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Abstract 

We use a large sample from 2001 to 2009 that incorporates intraday transactions data from 39 
exchanges  and  an  average  of  12,800  different  common  stocks  to  assess  the  effect  of 
algorithmic trading (AT) on firms’ capital raising activities. Greater AT reduces net equity issues 
over the next year, but this is only partly driven by AT’s effect on proceeds from new securities 
issues. Our  findings  suggest  that  the main  driver  of  this  relationship  is AT’s  effect  on  share 
repurchases. 
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1. Introduction 

Algorithmic trading (AT) and high frequency trading (HFT) account for most of today’s trading 

activity and are of current interest to market participants and regulators. Unfortunately, empirical 

evidence on these traders’ strategies and the attendant effects on markets is still limited. Yet, 

regulators around the world debate whether AT/HFT should be regulated and place increasing 

scrutiny on automated and high frequency order submission strategies and their effects on markets. 

Existing research agrees broadly that AT/HFT supplies liquidity to the market most of the time, but 

not always and not for all stocks; it disagrees on the effect of AT/HFT on volatility; and it is moot on 

longer-term effects of AT/HFT, such as a potential impact on firm’s ability to raise new capital. This is 

the question we seek to address in this paper. 

Greater algorithmic trading (AT) intensity appears to increase intraday price volatility 

(Boehmer, Fong, and Wu, 2012, “BFW”). Several traders, especially liquidity providers, dislike 

volatility because it increases the adverse selection risk associated with limit order strategies, the 

typical way of supplying liquidity. This can discourage liquidity suppliers and arbitrageurs. If the 

elevated volatility and the potentially associated reduction in liquidity persist over time they can 

adversely affect a firm’s ability to raise new capital.  For example, if greater AT intensity crowds out 

lower-frequency liquidity suppliers, the remaining liquidity supply may become highly correlated with 

the presence of HFT. This increases the risk that liquidity will dry up during periods of market stress, 

and BFW (2012) find indicative evidence to support this assertion. Lower or more volatile liquidity, in 

turn, could then discourage long-term investors who would otherwise invest in the stock market, and 

it would become more expensive or otherwise more difficult for firms to raise new capital. Moreover, 

greater AT can also affect non-equity sources of capital. For example, greater volatility in equities 

could make firms’ debt more risky and hence increase their cost of debt. On the other hand, greater 

AT intensity could attract other investors, whether high or low frequency, who were not in the 

market previously. Overall, it seems quite likely that high levels of AT could change the nature of 



Electronic copy available at: http://ssrn.com/abstract=2050856

2 
 

liquidity supply, and with it the willingness of long-term investors to provide capital to firms. But the 

net effect of AT on stock markets’ role in capital formation is an empirical question that we seek to 

address in this project. We use a 9-year international panel and an AT metric based on the intensity 

of message traffic that we relate econometrically to subsequent changes in firm capital.  

Financial economists distinguish between agency and proprietary trading algorithms. Agency 

algorithms typically manage the timing, target execution venue, and the size of order submissions 

associated with investment decisions. For example, an index fund can use an algorithm that 

minimizes execution costs for a portfolio transition that is necessary because of a change in the 

composition of its reference index. Proprietary algorithms are not necessarily associated with 

investment decision and instead seek to profit from the trading environment itself. One example 

would be a market-making strategy that supplies liquidity to buy-side traders and possibly to agency 

algorithms. Another example includes arbitrage strategies that seek to exploit historical patterns and 

eliminate temporary mispricing in the market. Yet another example would be order anticipation 

strategies that seek to predict buy-side order flow and profit from initially trading in the same 

direction, and then reversing trade direction once the buy side trader begins executing his order and 

the associated price impact begins to move price. Finally, HFT refers to a subset of proprietary algos 

that react to market updates or other events within milliseconds and typically exhibit extremely short 

holding periods (Hasbrouck and Saar, 2011). Mainly because of their overall importance, but also 

because HFT strategies are neither transparent nor well understood, there is substantial public policy 

interest in HFT. 

Different algorithmic trading strategies can have quite different impacts on market quality. 

Agency algos typically take liquidity; market making algos provide liquidity; arbitrage algos take 

liquidity but make prices more accurate; and order anticipation algos increase the costs of trading for 

the order flow they are able to predict. The current interest in the consequences of AT and HFT arises 

largely from the lack of data on how frequently the different strategies are used. Unfortunately, 
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available data sources do not generally permit researchers to differentiate between the different 

types of AT. While we have some evidence on the effect of AT on market quality, we do not yet 

understand whether orders generated by algos are correlated across stocks or over time and, as a 

result, pose the possibility of elevated systemic risk; or whether there are longer-term consequences, 

the question we address in this paper. 

In this paper, we take a very basic but comprehensive approach that contributes new 

evidence to this debate. We follow Hendershott, Jones, and Menkveld (2010) and BFW (2012) and 

infer proxies for algorithmic trading (AT), a superset of HFT, from measures that are derived from the 

intensity of intraday message traffic. We use nine years of intraday security-level quote and trade 

data for 39 markets around the world. This new and comprehensive sample covers an average of 

12,800 firms, excluding the U.S. in this draft, and allows us to exploit variation in algorithmic trading 

intensity in the cross-section of stocks and markets. 

We have several objectives. First, we describe the relationship between algorithmic trading 

and firms’ ability to raise new capital, measured in two ways. We use McLean, Pontiff, and 

Watanabe’s (2009) measure of net new capital raised, which takes into account both new issues and 

equity repurchased by the firm. Our second set of measures is derived from actual proceeds from 

security sales, including both equity and debt securities. These measures rely on transactions 

reported in event time, and we aggregate both variables at annual horizon.  

Second, in addition to analyzing the main effects of AT on long-term capital changes, we also 

assess the cross-sectional determinants of AT’s effect. We believe that it is important to understand 

the cross-sectional determinants of the benefits and costs of greater AT intensity. Specifically, stocks 

that are larger in terms of market capitalization or have low volatility are typically also easier to 

trade. It is easier to provide liquidity in these stocks, and the algorithms that traders employ will 

differ substantially across stocks. In particular, high-frequency market making strategies are probably 

easier to implement in large stocks than in small, high volatility stocks.  To address these issues, we 
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divide stocks into terciles based on market cap and volatility within each market and allow the effects 

of AT to differ according to these characteristics. 

Third, we contribute international evidence on a question where researchers have mainly 

relied on U.S. samples. Some empirical studies of HFT have looked outside the U.S. (see BFW, 2012; 

Hendershott and Riordan, 2009; and Menkveld, 2010), but all except BFW (2012) are based on 

relatively small samples. None of these studies attempts to disentangle the longer-term 

consequences of AT. 

We find that greater AT intensity is, on average, associated with declines in equity capital in 

the next year. This result is only partly driven by a decline in new securities issues; rather, greater AT 

intensity is associated with an increase in repurchase activity. These results control for market 

capitalization, book-to-market, volatility, liquidity, and information asymmetry at the firm level, and 

for secular trends at the market level. We also show that these effects are concentrated in firms that 

are among the smallest third or the most volatile third of firms in a given market. 

Our paper is organized as follows. We review the theoretical and empirical literature in the 

next section. In section 3, we discuss our data and define the key variables we use. We discuss our 

empirical design in section 4 and present our results in section 5. The final section concludes. 

2. Literature on algorithmic and high frequency trading 

Only in the 2000s have information technology and market structure developed into an arena 

that facilitates fast, automated trading. In the U.S., this is mainly a consequence of limit order display 

rules that were implemented beginning in the early the 1990s and, in particular, the implementation 

of Reg NMS in 2005. Other factors also play roles, including the NYSE’s 2003 change to autoquote 

(mandatory automatic quote updates, as opposed to manual updates initiated by specialists), the 

development of fast markets that compete with the traditional venues, and the increase in capital 
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available for proprietary trading. Other markets, including Europe, have also adapted trading 

protocols to facilitate HFT, mostly in the second half of the decade. Here, regulation also played a key 

role – MIFID, for example, provides a framework for off-exchange trading that set the stage for more 

AT (see Menkveld, 2010). 

Despite being a young literature, analyses of HFT and algorithmic trading reveal an 

interesting dichotomy. Several theoretical and empirical models analyze HFT’s effects on market 

quality measures, including execution costs, volatility, and informational efficiency. While theoretical 

models mostly predict negative (or mixed) consequences of having fast traders in the market, the 

average effects estimated in empirical results are often positive. We discuss this literature in the next 

two subsections.1 

A. Theory  

Hoffman (2010) extends Foucault’s (1999) limit order market and allows algorithmic and 

human traders to compete. Their ability to react faster to new events allows algorithmic traders to 

evade the adverse selection that is associated with stale limit orders. In this model, the effect of 

introducing algorithmic traders has ambiguous effects on trading volume and the price impact of 

human traders, but it decreases the profits of human traders. Considering the overall effect, Hoffman 

shows that in most cases human traders are strictly worse off when algorithmic trading is 

widespread. Cartea and Penalva (2011) design a model with liquidity traders, market makers, and 

HFT. They find that HFT increase overall trading volume, but also volatility and the price impact of 

liquidity traders. Market makers come out even–they lose market share (and thus revenues) for 

liquidity provision to the HFT, but are compensated with higher rewards for their remaining liquidity 

supply. The cost for the higher rewards to market making, and for the greater revenues to HFT, are all 

born by the liquidity traders. McInish and Upson (2011) arrive at similar conclusions using a different 

                                                      

1 The remainder of this section borrows heavily from BFW (2012). 
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mechanism. In their model, strategic fast traders are the first to learn about quote updates and use 

this privileged information to trade at stale prices with slow traders. Here, too, does HFT activity 

increase trading costs for (slow) liquidity traders. In Jarrow and Protter’s (2011) model, HFT also 

observe order-flow information faster than other traders. They show that when demand curves are 

downward sloping, HFT’s activity affects price and creates a temporary mispricing that HFT can 

profitably exploit. In this case, the detrimental effect lies in less efficient pricing in addition to a 

transfer from slow to fast traders. 

A similar wealth transfer arises in an earlier model by Brunnermeier and Pederson (2005). 

They allow traders to follow order anticipation strategies (“predatory trading” in their model), a 

strategy that requires the ability to predict order flow in real time at high frequency and is easily 

implemented as a trading algorithm. Order anticipators attempt to predict large uninformed orders 

and then trade ahead of these orders, in the same direction. This increases the costs for the large 

liquidity trader, who will end up trading at relatively inferior prices, perhaps even with the order 

anticipator. Brunnermeier and Pederson show that this leads to price overshooting and that it 

withdraws liquidity from the market when it is most needed (by the large trader). As a result, a 

wealth transfer occurs from the large liquidity trader to the order anticipator. Moreover, they show 

that the low-liquidity event can trigger systemic liquidity shocks for other traders and markets, 

thereby multiplying the negative consequences the order anticipator imposes on the market.  

The models discussed so far generally predict higher costs to uninformed and/or slow 

liquidity traders in the form of a greater price impact and pre-trade information leakage. Greater 

execution costs essentially involve a wealth transfer from slow to fast traders, but this does not 

necessarily have welfare implications. Biais, Foucault, and Moinas (2010) make an elegant argument 

in this regard. They show that HFT can generate gains either from trade or from adverse selection, 

which would arise from their faster access to information. But a social planner would only consider 

gains from trade, not from adverse selection. As a result, HFT overinvest in technology, which leads 
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to socially undesirable outcomes. Overall, existing theoretical models agree that HFT has undesirable 

consequences for liquidity traders, informational efficiency, and volatility, and these effects may well 

result in lower social welfare. Jovanovic and Menkveld (2011) also study welfare implications of high 

frequency trading. In their model, middlemen intermediate between fast limit order and slow market 

order traders. Depending on parameter values, their entry may increase or decrease trading volume, 

and also has a mixed effect on welfare.  

B. Empirical studies 

The recent spread of HFT has spurred a number of empirical studies that examine its 

consequences. Their inferences are easiest to synthesize by first categorizing the type of data that 

each study uses. To date, there is no academic study of equity trading that uses data where the 

researcher can directly identify trader-level order submission strategies and their consequences for 

algorithmic or HF traders, either over time or across stocks. Researchers follow one of two 

approaches: infer the portion of algo/HF trading from intraday data; or use data where HF traders are 

identified as a group. We discuss advantages and disadvantage of both approaches below. 

The most basic approach uses standard intraday transactions data and either develops 

proxies for HFT, or infers their actions from the speed with which traders react to market events. On 

the downside, these approaches do not exactly measure HFT or AT– instead, they infer it from the 

data with relatively unknown consequences for the quality of inference. But the advantage to these 

approaches is that they permit construction of broad and long panels that allow fairly general 

inferences. We adhere to this approach in this article, and closely follow Hendershott, Jones, and 

Menkveld (2010) and BFW (2012) in using message counts as a proxy for AT activity. Hasbrouck and 

Saar (2011) and Egginton, VanNess, and VanNess (2010) instead infer HFT activity from periods of 

apparent high-frequency activity. The former identify episodes of orders that react within 

milliseconds to market updates. The latter examine high-activity intervals, defined as one-minute 

periods where the quotes-per-minute count exceeds a historical average by 20 standard deviations 
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(and the trading day as a whole is not too different, defined as being less than two standard 

deviations away from the mean). These samples lose breadth relative to the message-count sample, 

but are able to study periods where HF activity takes actually place. 

The second category of data provides summary information about the type of trader. For 

example, Brogaard (2010, 2011a) and Hendershott and Riordan (2011) use a 2008-2009 Nasdaq 

sample that reveals the aggregate order flow generated by 26 HFT firms that account for about three 

quarters of sample trading volume. Here, the advantage is that actual HFT can be observed for a 

random sample of 120 stocks. Potential drawbacks include the selection of HFT firms, which have 

been picked by the exchange that provided the data and, presumably, have been willing to have their 

order flows disclosed to academics. Because HF strategies are typically considered sensitive both 

from a legal and competitive perspective, this selection process could conceivably result in orders 

that are more benign than a random sample of HFT orders. There are also other potential issues that 

complicate inference from this dataset. First, the sample of 26 HFT firms does not include any of the 

large proprietary trading desks that, allegedly, are responsible for a substantial portion of HFT. 

Second, we do observe orders that the sample traders have submitted to other markets. Third, the 

high percentage of trading volume of those 26 firms is of some concern. High trading volume is not 

necessarily representative of HF traders – instead, they are typically characterized as traders with 

relatively low volume, but a very high ratio of order messages to trades (see Kirilenko et al., 2011; 

Hasbrouck and Saar, 2011; and Hendershott, Jones, and Menkveld, 2011).2 Overall, while these data 

                                                      

2 The sample used by Hendershott and Riordan (2009) also falls into this category but it is not subject to a 
selection concern. They use a short sample of exchange-classified algorithmic trades at Deutsche Boerse. Also 
similar is Menkveld’s (2010) sample, who uses brokerage identities to infer the trades by a single HFT in the 
European market. These samples allow inferences about algos and HFT, respectively, but are relatively narrow.  
We also note that the Nasdaq sample does not capture all volume in Nasdaq-listed stocks, which trade on 
multiple venues. Therefore, the high percentage of (Nasdaq) trading volume that this sample represents is not 
inconsistent with proprietary trading desks being excluded from the sample. Proprietary desks do not 
necessarily report trades to Nasdaq and may instead execute on venues that report, for example, to the 
National Stock Exchange. 
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are currently the most informative about HFT strategies in equities, they also have significant 

shortcomings that complicate inference. 

In summary, the broadest data, which in principle would allow the strongest inferences, 

makes the least clear distinction between HF, algorithmic, and slow trading. In the other extreme, 

data sets that identify actual HF activity tend to be either small or not necessarily representative for 

other reasons. Moreover, some of these available data sets are subject to endogeneity concerns, 

because it is generally not easy to identify whether causality goes from market quality to HFT activity, 

of from HFT activity to market quality.  

Against these basic concerns about the data, most but not all results document positive 

effects of HFT. Hendershott, Jones, and Menkveld (2010) show that algorithmic trading is associated 

with better liquidity and faster price discovery. They use the 2003 introduction of autoquote at the 

NYSE as an instrument to argue that algorithmic trading causes these market quality improvements. 

Brogaard (2010, 2011a, 2011b) uses the 2008-2009 Nasdaq-selected data on 26 HFTs and shows 

ambiguous effects on volatility, but improvements in liquidity. Based on HFT activity inferred from 

millisecond-level responses, Hasbrouck and Saar (2011) find improvements in volatility, spreads, and 

depth when these fast traders are active. Using the same data as Brogaard does, Hendershott and 

Riordan (2011) document that HFT play an important role in price discovery. Additionally, for a much 

smaller Deutsche Boerse sample that is not subject to selection concerns, Hendershott and Riordan 

(2009) find that algorithmic trading makes prices more informative.  

BFW (2012) also find that AT improves liquidity and efficiency, but show that the positive 

effect on liquidity is limited to AT in stocks that are large, high-priced, or volatile. They also show that 

AT is less likely to include liquidity providing strategies when market making is particularly costly and 

document that AT results in significantly higher volatility, especially for small stocks and stocks whose 

returns are already volatile.  
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Several other studies also find predominantly negative consequences of AT or HFT. Kirilenko 

et al. (2011) argue that HFT worsened (but did not cause) the May 6, 2010 Flash Crash. Because this is 

the only study that can see exactly what HFT do, it carries significant weight among the empirical 

work we have so far. Dichev, Huang, and Zhou (2011) find that trading per se generates excess 

volatility, suggesting that HFT can lead to undesirable levels of volatility. Hasbrouck and Saar (2009) 

are the first to document the “fleeting” nature of many limit orders in electronic markets, and 

question the traditional view that limit orders provide liquidity to the market. This argument raises 

questions about the quality or usefulness of often short-lived liquidity that HFT supply. Consistent 

with this concern, Egginton, VanNess, and VanNess (2011) show that periods of extremely active 

quoting behavior are associated with degraded liquidity and elevated volatility. Importantly, they 

show that such episodes are surprisingly frequent. While there are good economic reasons for such 

quote-bunching to occur as a benign by-product of HF liquidity provision, as Hasbrouck and Saar 

(2011) argue, it is also possible that it arises as a consequence of intentional “quote stuffing.” McInish 

and Upson (2011) examine trading around quote changes and compare fast and slow responses. They 

find that fast traders strategically leave stale orders on the book and that slow traders often interact 

with these at prices that are inferior to those available elsewhere. Finally, Chaboud et al. (2009) look 

at HFT in the foreign exchange market and document that the correlation among algorithmic 

“machine” orders is much higher than the correlation among “human” orders. This raises questions 

regarding the contribution of algorithms to the transmission of systemic risk.  

Overall, AT appears to have strong effects on other market participants and the markets they 

trade in. Some studies document that AT provide liquidity, but large-sample studies show that this 

may not apply to all firms and not every day. Therefore, the increase in volatility that is also 

associated with AT could have real additional effects on markets, especially if it were to drive away 

potential liquidity suppliers. Liquidity is one important reason why firms access the market—

secondary market trading allows some firms to sell public securities at a better price than they would 

receive for a private placement without a liquid secondary market. If liquidity declines as a result of 
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elevated volatility, these firms may more frequently prefer to raise capital elsewhere—either in other 

countries or other markets, such as the private-placement market. Our study is designed to detect 

such potential effects on firms’ ability to raise capital. 

3. Data 

We obtain intraday quotes and trades from the Thomson Reuters Tick History (TRTH) 

database. Our initial sample includes all non-U.S. common stocks covered in the database. We 

identify the primary listing market for each of these stocks and drop trading in stock that takes place 

on all other markets. This filter produces stocks trading on 40 primary equity exchanges in 37 

countries.3 We obtain data on daily returns, daily high and low prices, trading volume, security details 

and financial statement data from Datastream and WorldScope. We extract proceeds on securities 

sales by all sample companies from Thomson Reuters SDC Platinum New Issues database. We obtain 

details on markets and trading protocols from Reuter’s Speedguide and the Handbook of World 

Stock, Derivative and Commodity Exchanges. Details on the sources and the construction of the data 

set are in BFW (2012). 

For inclusion in our final sample we impose a few additional data requirements. We drop 

Ireland, where fewer than 30 stocks are listed prior to 2008. We exclude stocks that have data for 

fewer than 21 trading days during the sample period. For the average year, our sample includes 

about 12,800 firms and we have substantial variation in the number of firms across markets. Over the 

sample period, the number of listed firms increases by 140% and, in 2009, represents an aggregate 

market capitalization of USD 16.7 trillion.  

                                                      

3 China has three exchanges (Hong Kong, Shenzhen, and Shanghai), Japan has two (Osaka and Tokyo), all other 
countries have exactly one exchange included in the sample. Due to data restrictions on SDC new issues, we 
have no data on Tokyo, Osaka, and Toronto and exclude these markets from all SDC analysis. 
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A. Variables 

Our objective in this analysis is to measure the effect of algorithmic trading on long-term 

capital raising activities. We use two approaches – one approach that incorporates both new issues 

and repurchases, and another that uses the actual proceeds from new issues. We describe these 

variables in this section, along with our proxies for algorithmic trading activity. 

Net new equity (NNE) 

Following McLean, Pontiff and Watanabe (2009), we construct net new equity (NNE), a 

measure that captures the change in the number of shares outstanding adjusted for stock splits and 

distribution events such as stock dividends and share repurchases. We use the capital adjustment 

index from Datastream, recorded at the end of year t (CAIt), to calculate the number of actual shares 

outstanding for that year (Shst). The CAI is the cumulative product of the inverse of the individual-

period capital adjustment factors.  NNE is then computed as NNEt= Ln(AdjShst) – Ln(AdjShst-1), where 

AdjShst = SharesOutstandingt /CAIt. 

Proceeds from the sale of securities 

We obtain the currency value of all non-IPO securities issues covered in SDC Platinum. We 

separate the value into equity and non-equity (“other”) issues and divide each by total assets. In 

contrast to NNE, which is a measure of net issuance, the SDC variables represent actual amounts 

raised in the capital market.  

Algorithmic / high frequency trading 

High frequency algorithmic activity is generally associated with fast order submissions and 

cancellations (see Hasbrouck and Saar, 2011). The proxy used by Hendershott, Jones, and Menkveld 

(2010) and BFW (2012) reflects this concept and we follow these studies and use AT, the negative of 

trading volume in USD100 divided by the number of messages, as our proxy for algorithmic trading 

activity. It represents the negative of the dollar volume associated with each message (defined as 
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either a trade or a quote update). An increase in this measure reflects an increase in algorithmic 

activity.4 

B. Descriptive statistics 

BFW (2012) document a steep increase in both the number of sample firms and the 

frequency of message traffic over the sample period. They also find that that a few firms and a few 

markets are responsible for a disproportionate chunk of the message traffic. Table 1 presents 

descriptive statistics for the variables that are of main interest in the current analysis. We first 

compute time-series means and standard deviations for each firm and then average across firms 

within each market. We report the mean and median of these market-specific means, and the 

average standard deviation in Table 1. 

The average annual NNE is 0.057, which means that the average increase in net equity is 

about e0.057-1=5.9% per sample year. This implies that the typical sample firm issues more equity than 

it repurchases.  The mean AT is -5.45, implying an average trade size of $545 per trade or quote 

change message. During a typical year, the average firm issues new securities that represent 5% of 

the firm’s assets. Equity issues alone account for about two thirds of this amount, or 3.5% of assets 

per year. While the coverage of the financial statement data that underlies NNE is not identical to the 

coverage of SDC that underlies issuance proceeds, comparing proceeds from equity in Panel B to the 

net new issues in Panel A suggests that the sample firms, on average, reduce their holdings of 

treasury shares (i.e., have negative repurchases). This is consistent with anecdotal evidence from the 

post-crisis periods in our sample (following the 2000 market crash and following the 2007-2008 

crises). 

                                                      

4 Our measure of AT differs in an important way from the one used by HJM, who have access to order-level messages. For 
our world-wide sample, we only have access to a subset of these messages. We only observe each exchange’s best quotes 
and trades, rather than all order-related messages. This means that we cannot directly capture one important dimension of 
HFT activity, the high ratio of order (submission and cancel) messages to trades that is so characteristic of many popular HFT 
strategies. But the HFT strategies that are mentioned, for example, in the SEC 2010 concept release involve activity at the 
BBO, rather than behind it. Therefore, we believe that HFT activity in our BBO-trade data set is highly correlated with HFT 
activity in an order-trade data set. 
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4. Methodology 

Our objective is to identify whether algorithmic trading intensity is related to the amount of 

capital firms raise in the subsequent year. We have no theoretical guidance on when a given level of 

AT should affect issuance activity. Here, we assume that the impact, if any, takes place during the 

next year. This approach minimizes the noisiness that would enter the estimation with longer 

intervals, and provides a conservative lower bound for the potential effects of AT. Results based on 

quarterly estimation, where possible, are qualitatively similar to the annual results. 

We control for variables that are likely to affect a firm’s propensity to issue new securities, 

including firm size (measured as market capitalization of equity), book-to-market, past returns, 

volatility (measured as the intraday high price minus low price, divided by the closing price), and 

liquidity (relative effective spreads). We further separate RES into a temporary component, the 

relative realized spread (RRS) and a permanent component, the price impact (RPI). Price changes 

tend to be permanent if they are based on new information, so we can interpret RPI as a measure of 

information asymmetry. RRS can be interpreted as the return to liquidity providers. All variables are 

averaged during a quarter or year, depending on the model specification. To address autocorrelation 

in the errors we also include the lagged dependent variable. In all regression, we standardize each 

period’s cross-section of firms to make coefficients comparable across countries. 

We use two alternative approaches to estimation. One approach uses panel estimation that 

relies on only eight time-series observations. We estimate this model with market and time fixed 

effects. The time fixed effects are incorporated implicitly as a by-product of the standardization that 

we perform within each market each period. Together, the fixed effects prevent us from interpreting 

systematic patterns in market quality across firms or secular patterns over time as the result of 

algorithmic trading. The second approach uses cross-sectional Fama-MacBeth regressions within 

each market which we aggregate into one overall coefficient. For the overall panel, we use dynamic 

Arellano and Bond (1991) standard errors for inference. The aggregated coefficients should be less 



15 
 

susceptible to autocorrelated residuals (unless they lead to autocorrelated coefficients), and we 

compute simple cross-sectional t-statistics across the 39 markets in our sample. This approach should 

be conservative, because all inference is based only on the 39 market-specific observations. 

Specifically, we estimate a panel regression of the form 

NCit = αi + γt + βATit + δ_Xit + εit,     (1) 
 
where the αi are firm fixed effects, the γt are year fixed effects, AT is our proxy for algorithmic 

trading, and X is a vector of control variables. This vector includes the log of market value of equity, 

log book-to-market, average daily return, volatility, liquidity, and the lagged dependent variable. All 

explanatory variables are lagged by one year to ensure that they are predetermined.  

In part of our analysis, we explicitly allow the effect of AT to depend on cross-sectional firm 

characteristics such as market cap and 20-day return volatility. Unless stated otherwise, we 

determine each year, separately for each market, the lowest and highest tercile of firms based on the 

most recent 20 trading days. We assign “LOW” and “HIGH” dummies to firms in these terciles, 

respectively. We augment our regression model (1) with the two interactions between AT and each 

dummy. The interaction coefficients capture the potentially differential effect of AT on market quality 

in the LOW or HIGH terciles relative to the middle tercile. The total effect of AT for firms in the LOW 

tercile is given by the sum of the coefficient on AT and the coefficient on AT*LOW. We interpret 

results for the HIGH dummy analogously.5 

                                                      

5 An alternative approach to these cross-sectional tests would be to use the same breakpoints across all 
markets and periods. This would better capture the effect of algo strategies if strategies tend to be similar for 
firms of similar size. However, constant breakpoints would essentially classify firms by market, which would be 
undesirable. 



16 
 

5. Regression results 

A. Net new equity (NNE) 

We begin by investigating the relationship between McLean, Pontiff, and Watanabe’s (2009) 

net new equity (NNE) and our proxy for AT. Panel A in Table 2 reports the results of an annual panel 

regression that pools firms, markets, and years. We estimate a significantly negative coefficient for 

AT of -0.033. This indicates that a one-standard-deviation increase in AT is associated with a 0.033 

standard deviation decrease in NNE. Using the third column of Table 1, this amounts to a change in 

equity of -0.033*[exp(0.261)-1]=-0.98%, which implies an economically substantial decline in net 

equity. NNE aggregates new issues and repurchases, and we will estimate their individual coefficients 

below to see which component is affected most by AT. 

Panel A also presents coefficients for the control variables. NNE is greater for firms that are 

small, value firms, perform poorly and have high volatility during the previous year. Higher 

transaction costs ( i.e. lower liquidity) are associated with less net equity—other things equal, issuers 

should prefer more liquid markets to less liquid ones. It is possible that AT is associate with the 

degree of asymmetric information about a firm. Depending on the strategy, traders may prefer or 

dislike firms with high asymmetry. To control for information flow, we decompose the effective 

spread into a information component (RPI) and a liquidity component (RRS). This regression is the 

second regression in Panel A. Naturally the effect of AT is virtually unchanged, because separating the 

liquidity variable into two components does not change the correlation between AT and liquidity. But 

now the interpretation is different-AT is associated with lower NNE, even when we control for the 

degree of information flow across stocks and years.  

A caveat to the panel regression in Panel A is that we do not control for year-to-year 

autocorrelation, which may inflate standard errors. As an alternative, we present Fama-MacBeth 

regressions in Panel B. The results are quite similar to those in Panel A but have larger standard 

errors. The coefficients on AT have the same sign as those in Panel A and are still significant at the 5% 
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level. We believe that this test has relatively low power, because the time-series consists of only 

eight years. Therefore, we it reassuring that this method yields qualitatively identical results. 

BFW (2012) find that the effect of AT on market quality differs depending on firm size and 

volatility. Thus, potential longer-term consequences can also differ along those dimensions. In Table 

3, we estimate a model similar to (1) with the interactions between LOW/HIGH dummies and AT as 

additional independent variables. We construct the dummies within each market by sorting firms, 

each period, according to firm size (market cap of equity) and volatility (the standard deviation of 

daily returns). LOW represents the lowest tercile of firms; HIGH represents the highest tercile of firms 

according to the sorting variable. 

The coefficients on the interactive variables measure how the effect of AT differs for firms in 

the low/high tercile from the effect of AT for firms in the middle tercile. Panel A, for example, reports 

pooled market-year fixed effect regressions as in Panel A of Table 2. The AT coefficient is -0.068 and 

means that an increase in AT significantly decreases NNE in middle-tercile firms. The LOW*AT 

coefficient is not significant, implying that the effect of AT is not different in small firms than in 

middle-tercile firms. But the HIGH*AT coefficient is positive and significant at the 5% level.  The total 

effect of AT in large firms is -0.047+0.024=-0.023 – this is still negative, but AT is significantly less 

harmful for net equity issues in large firms than in middle-tercile firms. Panel C tabulates the 

corresponding model using Fama-MacBeth regressions, and the results are qualitatively identical.  

We obtain a similarly convex relationship when we separately estimate the effect of AT 

across volatility terciles. As Panels B and D show, the effect is significantly negative in the middle 

tercile, but is much less pronounced for high-volatility firms and somewhat less pronounced also for 

low-volatility firms. The former are significant, but the marginal effects for LOW volatility firms are 

much noisier and not significant with Fama-MacBeth in Panel D.  



18 
 

These results show that more AT is associated with lower NNE for small and mid-cap firms, 

and for firms in the middle volatility tercile. The likely reason for a smaller effect in the low and high 

volatility firms lies probably in the role of repurchases. When prices become too volatile, firms refrain 

from share repurchases because liquidity is more expensive, or trading too risky. When volatility is 

low, trading volumes are probably low as well so that firms cannot purchase larger quantities of 

shares without adversely moving prices.  

B. Proceeds from securities issues 

One limitation of NNE is that it is an aggregate measure of changes in equity. It does not 

differentiate between actual new securities issues and open-market repurchases (or sales of 

previously repurchased shares). In this section, we use a different measure that ignores net 

repurchases and is based exclusively on the proceeds from actual issues of new securities. In this 

analysis, we are interested in how AT affects the incidence of new securities issues. We include both 

primary and secondary issues, because it is not important whether the proceeds go to existing 

shareholders or to the firm—we would like to evaluate total new capital issues. We divide proceeds 

into those from equity and other securities. Other securities would include private equity 

placements, publicly traded debt, certificates, preferred stock, units, and convertible debt. As 

reported in Table 1, nearly two thirds of all issues in the SDC database are equity. For our estimation, 

we aggregate security issues at the calendar year level. This makes the results comparable to those in 

Table 2 and 3 and it is unlikely that securities issues move at higher frequencies.6 

Our main results for these variables are in Table 4. Quite similar to our analysis of NNE, we 

find that more AT is associated with lower proceeds from new securities sales. The main effect of a 

one-standard-deviation increase in AT is a 0.021 standard deviation reduction in proceeds. From 

Table 1, this implies a decline in new issues by roughly -0.021*0.719=-1.51% of total assets; again, an 

                                                      

6 In robustness tests we have used quarterly estimates for the tests that use the SDC variables. We obtain 
qualitatively identical results in these tests.  
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economically significant reduction in new issues. When we decompose proceeds into equity and 

other, we see that the main impact is due to the change in equity proceeds. A one-standard-

deviation increase in AT is associated with a 0.025*0.562=1.41% decline in new equity issues. The 

coefficient on “other” proceeds is also significant, but the economic effect is much smaller. The 

Fama-MacBeth results in Panel B are qualitatively identical but a bit noisier. In Table 5, we separate 

the effects of AT along the market cap and volatility distributions. These estimates tend to be quite 

noisy and do not add significantly to the linear estimates from Table 4.  

C. Estimated share repurchases 

Repurchases are a sizeable component of net equity issuance. Firms repurchase their own 

shares when they consider prices to be below their fundamental value, when they perceive 

repurchases to have tax or other advantages over dividends, or when they have excess cash. 

Unfortunately, no precise measure of repurchase activity exists because under most jurisdictions 

repurchases neither need to be reported as they happen, nor are annual aggregates reported in 

financial statements. Instead, firms tend to report aggregate changes to shares outstanding, which 

could arise from repurchases, but also from sales, stock dividends, share compensation for 

employees, and similar activities. In this section, we approximately decompose NNE into an equity 

proceeds portion and a repurchase portion. We construct a proxy for repurchases and test its 

sensitivity to changes in AT. We compute repurchases, REP, as 

 REPt=NNEt – NewEquitySharest/SharesOutstandingt-1.    (2) 

Intuitively, we adjust the net change in adjusted shares by the number of new shares issued during 

the year over which NNE is measured. The result should be highly correlated with the fraction of 

shares outstanding that was repurchased during year t. REP is not a perfect measure for several 

reasons: the source of NewEquityShares (SDC) and NNE (Worldscope) may have different coverage of 

changes in shares outstanding, or come from different consolidation levels. Clearly NNE captures the 

aggregate change of all related activity, but SDC may not cover all events that are associated with 
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changes in equity (such as shares issued as compensation, conversions of bonds or preferred stock to 

equity, or certain control transactions). Moreover, SDC does not carry data on Toronto, Tokyo, and 

Osaka. For these reasons, REP can overstate or understate true repurchases, and the coefficients of 

the components (new issues and repurchases) will not necessarily add up to the coefficient of NNE. 

Yet, there is no reason to believe that the mean change in REP differs systematically from the mean 

change in true repurchases at annual horizons. 

Subject to these caveats, we regress REP on AT with controls as before and report the results 

in Table 6. We show that more intense AT increases repurchases significantly. A one-standard-

deviation increase in AT is associated with a 0.018 standard deviation increase in repurchases. This 

suggests that the negative effect of AT on NNE (see Table 2) results only partly from a decline in 

proceeds from new securities issues—instead, AT increases repurchases, which in turn implies a 

decline in NNE. Moreover, the repurchase result also explains why proceeds from equity issues (Table 

4) are less strongly related to AT than NNE (Table 2)—one interpretation is that the main channel 

through which AT affects NNE are repurchases rather than changes in new equity issues.  

Panels B and C of Table 6 show that AT has the strongest effect on small-cap and mid-cap 

stocks, and stocks in the middle or high volatility tercile.  In contrast, the aggregate effect of AT in 

large and low-volatility firms (the sum of the coefficients on AT and AT*dummy) is relatively weak. 

Combined with the findings that AT in large and low-volatility firms also has the weakest effect on 

NNE (Table 3), this is consistent with the view that repurchases are the main channel through which 

AT affects NNE.  

One reason why repurchases increase could be the higher liquidity that is associated with AT. 

BFW (2012) show that AT increases liquidity in large and mid-cap stocks, but reduces liquidity in 

small-cap stocks. But because AT increases repurchase activity the most in small caps, higher liquidity 

cannot explain the increased repurchases for small-cap stocks. But it is possible that managers of 

mid-cap firms increase repurchases because their shares are more liquid as a result of AT activity.  
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6. Conclusions 

We use intraday message traffic in 12,800 firms trading in 39 major stock markets to analyze 

the effects of algorithmic trading on these markets’ ability to provide capital to firms. We cover a 

broad cross-section of stocks in these trading centers and create measures of algorithmic trading (AT) 

intensity and firm-level new capital issuance. We estimate the relationship between algorithmic 

trading and annual changes in capital. We also explore whether cross-sectional factors that are 

known to affect trading are related to the effect that AT has on new capital. All of our tests control 

for market capitalization, book-to-market, information asymmetry, liquidity, volatility, and 

persistence in the variable that measures changes in capital. 

Taken together, our results show that more intense AT is associated with a decline in net new 

equity in the following year. This is partly driven by a negative effect that AT has on proceeds from 

new equity issues, but our results suggest that the main driver is an increase in share repurchases.  

Our results are subject to two caveats. First, we use a time series of only nine years. Capital 

changes slowly, and nine years may not provide a full picture of the connections between AT and 

firms’ desire and ability to raise capital in the stock market. We intend to update the analysis in a 

future revision, but the time series will remain relatively short. Second, and related to the first point, 

we cannot directly establish causality. This would be possible with either a suitable instrument that 

affects AT but not capital changes, or at least a longer time series that allows Granger causality tests. 

We currently have neither. BFW (2012) use co-location as an instrument for their daily analysis of 

AT’s effect on market quality. Most co-location events take place in 2008 or later, however, so for our 

annual analysis here we do not have a sufficient number of observations after these events. 

Therefore, co-location is not a feasible instrument for this analysis.  

Despite these caveats, however, we are confident that our results are not generated by 

reverse causality. Most importantly, it is not obvious how and why algorithmic traders would prefer 
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trading (or even be able to identify) stocks that a year later become subject to more intense share 

repurchases and declines in net equity. Moreover, if a variable existed that links current AT to future 

equity changes, it would need to be unrelated to our current controls to make the reverse causality 

explanation work. We believe that this puts the bar quite high and consider the scenario where 

changes in AT cause changes in equity capital the more likely explanation. 

Overall, BFW (2012) find that AT increases volatility at the firm level. In this analysis, we 

argue that an increase in volatility can discourage liquidity suppliers, which in turn could make it 

more costly for firms to raise new capital. Our results in this paper bear out this thought, in that we 

find a negative association between AT and changes in equity capital. Our findings suggest that the 

activity of algorithmic traders can have impact beyond the immediate trading environment and 

potentially affect the more fundamental functions of capital markets, such as the allocation of capital 

to firms. 
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Appendix: Results across geographic regions 

In this appendix, we provide some descriptive evidence on the effects of AT on long-term 

capital raising in different geographical regions and particularly across several European markets. In 

Panel B of Table A1, we present the raw estimates for individual European countries. All models are 

annual market-specific year fixed effects panel models as in Table 2 Panel B. Significance levels in 

Panel B are Arellano and Bond (1991) standard errors. The aggregated coefficients in Panel A, 

representing Europe, Asia, and Other countries, are averages across markets as before. In Panel A, t-

statistics are computed from the cross-section of market-specific coefficients for markets in that 

region. This is a low-power test as it uses only 16 observations for Europe, 11 for Asia, and 9 for other 

markets, and none of the region-wide averages differs significantly from zero. Statistical significance 

aside, more intense AT is associated with a decline in NNE, in aggregate proceeds, in equity proceeds, 

and an increase in repurchase activity in each region in Panel A of Table A1.  

Across the European countries, Xetra and LSE, the most active markets in the region, show 

significant evidence that AT reduces net new equity (NNE). In Germany, part of this effect is 

explained by a significant positive relation between AT and REP. The Warsaw stock exchange, 

however, exhibits the opposite effect: more AT increases NNE, and this is partly driven by a decline in 

REP when AT becomes more intense.  

Overall, this discussion reveals important differences across countries. We believe that the 

addition of more data will reduce standard errors to make the country level results more precise, 

especially because virtually all markets have experienced further increases in message traffic after 

2009, when our sample period ends. 
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Mean Median
Average standard 

deviation

NNE 0.057 0.048 0.261
All Proceeds 0.050 0.015 0.719
Equity proceeds 0.035 0.009 0.562
Other proceeds 0.016 0.004 0.240

AT -5.448 -3.581 28.973

Ln(ME) 4.923 5.004 1.827
Ln(B/M) -0.411 -0.562 0.938
Avg. daily Ret -0.010% -0.023% 0.648%
Price range 0.029 0.028 0.018
RES (in bp) 302 245 398
RRS (in bp) 194 140 339
RPI (in bp) 109 87 155

Table 1: Descriptive statistics.

This table reports aggregate summary statisics of net new securites isses.  Net new equity issuance (NNE) 
is computed as in McLean, Pontiff and Watanabe (2009) at the annual frequency.  All proceeds, and its 
components equity proceeds and other proceeds, are the annual aggregate value of securities issues 
(normalized by firm-level total assets at the time of issue, reported on SDC Platinum). AT, algo trading 
activity, is defined as the negative of dollar volume over message traffic. the remaining variables are the 
natural logarithm of the previous period's year-end market cap,  Ln(ME), the natural logarithm of the 
previous period's Book-to-Market, Ln(B/M), the previous period's daily average return (Ret), the average 
daily price range (estimated as the difference bewteen the highest and lowest transaction prices scaled 
by closing price), relative effective spread (RES), relative realized spreads (RRS), and price impact (RPI), all 
scaled by the closing price and measured in bp. The sample includes 39 markets from 2001 to 2009. The 
first two columns report the mean (median) of market-specific time series averages. The third column 
shows the average of market-specific time-series standard deviations. 
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Coef t %pos Coef t %pos

Panel A: Market and year fixed effects panel regression
AT -0.033 -9.05 n/a -0.033 -9.22 n/a
Ln(ME) -0.042 -9.91 n/a -0.046 -10.69 n/a
Ln(B/M) 0.002 0.53 n/a 0.002 0.50 n/a
Ret -0.026 -7.46 n/a -0.026 -7.39 n/a
DV_Lag1 0.041 13.63 n/a 0.041 13.61 n/a
Price Range 0.149 48.13 n/a 0.151 48.16 n/a
RES -0.0003 -0.08 n/a
RPI -0.013 -3.51 n/a
RRS 0.006 1.80 n/a
Panel B. Aggregate of market-specific  regressions 
AT -0.025 -2.47 31% -0.027 -2.68 36%
Ln(ME) -0.040 -2.37 38% -0.037 -2.28 41%
Ln(B/M) 0.035 3.28 72% 0.035 3.22 72%
Ret -0.026 -2.58 33% -0.027 -2.61 36%
DV_Lag1 0.029 2.36 64% 0.028 2.32 62%
Price range 0.140 9.88 97% 0.140 10.01 95%
RES -0.015 -1.31 38%
RPI 0.003 0.36 54%
RRS -0.013 -1.10 44%

This table reports annual regressions of net equity issuance (NNE) on algo trading and 
control variables. NNE is annual equity issuance computed as in McLean, Pontiff and 
Watanabe (2009). The independent variables are all measured in the prior year and 
include algo trading (AT),  the natural logarithm of the year-end market cap (lnME), the 
natural logarithm of year-end Book-to-Market (Ln(B/M)),  the daily average return (Ret), 
liquidity measured by the relative effective spread (RES), the temporary price impact 
measured by relative realized spreads (RRS), and the permanent price impact (RPI), all 
scaled by the closing price and measured in bp, volatility measured by daily price range, 
and the lagged dependent variable. Panel A reports market and year fixed effects 
regression results. Panel B reports mean coefficients of cross-sectional regressions 
within each  market. All continous variables are standardized to have a mean of zero 
and standard deviation of one every year within each market. 

Table 2. Algo trading and net new equity issuance.
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Coef t %pos Coef t %pos

AT -0.068 -7.61 n/a -0.068 -7.63 n/a
AT*Low -0.016 -1.16 n/a -0.015 -1.11 n/a
AT*High 0.045 4.62 n/a 0.045 4.56 n/a
Ln(ME) -0.044 -10.06 n/a -0.048 -10.78 n/a
Ln(B/M) 0.002 0.69 n/a 0.002 0.65 n/a
Ret -0.027 -7.88 n/a -0.027 -7.80 n/a
DV_Lag1 0.0410 13.52 n/a 0.041 13.49 n/a
PriceRange 0.151 48.48 n/a 0.152 48.50 n/a
RES 0.002 0.55 n/a
RPI -0.012 -3.14 n/a
RRS 0.008 2.23 n/a

AT -0.050 -7.97 n/a -0.051 -8.07 n/a
AT*Low 0.025 3.49 n/a 0.025 3.46 n/a
AT*High 0.017 1.89 n/a 0.018 1.99 n/a
Ln(ME) -0.043 -9.95 n/a -0.046 -10.73 n/a
Ln(B/M) 0.002 0.68 n/a 0.002 0.66 n/a
Ret -0.028 -7.97 n/a -0.028 -7.89 n/a
DV_Lag1 0.041 13.56 n/a 0.041 13.53 n/a
PriceRange 0.149 47.81 n/a 0.150 47.86 n/a
RES 0.000 -0.11 n/a
RPI -0.013 -3.51 n/a
RRS 0.006 1.77 n/a

AT -0.108 -3.64 13% -0.116 -3.62 13%
AT*Low -0.063 -1.66 51% -0.065 -1.70 51%
AT*High 0.087 3.35 72% 0.092 3.29 74%
Ln(ME) -0.054 -3.39 26% -0.052 -3.31 26%
Ln(B/M) 0.037 3.47 72% 0.037 3.40 72%
Ret -0.029 -2.84 28% -0.029 -2.87 33%
DV_Lag1 0.027 2.19 62% 0.026 2.15 62%
PriceRange 0.140 9.46 92% 0.140 9.45 92%

Panel C: Aggregate of market-specific  regressions, interacting AT with market cap dummies 

This table reports annual regressions of net equity issuance (NNE) on algo trading and control variables. 
NNE is annual equity issuance computed as in McLean, Pontiff and Watanabe (2009). The independent 
variables are all measured in the prior year and include algo trading (AT),  the natural logarithm of the year-
end market cap (lnME), the natural logarithm of year-end Book-to-Market (Ln(B/M)), liquidity measured 
by the relative effective spread (RES), the temporary price impact measured by relative realized spreads 
(RRS), and the permanent price impact (RPI), all scaled by the closing price and measured in bp, the daily 
average return (Ret), volatility measured by daily average price range, and the lagged dependent variable. 
The High and Low dummies represent firms that are in the top and bottom market cap (return volatility) 
terciles within each market each year in Panels A and C (B and D).  Panels A and B report market and year 
fixed effects regression results. Panels C and D report mean coefficients of cross-sectional regressions 
within each  market. All continous variables are standardized to have a mean of zero and standard 
deviation of one every year within each market. 

Table 3. Algo trading, net new equity issuance and the cross-section of firms.

Panel A: Market and year fixed effects panel regression, interacting AT with market cap dummies

Panel B: Market and year fixed effects panel regression, interacting AT with return volatility dummies
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RES -0.011 -0.95 41%
RPI 0.005 0.63 56%
RRS -0.011 -0.86 44%

AT -0.070 -2.34 28% -0.073 -2.29 28%
AT*Low 0.049 1.65 69% 0.050 1.64 67%
AT*High 0.031 0.91 46% 0.024 0.78 46%
Ln(ME) -0.040 -2.45 36% -0.037 -2.35 38%
Ln(B/M) 0.035 3.26 72% 0.034 3.19 72%
Ret -0.027 -2.72 38% -0.028 -2.74 38%
DV_Lag1 0.028 2.28 62% 0.027 2.25 59%
RES -0.014 -1.18 38%
priceRange 0.140 9.64 97% 0.141 9.73 92%
RPI 0.004 0.47 59%
RRS -0.012 -1.02 46%

Panel D: Aggregate of market-specific  regressions, interacting AT with volatility dummies 
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Coef t %pos Coef t %pos Coef t %pos

AT -0.021 -4.92 n/a -0.025 -5.65 n/a -0.012 -2.58 n/a
Ln(ME) -0.013 -2.55 n/a -0.030 -5.66 n/a 0.013 2.22 n/a
Ln(B/M) -0.056 -15.25 n/a -0.050 -13.11 n/a -0.042 -10.25 n/a
Ret 0.004 1.00 n/a -0.012 -2.64 n/a 0.018 3.83 n/a
DV_Lag1 0.076 21.30 n/a 0.049 13.63 n/a 0.080 20.16 n/a
Price range 0.071 18.85 n/a 0.070 17.88 n/a 0.043 10.31 n/a
RPI -0.009 -2.02 n/a -0.012 -2.56 n/a 0.003 0.68 n/a
RRS -0.004 -1.05 n/a -0.010 -2.26 n/a -0.004 -0.92 n/a

AT -0.023 -2.18 33% -0.022 -2.17 28% -0.006 -0.91 44%
Ln(ME) -0.014 -0.92 47% -0.032 -2.07 39% 0.001 0.04 50%
Ln(B/M) -0.051 -6.21 8% -0.043 -5.16 19% -0.027 -3.57 25%
Ret -0.004 -0.49 50% -0.023 -1.79 36% 0.032 3.67 75%
DV_Lag1 0.061 3.89 83% 0.039 3.01 69% 0.075 3.37 66%
Price range 0.074 6.03 92% 0.079 6.48 89% 0.042 5.04 84%
RPI -0.009 -0.77 39% -0.016 -1.19 39% 0.002 0.14 44%
RRS -0.027 -2.29 22% -0.035 -2.91 28% -0.023 -2.38 25%

Table 4. Algo trading and proceeds from securities issues.

Panel A: Market and time fixed effects panel regression

Panel B. Aggregate of market-specific  regressions 

 All Proceeds  Equity proceeds  Other proceeds 

This table reports annual regression of capital raising on algo trading and control variables. The dependent 
variables are total annual proceeds from securities issues, proceeds from public equity issues, and proceeds 
from other securities issues, each scaled by total assets.  The independent variables are all measured in the 
prior year and include algo trading (AT),  the natural logarithm of the year-end market cap (lnME), the natural 
logarithm of year-end Book-to-Market (Ln(B/M)), the temporary price impact measured by relative realized 
spreads (RRS) and the permanent price impact (RPI), both scaled by the closing price and measured in bp, the 
daily average return (Ret), volatility measured by price range , and the lagged dependent variable. Panel A 
reports market and year fixed effects regression results. Panel B reports mean coefficients of cross-sectional 
regressions within each  market. All continous variables are standardized to have a mean of zero and standard 
deviation of one every year within each market. 
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Coef t %pos Coef t %pos Coef t %pos

AT -0.017 -1.51 n/a -0.018 -1.53 n/a -0.014 -1.12 n/a
AT*Low -0.018 -1.13 n/a -0.015 -0.86 n/a -0.014 -0.80 n/a
AT*High -0.004 -0.34 n/a -0.008 -0.60 n/a 0.003 0.22 n/a
Ln(ME) -0.014 -2.74 n/a -0.031 -5.70 n/a 0.012 1.95 n/a
Ln(B/M) -0.055 -15.24 n/a -0.049 -13.11 n/a -0.042 -10.23 n/a
Ret 0.004 0.94 n/a -0.012 -2.64 n/a 0.018 3.75 n/a
DV_Lag1 0.076 21.29 n/a 0.049 13.63 n/a 0.080 20.15 n/a
Price range 0.071 18.85 n/a 0.070 17.85 n/a 0.044 10.35 n/a
RPI -0.009 -1.94 n/a -0.012 -2.52 n/a 0.004 0.76 n/a
RRS -0.004 -0.93 n/a -0.010 -2.18 n/a -0.004 -0.79 n/a

AT -0.034 -4.192 n/a -0.027 -3.244 n/a -0.028 -3.121 n/a
AT*Low 0.017 1.888 n/a 0.002 0.240 n/a 0.022 2.217 n/a
AT*High 0.013 1.095 n/a 0.003 0.279 n/a 0.012 0.905 n/a
Ln(ME) -0.013 -2.622 n/a -0.030 -5.653 n/a 0.012 2.087 n/a
Ln(B/M) -0.056 -15.251 n/a -0.050 -13.103 n/a -0.042 -10.249 n/a
Ret 0.004 0.976 n/a -0.012 -2.697 n/a 0.019 3.888 n/a
DV_Lag1 0.076 21.285 n/a 0.049 13.616 n/a 0.080 20.158 n/a
price range 0.071 18.739 n/a 0.070 17.855 n/a 0.043 10.216 n/a
RPI -0.009 -1.968 n/a -0.012 -2.542 n/a 0.004 0.766 n/a
RRS -0.005 -1.099 n/a -0.010 -2.303 n/a -0.004 -0.916 n/a

AT -0.036 -1.21 36% -0.001 -0.02 42% -0.040 -2.15 44%
AT*Low -0.029 -0.96 39% -0.077 -1.68 42% -0.032 -0.88 28%
AT*High 0.007 0.23 50% -0.019 -0.43 47% 0.022 0.96 56%
Ln(ME) -0.022 -1.32 39% -0.042 -2.29 31% -0.010 -0.51 47%
Ln(B/M) -0.050 -6.37 8% -0.043 -5.19 19% -0.027 -3.68 22%

Table 5. Algo trading, proceeds from securities issues and the cross-section of firms.

This table reports annual regressions of capital raising on algo trading and control variables. The dependent 
variables are total annual proceeds from securities issues, proceeds from public equity issues, and 
proceeds from other securities issues, each scaled by total assets. The independent variables are all 
measured in the prior year and include algo trading (AT),  the natural logarithm of the year-end market cap 
(lnME), the natural logarithm of year-end Book-to-Market (Ln(B/M)), the temporary price impact 
measured by relative realized spreads (RRS) and the permanent price impact (RPI), both scaled by the 
closing price and measured in bp, the daily average return (Ret),   volatility measured by price range, , and 
the lagged dependent variable. The High and Low dummies represent firms that are in the top and bottom 
market cap (return volatility) terciles within each market in Panels A and C (B and D). Panels A and B report 
market and year fixed effects regression results. Panels C and D report mean coefficients of cross-sectional 
regressions within each  market. All continous variables are standardized to have a mean of zero and 
standard deviation of one every year within each market. 

Panel A: Market and year fixed effects panel regression, interacting AT with market cap dummies

Panel B: Market and year fixed effects panel regression, interacting AT with return volatility dummies

Panel C. Aggregate of market-specific, quarterly Fama MacBeth regressions, interacting AT with market cap 
dummies

 All Proceeds  Equity proceeds  Other proceeds 
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Ret -0.004 -0.51 53% -0.024 -1.75 36% 0.033 3.66 75%
DV_Lag1 0.060 3.87 83% 0.039 2.98 69% 0.075 3.33 63%
Price range 0.074 5.93 92% 0.080 6.21 89% 0.042 4.46 81%
RPI -0.013 -0.97 39% -0.018 -1.23 33% -0.001 -0.12 47%
RRS -0.022 -1.96 25% -0.030 -2.58 36% -0.019 -2.02 28%

AT -0.020 -1.88 36% -0.020 -1.64 42% -0.012 -0.83 47%
AT*Low -0.003 -0.19 64% 0.018 0.58 56% 0.013 0.70 50%
AT*High 0.000 -0.01 44% 0.002 0.09 50% -0.044 -1.16 41%
Ln(ME) -0.014 -0.97 47% -0.035 -2.10 33% -0.005 -0.28 47%
Ln(B/M) -0.051 -6.21 8% -0.044 -5.19 17% -0.029 -3.77 22%
Ret -0.004 -0.51 53% -0.023 -1.77 39% 0.030 3.46 75%
DV_Lag1 0.059 3.79 81% 0.038 2.91 69% 0.075 3.33 72%
price range 0.075 5.79 92% 0.080 6.26 89% 0.047 5.02 88%
RPI -0.012 -1.04 39% -0.020 -1.44 33% -0.003 -0.25 47%
RRS -0.022 -1.83 25% -0.032 -2.60 31% -0.016 -1.77 28%

Panel D. Aggregate of market-specific, quarterly Fama MacBeth regressions, interacting AT with volatility 
dummies
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Coef t

AT 0.018 3.96
Ln(ME) -0.010 -1.82
Ln(B/M) -0.016 -4.22
Ret -0.009 -2.09
DV_lag1 0.061 16.77
Price range -0.010 -2.63
RPI -0.004 -0.76
RRS -0.004 -0.82

AT 0.046 4.21
AT*Low -0.007 -0.45
AT*High -0.036 -2.97
Ln(ME) -0.010 -1.86
Ln(B/M) -0.016 -4.29
Ret -0.008 -1.89
Price range -0.011 -2.77
DV_lag1 0.061 16.74
RPI -0.004 -0.95
RRS -0.004 -0.98

AT 0.023 2.85
AT*Low -0.014 -1.50
AT*High 0.018 1.55
Ln(ME) -0.009 -1.74
Ln(B/M) -0.017 -4.38
Ret -0.007 -1.65
Pricerange -0.010 -2.61
DV_lag1 0.061 16.72
RPI -0.004 -0.94
RRS -0.005 -1.07

This table reports an annual regression of  equity repurchases on algo trading. The 
dependent variable is a proxy for share repurchases, computed as the difference between 
NNE and annual aggregate new equity issues, all scaled by shares outstanding. NNE is annual 
equity issuance computed as in McLean, Pontiff and Watanabe (2009). The independent 
variables are all measured in the prior year and include algo trading (AT),  the natural 
logarithm of the year-end market cap (lnME), the natural logarithm of year-end Book-to-
Market (Ln(B/M)), the temporary price impact measured by relative realized spreads (RRS) 
and the permanent price impact (RPI), both scaled by the closing price and measured in bp, 
the daily average return (Ret), volatility measured by price range, and the lagged dependent 
variable. The High and Low dummies represent firms that are in the top and bottom market 
cap (return volatility) terciles within each market in Panel B (Panel C). All regressions are 
market and year fixed effects models. All continous variables are standardized to have a 
mean of zero and standard deviation of one every year within each market. 

Table 6. Algo trading and equity repurchases.

Panel A: Market  and year fixed effects panel regression

Panel C: Market fixed effects panel regression, interacting AT with return volatility dummies

Panel B: Market  fixed effects panel regression, interacting AT with market cap dummies
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Coef Coef Coef Coef

Europe -0.0260 -0.021 -0.028 0.021
Asia -0.0258 -0.016 -0.002 0.021
Rest -0.0208 -0.035 -0.032 0.007

Euronext Amsterdam -0.062 0.006 -0.038 0.053
Athens -0.019 -0.083 -0.083 0.066
Brussels 0.006 -0.061 -0.076 0.008
Copenhagen 0.026 0.002 0.020 0.006
Dt Boerse Xetra -0.071 *** -0.022 -0.023 0.069 ***
Helsinki -0.070 -0.052 -0.044 0.057
London -0.070 *** -0.009 -0.009 0.000
Euronext Lisbon 0.008 0.043 -0.004 -0.014
Madrid 0.023 -0.004 0.002 0.027
Milan -0.049 -0.025 -0.026 0.011
Oslo -0.016 -0.015 -0.023 -0.022
Euronext Paris -0.031 * -0.011 -0.012 0.007
Swiss Exchange -0.001 -0.005 -0.024 0.001
Stockholm -0.039 0.011 0.010 0.016
Wiener Borse -0.240 ** -0.192 ** -0.181 * 0.156 *
Warsaw 0.189 *** 0.084 0.069 -0.103 **

Panel A: Global regions

Panel B: European markets in detail

Table A1. The effect of AT on new capital raising across regions.

This table reports a subset of coefficients from annual regressions of NNE, the proceeds from all 
securities issues, the proceeds from equity issues, and equity repurchases on algo trading. The 
dependent variables are NNE, the annual equity issuance computed as in McLean, Pontiff and 
Watanabe (2009), issuance proceeds from SDC, and a proxy for share repurchases, computed as the 
difference between NNE and annual aggregate new equity issues, all scaled by shares outstanding. The 
independent variables are all measured in the prior year and include algo trading (AT) and several 
controls. Control coefficients are estimated but not tabulated for the natural logarithm of the year-end 
market cap (lnME), the natural logarithm of year-end Book-to-Market (Ln(B/M)), liquidity measured by 
the relative effective spread, the daily average return (Ret), volatility proxied by price range, and the 
lagged dependent variable.  We presen annual market-specific year fixed effect models.  All continous 
variables are standardized to have a mean of zero and standard deviation of one every year within each 
market. The asterisks ***, **, and * represent statistical significance at the 1%, 5%, and 10% level, 
respectively.

NNE All proceeds Equity proceeds
Shares repurchased 

as % of shrout
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