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It is widely believed that “a little flexibility added at the right place can reap significant benefits for

operations”. Unfortunately, despite the extensive literature on this topic, we are not aware of any general

methodology that can be used to guide managers to design sparse (i.e., slightly flexible) and yet efficient

operations.

We address this issue using a distributionally robust approach to model the performance of a stochastic

system under different process structures. We use the dual prices obtained from a related conic program to

guide managers in the design process. This leads to a general solution methodology for the construction of

efficient sparse structures for several classes of operational problems.

Our approach can be used to design simple yet efficient structures for workforce deployment and for

any level of sparsity requirement, to respond to deviations and disruptions in the operational environment.

Furthermore, in the case of the classical process flexibility problem, our methodology can recover the k-chain

structures that are known to be extremely efficient for this type of problem when the system is balanced

and symmetric. We can also obtain the analog of 2-chain for unbalanced system using this methodology.

Key words : Sparse and Efficient Operation, Sensitivity Analysis, Conic Program, Manufacturing

Flexibility, Strong Duality

1. Introduction

There are two competing paradigms in the design of efficient operations: One argues for the stan-

dardization of business processes and practices to achieve operational excellence and cost lead-

ership, and the other lauds the benefits of flexible operations to adapt and respond to changing

business needs. Many operational design problems often reduce to a tussle between the two oppos-

ing paradigms—with more standardization you have less flexibility, and vice versa. Henry Ford, in

describing his insistence on standardization in assembly-line operations, wrote in his autobiography

that he had told his sales staff, facetiously, that “any customer can have a Model T painted in any

1
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color that he wants so long as it is black.” In fact, Model Ts came in several colors; Ford made the

comment to stress standardization’s critical role.

Technological advancements in the field of automation and the Internet-of-Things, together with

clever engineering concepts such as modular product design and synchronized engineering1, have

allowed some companies to reap the benefits of both worlds, to respond to swings in market

sentiments and changing consumer demands at affordable cost. Honda Motor, for instance, “can

seamlessly produce multiple models on a single assembly line, one after another, and switch over

to a newly designed vehicle within hours. By contrast, it can take months for Honda’s rivals to

retool a factory for a new vehicle,” according to Jeffrey Rothfeder (2014)2.

This push for more flexibility in operations is pertinent not only to the auto industry. In the field

of public transport, the conflict between standardization and flexibility plays out in the industry’s

constant struggle to strike a balance between fixed-route service and purely demand-responsive

service. For instance, the Hong Kong Airport Express operator provides free shuttle bus service

for passengers from Hong Kong and Kowloon train stations to nearby hotels. This is currently

served by several fixed-route shuttle services, each serving a dedicated set of hotels (in a fixed

sequence) and departing at regular intervals. In low-demand time periods, however, these fixed-

route services are not efficient, as the small number of stops could have been served using fewer

buses deployed based on the actual destinations of the passengers. A demand-responsive service

would be more efficient, but implementation would be challenging. Many public transport operators

are nevertheless considering ways to implement flexible transit services in a cost effective manner

during periods of low demand3.

We consider next a concrete challenge faced by the operator of Singapore Changi International

Airport, one of the most efficient airports in the world and the seventh busiest international airport.

As of March 31, 2013, the airport had served more than 100 airlines operating more than 6,500

weekly scheduled flights (cf. Table 1), which connect Singapore to more than 250 cities in about

60 countries and territories worldwide. More than 147,000 passengers pass through its gates daily,

bringing with them great challenges to the airport’s security-screening operations.

While most airports conduct security screenings in one centralized location, Changi Airport uses

a decentralized security screening, in which departing passengers are checked at the entrance to

each gate before boarding. Compared with the typical centralized security operation, this decen-

tralized approach helps relieve the bottleneck at the entrance to the transit area (see Figure 1 for

a comparison of centralized screening and decentralized screening).

1 This is practiced by Honda Motor, where all of the vehicles coming into a factory’s assembly zones share common
designs, such as similar locations and installation techniques for functions like brakes or transmission.

2 http://www.businessinsider.sg/strategies-that-make-honda-innovative-2014-7#.Vw2qSuJ96Uk

3 See, for instance, “Operational Experiences with Flexible Transit Services” by David Koffman, published by TRB
in 2004
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Table 1 Sample flight departure information for Singapore Changi Airport

TEP FLIGHT Mon Tue Wed Thu Fri Sat Sun Dep Time TO Plane Type
1 CV785 Y 0005 KUL / GYD 744
3 SQ225 Y Y Y Y Y Y Y 0005 PER 333
3 VA5507 Y Y Y Y Y Y Y 0005 PER 333
3 VS7225 Y Y Y Y Y Y Y 0005 PER 333
3 OZ6782 Y Y Y Y Y Y Y 0010 ICN 333
3 SQ608 Y Y Y Y Y Y Y 0010 ICN 333
1 CA970 Y Y Y Y Y Y Y 0015 PEK 333
2 5J548 Y Y Y Y Y Y Y 0020 CEB 320
1 AF259 Y Y Y Y Y Y Y 0025 CDG 773
1 AZ2691 Y Y Y Y Y Y Y 0025 CDG 773
1 KL836 Y Y Y 0030 AMS 772
1 KL836 Y Y Y Y 0030 AMS 773

(a) Decentralized screening in Changi airport (b) Centralized Screening in Israel4

Figure 1 Decentralized versus Centralized Screening

The decentralized layout, however, poses a challenge to airport operators. In addition to sta-

tioning a regular security screening team at each departure gate, the airport would have to send

backup screening teams, known as “roving teams”, to gates facing a surge when passenger arrive,

to reduce waiting time. Figure 1a shows the screening operation at one of the boarding gates with

a long queue forming, and an adjacent screening line being activated.

Demand for additional roving teams can only arise within roughly one hour before flight depar-

ture, and depends on the passenger load for each flight as well as their arrival patterns, which are

random. In the case of low passenger load, excess roving teams can be used for other jobs. There-

fore, the demand for a roving team at each gate is random and it is either 0 or 1. An interesting

but challenging problem faced by the airport is the deployment of roving teams to gates—which

are throughout the terminals (see Figure 2 for gate layout)—within a given time frame to meet

potential demand so that the fewest total roving teams are required.

4 The picture is from http://i-hls.com/2015/04/homeland-security-steps-up-screening-of-aviation-employees/
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Figure 2 Changi Terminal Layout

The airport’s current deployment approach is to monitor the congestion level at each screening

gate through CCTV, and deploy a roving team if a supervisor decides this is necessary. This

deployment approach is very flexible. However, this has resulted in a complicated workflow structure

in which communication and coordination are challenging; At peak times, even supervisors have

to join roving teams.

There is simpler way to address this problem, analogous to a fixed-route service approach, which

is to deploy an additional roving team to each gate at the time of departure regardless of the

passenger load and their arrival patterns. This ensures stability in the work schedule and simplifies

the workflow, but at the expense of maintaining an excessive number of roving teams.

The difference between these two approaches can be illustrated using the following example.

Denote the potential demand for a roving team at each boarding gate before flight departure by a

node (x, [tb, te]), where

• x denotes the location coordinate of the gate, and

• [tb, te] denotes the time interval within which a roving team might be needed.

The simple approach (fixed-route service approach) is based on a standardized structure that

reduces the deployment problem to identifying the minimum number of paths covering these

demand nodes, with each path representing the schedule of a roving team. A path can cover node

(x(i), [tb(i), te(i)]), followed by (x(j), [tb(j), te(j)]), provided the roving team can traverse from x(i)

at time te(i) to reach x(j) before tb(j). The difference between the fixed-route service approach

and the current approach (based on a fully flexible structure) for this problem can be understood

through the possible workflows of the roving teams throughout the terminal. The fixed-route ser-

vice approach, as shown in Figure 3, uses a minimum of 9 roving teams, but with a much less

complicated workflow compared to the flexible approach, which requires fewer roving teams on

average.
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(a) Fixed Route Service Approach with 9 roving

teams
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(b) Fully Flexible Approach with all possible

node pairs

Figure 3 Fixed Route Service Approach versus Fully Flexible Approach

While the “complex” workflow structure in the roving team deployment problem does not trans-

late directly into additional operational costs, we note that the problem posed is common in many

workforce deployment problems, and the complexity in the deployment structure can be directly

related to the additional cost of training workers. For instance, if each node in our network repre-

sents a pick-up location and timing in a transportation network, with unknown passenger demand,

then our problem reduces to finding the minimum number of vehicles needed to service the (ran-

dom) demand at each location. This becomes a tanker scheduling problem with random demand

(see Ahuja et al. (1995)). Each arc in our network corresponds to a route between two pick-up

locations. In more general workforce deployment problems, workers may require different skill sets

to serve the demands of different nodes. It is therefore desirable that the system has the sparsest

possible workflow structure without sacrificing too much the efficiency of the workforce deployment

system.

Bearing in mind our comparison of the two deployment workflow structures—the “standardized”

structure and the “fully flexible” structure—for this class of problems, we want to understand if the

performance of the standardized structure can be greatly enhanced, meaning the expected number

of roving teams can be reduced, by adding a small number of additional arcs to the structure.

Specifically, we are looking for a deployment structure that is able to deploy roving teams using a

simple workflow comparable to the standardized approach, but with operational efficiency similar

to the flexible approach.

This paper provides a methodology to design such a sparse and yet efficient structure. Assuming

that demand for roving teams is independent among gates and is 0 or 1 with equal probability,

Figure 4 presents the expected number of roving teams needed under different structures, con-

structed using the methodology developed in this paper. Expected performance is computed using
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numerical simulation. It is interesting to observe that more than 80% of the arcs can be deleted

with negligible impact on system performance.
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Figure 4 Expected performance under different structures

For further illustration, we use the method developed in this paper to construct a 62-arc structure

in Figure 5a, with new arcs added to the original fixed route service structure in Figure 3a. The

sample path performance in Figure 5b shows that the 62-arc structure performs as well as the fully

flexible structure, but with a much smaller number of arcs. A little flexibility does indeed add a

lot to roving-team efficiency!
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(a) 62-arc structure
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(b) Sample path performance under different

structures

Figure 5 Designed sparse but efficient structure

Jordan and Graves (1995) observed a similar phenomenon in the case of manufacturing process

flexibility. They propose that “a small amount of flexibility added in the right way can have

virtually all the benefits of total flexibility,” and demonstrated this phenomenon in General Motors’
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manufacturing network. This interesting observation has generated extensive follow-up research on

sparse and efficient operations in the field of process flexibility. Jordan and Graves (1995) found

the long chain to be a very efficient structure in the case of a symmetric and balanced system

with independent and identically distributed (i.i.d.) demand. Following their work, subsequent

literature explores good flexible structures in skill chaining and supply chain settings (see Iravani

et al. (2005), Deng and Sheng (2013), Simchi-Levi and Wei (2015), etc.) using various ad hoc

approaches. Most of these techniques only evaluate and compare two given structures, and could

not be used to construct near-optimal process structures.

In general, it is difficult to find a methodology for constructing an efficient structure for the

process flexibility problem, not to mention other operational problems in more general settings (e.g.,

the “roving team” deployment problem faced by Changi Airport). We contribute to the literature in

the following ways: First, we contribute to the process flexibility literature by proposing a method

to construct an efficient sparse structure for the general problem (including the non-i.i.d demand

case). Second, in terms of methodology, we use a completely positive program to reformulate the

worst-case model of a network flow problem. Essentially, our model solves the worst-case problem

with limited knowledge of demand information (e.g., the first-two moments). The importance of

an arc is assessed based on the dual price information in a related conic program. This builds on

a recent observation by Wang and Zhang (2015) that a related SDP cone can be used to analyze

the worst-case performance of 2-chain in the process flexibility problem, obtaining bounds that are

strikingly close to the case in which the demands are normally distributed.

Under general conditions on the moments structure, our dual formulation (a copositive program)

satisfies strong duality, so that the associated dual prices provide an estimate of the value of an

arc in the system. This is also essential for the numerical technique we use to solve this problem.

In the copositive programming literature, strong duality results are known for only several classes

of problems (cf. de Klerk and Pasechnik (2002) on the stable set problem).

The rest of the paper is organized as follows: In Section 2, we review the related literature. In

Section 3, we present a general distributionally robust model for a stochastic network flow problem.

We propose an equivalent completely positive reformulation and further provide a general condition

for strong duality between the completely positive program and its dual. Building on the strong

duality result, a dual-variable-based heuristic is proposed to design an efficient and sparse network.

In Section 4, we apply the framework to tackle two classes of problems: roving team deployment

and the classical process flexibility problem. We conclude the paper in Section 5. All proofs are

presented in the Appendix.
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2. Literature Review

(1) Process Flexibility

The literature on process flexibility is extensive. We now briefly review the papers that are

closely related to our studies. Jordan and Graves (1995) produced the classic work on process

flexibility, based on General Motors’ production process. They put forward the notion that limited

flexibility can yield good performance and that the long-chain structure can be nearly as efficient

as a fully flexible structure when demand and supply are balanced and symmetric. Following

their work, one stream of research analyzes the performance of the chaining structure. Chou et

al. (2010) used a random walk method to compute asymptotic expected demand satisfaction in

a long-chain structure and compare the long chain’s asymptotic performance to that of the full-

flexibility structure. Simchi-Levi and Wei (2012) characterized the long chain’s performance using

the difference between two open chains. Based on this characterization, they proved that the long

chain is the optimal structure among 2-flexibility designs. Wang and Zhang (2015) derived a closed-

form distribution-free bound on the ratio of the long chain’s expected performance relative to that

of full flexibility.

Jordan and Graves (1995) used an automobile production example to illustrate how a sparse

and efficient structure (an additional 6-arc structure) can be constructed for the general process

flexibility problem. Chou et al. (2011) showed that when demand is bounded, there exists a set

of graph expanders that can achieve near-optimal performance compared to the full-flexibility

structure. They also proposed a heuristic to find such structures. Desir et al. (2015) found that for

some instances of demand distribution, a disconnected network performs strictly better than the

long chain. They further proved that the long chain is indeed optimal among connected networks.

There are various ways to “index” the performance of a process structure. Jordan and Graves

(1995) developed a probabilistic index as a surrogate to measure the performance of any process

structure. The probabilistic index is defined as the largest probability among all the demand

node subsets whose probability of unsatisfied demand would exceed that in the full-flexibility

counterpart. Iravani et al. (2005) introduced a “structural flexibility matrix” to evaluate a systems’s

process capability. They used the means of matrix entries and the largest eigenvalue as flexibility

indices. Chou et al. (2008) proposed to use the second smallest eigenvalue of the Laplacian matrix

as the “expansion index” to design a flexible structure. Simchi-Levi and Wei (2015) extended the

study from a worst-case perspective and introduced “plant cover index” as a measure of worst-

case performance. The plant cover index is able to compare two flexibility designs’ worst-case

performances based only on the design structures, regardless of the uncertainty set. Note that these

indices work when a structure is given, but they cannot be used to guide the design of good process

structure.
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(2) The Workforce Deployment Problem

The workforce composition and deployment problem is complicated, as it involves workers with

different skill sets and sometimes combines full-time workers and part-time workers. According to

the Bureau of Labor Statistics (2013), 70% of organizations in U.S. employ part-time workers, which

demonstrates the prevalence of flexible labor resources in today’s economy. Kesavan et al. (2014)

studied flexible labor resources’ impact on a firm’s financial performance. They used flexible labor

resources to adjust capacity accordingly to meet demand, and found through empirical methods

that a mixture of full-time and part-time workers shows an inverted U-shaped relationship with

sales performance and profit, and a U-shaped relationship with expenses. However, the paper did

not address how flexible labor forces can be deployed in practice.

A key difficulty in making deployment decisions is uncertain demand. Nobert and Roy (1998)

studied the schedule of freight-handling personnel at air cargo terminals. They used demand fore-

casts to determine the amount of freight ready to be handled each day and further introduced a new

approach called “demand leveling” to identify the true demand for manpower. Bard et al. (2007)

approximated daily demand using three-point distribution based on historical data from United

States Postal Service (USPS) mail processing and distribution centers (P&DCs), and developed a

two-stage stochastic integer program with recourse to analyze the effect of deployment on labor

cost. They considered both full- and part-time workers, and obtained the number of each type of

worker needed. Zhu and Sherali (2009) considered both long-term demand fluctuation and short-

term demand uncertainty. They used expected demand profile over the horizon to hedge against

long-term demand fluctuation. For short-term demand uncertainty, they proposed a two-stage

stochastic program and applied a Bender’s decomposition-based algorithm to solve the two-stage

model. For a comprehensive survey on workforce deployment, we refer the reader to Bergh et al.

(2013).

Qin et al. (2015) provided a thorough review of the workforce flexibility literature, grouped

five workforce-flexibility methods—flexible working hours, floaters, cross-training, teamwork, and

temporary labor. Labor flexibility allows the system to dynamically reallocate resources from one

stage of production to another in response to shifting bottlenecks. For instance, Daniels et al.

(2004) studied the value of partial workforce flexibility in a flow shop scheduling environment

and reported that “a large fraction of the benefit of complete flexibility can be obtained with a

relatively modest amount of partial flexibility (p.8).”

(3) Conic Programming Approach A completely positive cone is defined as

CPn := {A∈ Sn|∃V ∈Rn×m+ , such that A= V V T}

:= {A∈ Sn|∃v1,v2, ...,vk ∈Rn+, such that A=
k∑
i=1

viv
T
i }
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where Sn is the set of n×n symmetric matrices.

A copositive cone is the dual cone of a completely positive cone. It is defined as

COn := {A∈ Sn|∀v ∈Rn+,vTAv≥ 0}

A completely positive program is defined as a linear program over a completely positive cone.

Its dual problem—copositive program—is defined as a linear program over the dual cone, or a

copositive cone. Completely positive and copositive programs have recently been used to model

NP-hard optimization problems. It is well known that a maximal stable set problem cannot be

approximated within a factor |V |
1
2−ε for any ε > 0 unless P =NP. Lovasz and Schrijver (1991)

linked the stability number with the so-called theta number, defined as the optimal value of a

related semidefinite program. de Klerk and Pasechnik (2002) extended this work and showed that

by changing the semidefinite cone to a copositive cone, the resulting copositive program is exact for

the stable set problem. They also showed how to approximate the copositive cone using a hierarchy

of linear or semidefinite programs to compute the stability number. Interestingly, it will be shown

later in the paper that the dual of the classic maximum flow model for solving process flexibility

problem can be regarded as a “random-weight stable set” problem. In this paper, we equivalently

reformulate this type of random-weight stable set problem as a completely positive program and

show that the strong duality holds under the proposed reformulation.

Burer (2009) showed the equivalence between completely positive problems and nonconvex

quadratic problems with a mixture of binary and continuous variables, which is a well-known

NP-hard problem. Kong et al. (2013) applied this approach to health-care appointment schedul-

ing problems, demonstrating the potential of copositive programming to solve difficult operations

management problems. The closest related literature to our work is Natarajan et al. (2011), who

presented an equivalent completely positive reformulation to mixed 0-1 linear programming prob-

lems with random objectives. We extend their model to incorporate quadratic constraints in the

formulation, and show how these constraints are related to sensitivity analysis of underlying oper-

ational problems.

It is worth mentioning that reformulating an NP-hard problem to a completely/copositive

program does not resolve the underlying difficulty in computation, but it helps to shift the com-

binatorial complexity to the facial structure of general completely/copositive cones. For more

information on completely positive cones and copositive cones, we refer readers to Berman and

Shaked-Monderer (2003). Although in general solving a completely positive program or a copositive

program is NP -hard, Natarajan and Teo (2016) prove that in some special cases the competely

positive program can be equivalently solved exactly by an SDP. In general cases, several approx-

imation methods—so-called hierarchies, which involve a sequence of tractable cones—have been
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studied. Gaddum (1958) proposed an approach for checking whether a cone is copositive (which

he termed “conditionally semi-definite”) by solving linear programs. In the meantime, SDP-based

hierarchies have become popular in the literature. One method is to approximate a completely

positive cone as a “doubly nonnegative cone,” which is defined as a positive semi-definite cone with

nonnegative entries. Specifically, {A|A< 0,A≥ 0} provides a outer approximation for completely

positive cones, and {A|A = A1 +A2,A1 < 0,A2 ≥ 0} gives an inner approximation for copositive

cones (de Klerk and Pasechnik (2002), Parrilo (2000)). In this paper, we use doubly nonnegative

cones to approximate completely positive or copositive cones.

The use of algorithms to solve a doubly nonnegative matrix has received a lot of attention in

recent years. Sun et al. (2015) employ a majorized semi-smooth Newton-CG augmented Lagrangian

method, coupled with a convergent 3-block alternating direction method of multipliers, to obtain

a solution with moderate accuracy. They also develop a software, SDPNAL+, that can be used to

solve moderate- to large-sized doubly nonnegative problems efficiently, as long as strong duality

holds. We refer the reader to Yang et al. (2014) for details on the software, as well as some impressive

computational results. In our paper, we use this software to solve the doubly nonnegative programs.

3. A Distributionally Robust Model of Stochastic Network Flow and
Sparse Design

A stochastic network flow model has been widely used in modeling operations management prob-

lems in an uncertain environment. In this section, we develop a general distributionally robust

model of a stochastic network flow problem and establish the model’s key properties for the sparse

design problem.

Let G(V0,A0) denote a network with node set V0 and arc set A0. Denote the number of nodes

in the network as n, i.e., |V0|= n. By adding two virtual nodes—one source node s, one sink node

t—and linking them to all nodes in V0, we construct a new network, G(V,A). Given this network,

consider a min-cost-flow problem with random demand d̃ at each node in V0:

Z(d̃) = min
xij

∑
(i,j)∈G(V,A)

cijxij

s.t.
∑

i∈V0
⋃
{s},(i,j)∈A

xij ≥ d̃j, j ∈ V0∑
i∈V0

⋃
{s},(i,j)∈A

xij −
∑

i∈V0
⋃
{t}(j,i)∈A

xji = 0, j ∈ V0

xij ≥ 0,

(1)

where cij is the cost of unit flow for arc (i, j). Note that the results developed hold also for the

following equivalent model:

Z(d̃) = max
xij

∑
(i,j)∈G(V,A)

cijxij

s.t.
∑

i∈V0
⋃
{s},(i,j)∈A

xij ≤ d̃j, j ∈ V0∑
i∈V0

⋃
{s},(i,j)∈A

xij −
∑

i∈V0
⋃
{t}(j,i)∈A

xji = 0, j ∈ V0

xij ≥ 0,

(2)
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For ease of exposition, we focus the development of the theory for Model (1).

Due to the strong duality of linear programming, by introducing dual variables y,z for the two

sets of constraints in Problem (1), we can get the corresponding dual formulation as follows:

Z(d̃) = max
y,z∈X

∑
j∈V0

d̃jyj (3)

Where

X =


yj + zj ≤ csj, j ∈ V0, (s, j)∈A

yj + zj − zi ≤ cij, (i, j)∈A0

−zi ≤ cit, i∈ V0, (i, t)∈A
y ≥ 0


We adopt the concept of a distributionally robust optimization and study the worst-case expected

value of Z(d̃) assuming we only have the first-two moments information of d̃. Specifically, we

assume that the distribution of d̃ lies in a set of multivariate distributions supported on nonnegative

orthant of dimension n, Rn+, with finite first moment µd and finite second moment Σd. Then the

worst-case expected value of Z(d̃) is obtained by solving

ZP = sup
d̃∼(µd,Σd)

E[Z(d̃)]. (4)

We will show in the next section that Problem (4) can be equivalently reformulated as a conic

program. The first step leading to the equivalent reformulation is to rewrite the inner LP prob-

lem in a standard form. Notice that to get the constraint “yj + zj − zi ≤ cij” into standard form,

we need to introduce |A0| number of slack variables. The corresponding decision variable matrix

in the reformulated conic program, based on the approach by Burer (2009), would be of dimen-

sion O(|A0|2). This hinders computational efficiency, especially when the network is large. In this

paper, we will exploit special network and cost structures to reduce the dimension to O(|A0|) by

appropriate reformulation.

Specifically, in the rest of the paper, we will consider the problem of a special cost structure such

that: {
cit = 0 ∀i∈ V0

cij ∈ {0,1} i∈ V0 ∪{s} , j ∈ V0.
(5)

Since Problem (3) is totally unimodular, the optimal solutions are binary. Therefore, 1− zi ∈
{0,1}. Note that yj + zj ∈ {0,1} follows from yj + zj ≤ csj ≤ 1. We can re-write yj + zj − zi ≤ cij in

the following way:

(yj + zj) + (1− zi) + (1− cij)≤ 2, (i, j)∈A0.

This is equivalent to (1− cij)(yj + zj)(1− zi) = 0, (i, j)∈A0 since each term is shown to be binary

in the optimal solution. Therefore, X can be equivalently reformulated as

X =

 yj + zj + sj = csj, j ∈ V0

(1− cij)(yj + zj)(1− zi) = 0, (i, j)∈A0

y,z, s ∈ {0,1}n

 . (6)
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This reformulation reduces the model to system of equalities, using O(|A0|) number of variables, at

the expense of introducing quadratic constraints. There is another important reason to reformulate

the linear constraints, yj + zj − zi ≤ cij, (i, j) ∈ A0, into a quadratic form - the dual to these

quadratic constraints can be used to design natural arc-selection heuristic for our problems. We

will address this explicitly when we introduce the dual-variable-based heuristic.

3.1. Completely Positive Reformulation

We write the quadratic program in a general form as

Z(d̃) = max
x

d̃Tx

s.t. aT
i x = bi,∀i

(hT
i x + fi)(ĥ

T
jx + f̂j) = 0,∀(i, j)∈H

xi ∈ {0,1} ,∀i∈B,

(7)

where B is the set of indices for the binary variables. H=A0 ∩{(i, j) | cij = 0} in our network flow

model. We use N to represent the dimension of decision vector, i.e., x∈RN and assume the number

of linear constraints in (7) is M .

The key assumptions under which the problem is analyzed are as follows:

A1. x∈Φ :=
{
x≥ 0 | aT

i x = bi, ∀i
}
⇒ hT

i x + fi ≥ 0,∀i, ĥT
jx + f̂j ≥ 0,∀j and x≤ 1.

A2. The random coefficient d̃ is defined in a nonnegative support RN+ , with finite first-two

moments µd and Σd.

A3. The feasible region is nonempty and bounded.

Assumption A2 and A3 are standard in the literature (c.f. Natarajan et al. (2011), Kong et al.

(2013)). Assumption A1 ensures that Φ is sufficient to induce additional non-negativity constraints

that will facilitate the reformulation using copositive cones. For instance, in (6), since csj ∈ {0,1},
yj + zj + sj = csj,∀j ∈ V0, y,z, s≥ 0 implies that yj + zj ≥ 0 and 1− zi ≥ 0, and yj, zj, sj ≤ 1.

For ease of exposition, we first define some notations used in the next part of this section.

- ei ∈RN denotes a unit vector with ith element equal to 1.

- 1N ∈RN denotes a vector with all elements equal to 1.

- 0N ∈RN denote a vector with all elements equal to 0.

- J ∈RN×N denotes a matrix with all elements equal to 1.

- I ∈RN×N denotes the identity matrix.

- • represents the inner product of matrices: A •B denotes the trace of matrix ATB.

Define x(d) to be the optimal solution to (7) under a specific d. Since d̃ is a random variable

with finite first-two moments (µd,Σd), x(d̃) is also a random variable with well-defined first-two

moments. Then we define
p := E[x(d̃)]∈RN+
Y := E[x(d̃)d̃T]∈RN×N+

X := E[x(d̃)x(d̃)T]∈RN×N+

(8)
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where all the expectations are taken with respect to d̃. Then we have

E


 1

d̃

x(d̃)

 1

d̃

x(d̃)

T
 =

 1 µT
d pT

µd Σd Y
T

p Y X



It is clear that

 1 µT
d pT

µd Σd Y
T

p Y X

 is a completely positive matrix by definition.

Following the same technique in Natarajan et al. (2011), the objective, E[Z(d̃)] = E[d̃Tx(d̃)],

can be rewritten as I • Y ; the linear constraints, aT
i x(d̃) = bi,∀i, implies two set of constraints in

the expectation:

aT
i p = bi, ∀i

aT
iXai = b2

i , ∀i

The first constraint is obtained by taking the expectation over d̃, i.e.,

E[aT
i x(d̃)] = bi =⇒ aT

i p = bi,∀i

We use a “lifting” technique to get the second constraint in the following way: Since we have

(aT
i x(d̃))(x(d̃)

T
ai) = b2

i , by taking the expectation with respect to d̃, we have aT
iXai = b2

i (c.f.

Natarajan et al. (2011)). The binary constraint x(d̃) ∈ {0,1}|B| implies that xi(d̃) = xi(d̃)2,∀i ∈

B. We reformulate this set of quadratic constraints, together with (hT
i x(d̃) + fi)(ĥ

T
jx(d̃) + f̂j) =

0,∀(i, j)∈H, by taking the expectation with respect to d̃. In this way, we have

Xii = pi, ∀i∈B

hT
iXĥj + (fiĥ

T
j + f̂jh

T
i )p + fif̂j = 0, ∀(i, j)∈H

Consider the following completely positive program with p, X, and Y as decision variables, which

are defined in (8) :

ZC = max I •Y
s.t. aT

i p = bi, ∀i= 1, . . . ,M
aT
iXai = b2

i , ∀i= 1, . . . ,M
Xii = pi, ∀i∈B

hT
iXĥj + (fiĥ

T
j + f̂jh

T
i )p + fif̂j = 0, ∀(i, j)∈H

CP =

 1 µT pT

µ Σ Y T

p Y X

 <cp 0, µ= µd, Σ = Σd.

(9)

From the construction of this completely positive program, it is clear that (9) is a relaxation to

problem (4), hence ZC ≥ZP . In the following proposition, we will show that these two formulations

are, in fact, equivalent.
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Proposition 1. The completely positive program ZC is equivalent to the worst-case model ZP ,

i.e., ZC =ZP .

To show the equivalence, we adopt a similar proof technique used in the literature (cf. Natarajan

et al. (2011)). We construct a sequence of distributions that satisfies the moment conditions in the

limit and show that the limit of the set of feasible solutions under such a distribution sequence

achieves the upper bound provided by ZC . See Appendix A for the detailed proof.

Remark: The framework can incorporate the additional condition that the random cost coefficients

are binary, i.e., from the Bernoulli family of distributions. According to Burer (2009), the valid

moments from this family can be characterized using a set of completely positive constraints. i.e.,

the moments (µ,Σ) are feasible moments for a Bernoulli family of distributions if and only if the

following set is not empty :

Ω(µ,Σ) =


(w,W )

∣∣∣∣∣∣∣∣∣∣∣∣∣

∃s, S,Y such that
w =µ; W = Σ;
wi =Wii,∀i= 1, ...,N ; si = Sii,∀i= 1, ...,N ;
wi + si = 1,∀i= 1, ...,N ; Wii +Sii + 2Yii = 1,∀i= 1, ...,N ; 1 wT sT

w W Y
s Y T S

<cp 0


(10)

This provides the necessary and sufficient conditions to characterize the family of Bernoulli distri-

butions with given first-two moments.

3.2. Strong Duality

In this paper, the proposed heuristic to design an efficient sparse structure is based on dual variables

in the completely positive program (9). Hence, before moving on to the heuristic, we first explore the

conditions under which strong duality of Problem (9) holds. We first construct the dual formulation

of (9), which is a copositive program.

Denote the dual variables corresponding to each set of linear constraints in (9) as β(1),β(2) ∈RM ,

β(3) ∈ R|B|, and Γ ∈ Rn×n (where n denote number of vertices), following the sequence of their

presentation in (9). Notice that in the completely positive matrix CP ,

CP1,1 = 1;

CP1,(j+1) =CP(j+1),1 = µdj,∀j = 1, ...,N ;

and

CP(i+1),(j+1) = Σdij,∀i, j = 1, ...,N.
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We denote the dual variables corresponding to these moment constraints as α0 ∈R, β0 ∈RN , and

Γ0 ∈RN×N . Define

w =
M∑
i=1

β
(1)
i ai−

∑
i∈B

β
(3)
i ei +

∑
(i,j)∈H

Γij(fiĥj + f̂jhi)

W =
M∑
i=1

β
(2)
i aia

T
i +

∑
i∈B

β
(3)
i eie

T
i +

∑
(i,j)∈H

Γij(
1
2
ĥjh

T
i + 1

2
hiĥ

T
j )

Then the dual problem of (9) can be written as

ZCD = min α0 +µTβ0 + Σ •Γ0 + bTβ(1) + bTdiag(β(2))b−
∑
i,j

Γij f̂jfi

s.t.

 α0
1
2
βT

0
1
2
wT

1
2
β0 Γ0 O

1
2
w O W

−
 0 0T

N 0T
N

0N O 1
2
I

0N
1
2
I O

<co 0
(11)

where diag is an operator that maps a vector to a diagonal matrix with vector elements as the

diagonal elements of the matrix; and O stands for 0 matrices of proper dimension.

We establish strong duality using Slater constraint qualification, i.e., as long as there is a feasible

solution (p, Y,X) to Problem (9) that lies in the interior of the completely positive cone defined in

(9), there is no duality gap between ZC and ZCD. Notice that Dickinson (2010) has characterized

the interior of a N ×N -dimensional completely positive cone, denoted as C∗N :

int(C∗N) =

 m∑
i=1

aia
T
i :

ai ∈RN+ ,∀i= 1, ...,m
span{a1,a2, ...am}=RN ,

∃a∈ {a1, ...am} such that a> 0

 (12)

Based on this characterization, we provide conditions for the strong duality between a completely

positive program (9) and its dual formulation (11) in the following theorem.

Theorem 1. Suppose the following conditions hold:

(i) The moment matrix

(
1 µT

d

µd Σd

)
lies in the interior of a (1 +N)× (1 +N)-dimensional com-

pletely positive cone C∗1+N ;

(ii) There exists a set of feasible solutions x(i), i = 1, . . . ,m to Problem (7), such that

span
{
x(1), . . . ,x(m)

}
=RN and at least one of them is strictly positive, i.e., ∃x(l) ∈

{
x(1), . . . ,x(N)

}
such that x(l) > 0.

Then strong duality holds between the completely positive program (9) and its dual formulation

(11), i.e., ZC =ZCD.

Condition (ii) requires Problem (7) to admit a strictly positive interior solution. Unfortunately,

this condition often fails to hold. For instance, to turn inequality constraints into equality

constraints in our approach, we need to add additional slack variables. In the optimal solutions,

some of the inequalities are binding so that the corresponding slack variables have to be 0.

To resolve the issue brought by the slack variables, we divide the solution x into two parts.
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One is composed of decision variables θ, and the other includes all the slack variables s, i.e.,

x =

(
θ
s

)
,θ ∈Rn1 , s∈RN−n1 . We modify Condition(ii) in Theorem 1 to

(ii’) There exists a set of feasible solutions

(
θ(i)

s(i)

)
to (7) such that span

{
θ(1), . . . ,θ(m)

}
= Rn1

and at least one of them is strictly positive, i.e., ∃θ(l) ∈
{
θ(1), . . . ,θ(m)

}
such that θ(1) > 0.

Theorem 2. Under Conditions (i) and (ii’), there is no duality gap between the completely

positive program (9) and its dual formulation (11), i.e., ZC =ZCD.

The proof of Theorem 2 is based on the generalized Slater constraint qualification, i.e., as long as

there is a feasible solution (p, Y,X) to Problem (9) that lies in the relative interior of the completely

positive cone defined in (9), there is no duality gap between ZC and ZCD. Compared to Theorem 1,

the main challenge in proving the strong duality stems from the construction of a relative interior

point. We tackle this issue by starting with a construction without slack variables—i.e., construct

a strict interior solution in a smaller completely positive cone based on the set of θ(i) satisfying

Condition (ii’). Then we map the interior point into a relative interior point of a completely positive

cone in higher dimension, which is the original cone given in (9). See Appendix A for details of the

formal proof.

3.3. Dual-Variable-Based Heuristic

We propose a dual-variable-based heuristic to design sparse network structure. We start with a full

graph—namely, the network with all the possible arcs linking the nodes in V0, as well as the ones

linking with source node s and sink node t. We use GF to denote this network. The main idea of

the heuristic is to incrementally delete the arc with the smallest absolute value in the optimal dual

solution. We motivate this heuristic based on the observation that a bound on the change in ZCD

is related to the magnitude of the dual variable in the conic programming model. Formally,

Proposition 2. Under the cost structure specified in (5), the increase in ZCD after deleting arc

(a, b)∈ G is bounded above by ( 1
4

+ csb)|Γ∗ab|.

Note that csb is the cost of flow on arc (s, b), and Γ∗ab is the (a, b)-th entry of the optimal dual

matrix Γ∗. We prove this proposition via a constructive approach. We first construct a feasible

solution to (11) in the network after deleting arc (a, b). Using this feasible solution, we show that

the objective value ZCD increased by not more than ( 1
4

+ csb)|Γ∗ab|.

From Proposition 2, we can see clearly why we need quadratic constraints in the reformulation

of (3). If we use the original linear constraints “yj +zj−zi ≤ cij,” or its standard form after adding

slack variable sij, the corresponding equivalent completely positive program will have two sets of
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linear constraints, one from taking the direct expectation, i.e., “E[yj + zj − zi + sij] =E[cij],” and

the other from taking the expectation of the lifted linear constraint “E[(yj+zj−zi+sij)2] =E[c2
ij].”

In that case, it is not clear which dual variable will be more appropriate to indicate the vaue

of an arc in the network flow problem. However, by reformulating the original linear constraints

into a quadratic form, there is only one unique constraint in (9) that corresponds to each arc.

Therefore, the dual variable of the constraint in (9) can provide a unique arc-selection criterion in

our heuristic.

It is worth mentioning that, despite the nice property of the dual variable in the copositive

program, solving a copositive program is, in general, an NP-hard problem (cf. Murty and Kabadi

(1987)). In this paper, we use instead the well known Doubly-Nonnegative (DNN) relaxation to

approximate the completely positive and copositive programming problems. Specifically,

M <cp 0 ≈ M < 0,M ≥ 0
M <cop 0 ≈ ∃M1 < 0,M2 ≥ 0, such that M =M1 +M2.

Note that we only need to obtain the most critical arc to be deleted from the network in each iter-

ation of our dual-variable-based heuristic. Hence we require only the “ranking” of the importance

of each arc, and not the precise solution value to the distributionally robust solution. Our compu-

tational results indeed show that the DNN relaxation can efficiently identify the most important

arc in the network, with much less computational effort.

Let Gk represent the network configuration in deleting iteration k. We present the dual-variable-

based heuristic in Table 2.

Table 2 Dual-Variable-Based Heuristic.

Step 1. Set the initial configuration to be a full flexible graph, i.e., G0 = GF . Set k= 0.
Step 2. Solve the DNN relaxation of copositive (COP) program (11) under configuration
Gk. Obtain the dual variable Γ∗ corresponding to the constraint set hT

iXĥj + (fiĥ
T
j +

f̂jh
T
i )p + fif̂j = 0,∀(i, j)∈ Gk.

Step 3. Select the element Γ∗ab with the smallest absolute value subject to (a, b) ∈ Gk. If
there are multiple elements of the smallest absolute value, randomly select one.
Step 4. Update the configuration to Gk+1 = Gk\(a, b).
Step 5. Stop if the configuration obtained—i.e., Gk+1—has the desired number of arcs.
Otherwise, k← k+ 1 and go to step 2.

Remark: Our heuristic is to remove arcs from a fully flexible structure. Alternatively, the efficient

sparse structure can be built from scratch by greedily adding the most effective arc into the

structure through solving one DNN relaxation of the copositive program for each arc that can be

added. In this approach, we have to solve O(|G0|) number of DNN relaxations in each iteration,
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which requires solving close to k|G0| conic programs to get a k-arcs structure. In contrast, our

dual-variable-based heuristic is computationally more attractive, as it only requires the solutions

to |G0| − k conic programs.

4. Applications

In this section, we apply the method derived in Section 3 to the roving team deployment and

the process flexibility problem. Both can be modeled under the general stochastic network flow

framework proposed in Section 3.

4.1. The Roving Team Deployment Problem

Demand for a roving team depends on various uncertain factors, such as passenger load for each

flight, arrival bunching patterns, etc, and only occurs when the queue is sufficiently long. Demand

for a roving team at each gate is therefore a random variable. To simplify the problem, we assume

that once a roving team is required, it will remain for the entire duration—i.e., from the time the

gate opens to the time the flight departs.5.

We model the roving team deployment problem as a min-cost network flow problem. The network

is built in “time” and “space” dimensions. Each node is identified by its gate coordinate and gate

opening time. Let tsi denote the time the gate of node i opens and tei denote the time the flight

departs from the gate. The duration from gate open tsi to flight departure tei is called the “time

window” of node i. Let trij denote the time needed to travel from the gate represented by node

i to the gate represented by node j. An arc is connected from node i to node j if tei + trij ≤ tsj.

Denote the constructed network as G(V0,A0), with V0 denoting the node set and A0 denoting the

arc set. The number of nodes in the network is n, i.e., |V0|= n. To complete the network, we add

two virtual nodes—one source node s and one sink node t—and s, t are linked to every node in

V0. We denote the complete network as G(V,A).

Before exploring the sparse structure, we first define “fully flexible structure” and “dedicated

structure” . Note that an arc can be set up from node i to node j only when tei + trij ≤ tsj. We

connect all the pair-wise arcs that satisfy these constraints to form a fully flexible structure denoted

as GF . The dedicated structure, GD, is constructed in following way: Given all the possible arcs

(those in the fully flexible structure), assuming all of the nodes need a roving team (i.e., demand

di = 1 for all i), we solve the linear programming problem (13) in order to find the minimum total

number of roving teams needed. The resulting routes generated by this linear programming gives

the dedicated structure.

5 Alternatively, we can partition the entire time window into multiple segments, and duplicate the node as many
times as needed to determine demand for the roving team in each segment of the time window.
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We denote the random demand for a roving team in each node i∈ V0 as d̃i. d̃i = 1 indicates that

node i needs a roving team, whereas d̃i = 0 means that it does not. We model the deployment

problem as a min-cost network flow problem as follows.

Z(d) = min
∑

i∈V0,(s,i)∈A
xsi

s.t.
∑

i∈V0
⋃
{s},(i,j)∈A

xij ≥ dj, j ∈ V0∑
i∈V0

⋃
{s},(i,j)∈A

xij −
∑

i∈V0
⋃
{t}(j,i)∈A

xji = 0, j ∈ V0

xij ≥ 0

(13)

It is clear that (13) fits the general stochastic network problem proposed in Section 3 and satisfies

the special network structure and cost structure required by (5). Therefore, we can apply quadratic

reformulation to reduce the problem dimension. By replacing y with 1− y, we can equivalently

solve (13) as follows:

Z(d̃) = max
y,z

∑
j∈V0

d̃j(1− yj)

s.t yj + s
(1)
j = 1, j ∈ V0

zj + s
(2)
j = 1, j ∈ V0

−yj + zj + sj = 0, j ∈ V0

(1− yj + zj)(1− zi) = 0, (i, j)∈A0

y,z ∈ {0,1}n ,

(14)

where two sets of valid constraints y + s(1) = 1 and z + s(2) = 1 are added.

The constraints in (14) satisfy Assumptions A1 to A3 in Section 3.1. We can construct an

equivalent completely positive program following a similar procedure in Section 3.1. Note that

the random coefficients in this problem are Bernoulli random variables. We impose the moment

constraints defined by (10) in the completely positive program to ensure that the random variables

constructed are indeed Bernoulli random variables. We refer the readers to the detailed formulation

of the completely positive program as well as its dual formula copositive program in Appendix B.

In order to apply the dual-variable-based heuristic to design a sparse structure, we first establish

strong duality property in Proposition 3.

Given a network, the Reachability Matrix R ∈Rn×n is defined as follows:

Definition 1. Rij = 1 if there exists a path from i to j in G(V0,A0)6, and Rii = 1, i= 1, ..., n.

Let J denote the matrix in Rn×n with all the entries equal to 1.

Proposition 3. Under the condition that (1) there exists a Bernoulli distribution satisfying

the moment constraints and with the support containing a basis of Rn and having a nonempty

6 Note that the Reachability Matrix R can be obtained from the Adjacent matrix A, which is defined as Aij = 1, if
(i, j) ∈ A0, otherwise Aij = 0. Define an operator ? such that A ?A returns a matrix denoted as B, and Bij = 1 if
n∑
l=1

AilAlj > 0, otherwise Bij = 0. Denote A[k] ?A := A[k+1],∀k≥ 1 . Then R =
n∑
i=1

A[i].
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intersection with positive orthant; and (2) J−RT is nonsingular, then strong duality holds between

a completely positive program and a copositive program that corresponds to the worst-case expected

value of (14).

In the roving team deployment problem, Condition (1) holds by construction, since the moment

conditions are generated from a demand distribution which satisfies Condition (1).

Building on the strong duality result, we have that the increase in the worst-case expected value

of (14) after deleting arc (a, b) is bounded by 5
4
|Γ∗ab| according to Proposition 2. In the following,

we will apply the dual-variable-based heuristic to design a sparse structure in the roving team

deployment problem.

4.1.1. Implementation We use the Pre-board Deployment Roster Report and the gate layout

of Changi Airport to build the network. More specifically, we build our network using the flight

departure data from 10 am to 8 pm on April 4, 2014, for Terminal 1. We build the fully flexible

structure by connecting each pair of nodes i and j, provided tei + trij ≤ tsj. In the numerical

example presented in this section, we have a fully flexible graph with 40 nodes and 561 arcs. To get

the dedicated structure, we solve the linear program (13) over fully flexible graph GF (561) under

the assumption that all the nodes need a roving team, i.e., d = 1n. The solution provides 9 routes

from s to t, each of which does not intersect with every other route in V0. The resulting graph has

31 arcs. We denote the obtained dedicated structure as GD(31).

Notice that the random demand variable in the roving team deployment problem is Bernoulli.

The input of the moment matrix should be a valid moment matrix under a Bernoulli distribution

family, which can be modelled by (10). As we only need the ranking of the dual variables, in this

numerical implementation we did not incorporate the slack variables into the moment matrix, but

simply enforce the constraints that the random variables are 0-1 (i.e. first moment equals to the

second moment). Furthermore, to facilitate the comparison between performance and sparsity of

the structure used, we assume the demand at each gate is independently and identically distributed.

We compare three cases with demand probability for a roving team to be p = 0.1, p = 0.5, and

p= 0.9.

Starting from the fully flexible structure GF (561) built above, we use Mosek to solve the DNN

relaxation of the copositive program (11) to get the dual variable Γ∗. We delete the arc (a, b) with

|Γ∗a,b|= min
(i,j)∈GF (561),(i,j) 6∈GD

{|Γij|} to get a reduced graph, denoted as GR. Repeating this procedure

in each iteration, we delete the arc (a, b) with |Γ∗a,b|= min
(i,j)∈GR,(i,j)6∈GD

{|Γij|} and then update GR←

GR \(a, b). The procedure stops if the number of arcs in the graph reduces to 31—i.e., the dedicated

graph structure GD.

To evaluate the performance of the sparse structure we obtained in the three cases (p = 0.1,

p= 0.5, and p= 0.9), we use simulation to get the expected number of roving teams needed under
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Figure 6 Expected number of roving teams needed under each sparse structure obtained using the

dual-variable-based heuristic

each sparse structure. The simulation is conducted as follows: We first uniformly generate 2,000

samples with the prescribed demand distribution, and under each sparse structure GR we solve one

linear program (13) for each sample. Each linear program (13) gives the minimum number of roving

teams needed under the specific demand scenario. We take the average to get the expected minimum

number of roving teams required under the sparse structure GR obtained from the heuristic.

The expected number of roving teams needed under each sparse structure is shown in Figure

6. We observe that under the assumption of independent and identically distributed demand, to

attain a performance level close to the fully flexible structure, an environment with higher (lower)

likelihood of demanding a roving team requires less (more) flexibility. To see this more clearly,

we focus on a specific sparse structure obtained from the dual-variable-based heuristic: the 62-arc

structure, denoted as GR(62). We select this sparse structure because it has twice the number of

arcs as in the dedicated graph, GD(31). We compare expected performance (expected number of

roving teams) of the dedicated graph, GD(31); the 62-arc structure, GR(62); and the full graph,

GF (561). Results are shown in Table 3. We see that when demand likelihood is high—e.g., p= 0.9—

GR(62) is almost as good as GF (561). Actually, in this case all three structures perform almost

the same. On the other hand, when demand likelihood is low—for example, in the case p= 0.1—

GR(62) performs more like the dedicated graph GD(31), and both perform much worse than the

fully flexible structure GF (561). In this case, we need more flexibility in the system.

Table 3 Expected number of roving teams under different graph structures

GF (561) GR(62) GD(31)
prob =0.1 2.0515 3.2790 3.4025
prob =0.5 6.0525 6.6825 8.5760
prob =0.9 8.6620 8.7510 9

Interestingly, when p= 0.5, the performance curve (Figure 6b) shows that numerous arcs (more

than 400) can be deleted without sacrificing system performance. However, when the number of
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arcs is reduced below a certain threshold (e.g. slightly fewer than 100), any further reduction

in flexibility becomes costly and system performance quickly deteriorates. This phase-transition

phenomenon renders the flexibility design problem in this setting particularly challenging and

important in practice.

We also plot the performance of various structures when p= 0.5 in our problem. The number of

arcs in our structures vary between 60 to 100. Note that the 100-arc structure already performs

as well as the fully flexible structure. We plot the empirical cumulative distribution functions of

the number of roving teams required to fulfill the demand under simulation in Figure 7a. From the

figure we can see that although the system requires 9 roving teams in the worst case, when p= 0.5,

we can use 8 teams to serve the demand with a 60-arc structure almost all the time. On the other

hand, using 7 teams on an 80-arc structure (c.f. Figure 7b), we can cover the demand more than

95% of the time. Increasing the number of arcs further to 90 or 100 arcs has negligible impact on

performance.

(a) Sample path performance under different

structures(Prob=0.5)

(b) Efficient deployment structure with 7 teams avail-

able

We next evaluate the performance of the 62-arc structure obtained from the dual-variable-based

heuristic, under three different demand scenarios - p = 0.1, p = 0.5, and p = 0.9 respectively (cf.

Figure 7). The 62−arc structures obtained for the cases when p= 0.5 and p= 0.9 are quite similar,

with many identical arcs (they only differ in the choice of 5 arcs). On the other hand, as shown in

Table 3 (second and third rows), these two 62-arc structures both perform well when p= 0.5 and

p = 0.9. This indicates that the proposed heuristic does indeed help to select the more effective

arcs for roving team deployment.

4.2. The Process Flexibility Problem

One of the central problems studied in process flexibility literature is to design a sparse structure

that links plant nodes and product nodes such that demand for products can be better fulfilled.

Specifically, a k-chain structure is a well-known efficient structure when the system is balanced
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Figure 7 62−arc structure under different demand probabilities

and symmetric7. In this section, we will apply the dual-variable-based heuristic to design efficient

sparse structures for the process flexility problem.

Suppose we are given a bipartite graph, with the set of plant nodes, I (|I| = n); the set

of product nodes, J (|J | = m); and arcs that connect plant nodes and product nodes, A0 =

{(i, j) | i∈ I, j ∈J }. Denote the total set of nodes I ∪J as V0. We add a virtual source node s and

virtual sink node t, with s and t linking to every node in V0. Let A be the set of arcs in the new

graph after adding s and t.

Consider the following analogous model studied in Section 3 :

Z(d̃) = max
xij

∑
(i,j)∈A0

xij

s.t.
∑

i∈V0
⋃
{s},(i,j)∈A

xij ≤ d̃j, j ∈ I ∪J∑
i∈V0

⋃
{s},(i,j)∈A

xij −
∑

i∈V0
⋃
{t}(j,i)∈A

xji = 0, j ∈ I ∪J

xij ≥ 0,

(15)

where the support of d̃ is nonnegative. Take the dual of Problem (15).

Z(d̃) = min
y,z

∑
j∈I∪J

d̃jyj

s.t. yj + zj ≥ 0, j ∈ I ∪J
yj + zj − zi ≥ 1, (i, j)∈A0

−zi ≥ 0, i∈ I ∪J
y ≥ 0.

(16)

Due to total unimodularity and the special nature of the bipartite graph, we can further simplify

the model before reformulating it in quadratic form. Since the support of d̃ is nonnegative, it can

7 Suppose there are n plant nodes and n product nodes. A k-chain structure is a general symmetric graph, where
plant 1 connects to product 1 to product k, plant 2 connects to product 2 to product k + 1, and, in general, plant i
connects to i; i+ 1;...; i+k− 1 (modulo n). The dedicated graph and full flexibility graph are both special cases of a
k-chain, with k = 1 and k = n
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be verified that in the optimal solution, zi =−yi,∀i∈ I, zj = 0,∀j ∈J . Hence we get the following

formulation which is equivalent to (16):

Z(d̃) = min
y

∑
j∈I∪J

d̃jyj

s.t. yj + yi ≥ 1, (i, j)∈A0

y ≥ 0.

(17)

With a slight abuse of notation, let c ∈ Rn denote the capacity of n plants, which we assume

is deterministic, and let d̃ be the random variables that represent the random demands of m

products. By refining y as

(
y
z

)
, where y ∈Rm,z ∈Rn, we can get the following reformulation of

the optimization problem defined by (17).

Z(d̃) = min
∑
i∈I

cizi +
∑
j∈J

d̃jyj

s.t. yj + zi ≥ 1, (i, j)∈A0

yj ≥ 0, j ∈J
zi ≥ 0, i∈ I

(18)

Interestingly, (18) is exactly the dual formulation to the max-flow problem in the bipartite graph,

which is the model used in the literature to model the process flexibility problem. 8

Problem (18) can also be reformulated as a quadratic constrained problem based on total uni-

modularity. We can equivalently replace yj + zi ≥ 1 with (1 − yj)(1 − zi) = 0. After adding two

sets of valid cuts 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 and standardizing the constraints, we get an equivalent

reformulation of (18) as follows:

Z(d) = max
∑
i∈I
−cizi +

∑
j∈J
−djyj

s.t. (1− yj)(1− zi) = 0, (i, j)∈A0

y + s1 = 1,
z + s2 = 1,

y ∈ {0,1}m ,z∈ {0,1}n .

(19)

This formulation satisfies Assumptions A1 to A3 in Section 3.1. Hence, we can obtain the completely

positive program, which is equivalent to the worst-case max flow, sup
d̃∼(µd,Σd)

E[Z(d̃)], given the first-

two moments of demand d̃ as µd and Σd. We then follow the construction of (11) to get the

corresponding copositive program. For the detailed conic formulation, see Appendix B.

Additionally, it is interesting to observe that (19) is a variation of the classic stable set problem.

Since y ∈ {0,1}m, z∈ {0,1}n, we can treat ŷj := (1− yj) and ẑi := (1− zi) as indicator variables of

8 The maximum flow used in modeling the process flexibility problem can be written as follows:

Z(d̃) = max
∑

(i,j)∈A0

xij

s.t.
∑

i∈I,(i,j)∈A0

xij ≤ d̃j , j ∈J∑
j∈J ,(i,j)∈A0

xij ≤ ci, i∈ I

xij ≥ 0
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nodes j or i belonging to a stable set; e.g. S. The constraints, (1− yj)(1− zi) = 0, (i, j) ∈A0—or,

in terms of ŷj and ẑi, ŷj ẑi = 0, (i, j)∈A0—imply that the two nodes connected by an arc in graph

G(V,A) cannot be in the same stable set S. In the case in which d̃ is random, the problem can be

regarded as a random-weight stable set problem. As described in Section 2, de Klerk and Pasechnik

(2002) solve the maximal stable set problem using a copositive program. In contrast, we show that

the worst-case value of this random-weight stable set problem can also be equivalently reformulated

as a copositive program.

Similar to the roving team deployment problem, we first establish strong duality property in the

following proposition:

Proposition 4. Under the condition that the moment matrix lies in the interior of completely

positive cone C∗m, strong duality holds between a completely positive program and a copositive pro-

gram corresponding to the worst-case expected value of (19).

As mentioned above, through proper reformulation, the flexibility problem (16) is in fact a special

case of the general network flow model presented in Section 3, with csi = 1, cij = 0, cit = 0. According

to Proposition 2, combined with strong duality in Proposition 4, the change in the worst-case

expected value of the fulfilled demand is bounded by 5
4
|Γ∗ab| after deleting arc (a, b). We show by

applying the simplified formulation (18), which is obtained by exploiting the special nature of the

bipartite graph, the bound of objective change when deleting arc (a, b) can be improved to |Γ∗ab|.

Proposition 5. The increase in the worst-case expected value of (19) after deleting arc (a, b)

is bounded above by the absolute value of the optimal dual solution |Γ∗ab|.

4.2.1. Implementation We use the heuristic to design efficient sparse process structure for

three classes of problems in this area: when (1) the system is balanced and symmetric, (2) when

the system is balanced but asymmetric, and (3) on the GM problem studied in Jordan and Graves

(1995). The machine we use to perform the computation is Intel(R) Core(TM) i5-4690 CPU 3.50

GHz, RAM 8 GB, Microsoft Windows Windows 10. The solver is Enterprise cvx Mosek solver.

(1) The Symmetric and Balanced System

We first apply the proposed dual-variable-based heuristic to a symmetric and balanced system.

A system is symmetric if all plants have the same capacity and all products have i.i.d. demand,

with mean demand identical to plant capacity. The system is balanced if there are an equal number

of products and plants.

In our numerical example, there are 5 products with mean demand of 30 and coefficient of

variation of 0.4, and 5 plants with the same capacity of 30.
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Figure 8 The worst-case expected performances (Balanced but symmetric case)

Starting with a full-flexibility structure, we apply the dual-variable-based heuristic to incremen-

tally reduce the number of arcs from 25 to 5. Interestingly, the structures we obtain from the

heuristic with 10, 15, and 20 arcs are exactly the 2-chain, 3-chain, and 4-chain structures. When the

number of arcs reaches 5, we have the dedicated structure. The respective worst-case expected max-

imum flows are shown in Figure 8. Despite using a slightly weaker set of conditions on demand, our

results mirror one well-known key insight in process flexibility literature, which is that the 2-chain

performs significantly better than the dedicated structure and nearly as well as the fully flexible

structure. This insight holds for different symmetric and balanced process flexibility systems with

different numbers of products and plants. The largest system we analyzed has 27 products and 27

plants, and our heuristic continues to recover all k-chain structures.

Our success in recovering k-chains provides partial evidence that the dual-variable-based

heuristic approach is able to construct a good sparse process structure for this type of problem,

even though it may not return the optimal process structure9.

(2) The Unbalanced System

We consider next unbalanced systems. Specifically, we consider the cases where all plants have

the same capacity and all products have i.i.d. demand. The total capacity equals to the total mean

demand. However, the total number of plants is not the same as the total number of products.

9 We have also implemented a heuristic to insert arc greedily, using the value of the conic programming problem as
a gauge of the value of an arc, starting from a null graph. Unfortunately this more natural greedy heuristic does not
return the 2-chain after adding 2n arcs. In fact, the structure obtained may not even be connected.



Author: Design of Sparse but Efficient Structures
28 Article submitted to Management Science; manuscript no. (Please, provide the mansucript number!)

Example 1. There are 5 plants each with capacity of 10, and 10 products each with mean demand

of 5. The coefficient of variation of demand distribution is 0.4.

We apply the dual-variable-based heuristic to incrementally reduce the number of arcs from 50

to 14.

(a) The worst-case expected performances (Unbal-

anced but symmetric example 1) (b) 20-arc structure

The worst-case expected maximum flows are plotted in Figure 9a. We observe there is a

dramatic drop in performance when the number of arcs goes below 20, but improves marginally

when the number of arcs goes above 20. The worst-case performance of the structure with 20 arcs

is very close to the performance under full flexibility graph (gap of 0.6%). More interestingly, the

20-arc structure obtained is symmetric, with each plant connected to 4 demand nodes, and each

demand node connected to 2 plants. To visualize this structure, we construct a graph by linking

all the plant nodes that are connected to the same product node with an arc. The graph (which

we call “20 arc” structure) obtained is shown in Figure 9b. It is a 5-node complete graph.

Example 2. There are 10 plants each with capacity of 3 and 15 products each with mean demand

of 2. The coefficient of variation of the demand distribution is 0.4.

By implementing the dual-variable-based heuristic to incrementally reduce the number of arcs

from 150 to 15, we have the worst-case expected maximum flows in Figure 9. We find that the 30-

arc structure obtained is a very efficient and sparse structure. Furthermore, the performance drops

dramatically for structures with less than 30 arcs, but improves only marginally for structures with

more than 30 arcs. This 30-arc structure is also symmetric. Each plant is connected to 3 products

and each product node connected to 2 plants. To visualize this structure, we construct a graph by

linking all the plant nodes which are connected to the same product node with an arc (“30-arc
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Figure 9 The worst-case expected performances (Unbalanced but symmetric example 2)

A” in Figure 10a). Interestingly, this graph is very similar to the Petersen Graph which is a well

known non-hamiltonian graph.

Deng and Sheng (2013) conjectured that the optimal structure for this numerical example is a

2 chain on 10 nodes with 5 additional diagonal arcs (“30-arc DS” in Figure 10b). Interestingly, in

(a) 30-arc A (b) 30-arc DS

numerical simulation, the two structures have almost identical performance on average, with our

structure having a slight edge in terms of worst-case and sample path performance. (cf. Table 4).

(3) General System

Jordan and Graves (1995) used data from an automobile manufacturer and constructed an effi-

cient sparse structure. Demand means and plant capacities are given in Figure 10c. They assumed

that demands are truncated (±2σ) normally distributed. The coefficient of variation for each prod-

uct is 0.4. Products fall into 3 groups: A to F, G to M, and N to P. They assumed that intergroup

pairs have 0 correlation, and pairs of products within the same group are correlated with a coef-

ficient of 0.3. They used simulation to obtain an efficient 6-arc structure, which achieved almost
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Table 4 Numerical example 2 structure comparison

Worst-case Scenario Comparison
Configuration Worst Case Expected Sales (Thousand units) Capacity Utilization
30-arc A 26.94 89.80%
30-arc DS 26.93 89.76%

Expected-case Performance Comparison
Configuration Expected Sales 95% Confidence Interval
30-arc A 28.893 [28.882, 28.903]
30-arc DS 28.893 [28.882, 28.903]

Sample-path Performance Comparison
Configuration 30-arc A Outperform Percentage 30-arc DS Outperform Percentage

50.17% 49.83%

(c) JG (d) A (e) B

Figure 10 Comparison of three 6-arc structures (Jordan and Graves (1995))

the same expected performance as the fully flexible configuration. This 6-arc structure is shown in

Figure 10c.

In our numerical study, we do not assume knowledge of the full demand distribution. Instead,

we only assume that the first and second moments are known and apply the dual-variable-based

heuristic to obtain a 6-arc structure (structure A, Figure 10d). Since our approach studies the worst

case, we first analyze the worst-case performance of Jordan and Graves’s(1995) 6-arc structure

(JG) to make a comparison. The total worst-case sales under their structure is 1755.669 thousand

units. Our structure A attained performance (1750.102) that is worse off by only 0.32%.

To obtain better structures, we first identify the arc in the A structure with the smallest absolute

dual solution (in this case, arc e= (B,6)). We next re-run the dual-variable based heuristic on the

fully flexible graph, with arc e deleted. The new structure obtained has worst-case expected sales

1751.182. It is better than the performance of structure A, but is still worse than structure JG.
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Repeating this procedure one more time, we obtained structure B (in Figure 10e), which performs

better than JG in the worst case (the worst-case expected sales is 1759.488).

It is interesting that by repeating this procedure only twice, we already obtain a structure

better than JG. Our heuristic takes CPU time 211s, or around 3 to 4 minutes to execute. This is

conceivably faster than the trial-and-error methods used to construct JG.

We compare next the performance of the three structures using simulation, assuming that the

demands follow multivariate normal distributions with the given parameters. We generate 50,000

demand samples using Jordan and Graves’s(1995) demand distribution specification, to get the

expected performance for each of the three structures. The expected performances of structure

B and JG are almost identical. This confirms our belief that a structure that performs well in

the worst case will also perform well on average, at least when the demands follow a normal

distribution. From the perspective of sample-path performance, the structure B outperforms JG

slightly, beating it 50.2% to 49.8%. All performance comparison results are shown in Table 5.

Table 5 Structure Comparison

Worst-case Scenario Comparison
Configuration Worst Case Expected Sales (Thousand units) Capacity Utilization
6-arc JG 1755.669 86.48%
6-arc A 1750.102 86.21%
6-arc B 1759.488 86.67%

Expected-case Performance Comparison
Configuration Expected Sales (Thousand units) 95% Confidence Interval
6-arc JG 1930.799 [1927.786, 1933.812]
6-arc A 1906.024 [1902.942, 1909.106]
6-arc B 1930.799 [1927.786, 1933.812]

Sample-path Performance Comparison
Configuration 6-arc JG Outperform Percentage 6-arc A(B) Outperform Percentage
6-arc JG vs. 6-arc A 71.87% 28.13%
6-arc JG vs. 6-arc B 49.80% 50.20%

5. Concluding Remark

We propose a novel approach to design sparse and efficient structures for operational problems. Our

dual-variable-based heuristic constructs an efficient sparse structure by incrementally reducing the

number of arcs in a network, based on sensitivity analysis of a related completely positive program,

which is a distributionally robust reformulation of the worst-case network flow problem. We then

apply this heuristic to two canonical problems in operations. It is interesting to see that the heuristic

recovers the k-chain structure, which is a well-known efficient structure in the process flexibility

literature. Moreover, it can be used to identify a well-performed sparse structure for general process

flexility problems with asymmetric capacity and demand. We also apply the dual-variable-based
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heuristic to a roving team deployment problem and obtain an efficient sparse deployment network,

and show that we can pinpoint the phase-transition threshold for the flexibility structure in this

network.

Our approach exploits a distributionally robust reformulation for several classes of network flow

problems into completely positive programs, and can potentially be extended to more general flex-

ibility design problems (for a review of other classes of flexibility design problems, see Chou et

al. (2008)). Our key insight is to reformulate an inequality constraint in a stochastic optimization

problem using a quadratic equality constraint, so that the natural dual variable in an associated

copositive cone can be viewed as a dual price of the inequality constraint in the stochastic opti-

mization problem. This insight is also potentially useful for sensitivity analysis studies of other

classes of stochastic optimization problems. We leave these and other issues for future research.
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Appendix A: Proofs

To prove Proposition 1, we first explore some properties of the feasible solutions to ZC in the following two

lemmas.

Lemma 1. (Natarajan et al. (2011), Proposition 3.1 & Proposition 3.2): Let (p,X) be a feasible solution

to ZC, and consider any completely positive decomposition of matrix(
1 pT

p X

)
=
∑
k∈κ

(
αk
γk

)(
αk
γk

)T

(20)

where κ is a set of finite indices such that κ= κ+∪κ0, where κ+ = {k ∈ κ | αk > 0}, and κ0 = {k ∈ κ | αk = 0};

αk ∈R+,
∑
k∈κ+

α2
k = 1, γk ∈RN+ ,∀k ∈ κ. Then

1. aT
i

γk

αk
= bi,∀i,∀k ∈ κ+;

2.
γkj

αk
∈ {0,1} ,∀j ∈B,∀k ∈ κ+;

3. γk = 0,∀k ∈ κ0.

Lemma 1 confirms that each decomposition in κ+ satisfies all the constraints in problem (7) except for

the quadratic ones, (hT
i x + fi)(ĥ

T
j x + f̂j) = 0,∀(i, j)∈H. We further demonstrate that this set of constraints

also holds for each decomposition k ∈ κ+ in Lemma 2.

Lemma 2. Let (p,X) be a feasible solution to ZC, and consider decomposition (20), then (hT
i

γk

αk
+

fi)(ĥ
T
j

γk

αk
+ f̂j) = 0,∀k ∈ κ+.
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Proof: Since (p,X) is a feasible solution to ZC , then hT
iXĥj + (fiĥ

T
j + f̂jh

T
i )p + fif̂j = 0,∀(i, j) ∈ H.

Rewrite it based on decomposition (20) as follows,

hT
i

∑
k∈κ+

α2
k

γk

αk

γT
k

αk
ĥj + (fiĥ

T
j + f̂jh

T
i )
∑
k∈κ+

α2
k

γk

αk
+ fif̂j = 0,∀(i, j)∈H (21)

Note that
∑
k∈κ+

α2
k = 1. Rearranging (21), we get

∑
k∈κ+

α2
k(h

T
i

γk

αk
+ fi)(ĥ

T
j

γk

αk
+ f̂j) = 0 (22)

From Lemma 1, we have aT
i
γk
αk

= bi,∀k ∈ κ+. According to Assumption 1, we have hT
i

γk

αk
+fi ≥ 0, ĥT

j
γk

αk
+ f̂j ≥

0,∀k ∈ κ+. Combined with (22), we then obtain (hT
i

γk

αk
+ fi)(ĥ

T
j

γk

αk
+ f̂j) = 0,∀k ∈ κ+. Q.E.D.

Now we are ready to prove Proposition 1.

Proof of Proposition 1 Let (p,X) be an optimal solution to ZC . Consider a completely positive decom-

position of the matrix 1 µd
T pT

µd Σd Y T

p Y X

=
∑
k∈κ+

α2
k

 1
βk

αk
γk

αk

 1
βk

αk
γk

αk

T

+
∑
k∈κ0

 0
βk
γk

 0
βk
γk

T

According to Lemma 1 and Lemma 2 we have

∀k ∈ κ+, aT
i

γk

αk
= bi,∀i; γk

αk
∈ {0,1}N and (hT

i
γk

αk
+ fi)(ĥ

T
j

γk

αk
+ f̂j) = 0,∀(i, j)∈H, and γk = 0,∀k ∈ κ0.

In other words, each decomposition γk

αk
is a feasible solution to (4). To complete the proof, we use a similar

argument as in Natarajan et al. (2011)—we construct a sequence of random vectors whose limit satisfies the

moment condition and a corresponding sequence of feasible solutions. The limit of the set of feasible solutions

under such a distribution sequence achieves the lower bound provided by ZC . The details are omitted here,

and we refer readers to Natarajan et al. (2011). Q.E.D.

Proof of Theorem 1 The proof of Theorem 1 simply follows from Dickinson’s(2010) characterization.

Condition (i) implies that there exists a set of independent nonnegative vectors d(j), j = 1, ...,m, that spans

RN and ∃d(k) ∈
{
d(1), . . . ,d(m)

}
> 0, such that we can find a convex combination of nonnegative rank-one

matrices based on d(j) satisfying (
1 µT

d

µd Σd

)
=
∑
j

λj

(
1

d(j)

)(
1

d(j)

)T

On the other hand, a convex combination of the set of x(i) satisfying Condition (ii)(
1 pT

p X

)
=
∑
i

ηi

(
1

x(i)

)(
1

x(i)

)T

,

is a feasible solution to (9). Then the decomposition

∑
i,j

λjηi

 1
d(j)

x(i)

 1
d(j)

x(i)

T

is a natural candidate for membership in the interior of the completely positive cone defined in (9).
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Proof of Theorem 2 The main idea of the proof is to construct a strict interior solution in a smaller

cone based on the set of θ(i) in Condition (ii’). Then map the interior point into the relative interior of a

completely positive cone in a higher dimension, which is the targeted cone defined in (9).

Our proof exploits the characterization of the relative interior in a cone proposed by Rockafellar (1970).

Theorem 3. (Rockafellar (1997) Theorem 6.4): A point Cx lies in the relative interior of set S if and

only if for every Cy ∈ S, ∃µ> 1 such that (1−µ)Cy +µCx belongs to S.

Denote the feasible region of (7) as Y

Y =

x

∣∣∣∣∣∣
aT
i x = bi,∀i= 1, . . . ,M

(hT
i x + fi)(ĥ

T
j x + f̂j) = 0,∀(i, j)∈H

xi ∈ {0,1} ,∀i∈B


We split x into two parts: One includes decision variables θ ∈ Rn1 , and the other includes slack variables

s ∈ RN−n1 . Then the linear constraint can be rewritten as âT
i θ + si = b̂i,∀i ∈M, where M⊂ {1, . . . ,M}.

Write in matrix form as Âθ+s = b̂. According to Lemma 1 and Lemma 2, the feasible region of (9), denoted

as D, can be written in completely positive decomposition form as follows:

D= conv


 α
β
γ1
γ2


 α
β
γ1
γ2


T
∣∣∣∣∣∣∣∣
 α
β
γ1
γ2

∈R2N+1
+ ,

(
γ1

α
γ2

α

)
∈Y, for α> 0(

γ1
γ2

)
= 0, for α= 0


where γ1 ∈Rn1

+ , γ2 ∈RN−n1
+ , β ∈RN+ . Consider the following set

D2 = conv


 α
β
γ1

 α
β
γ1

T ∣∣∣∣∣∣
 α
β
γ1

≥ 0,

(
γ1

α

b̂− Âγ1

α

)
∈Y, for α> 0

γ1 = 0, for α= 0


It is clear to see that D has a one-to-one mapping to D2: For each feasible decomposition

 α
d
γ1
γ2

 in D,

the subvector

 α
β
γ1

 is also a feasible decomposition in D2; for each feasible decomposition term

 α
β
γ1

 in

D2, construct γ2 = αb̂− Âγ1 such that the corresponding

 α
β
γ1
γ2

 satisfy all the constraints in D.

Condition (i) and Condition (ii’) imply that there exists an interior point in D2, according to Theorem 1.

Denote the interior point in D2 as C0x. In the following, we will show that the corresponding point in D to

C0x lies in the relative interior of D.

The proof is built on the following lemma.

Lemma 3. Suppose that C0x and C0y are two points in D2. Their corresponding point in D is denoted

as Cx and Cy, respectively. Consider an affine combination: C0z := µC0x + (1−µ)C0y ∈D2, and denote the

corresponding point in D to point C0z as Cz, then Cz = µCx + (1−µ)Cy.
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Proof: C0x can be written in a decomposed form as follows:

C0x =
∑
k∈κ+

α2
k

 1
βk

αk
γ1k

αk

 1
βk

αk
γ1k

αk

T

+
∑
k∈κ0

 0
βk
0

 0
βk
0

T

:=

 1 X+
12 X

+
13

X+
21 X

+
22 X

+
23

X+
31 X

+
32 X

+
33

+

 0 0 0
0 X0

22 0
0 0 0


where

∑
k∈κ+

α2
k = 1. The corresponding point in D can be determined as

Cx =
∑
k∈κ+

α2
k


1
βk

αk
γ1k

αk

b̂− Âγ1k

αk




1
βk

αk
γ1k

αk

b̂− Âγ1k

αk


T

+
∑
k∈κ0

 0
βk
0
0


 0
βk
0
0


T

=


1 X+

12 X+
13 (b̂− ÂX+

31)T

X+
21 X+

22 +X0
22 X+

23 (b̂X+
12− ÂX+

32)T

X+
31 X+

32 X+
33 (b̂X+

13− ÂX+
33)T

(b̂− ÂX+
31) (b̂X+

12− ÂX+
32) (b̂X+

13− ÂX+
33) (b̂b̂T− b̂X+

13Â
T− ÂX+

31b̂
T + ÂX+

33Â
T)


Similarly, Cy(Cz) ∈ D corresponding to C0y( resp. C0z) can be written in the same form by replacing X

with Y (resp. Z). Therefore, from C0z = µC0x + (1−µ)C0y, we can infer that Cz = µCx + (1−µ)Cy. By the

generalized Slater constraint qualification, there is no duality gap between (9) and (11). Q.E.D.

Now we are ready to show that the corresponding point in D to the interior point C0x ∈D2, denoted as Cx,

lies in the relative interior in D. Using the characterization proposed by Rockafellar (1970), we consider the

term µCx+(1−µ)Cy, µ > 1 for any Cy ∈D. Look at the corresponding point in D2 to Cy ∈D, denoted as C0y.

Since C0x lies in the interior of D2, according to the necessary condition of the interior point by Rockafellar

(1970), ∃µ> 1 such that µC0x+(1−µ)C0y ∈D2. Denote C0z = µC0x+(1−µ)C0y. Then according to Lemma

3, the corresponding point to C0z ∈D2 in D, denoted as Cz ∈D, satisfies Cz = µCx + (1−µ)Cy. Therefore,

µCx + (1−µ)Cy ∈D, µ > 1. Then according to the characterization theorem in Rockafellar (1970), Cx lies in

the relative interior of D. Q.E.D.

Proof of Proposition 2 Under the network structure and cost structure specified in the condition, the

feasible region of problem (7) is specified in (6). Since y,z∈ {0,1}n, we can add two sets of valid constraints

y + s(1) = 1 and z + s(2) = 1, and by replacing y with 1−y we can get an equivalent reformulation in (23):

Z(d̃) = max
y,z

∑
j∈V0

d̃j(1− yj)

s.t yj + s
(1)
j = 1, j ∈ V0

zj + s
(2)
j = 1, j ∈ V0

1− yj + zj + sj = csj , j ∈ V0
(1− cij)(1− yj + zj)(1− zi) = 0, (i, j)∈A0

y,z ∈ {0,1}n

(23)

It is clear to see that (23) is a specific form of (7) by defining

ai =


en
i

0n
en
i

0n
0n

 an+i =


0n
en
i

0n
en
i

0n

 a2n+i =


−en

i

en
i

0n
0n
en
i

 hi =


0n
−en

i

0n
0n
0n

 ĥi =


en
i

−en
i

0n
0n
0n

 b =

 1n
1n

cs−1n





Author: Design of Sparse but Efficient Structures
38 Article submitted to Management Science; manuscript no. (Please, provide the mansucript number!)

where en
i ∈ Rn is a unit vector with ith element equal to 1, fi = 1, f̂i = −1 for i = 1, . . . , n, and H =A0 ∩

{(i, j) | cij = 0}. To see the structure of the copositive matrix in (11) more clearly, we refine dual variable

β(1), β(2) and β(3) in (11) as follows:

β(1) =

β1

β2

β3

 β(2) =

β4

β5

β6

 β(3) =

(
β7

β8

)
where βi ∈Rn, i= 1, . . . ,8. Then

w =


β1−β3

β2 +β3

β1

β2

β3

−

β7

β8

0n
0n
0n

+


(H ◦Γ)T1n

(H ◦Γ)1n− (H ◦Γ)T1n
0n
0n
0n



W =


diag(β4 +β6 +β7) − 1

2
(H ◦Γ)T− diag(β6) diag(β4) O −diag(β6)

− 1
2
(H ◦Γ)− diag(β6) diag(β5 +β6 +β8) + 1

2
(H ◦Γ + (H ◦Γ)T) O diag(β5) diag(β6)

diag(β4) O diag(β4) O O
O diag(β5) O diag(β5) O

−diag(β6) diag(β6) O O diag(β6)


The objective in (11) becomes

α0 +µTβ0 + Σ •Γ0 + 1T
n(β1 +β2 +β4 +β5) + (cs−1n)Tβ3 + (cs−1n)Tdiag(β6)(cs−1n) + 1T

n(H ◦Γ)1n

where H is an indicator matrix, Hi,j = 1 if (i, j)∈H.

The key element of this proof is to construct a feasible solution to (11) after deleting arc (a, b)—i.e., adding

constraint Γab = 0—whose objective is increased by not more than ( 1
4

+ csb)|Γ∗ab| compared to the optimal

value of (11) before deleting arc (a, b). Denote the optimal copositive matrix in (11) before deleting arc (a, b)

as C∗. Then according to the definition of the copositive matrix, vTC∗v≥ 0,∀v≥ 0. Refine v to be

v =
(

1 vT
µ vT

y vT
z vT

1 vT
2 vT

3

)T
where vµ,vy,vz,vi ∈Rn+, i= 1,2,3. List the terms in vTC∗v related to Γ∗a,b as follows:

(β∗1b−β∗3b−β∗7b + Γ∗a,b)vyb + (β∗2a +β∗3a−β∗8a + Γ∗a,b)vza + (β∗2b +β∗3b−β∗8b−Γ∗a,b)vzb

−Γ∗a,bvzavyb + Γ∗a,bvzavzb +β∗8av
2
za +β∗8bv

2
zb +β∗7av

2
ya +β∗7bv

2
yb

+β∗1bv1b +β∗2av2a +β∗2bv2b +β∗3av3a +β∗3bv3b

Denote the optimal value of Problem (11) under graph G as ZCD(G) and the optimal value of Problem (11)

under graph G \ (a, b) as ZrCD(G). We separately consider the two cases: Γ∗ab ≤ 0 and Γ∗ab > 0.

(1) Γ∗ab ≤ 0

Consider such a set of values of dual variables, α̂0 = α∗0, β̂i =β∗i , i= 0, . . . ,8, Γ̂ = Γ∗,Γ̂0 = Γ∗0 except

β̂3b = β∗3b−Γ∗ab, β̂8a = β∗8a−Γ∗ab

β̂7b = β∗7b−
1

4
Γ∗ab, β̂1b = β∗1b− 1

4
Γ∗ab, Γ̂ab = 0

Denote the copositive matrix formed by α̂0, β̂i, i= 0, . . . ,8, Γ̂,Γ̂0 as Ĉ, then

vTC∗v−vTĈv = Γ∗ab(
1

4
v2yb + v2za− vzavyb + vzavzb + v3b +

1

4
v1b)≤ 0
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The inequality holds due to Γ∗ab ≤ 0, v≥ 0 and 1
4
v2yb + v2za− vzavyb = ( 1

2
vyb− vza)2 ≥ 0. Hence Ĉ is a feasible

solution to (11). And the objective change is

∆ =−Γ∗ab + (β̂1b−β∗1b) + (csb− 1)(β̂3b−β∗3b) =−(
1

4
+ csb)Γ

∗
ab = (

1

4
+ csb)|Γ∗ab|

(2) Γ∗ab > 0

Consider such a set of values of dual variables, α̂0 = α∗0, β̂i =β∗i , i= 0, . . . ,8, Γ̂ = Γ∗,Γ̂0 = Γ∗0 except

β̂1b = β∗1b + Γ∗ab, β̂8a = β∗8a + Γ∗ab

β̂3a = β∗3a + 2Γ∗ab, β̂8b = β∗8b + Γ∗ab, Γ̂ab = 0.

Then

vTC∗v−vTĈv = Γ∗ab(−v2za− v2zb + vzavzb− vzavyb− 2v3a− v1b)≤ 0

The inequality holds due to Γ∗ab > 0, v ≥ 0 and −v2za − v2zb + vzavzb = −(vzb − 1
2
vza)

2 − 3
4
v2za ≤ 0. And the

objective change is

∆ =−Γ∗ab + (β̂1b−β∗1b) + (csb− 1)(β̂3a−β∗3a) = 2(csb− 1)Γ∗ab ≤ 0

since csb ∈ {0,1}. Therefore, in both cases, we manage to construct a feasible solution to (11) such that

the corresponding objective change ∆ ≤ ( 1
4

+ csb)|Γ∗ab|. Notice that (11) is a minimization problem, hence

ZrCD(G)−ZCD(G)≤∆≤ ( 1
4

+ csb)|Γ∗ab|. Q.E.D.

Proof of Proposition 3 Condition (ii) fails in the roving team deployment problem due to the presence of

a slack variable. Hence to prove strong duality, we need to check whether the conditions in Theorem 2 hold.

We write the feasible region in (7) in the roving team deployment problem as follows:

Y =




y
z
s(1)

s(2)

s


∣∣∣∣∣∣∣∣∣∣

yj + s
(1)
j = 1, j ∈ V0

zj + s
(2)
j = 1, j ∈ V0

−yj + zj + sj = 0, j ∈ V0
(1− yj + zj)(1− zi) = 0, (i, j)∈A0

y,z ∈ {0,1}n


Ignoring slack variables, the feasible solution (y,z) satisfies:

zj ≤ yj , j ∈ V0 (24)

(1− yj + zj)(1− zi) = 0, (i, j)∈A0 (25)

y,z ∈ {0,1}2n (26)

For each node i, we define the predecessor of node i as follows: Node j is the predecessor of node i if there

exists a path from j to i. Similarly, node j is defined as the successor of node i if there exists a path from i

to j. Denote e(Si) as the indicator vector for the successor of node i, i.e., e
(Si)
j = 1 if node j is the successor

of node i; otherwise, e
(Si)
j = 0. And we define e

(Si)
i = 1.

Consider such a set of vectors: v0 =

(
1n
1n

)
,vi =

(
1n
1n

)
−
(

en
i

e(Si)

)
,∀i = 1, .., n,vn+i =

(
1n
1n

)
−(

0n
e(Si)

)
,∀i= 1, .., n.
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where the first subvector in Rn refers to the y value and the second subvector refers to the z value. We

first show that they satisfy Constraints (24) to (26). Notice that for each fixed node i, i= 1, ..., n, the rest

of the nodes can be divided into three groups: predecessors (denoted as P(i)), successors (denoted as S(i)),

and other “irrelevant” nodes.

Consider each fixed vector vi, i= 1, ..., n. Where zi = 0, yi can be either 1 or 0. For each pairwise nodes

(a, b) ∈A0, if a ∈ S(i), then za = 0, ya = 1 and zb = 0, yb = 1, satisfying all the constraints from (24) to (26).

If a∈P(i), then za = 1, ya = 1, then yb, zb can be any 0−1 value as long as yb ≥ zb, hence in the constructed

solution, constraints (24) to (26) hold. If a∈ {i}∪P(i)∪S(i), b 6∈ {i}∪P(i)∪S(i), then node a must be the

predecessor to i, i.e., a ∈ P(i), then ya = 1, za = 1, hence yb = 1, zb = 1 also satisfy all the constraints from

(24) to (26). If a 6∈ {i}∪P(i)∪S(i), b∈ {i}∪P(i)∪S(i), then node b must be the successor to i, i.e., b∈ S(i),

then yb = 1, zb = 0, while ya = 1, za = 1 still satisfy all the constraints. In the last case a, b 6∈ {i}∪P(i)∪S(i),

then ya = 1, za = 1, yb = 1, zb = 1 is still feasible. Using a similar argument, we can show that vn+i, i= 1, ..., n

are also feasible to D2.

Then we show that these 2n+ 1 vectors v0, vi and vn+i, i= 1, ..., n span R2n. Denote J as the matrix in

Rn×n with all the entries equal to be 1. Define the Reachability matrix R as follows: Rij = 1 if there exists

a path from i to j and we let Rii = 1. Then we can write vi,vn+i, i= 1, ..., n in matrix form as(
J − I J
J −RT J −RT

)
Before we move on to the proof of independence, we first show

Lemma 4. Denote I as the identity matrix in Rn×n. If B1 ∈Rn×n,B2 ∈Rn×n are both nonsingular, then(
B1 B3

B4 B2

)
has the same rank as

(
I A1

0 −A2A1 + I

)
, where A1,A2 satisfy A1 =B−11 B3, A2 =B−12 B4.

Proof: Since B1 is nonsingular, the columns vi, i = 1, ..., n are linearly independent. And they can be

regarded as a set of basis in Rn×n, hence each column in B3 can be represented as a linear combination of

vi, i= 1, ..., n, e.g, the first column B31 = a
(1)
11 v1 + a

(1)
21 v2 + ...+ a

(1)
n1 vn =B1


a
(1)
11

a
(1)
21

...

a
(1)
n1

. Denote the coefficient

matrix as A1, then B3 =B1A1; similarly, there exists a unique coeffcieint matrix A2 satisfying B4 =B2A2.

Consider a linear equation system

(
B1 B1A1

B2A2 B2

)(
x(1)

x(2)

)
= 0, where x(1),x(2) ∈ Rn. We write the linear

equation system in the form of a linear combination of vectors

x
(1)
1 v1 + ...+x(1)

n v1 + (a
(1)
11 v1 + ...+ a

(1)
n1 vn)x

(2)
1 + ...+ (a

(1)
1n v1 + ...+ a(1)nnvn)x(2)

n = 0

Regroup it to get

(x
(1)
1 + a

(1)
11 x

(2)
1 + ...+ a

(1)
1n x

(2)
n )v1 + ...+ (x(1)

n + a
(1)
n1 x

(2)
1 + ...+ a(1)nnx

(2)
n )vn = 0

Since vi, i= 1, ..., n are independent, all the solutions of the linear system should satisfy x
(1)
i +a

(1)
i1 x

(2)
1 + ...+

a
(1)
in x

(2)
n = 0, i= 1, ..., n Write this in matrix form as

(
I A1

)(x(1)

x(2)

)
= 0. Applying a similar procedure, we

can infer
(
A2 I

)(x(1)

x(2)

)
= 0. Therefore, the linear equation system is equivalent to

(
I A1

A2 I

)(
x(1)

x(2)

)
= 0.

Hence

(
B1 B3

B4 B2

)
has the same rank with

(
I A1

A2 I

)
.
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Note that

(
I A1

0 −A2A1 + I

)
can be obtained by applying a sequence of elementary row operations to

the matrix

(
I A1

A2 I

)
. Since applying elementary row operations will not change the rank of the matrix(

B1 B3

B4 B2

)
has the same row rank as

(
I A1

0 −A2A1 + I

)
Q.E.D.

Note that J − I is nonsingular and we assume that J −RT is also nonsingular. According to the lemma

above, the matrix

(
J − I J
J −RT J −RT

)
has the same rank with

(
I (J − I)−1J
0 I − (J − I)−1J

)
, which is nonsingular.

Hence

(
J − I J
J −RT J −RT

)
is of full row rank. Therefore the constructed vectors vj1,vj2, j = 1, ..., n and v0

span R2n, with v0 strictly positive.

Therefore, the constructed vi, i = 0,1, . . . ,2n satisfy Condition (ii’). On the other hand, Condition (1)

implies the moment matrix lies in the interior of a completely positive cone (satisfying Dickinson (2010)’s

characterization (12) and moment conditions). Therefore, strong duality holds according to Theorem 2.

Q.E.D.

Proof of Proposition 4 Condition (ii) fails in the process flexibility problem due to the presence of slack

variables. Hence, to prove strong duality, we need to check whether the conditions in Theorem 2 hold. We

write the feasible region in (7) in the process felxibility problem as follows:

Y =




y
z
s(1)

s(2)


∣∣∣∣∣∣∣∣

yj + s
(1)
j = 1, j ∈J

zj + s
(2)
j = 1, j ∈ I

(1− yj)(1− zi) = 0, (i, j)∈A0

y ∈ {0,1}m , z{0,1}n


Ignoring slack variables, the feasible solution (y,z) satisfies:

(1− yj)(1− zi) = 0, (i, j)∈A0 (27)

y ∈ {0,1}m , z{0,1}n (28)

Consider such a set of vectors: v1 =

(
1m
1n

)
,vj+1 =

(
1m
1n

)
− ej ,∀j = 1, ..,m− 1,vm+i =

(
1m
1n

)
− em+i,∀i=

1, .., n, where the first subvector in Rm refers to y value and the second subvector n Rn refers to z value. First

we show that this set of vectors satisfies Constraints (27) and (28). We let each element in vl represent a node

in V0: vl,m+i represents supply node i, and vl,j corresponds to demand node j. Then for any (i, j)∈A0, at least

one of vl,m+i and vl,j is 1. In other words, the constructed vectors satisfy Constraint (27). Besides that, all

the vectors vl are nonnegative and binary, which satisfies Constraint (28). Notice that vl,∀l= 1, ..,m+n are

linearly independent, and the first vector v1 is strictly positive. Therefore, the constructed vi, i= 1, . . . ,m+n

satisfy Condition (ii’). Combined with the condition that the moment lies in the interior of completely

positive cone C∗m, strong duality holds according to Theorem 2. Q.E.D.

Proof of Proposition 5 It is clear to see that (19) is a specific form of (7) by defining

ai =

 em
i

0n
em

i

0n

 am+i =

 0m
en

i

0m
en

i

 hi =

 0m
−en

i

0m
0n

 ĥi =

 em
i

0n
0m
0n

 b =

(
1m
1n

)

fi = 1, for i = 1, . . . , n and f̂i = −1 for i = 1, . . . ,m. And H = A0. Where en
i(e

m
i) denote unit vector in

Rn(Rm). To see the structure of copositive matrix in (11) more clearly, we refine dual variable β(1), β(2) and

β(3) in (11) as follows:

β(1) =

(
β1

β2

)
β(2) =

(
β3

β4

)
β(3) =

(
β5

β6

)
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where β1,β3,β5 ∈Rm and β2,β4,β6 ∈Rn. Then

w =

β1

β2

β1

β2

−
 β5

β6

0m
0n

+

 (H ◦Γ)T1n
(H ◦Γ)1m

0m
0n



W =

 diag(β3 +β5) − 1
2
(H ◦Γ)T diag(β3) O

− 1
2
(H ◦Γ) diag(β4 +β6) O diag(β4)

diag(β3) O diag(β3) O
O diag(β4) O diag(β4)


And objective in (11) becomes

α0 +µT
dβ0 + Σd •Γ0 + 1T

m(β1 +β3) + 1T
n(β2 +β4) + 1T

n(H ◦Γ)1m

where H is an indicator matrix, Hi,j = 1 if (i, j)∈H.

The key element in this proof is to construct a feasible solution to (11) after deleting arc (a, b), with the

objective to increase not more than |Γ∗ab| compared to the optimal value of (11) before deleting arc (a, b).

Denote the optimal copositive matrix in (11) before deleting arc (a, b) as C∗. Then according to the definition

of the copositive matrix, vTC∗v≥ 0,∀v≥ 0. Refine v to be

v =
(

1 vT
µ vT

y vT
z vT

1 vT
2

)T
where vµ,vy,vz,vi ∈Rn+, i= 1,2. And list the terms in vTC∗v related to Γ∗a,b as follows:

(β∗1b−β∗5b + Γ∗a,b)vyb + (β∗2a−β∗6a + Γ∗a,b)vza−Γ∗a,bvzavyb +β∗6av
2
za +β∗5bv

2
5b +β∗1bv1b +β∗2av2a

Denote the optimal value of Problem (11) under graph G as ZCD(G) and the optimal value of Problem (11)

under graph G \ (a, b) as ZrCD(G). We separately consider the two cases: Γ∗ab ≤ 0 and Γ∗ab > 0.

(1) Γ∗ab ≤ 0

Consider such a set of values of dual variables, α̂0 = α∗0, β̂i =β∗i , i= 0, . . . ,6, Γ̂ = Γ∗,Γ̂0 = Γ∗0 except

β̂5b = β∗5b−Γ∗ab, β̂6a = β∗6a−Γ∗ab, Γ̂ab = 0

Denote the copositive matrix formed by α̂0, β̂i, i= 0, . . . ,8, Γ̂,Γ̂0 as Ĉ, then

vTC∗v−vTĈv = Γ∗ab(v
2
yb + v2za− vzavyb)≤ 0

The inequality holds due to Γ∗ab ≤ 0, v2yb+v2za−vzavyb = 3
4
v2yb+( 1

2
vyb−vza)2 ≥ 0. Hence Ĉ is a feasible solution

to (11). And the objective change is

∆ =−Γ∗ab = |Γ∗ab|

(2) Γ∗ab > 0

Consider such a set of values of dual variables, α̂0 = α∗0, β̂i =β∗i , i= 0, . . . ,6, Γ̂ = Γ∗,Γ̂0 = Γ∗0 except

β̂1b = β∗1b + Γ∗ab, β̂2a = β∗2a + Γ∗ab, Γ̂ab = 0

then

vTC∗v−vTĈv = Γ∗ab(−vzavyb− v2a− v1b)≤ 0

The inequality holds due to Γ∗ab > 0, v≥ 0 . And the objective change is

∆ =−Γ∗ab + (β̂1b−β∗1b) + (β̂2a−β∗2a) = Γ∗ab

Therefore, in both cases, we manage to construct a feasible solution to (11) such that the corresponding

objective change ∆ = |Γ∗ab|. Notice that (11) is a minimization problem, hence ZrCD(G)−ZCD(G)≤∆ = |Γ∗ab|.
Q.E.D.
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Appendix B: Detailed Formulation

(1) Conic Formulation in Roving Team Deployment Problem

Define

ai =


en

i

0n
en

i

0n
0n

 an+i =


0n
en

i

0n
en

i

0n

 a2n+i =


−en

i

en
i

0n
0n
ei


where en

i ∈Rn is a unit vector. The completely positive program equivalent to the worst-case expected value

of (14) can be written as

ZC1 = sup 1Tµd− I •Y
s.t. aT

i p = 1,∀i∈ {1, ..,3n}
aT
iXai = 1,∀i∈ {1, ..,3n}
Xii = pi,∀i∈ {1, ..,2n}

pj − pn+j + pn+i−Xn+i,j +Xn+i,n+j = 1,∀i, j ∈A0

(µ,Σ) ∈ Ω(µd,Σd) 1 µT pT

µ Σ Y T

p Y X

 <cp 0

(29)

Refine dual variable β(1), β(2) and β(3) in (11) as follows:

β(1) =

β1

β2

β3

 β(2) =

β4

β5

β6

 β(3) =

(
β7

β8

)
where βi ∈ Rn, i = 1, . . . ,8. Denote the dual variable of each constraint in (10) as β0 ∈ Rn, Σ0 ∈ Rn×n,

η(i) ∈Rn, i= 1, . . . ,4 Define

w =


0n
0n
0n
0n
0n

+


β1−β3

β2 +β3

β1

β2

β3

−

β7

β8

0n
0n
0n

+


(H ◦Γ)T1n

(H ◦Γ)1n− (H ◦Γ)T1n
0n
0n
0n



W =


diag(β4 +β6 +β7) − 1

2
(H ◦Γ)T− diag(β6) diag(β4) O −diag(β6)

− 1
2
(H ◦Γ)T− diag(β6) diag(β5 +β6 +β8) + 1

2
(H ◦Γ + (H ◦Γ)T) O diag(β5) diag(β6)

diag(β4) O diag(β4) O O
O diag(β5) O diag(β5) O

−diag(β6) diag(β6) O O diag(β6)


Then its dual formula can be written as

ZCD1 = min α0 +µT
dβ0 + Σd •Γ0 + 1Tβ1 + 1Tβ2 + 1Tβ4 + 1Tβ5 + 1Tη(3) + 1Tη(4) + 1T(H ◦Γ)1 + 1Tµd

s.t.


α0

1
2
(β0 +η(1) +η(3))T 1

2
wT 1

2
(η(2) +η(3))T

1
2
β0 + 1

2
(η(1) +η(3)) Γ0 + diag(η(4)−η(1)) O diag(η(4))
1
2
w O W O

1
2
(η(2) +η(3)) diag(η(4)) O diag(η(4)−η(2))

−
 0 0T 0T O

0 O 1
2
I O

0 1
2
I O O

0 O O O

<co 0

(30)

(2) Conic Formulation in the Process Flexibility Problem

Define

ai =

 em
i

0n
em

i

0n

 am+i =

 0m
en

i

0m
en

i

 ĉ =

 0m
c

0m
0n

 , Î =

 Im
On×m
Om×m
On×m

 ,
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Then the completely positive program equivalent to the worst case expected value of (19) can be written as

ZC2 = max −ĉTp− Î •Y
s.t. 1− pj − pm+i +Xm+i,j = 0, ∀(i, j)∈A0

aT
i p = 1, ∀i∈ {1, ...,m+n}

aT
iXai = 1, ∀i∈ {1, ...,m+n}
Xii = pi, ∀i∈ {1, ...,m+n} 1 µT
d pT

µd Σd Y
T

p Y X

 <cp 0

(31)

Refine dual variable β(1), β(2) and β(3) in (11) as follows:

β(1) =

(
β1

β2

)
β(2) =

(
β3

β4

)
β(3) =

(
β5

β6

)
where β1,β3,β5 ∈Rm and β2,β4,β6 ∈Rn. Define

w =

β1

β2

β1

β2

−
 β5

β6

0m
0n

+

 (H ◦Γ)T1n
(H ◦Γ)1m

0m
0n



W =

 diag(β3 +β5) − 1
2
(H ◦Γ)T diag(β3) O

− 1
2
(H ◦Γ) diag(β4 +β6) O diag(β4)

diag(β3) O diag(β3) O
O diag(β4) O diag(β4)


Then its dual formula can be written as

ZCD2 = min α0 +µTβ0 + Σ •Γ0 + 1T
m(β1 +β2) + 1T

n(β3 +β4) + 1T
n(H ◦Γ)1m

s.t.

 α0
1
2
βT

0
1
2
wT

1
2
β0 Γ0 O

1
2
w O W

+

 0 0T 1
2
ĉT

0 O 1
2
Î

1
2
ĉ 1

2
Î O

<co 0
(32)
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