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Exploiting Metaheuristics to Strategize on Performance-Based

Logistics Contracts for MRO Services

Arnd Schirrmann ∗· Elaine Wong †· Zhichao Zheng ‡

June 3, 2010

Abstract

An inherent challenge of using Performance-Based Logistics (PBL) contracts for aircraft
maintenance, repair and overhaul (MRO) services is pricing. As with traditional bricks and
mortar services, under-priced contracts cannot cover costs, while overpriced contracts lose
out to competition. Furthermore MRO services have an additional element of uncertainty.
Performance uncertainties arise due to the inability to accurately forecast demand of spare
parts, while cost uncertainties are a result of globally distributed operations subjected to
fluctuating economic conditions. Previous work to solve this contracting problem adopted
the principal-agent model, obtaining an optimal solution from the perspective of both risk-
averse parties (i.e., a price-sensitive customer and a profit-driven service provider). This
work presents a model that extends existing models by incorporating integrality constraints.
Using the metaheuristics, Simulated Annealing algorithm, we show how the new non-linear
mixed integer programming model can be efficiently solved by implementing appropriate
algorithms for (a) initial solution derivation, (b) next solution (neighbour) generation, and
(c) worse solution acceptance criterion. The algorithm has been tested with real operational
data and a graphical representation of the results will be provided and analyzed.

Keywords: Metaheuristics; Programming, Integer ; Inventory Management ; Airline Applica-
tions;

1 Introduction

Heighten competition in the commercial aviation industry has spurred airlines to outsource
maintenance, repair and overhaul (MRO) activities in an effort to streamline operations. Ex-
pectedly, such a move would not only bring to the airlines cost savings, but also increased fleet
utilization and reduced logistics delays. On the other hand, outsourcing this vital function
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†European Aeronautic Defence and Space Company Innovation Works. Email: elaine.wong.kl@eads.net
‡Department of Decision Sciences, NUS Business School, National University of Singapore, Singapore 117591.
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has unavoidably expose both parties (airlines and MRO service provider) to greater risks as
a result of (a) complexity of performance-based contracts (contractual terms include a fixed
price component, a penalty term as well as an optional cost sharing), (b) unpredictability of
attainable service levels due to unscheduled spares parts demand (due to the sporadic nature of
failures), and (c) uncertain economic outlook for the duration of the contract with significant
impact on operating costs.

There have been notable attempts to model and determine risk-management strategies for
performance-based contracts (PBC) by applying the contract theory. A contract theory problem
is built on the principal-agent model with the aim to analytically determine the optimal incen-
tives in face of adverse selection (or hidden information) and moral hazard (or hidden action)
(Bolton & Dewatripont (2005)). The challenges in applying contract theory on performance-
based contracting problems can be broadly classified into two groups: modeling and computa-
tion. Modeling challenges include identification of control variables (i.e., what are the decision
variables and who sets them?), nature of interactions (i.e., who initiates the contracts and is
negotiation allowed?), quantification of risks, and prediction of the other party’s responses.
Computational aspect, although given less attention, also poses significant challenges, namely
general nonconvex objective, nonlinear constraints, and integer decision variables. The inclu-
sion of integer variables (overlooked in current works) are necessary for representing inventory
levels. The drawback of mixed-integer programming (MIP) is the optimization problem be-
comes nonconvex and combinatorial in nature, implying (i) local optimal solutions complicate
the search for a global optimal solution , and (ii) the time required to determine an optimal
solution increases exponentially with the number of variables. Addressing either challenge has
led to the compromise of the other. For example employing the branch and bound method,
though able to accurately determine the global optimal solution, is computationally expensive.
When supporting strategic business decision making, time-consuming methods (notwithstand-
ing quality of results) is impractical and ineffective.

Metaheuristics have been found to derive good approximation of the global optimal solution
for MIP problems efficiently (Osman & Kelly (1996)). A distinguishing feature of metaheuris-
tics is its adaptation of processes observed in physical, biological and statistical sciences. And
successful exploitation of the latter determines the success of metaheuristics to solve difficult
optimization problems. One class of metaheuristics is the simulated annealing algorithm, which
unlike other metaheuristics, offers flexibility in deployment (sequential or parallelized), noncon-
vexity tolerance tuning (acceptance threshold for worse solutions), and convergence criterion
(specify when a solution is good enough).The flexibility provided by simulated annealing makes
it suited for solving complex MIP problems of varying scale, such as the contracting problem
for performance-based MRO services with integer constraints enforced. The remaining of this
paper presents our exploitation of simulated annealing algorithm and the assessment of its
performance.
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1.1 Literature Review

Optimizing spare parts allocation from a MRO service contract perspective originated from
Sherbrooke’s system-approach as opposed to then commonly used item-approach ( Sherbrooke
(1968)). Sherbrooke proposed and proved that a system is most cost-effective when spare parts
allocation and system availability is considered on for the entire set of parts. There have been
several extensions to the mathematical model for optimizing spare parts allocation, for example
considering a multi-echelon system (Muckstadt (1973)), using of emergency transshipment
(Axsäter (1990)), etc. For the interest of space, we will not detail the works here but refer
readers to the excellent review paper by Kennedy, et al. (2002).

Apart from the MRO research, the idea of performance-based contracting (PBC) has become
increasingly popular in many fields, like public transportation (Hensher & Stanley (2002)),
healthcare services (Lu, et al. (2003)), etc. The primary objective of PBC is to change the
behavior of contractors to focus more on performance and thus to alleviate the moral hazard
problem. Some assessment on the effectiveness of PBC can be found in Lawrence (2005) and
Petersen, et al. (2006).

The first attempt to integrate spare parts allocation optimization with PBC was presented
by Kim, et al. (2007). Based on the original mathematical model for a single location, the
work applied contract theory (based on the classical principal-agent model), to solve optimal
contractual parameters for a performance-based logistics (PBL) contract. The focus of the
work was to address modeling challenges, specifically, (a) defining service provider’s control
parameters to include not only spares allocation, but also a private cost reduction effort, (b)
quantifying risks using Markovitz theorem, and (c) predicting service provider’s strategy by
determining the optimal turning point based on first and second derivatives. Some attention
was also given to the computational aspect, namely the use of Lagrangian relaxation technique
to handle nonlinear constraints. However, the incorporation of integer constraints have not
been considered. Nowicki, et al. (2008) developed an optimization model for spares provisioning
under a multi-item, multi-echelon scenario, where the objective of the optimization model is to
maximize the profit to the supplier under a PBL contract. The authors demonstrated that one
can not guarantee an optimal collection of spares without considering the associated revenue
stream. However, the issue of contract design is not studied in that paper.

Computationally, spare parts allocation problems have been largely solved using classical
optimization techniques, for example, Lagrangian multipliers method, subgradient optimization,
Markov chain type recursive computing, etc. In recent years, metaheuristics such as genetic
algorithms (GA) and simulated annealing (SA) have also been applied to allocation problems.
For example, Batchoun, et al. (2003) attempted to use GA to determine the optimal allocation
of aircraft spare parts that minimizes the cost of delay caused by unexpected failure. Ilgin
& Tunali (2007) went a step further to apply GA the optimization of spare parts inventory
and maintenance policies. Many other industrial application problems have also been solved
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using metaheuristics, for example, scheduling in manufacturing, transportation routes, multi-
factor design. A complete review and bibliography of metaheuristics can be found in Osman
& Laporte (1996). Besides GA, the use of SA established by Kirkpatrick, et al. (1983), has
also been widely applied in many optimization problems (cf. Haddock & Mittenthal (1992),
Ganesh & Punniyamoorthy (2004)). However, it is demonstrated that only with carefully
tuned parameters (Granville, et al. (1994)) can SA converge to the global optimum.

1.2 Contributions

This objective of this work is to exploit the flexibility of the simulated annealing algorithm
to efficiently solve the contracting problem for performance-based logistics contracts for MRO
services. The mathematical model is an extension of Kim et al Kim, et al. (2007) incorporating
multiple part essentialities and target service levels, and scrapping of spare parts in addition
to repairs. We apply the model to a commercial aviation scenario and investigate different
strategies to improve on the simulated annealing algorithm’s convergence, namely (a) choice of
initial solution, (b) generation of next solutions, and (c) acceptance of worse solutions. Finally,
to demonstrate the use of the algorithm, we apply the algorithm on a set of possible business
scenarios and discuss managerial insights drawn from the results.

2 Model Formulation

This section first gives an overview of the problem, and then proceeds to define the notations
and assumptions adopted for the model parameters, and finally describes the exact formulation
of the problem with additional constraints to be considered.

2.1 Problem Description - A Principal-Agent Framework

The contracting problem builds on a principal-agent model. The interaction between the two
parties resembles a Stackelberg game, with the principal (customer) initiating the contract offer
to the agent (MRO service provider). We assume no negotiations, so if the service provider
agrees to the terms of contract, the service will be performed with a deliberated effort, and
measured according to a performance metric. It is assumed that the service provider is a
rational decision maker, and acts to maximize her own utility (i.e., minimize disutility). Also,
the actions (i.e., spares allocation and cost reduction effort) of the service provider is hidden
from the customer, hence the onus lies in the customer to design a contract that incentivizes
the agent to exert effort level that will maximizes her own utility. The sequence of the events
can be summarized as follows:

• Step 1: The customer offers the service provider take-it-or-leave-it contract.
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• Step 2: The service provider accepts or rejects the contract. If the service provider rejects
the contract, the process stops here. Otherwise,

– Step 3: The service provider decides on the cost reduction actions and the base stock
levels for the spare parts.

– Step 4: The service provider realizes operating costs and performance metrics are
evaluated at the end of the period.

– Step 5: Payment is made according to the contract terms.

Next, we proceed to define the notations and modelling assumptions and mathematically
formulate the above problem.

2.2 Notations and Assumptions

We consider the case where an MRO service is provided for a commercial airlines with a fleet
of N aircrafts operating an annual fleet flight hours, H. The contract covers a total of n spare
parts (P = {p1, ..., pn}). We use i to index the spare parts. We focus on unscheduled removals
which would account for the unpredictable demand of spare parts.

2.2.1 Part Specifications

The following notations will be used for the specifications of spare parts.

τi Mean time between unscheduled removals of pi.
Failure of pi is assumed to occur at a Poisson rate 1/τi, independently from failures
of other parts.

ci Unit price of pi
Qi Number of units of pi installed on an aircraft (i.e., Quantity per aircraft (QPA).)
ξi Spare part class (SPC) code of pi

Parts with different SPC codes will undergo different MRO processes.
(a) ξi = 1: The unserviceable part must be scrapped (Expendable)
(b) ξi = 2: The unserviceable part is sent for repair and returned to inventory upon
completion (Rotable)
(c) ξi = 6: Based on the condition of the unserviceable part, it might be scrapped
with a certain probability (scrap rate, κi), or otherwise repaired before returning to
inventory (Repairable)

ηi Essentiality (ESS) code of pi
(a) ηi = 1: A serviceable part is required for aircraft to fly (NO-GO)
(b) ηi = 2: Based on other aircraft/flight conditions, the aircraft might be allowed
to fly even with an unserviceable part (GO-IF)
(c) ηi = 3: Aircraft is allowed to fly even with an unserviceable part (GO)

Fi Number of failures per year of part i
Following the assumption on τi, Fi is a Poisson random variable with mean µi =
N · H ·Qi/τi
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2.2.2 MRO Process

We assume that the MRO service provider employs a one-for-one base stock policy, where an
unserviceable part is immediately replaced by a serviceable part from the supplier’s inventory.
If a replacement is unavailable, a backorder occurs. The replenishment of the used inventory
depends on the spare part class code. An unserviceable rotable/repairable will be repaired
while an expendable/repairable will be replenished with a new one so as to bring the inventory
position back to the base stock levels. Assuming that the repair and repurchase times are
independent of each other, and the repair facility and new parts supplier has ample capacity,
the number of unscheduled removals arising during the replenishment duration is equivalent to
the occupancy of an M/G/∞ queue. Based on Palm’s theorem (Feeney & Sherbrooke (1966))
we can use Poisson to represent the steady-state distribution of the unscheduled removals. The
notations used to describe the MRO process is provided below.

µi Average number of unscheduled removals per year for pi
µi = N · H · Qi/τi

tpi Purchase lead time of pi
tai Average administration time for purchasing pi
tri Average repair turn around time of pi

tti Average transit time for repairing pi
ti Average replenishment lead time of pi

(a) If ξi = 1, then ti = tpi + tai
(b) If ξi = 2, then ti = tri + tti
(c) If ξi = 6, then ti = κi (t

p
i + tai ) + (1− κi)

(
tri + tti

)
Ci Expected compensation for each backorder of pi
Bi Number of backorders expected for pi

Bi is a random variable observed at a random point in time after steady state is
reached. Bi depends on the probability that the number of unscheduled removals
during the replenishment interval exceeds the inventory level.

si Spare stocking level of pi
Oi Pipeline (on-order) inventory for pi

Oi is a stationary random variable, and it links Bi and si through Bi = (Oi − si)+
Palm’s Theorem states that Oi is Poisson distributed for any lead time distribution
with mean µiti (cf. Feeney & Sherbrooke (1966)).

Similar to Kim, et al. (2007), we use normal approximation for the Poisson distributions of
Bi and Oi in the model derivation, which is well-justified in that paper.

2.2.3 Cost Structure

A simplified MRO service operating cost (ct
i) is assumed, consisting of inventory holding costs

and replenishment costs. Inventory holding costs cover capital costs, overheads (such as insur-
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ance, obsolescence, depreciation and taxes), labour costs, and warehouse space leasing costs.
Replenishment costs covers transportation, tests and repairs, and administrative overheads.
The cost is expressed as

ct
i = ch

i si + (1− ai)cr
iFi + εi (1)

where

ch
i Average annual holding cost of pi

cr
i Average repair cost per event of pi

si Spare part inventory level for pi
ai Supplier’s discretionary (cost reduction) effort for pi

By exerting such effort, the supplier can reduce the repair cost, and the effective
repair cost of pi would be (1 − ai)cr

i . Furthermore, we assume that such effort is
unobservable to the customer, hence not contractable.

ψ(ai) Supplier’s disutility for exerting ai

ψ(ai) is increasing convex, i.e., ψ′(ai) > 0, ψ′′(ai) > 0. In this paper, we assume a
quadratic form ψ(ai) = kia

2
i /2 with ki > 0.

εi Additive cost variance of pi
εi is a random variable with assumed zero mean and finite variance, and it is in-
dependent between different parts. Furthermore, we assume it is independent from
backorders.

2.2.4 Contract Value

The MRO service contract pricing model comprises an annual fixed payment (ω), a variable
component based on a predefined share of the service provider’s cost (α), and a penalty for
each backorder encountered (ν). The total contractual value is expressed as

V = ω + α
n∑

i=1

ct
i − ν

n∑

i=1

Bi (2)

2.2.5 Expected Utility

We assume that the contracting parties are risk-averse, and the utility function takes the form
of an expected mean-variance utility expressed as E[U(X)] = E[X] − rV ar(X)/2, where X

denotes a lottery (i.e., a random payoff), and U(X) is the utility of X, and r ≥ 0 is the risk
aversion factor (a larger r reflects greater risk-averseness). The service provider and customer’s
utility function can thus be expressed as:

E[Us(V −
n∑

i=1
ct
i)− ψ(a)|a, s] = V −

n∑
i=1

ct
i −

n∑
i=1

ψ(ai)

−1
2rsν

2V ar(Bi|si)− 1
2rs(1− α)2V ar(εi),

(3)

7



and
E[Uc(V)|a, s] = −V − 1

2rc(Ci − ν)2V ar(Bi|si)− 1
2rcα

2V ar(εi), (4)

respectively, where rs is the risk-aversion factor for the supplier and rc is the risk-aversion factor
for the customer, and capital lowercase letters are used to represent the vectors.

Both parties are concerned with the expected contractual value (V), and risks associated
with performance (second last term) as well as cost variations (last term). In addition, the
service provider is also affected by the operating costs (ct

i) and cost-reduction effort (ψ(ai)).

2.3 Problem Formulation

With the notations defined above, we obtain the mathematical formulation of the principal’s
problem described at the beginning of this section:

minω,α,ν −E[Uc(V)|a∗, s∗]
s.t. (a∗, s∗) ∈ arg min −E[Us(V −

n∑
i=1

ct
i)− ψ(a)|a ≥ 0, s ≥ 0]

0 ≤ α ≤ 1, ω ≥ 0, ν ≥ 0

(5)

where the first constraint corresponds to the agent’s problem that maximizes her own utility.
This is called an incentive compatibility (IC) constraint, which will be discussed with two
additional constraints in the following sections.

2.3.1 Essentiality-Based Performance (EP)

The set of n parts consists of three subsets, grouped according to the essentiality code (P =
P1 + P2 + P3), where Pj consists of pi with ηi = j. For each set Pj , the performance of the
service is measured according to the fill rate (βj), which is the percentage of part replacements
that can be fulfilled. We define fill rate as

βj =

∑
pi∈Pj

(µi × Fi(si))∑
pi∈Pj

µi
(6)

where Fi(si) is the estimated fill rate of pi when the stocking level is si. The essentiality-based
performance (EP) constraint can thus be expressed as

βj ≥ β̂j , j = 1, 2, 3 (EP)

where β̂j is the target fill rate for P1 parts.

2.3.2 Individual Rationality (IR)

A rational service provider would not only maximize her utility, but also ensure that the contract
offer is advantageous. Without loss of generality, we assume the supplier’s reservation utility
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(corresponding to exogenous opportunity) is normalized to zero. Then the rationality constraint
is defined as

E[Us(V −
n∑

i=1

ct
i)− ψ(a)|a, s] ≥ 0 (IR)

Assuming that it is beneficial for the principal to keep the contract value as low as possible,
it necessitates the above constraint to bind at the optimum, i.e., the customer will choose an
annual fixed payment, ω∗ that will leave the supplier with exactly zero expected utility.

ω∗ = [(1− α)
n∑

i=1

ct
i + ν

n∑

i=1

Bi +
n∑

i=1

ψ(ai) +
1
2
rsν

2V ar(Bi|si) +
1
2
rs(1− α)2V ar(εi)]+, (IRa)

where (x)+ = max{0, x}, and the last two terms represent the risk premiums to be paid by the
customer.

2.3.3 Incentive Compatibility (IC)

The incentive compatibility (IC) constraint defined in equation (5) can be assumed to yield
unique interior optimal solution under some mild conditions: α < 1 and ν[1−Fi(0)] ≥ (1−α)ci

1. Moreover, (a∗, s∗) can be expressed as:

a∗i =
(1− α)cr

i µi

ki
(ICa)

ν

n∑

i=1

[1− Fi(s∗i )] + rsν
2

n∑

i=1

(Fi(s∗i )E[Bi|s∗i ]) = (1− α)
n∑

i=1

ch
i (ICb)

Instead of deriving s∗i , it is more convenient to use equation (ICb) to determine ν, which yields

ν =





(1−α)
n∑

i=1
ch
i

n∑
i=1

[1−Fi(s∗i )]
if rs = 0

−
n∑

i=1
[1−Fi(s

∗
i )]+

√(
n∑

i=1
[1−Fi(s∗i )]

)2

+4rs

n∑
i=1

(Fi(s∗i )E[Bi|s∗i ])(1−α)
n∑

i=1
ch
i

2rs

n∑
i=1

(Fi(s∗i )E[Bi|s∗i ])
if rs > 0

(ICc)

With these additional constraints, the contracting problem (5) can be reduced to an optimiza-
tion problem with only two decision variables, α and s.

1The conditions will be violated only under extreme parameter settings, e.g., when the customer’s risk aversion
is orders of magnitude greater than that of the supplier (cf. Kim, et al. (2007)). Hence, it is generally safe to
assume these conditions are satisfied, which is the case under our model settings.
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2.3.4 Integrality (IG)

Integrality constraints have been introduced for both variables. As discussed earlier, represent-
ing inventory levels as integers is unequivocal. In addition, we propose a discretization of the
cost sharing parameter (α).

si ∈ Z si ≥ 0 (IGa)

α = α̃/100, α̃ ∈ Z 0 ≤ α̃ ≤ 100 (IGb)

Discretizing α accomplishes two things. Firstly, the granularity of α becomes limited, making
the solution more realizable. For example having a share of cost equals to 15% as opposed to
14.391%. Secondly, the original MIP problem is transformed into a pure IP problem, which is
comparatively easier to solve using our algorithm.

Till now, we have defined the complete problem, which is Problem 5 with (EP), (IR),
(IC) and (IG) constraints. Unfortunately, the objective function of Problem (5) is generally not
quasiconvex and hence not necessarily unimodal. The analytical specification of s∗ is intractable
even when α is fixed (cf. Kim, et al. (2007)). Furthermore, the size of the problem could be
extremely large in the context of aircraft spares management. In view of these difficulties, we
thus explored the use of metaheuristics to numerically solve the problem.

3 The Algorithm

Figure 1 summarizes the flow of the simulated annealing algorithm used to solve the contracting
problem. We focus our attention on tuning four points in the flow (marked with * in the flow
chart).

3.1 Simulated Annealing - Cooling Scheme

3.1.1 Initial Solution — [ew] to be modified..

The performance of simulation annealing, like other metaheuristics based on random searches,
depends on the initialization procedure. Providing a good initial solution would improve the
convergence of the algorithm. The challenge however is ensuring that the solution is feasible.
Individual rationality (IR), incentive compatibility (IC) and integrality have been discussed
in the previous section. To meet the essentiality performance (EP) constraint, a brute-force
approach is to set si = Ŝ, where Ŝ is an arbitrary large number. However the convergence for
such methods would be slow. We propose a process to derive a better feasible initial solution.

Proposition 1 Given set of n spare parts (P = {p1, ..., pn}) consisting of three subsets grouped
according to the essentiality code (P = P1+P2+P3), with corresponding performance constraints

10



Figure 1: Flow chart of the simulated annealing algorithm

(β̂1, β̂2, β̂3), there is a feasible solution for the contracting problem that solves the following
constrained integer problem:

minsi si

Fi(si) ≥ β̂j ∀i ∈ Pj , j = 1, 2, 3
si ∈ Z

(CIP)
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CIP is a one-dimensional problem, and hence it can be easily solved by starting from a zero
initial solution and progressively incrementing si until the constrained is met.

3.1.2 New Solution Generation — [ew] to be modified..

Another key step in the simulated annealing algorithm is generating a new solution using the
current one. Naturally, the generation algorithm should ensure that the entire feasible solution
space is reachable. We propose a random alteration process governed by two features: the size
of the randomly selected set (m), and the step-size(φ) which is small but randomly chosen.

Proposition 2 Suppose m variables are selected each time from the set of n + 1 decision
variables (n spare parts in set P = {p1, ..., pn} and a cost-sharing parameter α). Then if
n >> m and 0 < |φ| ≤ φ̂, the generation efficiency is dependent on the probability of alteration
(π) and the repetition coefficient (θ) defined as

π ≈ m

n + 1
, θ = 1/

(
2φ̂ + m + 1

m

)
(7)

The probability of alteration (π) determines whether all combinations of the solution space
would be reached. If π is too large it is improbable because too many variables change each
time. Reversely, if π is too small, the progress is slow. The repetition coefficient (θ) is inversely
proportionate to the binomial coefficient of a multi-set of size 2φ̂. If θ is close to one, it is likely
that the step-size will be repeated, otherwise it is unlikely.

3.1.3 Acceptance Probabilities

The simulated annealing algorithm overcomes local minima by accepting worse solutions (”up-
hill” move) in an attempt to arrive at an even better one. Worse solutions are accepted based
on a exponentially distributed probability function that depends on the difference in objec-
tive values2 as well as the current temperature. Given extreme variations in energy levels, we
propose a scaling function using current energy levels.

Proposition 3 Let u be a uniformly distributed random variable between 0 and 1, and Ek,
Ek+1 represent the current and new energy levels respectively. If Ek < Ek+1 and the acceptance
condition is û+u < U(Ek, Ek+1, T ), increasing minimum acceptance threshold (û) can positively
impact the convergence when acceptance probability is defined as

U(Ek, Ek+1, T ) = e
−Ek+1−Ex

(Ek·T )/n (8)

Equation (8) uses the fraction of change and temperature as a basis for acceptance. In
addition, the change is scaled according to the problem size n.

2In simulated annealing, the objective value of a feasible solution is referred to as the energy level of that
point.
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3.2 Test Setup and Results

We tested our implementation of the simulated annealing algorithm on a commercial aviation
use case involving AirAsia’s fleet of A320s operating more than 300,000 annual flight hours. We
consider an MRO service contract covering 60 landing gear parts (x ESS 1, x ESS 2, and x ESS
3). Unit price ranges from $2,000 to $52,000, and MTBUR/QPA ranges from 625 to 345,000.

Table 5 compares three performance measures, namely final energy level, the total number
of new solutions generated, and the total number of solutions accepted. Since the search of the
simulated annealing is random, we only report the magnitude of the sample averages. Note
that in most of the cases, the algorithm converged at the same final solution. A plausible
reason is the contracting problem is unimodal under the selected settings and the final solution
is indeed a global optimum. Although the final solution is identical except under some extreme
parameter settings, the number of solutions generated and the number accepted are different.
The number of solutions generated corresponds to the number of random trials taken to reach
the final solution, and hence a smaller number reflects faster convergence. The number of
accepted solutions provide an additional aspect. Consider these scenarios:

• Generated: no change; Accepted: decreases - less efficient because the algorithm
takes the same number of trials, but encounters more inferior solutions.

• Generated: decreases; Accepted: no change - more efficient because the algorithm
requires fewer number of trials to find the same number of superior solutions.

• Generated: increases; Accepted: decreases - less efficient because the algorithm
require more trials, yet encounters fewer superior solutions.

3.2.1 Impact of Initial Solution

The results show that initial solution derived using sCIP outperforms the brute force approach,
which requires more than double the number of generated solutions. For further insight into
the impact of the initial solution on the algorithm, we traced the entire history of solutions
(including rejected solutions) explored by the algorithm. Customized solution trace graphs
(Figures 2a and 2b) were created to visualize the results for initial solutions generated from
sCIP and the brute force approach respectively.

The lines represent variable values plotted against the left axis. The first variable is the cost
sharing parameter (α)3 followed by inventory levels (si) sorted by the part’s unit price. The
line colors are indicative of the resulting energy (obtained from the Energy Color Chart). The
color in the middle (dark green) represents the initial energy, the extreme left and right colors
(dark red and dark blue) represent the lowest and the highest energy respectively.

3The cost sharing parameter is scaled by 50 for ease of comparison.
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Final Energy # Generated (x103) # Accepted (x103)
Initial Solution
(m = 1, φ̂ = 1, û = 0)
si = sCIP

i , α = 0 2.1768× 106 35.0 3.0
si = 50 (Brute force), α = 0 2.1768× 106 40.0 5.5
New Solution Generation
(si = sCIP , α = 0, û = 0)
m = 1, φ̂ = 1, π = 1.64%, θ = 0.50 2.1768× 106 35.0 3.0
m = 1, φ̂ = 2, π = 3.28%, θ = 0.33 2.1768× 106 35.0 2.5
m = 2, φ̂ = 1, π = 1.64%, θ = 0.25 2.1768× 106 40.0 2.5
m = 2, φ̂ = 2, π = 3.28%, θ = 0.10 2.1768× 106 40.0 2.5
m = 3, φ̂ = 1 2.1769× 106 55.0 2.0
m = 4, φ̂ = 1 2.1782× 106 55.0 2.0
m = 3, φ̂ = 2 2.1768× 106 55.0 2.0
m = 4, φ̂ = 2 2.1778× 106 55.0 1.5
m = 1, φ̂ = 3 2.1771× 106 55.0 1.5
Acceptance Probabilities
(si = sCIP , α = 0, m = 1, φ̂ = 1)
û = 0.5 2.1768× 106 35.0 2.0
û = 1 2.1768× 106 20.0 0.1

Table 5: Performance of SA under different settings

Comparing Figure 2a with Figure 2b, it is clear that the brute force approach searches a
larger space (colored area) to arrive at the identical final solution (dark red line). We highlight
two other observations: (i) similar unexplored spaces (white area) below the final solution, and
(ii) smaller search area above the final solution (Figure 2a) towards right side of the graph.

The unexplored spaces below the final solution is observed for parts with a higher annual
number of unexpected removals (i.e., parts requiring more inventory). Reducing inventory for
such parts beyond a certain level lowers the fill rate significantly. And in order to meet the
essentiality performance constraint, the shortfall must be compensated by increasing inventory
on another part. However such a move would compromise on the objective as observed by the
green lines (indicating an inferior solution). For this reason, we observe that the algorithm
identifies a lower bound for inventory levels (a non-optimal state) and subsequently returns to
a higher (but superior) inventory level.

The inventory level variables are sorted according to unit price (more expensive parts on
the right). A large space remains unexplored above the final solution for expensive parts. This
is because increasing inventory on such parts, which although would increase fill rate, would
increase MRO service providers costs significantly leading to a higher contract value, and a
negative impact on the customers utility (i.e., an inferior solution). For this reason, the upper
bound for inventory levels for expensive parts is close to the final solution.

The lower and upper bounds identified by the simulated annealing algorithm controls the
exploration around the final solution. This confined but strategic search provide a strong basis
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(a)

(b)

Figure 2: Solution trace for initial solution generated from (a) sCIP and (b) brute force approach
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for deducing that the final solution is a global optimum.

3.2.2 Impact of Solution Generation Approach

[ew] need more results to comment Figure 3 on the page 16 depict one example of the
converge of the algorithm starting from the initial point, si = sCIP

i and α = 0.

Figure 3: Convergence of SA for m=1, φ̂ = 1

It is observed that the algorithm arrives at the minimum energy much earlier than it is
terminated. This is because the conservative parameter settings we adopt to guarantee that
the solution found by the algorithm is indeed local optimum. Another observation is that we
do see the random walk pattern of the energy changes dual the search, which confirms with the
unique feature of simulated annealing that it will not be trapped in certain local optima.

3.2.3 Impact of Acceptance Probabilities

Results in Table 5 report fewer generated solutions (i.e., better efficiency) with increasing ac-
ceptance threshold û. A small û increases the probability of an inferior solution being accepted.
Accepting inferior solutions is only beneficial if the consequence of not accepting results in the
algorithm being trapped in a local minimum. However if the threat of local minimum traps
is low, rejecting inferior solutions allows the algorithm to move quickly to the global optimum
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by avoiding inferior spaces. The results reveal that this is indeed the case for the contracting
problem.

[ew] need to compare with brute force

3.2.4 Computational Time

The simulated annealing algorithm was implemented in MATLAB 7.8 environment and tested
on a Dell desktop with Intelr CoreTM2 Duo CPU E8400 @ 3.00GHz 2.99GHz and 3.21GB of
RAM. On average, it takes less than 7 minutes to solve the problem of sixty parts. Compared
with the time cost of solving only ten parts using Lagrangian multipliers and subgradient
methods using branch and bound type approach for integrality constraints, which is more than
two hours, the proposed simulated annealing is extremely fast while the quality of the solution
is also guaranteed. Taking into the account that much of the time is spent during the local
search after reaching the optimum, we conclude that the efficiency and accuracy of the proposed
simulated annealing algorithm are very promising for our problem.

4 Business Case Study and Analysis

As observed in the previous section, the annual number of unexpected removals (which is
dependent on τ/Q) impact the shape of the optimal solution. In the previous test case, we
studied a contract covering parts with τ/Q ranging from 625 to 345,000. The question is
how would the final solution change if the range is smaller or bigger? To assess the results
obtained from the algorithm in face of different contracts comprising parts with different range
of unexpected removals, we modified the original test scenario by scaling the mean time between
unscheduled removals (τ) for all4 parts (details in Table 7).

Change in MTBUR Lowest τ/Q Highest τ/Q Range in τ/Q
(20%) 750 414,000 413,250
(10%) 718 396,750 396,032
(15%) 687 379,500 378,813
(5%) 656 362,250 361,594
original 625 345,000 344,375
(-5%) 594 327,750 327,156
(-10%) 562 310,500 309,938
(-15%) 531 293,250 292,719
(-20%) 500 276,000 275,500

Table 7: Performance of SA in face of different business scenarios

Figure 4 shows the percentage change in inventory investment levels for the initial solution
(derived using sCIP ) and the final solution. We observe that in the most extreme case (-20%),

4Improving (reducing) unscheduled removals can be achieved in practice through the adoption of health
monitoring or maintenance assistive technologies. Improvements typically affect selected parts rather than all
parts. However for this test, we have assumed improvements on all parts to simplify the case study.
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the change in inventory investment for the initial solution is substantial (almost 50%), yet
the change in inventory investment for the final solution is significantly less (less than 10%).
Operationally, this is a significant result for the service provider because it implies lesser impact
on operating costs in spite of changes in unexpected removals. This is dampened changes in
costs can be seen in (Figure 5). By exploiting on the risk-averseness of the customer, the
service provider can potentially get higher profits even though unexpected removals increases
(i.e., MTBUR decreases).

Figure 4: Effects of changing MTBUR on inventory requirements

Figure 5: Effects of changing MTBUR on profitability

Figure 6 on shows the percentage change in pricing (in terms of fixed payment, cost sharing,
and penalty) as a result of changes in MTBUR. Decreasing MTBUR generally increases the
contract value by increasing the fix payment and cost sharing amount. Since the nominal value
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Figure 6: Effects of changing MTBUR on contractual parameters

of back order penalty amount is relatively very small compared to the other two components,
the increase in penalty amount is not going to offset the increase in contract value. On the
other hand, increasing MTBUR indicates the parts become less frequent to fail, so both of the
fix payment and penalty amount decrease and the customer would like to share more cost since
the risk is low.

5 Conclusion

Integrality constraints are important for realistic spares parts allocation modelling. However
solving the resulting mixed integer programming problem is computationally challenging hence
previous works have relaxed the integrality constraints. We present an alternative approach to
address the computational challenge by introducing an additional discretized variable to replace
the continuous cost-sharing parameter, and then implementing the metaheuristics, simulated
annealing algorithm to solve the problem. Given the sensitivity of the algorithm’s performance
on the implementation of the metaheuristics, we proposed algorithms for (a) deriving initial
solutions, (b) generating new solutions, and (c) criterion for accepting worse solutions. The
implementation was tested on Air Asia’s short-range commercial aviation scenario and we found
that ... ([ew] to add once latest results are out)

The simulated annealing algorithm presented in this work holds potential for further exten-
sions. One aspect is the extension of the model to consider inventory allocations in multiple
locations, the use of time-based service levels as a contractual term, and incorporating dif-
ferent part replacement policies (Eg. replace with different part number, repair at different
facility). Another aspect is extending the size of the problem to consider more parts, locations,
and/or customers. A third aspect is extending the simulated annealing algorithm for better
performance by parallelizing, or employing hybrid approaches (Eg. tabu search).
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