.
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Figure 1: Optimal Inter-Appointment Times for Systems with Multiple Servers

• We incorporate the fairness concern in our modeling. Our resulting schedule leads to the

same expected waiting time among all customers (other than the first few ones).

• Our system minimizes customers’ indirect waiting time, which is ignored in most literature.

• We assume Erlang service time distributions, which increases the applicability of our

model (compared with exponential service time distributions used in most of the existing

literature).

• We apply the theory of majorization to analytically characterize the structure of the

optimal appointment schedule. To the best of our knowledge, this is the first of its kind

in the appointment scheduling literature.

• We study the limiting behavior of our system and prove the convergence to the D/M/1

queueing system for the case with exponential service time distributions.

• We confirm the robustness of our results in systems with multiple servers, which is seldom

treated in the literature.

For future research, first, it will be useful to consider other types of service level constraints

such as one on the probability of long waiting (e.g. Pr{W ∗m > s} ≤ a, ∀m). However, it is not

easy to apply the theory of majorization and prove the structural results in that case. It will

also be interesting to consider the possibility of customer non-punctuality and no-shows and see

how the optimal appointment schedules are affected.
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