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ABSTRACT 

Global warming has induced an increasing number of deadly tropical cyclones with a continuing 

trend. Developing high-functional climate risk management tools in forecasting, catastrophe 

modeling, pricing and hedging is thus crucial.  By using transactional price changes of traded 

hurricane derivatives as the predictor in a doubly-binomial pricing framework, we develop a 

dynamic market-consensus hurricane forecasting model.  Our model can forecast when and 

how a hurricane will make landfall, and how these forecasts will update themselves upon trading 

arrival.   

 
 
 
 
 
 
 
 
 

JEL classification: G13 
Keywords: Tropical cyclones; Climate risk management; Forecasting; Doubly-binomial Tree; 
Stochastic intensity arrival; Random time steps; Option pricing  
 
a Department of Finance, California State University, Fullerton 
b Department of Finance & Law, California State University, Los Angeles  
c Singapore Management University, Singapore  
 
Please forward correspondence to: 

Professor Jack S.K. Chang 
2858 Bentley Way 

Diamond Bar, CA 91765 
jskchang@roadrunner.com 



Electronic copy available at: http://ssrn.com/abstract=1570625

2 

 

Introduction 

How tropical cyclone activity will respond to human-induced global warming is a topic of 

much popular interest and scientific debate.  This is especially true since Hurricane Katrina, a 

powerful category 5 storm, devastated the gulf coast of the United States in 2005 as it passed 

through.  Two frequently asked questions on global warming and Atlantic hurricanes are: i) 

Have humans already caused a discernible increase in Atlantic hurricane activity?  ii) What 

changes in Atlantic hurricane activity are expected for the late 21st century, given the 

pronounced global warming scenarios from current IPCC (Intergovernmental Panel on Climate 

Change) models? 

A consensus1 developed by the global community of tropical cyclone researchers and 

forecasters in November 2006, indicating that it is likely that greenhouse warming will cause 

hurricanes in the coming decades to be more destructive by being more intense and having 

higher rainfall rates than present-day hurricanes. Among the evidence provided is a 

comprehensive idealized hurricane intensity modeling study by Knutson and Tuleya (2004).2 

According to this study, an 80 year build-up of atmospheric CO2 at 1% per year compounding 

would induce roughly a one-half category increase in potential hurricane intensity on the Saffir-

Simpson scale and an 18% increase in precipitation near the hurricane core. A 1% per year CO2 

increase is a realistic scenario of future climate forcing. An implication is that if the frequency of 

tropical cyclones remains the same over the coming century, a greenhouse-gas induced 

warming may lead to an increasing risk in the occurrence of highly destructive category-5 

storms. This finding has been shared by many other recent studies, e.g.  Emanuel (2005).  As 

noted by IPCC, however, there is considerable uncertainty in projections of future radiative 

forcing of earth's climate.  

 

 

 

____________________________ 

1 
As represented at the 6th International Workshop on Tropical Cyclones of the WMO (World 

Meteorological Organization) with the summary statement "The surfaces of most tropical oceans have 
warmed by 0.25-0.5 degree Celsius during the past several decades. The IPCC considers that the likely 
primary cause of the rise in global mean surface temperature in the past 50 years is the increase in 
greenhouse gas concentrations.......Some recent scientific articles have reported a large increase in 
tropical cyclone energy, numbers, and wind-speeds in some regions during the last few decades in 
association with warmer sea surface temperatures. Other studies report that changes in observational 
techniques and instrumentation are responsible for these increases."  
2
 Knutson and Tuleya (2004) use future climate projections from nine different global climate models and 

four different versions of the GFDL (Geophysical Fluid Dynamics Lab) hurricane model. The GFDL 
hurricane model used is an enhanced resolution version of the model used to predict hurricanes 
operationally at NOAA's National Centers for Environmental Prediction. 

http://www.wmo.int/pages/prog/arep/tmrp/documents/iwtc_summary.pdf
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In light of the significant economic impact of global warming in general and to the 

insurance and energy industries in particular, the global investment community has participated 

in the debate by developing new catastrophe risk management tools. New 10-day hurricane 

forecasting tools have been developed by global weather risk specialists like WSI and Guy 

Carpenter, and new catastrophe simulation models have been developed by highly skillful, 

multi-disciplinary-based specialist vendors like AIR, RMS and EqeCAT.  In an effort to mitigate 

the costs of extreme weather events, i.e. creating building codes, setting insurance premiums 

and planning for evacuations and relief efforts, federal agencies have also increased funding to 

finance weather research programs, aiming at improving the accuracy of hurricane tracking and 

intensity forecasts by developing high-resolution dynamic numerical simulation and prediction, 

statistical, and hybrid models to enhance risk assessment.  

Prevailing individual meteorological and statistical hurricane forecasting models however 

have not been successful in forecasting hurricane intensities and often diverse and inconsistent 

results are reported, e.g. Emanuel et al. (2004), although they have been increasing skillful in 

tracking hurricanes.  This discrepancy stems from that hurricanes are complex dynamical 

systems whose intensities at any given time are affected by a variety of physical processes 

many of which are poorly understood.  In this research, we develop a new hurricane futures and 

futures options pricing model to implement a novel market-consensus forecast of hurricane 

intensities by calibration.  Since from operational forecasting we know that model consensus is 

usually superior to any individual model, our market consensus forecast could provide a 

functional alternative to prevailing individual models.   

Since Hurricane Katrina, several new hurricane futures and options contracts have also 

been developed for trading on exchanges for related parties to mitigate their extreme weather 

exposures. These include hurricane futures and options contracts listed on CME (Chicago 

Mercantile Exchange) since 2007, hurricane futures contracts listed on IEM (Iowa Electronic 

Markets) since 2006, and the newly launched (from June 29, 2009) Eurex hurricane futures 

contracts. Since traders of these contracts employ all available forecasting models, public or 

proprietary, to forecast hurricanes in order to make their pricing and trading decisions, by using 

the transactional price levels of these contracts as the predictor and with calibration through the 

developments of pricing models, one can gain a market consensus on future hurricane activities 

out of all of the individual models employed, and thus produce a consistent aggregated forecast.  

In the finance literature there has been only one research that deals with this topic. Kelly 

et al. (2009) use the IEM futures data to predict whether a hurricane will or will not make landfall 

in a given area.  They find that futures price changes are more accurate than the NHC for 
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storms more than five days from landfall (69% to 54%), but less accurate for storms two days or 

less from landfall (90% versus 100%). Our investigation will be based on the more 

comprehensive CHI contracts3 to predict 1) how destructive a hurricane will be when it makes 

landfall in a given area by using CHI futures data, and 2) when this landfall will occur and how 

the predicted destructive power will change over time from inception to landfall, by using the 

CME futures option data.3 

The rest of our paper is organized as follows: In Section 2, we briefly introduce current 

hurricane forecasting models and the CME CHI futures and options contracts. In Section 3, we 

analyze current hurricane futures and futures options pricing methodologies to determine which 

method is most appropriate to employ for our purpose and then develop our pricing model. In 

Section 4, we discuss how to extract out the market consensus view about hurricane activities 

from transactional CHI futures and futures options prices by using calibration, and then illustrate 

the implementation of a dynamic forecast.  In section 6, we conclude the paper and discuss 

future research directions.  

2. Hurricane Forecasting and the CME CHI Futures and Futures Options Contracts 

2.1. Hurricane Forecasting 

Prevailing hurricane forecast models vary widely in structure and complexity.  Dynamical 

numerical and simulation models, using high-speed computers to solve the physical equations 

of motion governing the atmosphere, are the most complex. Statistical models, in contrast, use 

historical relationships between storm behavior and storm-specific details such as location and 

date to forecast and are simple to implement. Statistical-dynamical models blend both 

dynamical and statistical techniques by making a forecast based on established historical 

relationships between storm behavior and atmospheric variables provided by dynamical models.  

Trajectory models move a tropical cyclone along based on the prevailing flow obtained from a 

separate dynamical model.  Finally, consensus models are created by combining the forecasts 

from a collection of other models.  A collection of existing models can be found from the website 

of NHC (National Hurricane Center). 

While prevailing models have been increasingly successful in the forecasts of hurricane 

tracks, hurricane intensity forecasts are very difficult tasks. Hurricanes are complex dynamical 

_______________ 
3 

We focus on the CME contracts since their underlying CME Hurricane Index (CHI) measures the 
destructive potential of a hurricane calculated using its intensity and radius, but the Eurex contracts are 
settled based on actual losses as compiled by ISO’s Property Claim Services (PCS) unit, while the IEM 
contracts are based on tracking - where a given hurricane makes its first landfall.  
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systems whose intensities at any given time are affected by a variety of physical processes, 

some of which are internal and others involve interactions between the storms and their 

environments. Since many of these processes are poorly understood, the forecasts of the 

intensity change of individual storms can not be precise. Existing computing powers are also 

limited in horizontal resolutions to compute hurricane eyes and eye-walls properly. It is generally 

agreed however that there exist thermodynamic limits to intensity that apply in the absence of 

significant interaction between storms and their environment (Emanuel, 1987, 1988). While 

there remains some uncertainty about how to calculate such limits, they do appear to provide 

reasonable upper bounds on the intensities of observed storms.  One particular advantage of 

limit calculations is they depend only on sea surface temperature and the vertical temperature 

structure of the atmosphere, so they are easily calculable from standard data sets.4   

2.2. The CME CHI Futures and Futures Options Contracts 

Following the devastating 2005 hurricane season, the CME Group developed hurricane 

futures and options contracts for insurers and other related parties to lay off their hurricane 

exposures. The underlying index for various hurricane futures and options on futures contracts 

is called the CME Hurricane Index (CHI).  It is maintained and calculated by EqeCAT, a leading 

authority on extreme-risk modeling. CHI determines a numerical measure of the potential for 

damage from a hurricane, using publicly available data from NHC of the National Weather 

Service. The CHI incorporates maximum wind velocity and size (radius) of hurricane force winds 

and is a continuous measurement. The commonly used Saffir-Simpson Hurricane Scale (SSHS) 

classifies hurricanes in categories from 1 to 5 by considering the velocity but not the radius of a  

hurricane, and thus can not be used to measure the actual physical impact, making it less than 

optimal for use by the insurance community and the public at large. For example, Hurricane 

Katrina in 2005 was described as a weak category-4 storm at the time of its landfall but exerted 

significantly more physical damage than Hurricane Wilma, which at one point in its life was 

mentioned as the strongest storm on record.  

There are two types of event-driven CHI futures contracts – the Eastern USA contract,  

and the CHI-Cat-In-A-Box contract that covers the major oil & gas production in the Gulf of 

 
______________________ 

4 
Emanuel et al. (2004) have developed an atmospheric hurricane intensity forecast model that is a simple 

axisymmetric-balance model coupled to an equally simple one-dimensional ocean model, phrased in 
angular momentum coordinates.  Emanuel et al. (2006) graft the above model to a statistical track 
generation model to simulate hurricane intensity movement along generated hurricane tracks.  
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Mexico.  They trade as follows: at the beginning of each season, storm names are used from a 

list, starting with A and ending with Z, maintained by the World Meteorological Organization. In 

the event that more than 21 named events occur in a season, additional storms will take names 

from the Greek alphabet: Alpha, Beta, Gamma, Delta, and so on. Named hurricanes must make 

landfall in the Eastern U.S. (Brownsville, TX to Eastport, ME) for the Eastern USA contract and 

Galveston-Mobile area (95°30’0”W on the West, 87°30’0”W on the East, 27°30’0”N on the South, 

and the corresponding segment of the U.S. coastline on the North) for the CHI-Cat-In-A-Box 

contract, respectively. Trading shall terminate at 9:00 A.M. on the first Exchange business day 

that is at least two calendar days following the dissipation or exit from the designated area of a 

named storm.   

All futures contracts remaining open at the termination of trading shall be settled using 

the reported respective CHI final value and CHI-Cat-In-A-Box final value (for the latter the 

maximum calculated CHI value while the hurricane is within the Box) by EqeCAT. As an initial 

attempt to focus on the fundamental issues, in this research we concentrate on the Eastern 

USA contract. CME has also offered seasonal, seasonal maximum and second event seasonal 

types of contracts.  Since these contracts are not straight event-driven but based on the total, 

maximum or second event in an entire season, they are irrelevant to our study. Two types of 

American-style call options are traded on these futures contracts – plain vanilla and binary.  

Payoff for the former is the in-the-money amount but $10,000 for the latter.  

3. Pricing Hurricane Futures and Futures Options by No-Arbitrage  

 We are interested in using the CHI futures data to predict the expected destructive 

power of a hurricane when it makes landfall, and the futures options data to predict when this 

date will be, and how this power will evolve over time since the hurricane’s inception. The latter 

investigation is three-fold: how likely news regarding the velocity, size and location of the 

hurricane that may affect this prediction will arrive in the next period, and when news does 

arrive, will the hurricane’s expected power accentuate or attenuate, and to what extent?  In 

other words, we would need data on transaction arrival as a proxy to news arrival and data on 

price changes per transaction arrival to update the prediction.  Existent approaches for pricing 

catastrophe (CAT hereafter) derivatives include Aase (2001), Cummins and Geman (1995), and 

Chang, Chang, and Yu (1996 and CCY hereafter) for pricing CBOT CAT futures and futures call 

spreads;  Bakshi and Madan (2002), Aase (1999) and Geman and Yor (1997) for pricing CBOT 

PCS-type cash options; Lee and Yu (2002) and Loubergé, Kellezi, and Gilli (1999]) for pricing 
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CAT bonds; and Jaimungal and Wang (2006) for pricing CatEPut.  However among these 

studies, only CCY is based on both transaction arrival and price changes as explain below.  

 CCY have proposed a unique "randomized operational time" approach to price CAT 

futures options. This "randomized operational time" concept, originated in probability theory 

(Feller, 1971), is widely applied in systems and engineering fields.  It dictates that a simple 

change of time scale will frequently reduce a general nonstationary process in the usual 

calendar-time scale to its stationary operational counterpart in a new time scale dictated by the 

nature of things. In the finance literature, Clark (1973) first applied this concept to subordinate 

stock returns to news arrivals with transaction arrivals being a market proxy, while in the 

insurance literature CCY first applied this concept to subordinate CAT futures return to CAT 

futures transaction arrivals. This time-change transforms a calendar-time CAT option with 

stochastic volatility to an isomorphic transaction-time CAT option with random maturity (to 

reflect the randomness of transaction arrivals), which leads to a transaction-time option pricing 

formula as a risk-neutral Poisson sum of Black’s (1976) prices over the option’s maturity 

domain. It is parsimonious in requiring only two unobservable variables – the transaction arrival 

intensity and the per-transaction futures volatility.  Therefore as Geman and Yor (1997) have 

suggested, unlike other pricing models that are developed in calendar time and do not 

incorporate information conveyed in transaction arrivals, CCY is unique in having the merit of 

illuminating the information conveyed by transactions.  The CCY methodology is thus the only 

one that would be relevant to our purpose of calibrating hurricane activities.   

 To apply the setup however we encounter four problems: 1) unlike usual transaction 

arrivals in financial markets that can be approximately continuous, hurricane news arrivals are 

sporadic, discrete and random, 2) CCY only price European-type of options but the CHI futures 

options are of the American-type with the early exercise feature, 3) the intensity of catastrophe 

arrival in CCY is assumed to be constant, however hurricane arrivals is event-specific and often 

exhibits time-varying arrival intensity with mean-reversion (see Levi and Partrat (1991) for a 

discussion on arrival processes of different types of natural disasters in the U.S.A.), and 4) in 

CCY the futures’ expiration date is preset but for the CHI futures it is random, i.e. when the 

hurricane will make landfall is uncertain.  Chang et al. (2008) have discretized CCY by 

employing a doubly-binomial framework consistent with the compound binomial models of 

Gerber (1984, 1988) and others in the actuarial risk theory to simultaneously capture a 

hurricane’s arrival and severity (or intensity in the hurricane forecasting literature) uncertainties 

in discrete time to circumvent the first two problems.  In this paper, we would further generalize 
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this model by incorporating a discretized mean-reverting stochastic arrival intensity process to 

circumvent the last two problems.        

 

3.1. The Hurricane Futures Process  

 CME contracts are settled based on the CHI value, which measures the destructive 

potential of a hurricane.  Since this index is physical in nature, its arrival uncertainty should 

exhibit no correlation with changes in financial prices, and thus should be non-systematic (see 

Hoyt and McCullough, 1999, for empirical evidence and why this benefit of diversification is one 

major motivation for portfolio managers to invest in catastrophe products). This implies 1) one 

can price futures and futures options based on the expected landfall date, and 2) today’s futures 

price embeds no risk premiums and thus should be a forwarding-looking market prediction of 

the expected CHI value on the expected landfall date.   

 To model how the futures price changes over time since a hurricane’s inception, next we 

set up a doubly-binomial model as in Gerber (1984, 1988) and others in the actuarial risk theory 

to model futures price changes. The first binomial variable is to determine if a transaction will 

arrive and the second to determine if the corresponding futures price jumps up or down.   Thus 

constructed, the total price change over n calendar- time steps is a random sum of k price 

changes, where k   n,0  is the number of transaction arrivals. Transaction arrival is defined as 

any news that will impact on the stochastic change of the CHI value. This construction 

essentially defines a subordinated binomial process2 where the sequence of transaction arrivals 

serves as the directing process and the subsequent futures price changes from transaction to 

transaction form the parent process.  In other words, we subordinate binomial futures price 

changes to random transaction arrivals such that the futures price will only change when a 

transaction arrives, irrespective of the passage of calendar time.  The parent process, or the 

price change from transaction to transaction, is a stationary recombining binomial tree that will 

be used later to develop the transaction-time option pricing model.   

 Subordination collapses the two binomial processes onto to the following trinomial 

futures price changes:   

                        uF      with probability gh one transaction arrives and the futures price  
       /             jumps up at a gross rate u, 
                                   
                F –     F      with probability 1-g  no transaction arrives and the futures price  
                                    stays the same,                                                   
        \ 
             dF       with probability g(1-h) one transaction arrives and the futures price  
                                    jumps down at a gross rate d, 



9 

 

                                                    

where F denotes the futures price at the beginning of the period, u and d denote the respective 

constant up and down gross jump sizes, g and 1-g denote the respective transaction arrival and 

no arrival probabilities, and h and 1-h denote the respective jump up and down probabilities 

upon an arrival.  We let R denote one plus the riskless rate over one period with the usual 

regularity condition that u>R>d to prevent riskless arbitrage.   

 Next we model the changes of hurricane arrival intensity j as a mean-reverting 

Ornstein-Uhlenbeck process:  

 

(1) ,dZj)dt(mdj jjjj    

 
where κj denotes the speed of adjustment, mj the long-run mean rate, σj

2 the instantaneous 

variance, and Z j  the standard Wiener process.  This process exhibits mean-reversion and 

clustering.  Surrounding the time of news about a hurricane arrival, the intensity takes on higher 

values to reflect the lumpiness of news arrival, but it reverts back to the long-run mean level mj  

after the arrival, and conversely, after a lull, the intensity can revert to a higher state.  While j 

itself governs the intensity of arrival, the speed of adjustment parameter κj governs the level of 

persistence of the intensity process.  Higher values for κj imply that the intensity process leaves 

the high state sooner, and vice-versa.  Judiciously combining these parameter values leads to 

different specifications of hurricane arrivals.   

The solution of Eq. (1) for the time-varying intensity is known to be 
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where j(t) denotes the current level of intensity. The expected intensity over a time period T-t is 

determined via integration as  
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time-varying probability that news (transaction) will arrive in the next period is 
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subject to the parameters mj and j(t) being appropriately chosen so that gt ≤ 1. This physical 

probability should also be equal to the transaction-arrival martingale probability over the next 

time period, mt, since the CHI embeds no systematic risks as we have discussed before. This 

risk-neutral claim-arrival probability is driven by the intensity arrival process as a function of the 

long-run mean rate, the deviation of the current level of intensity from the long-run mean rate, 

and how this level persists. We examine this persistence effect in Figure 1 below. With the long-

run claim arrival intensity at 80 in an event quarter and the number of time steps at 30, we have 

jm = 80 and t = 0.0083. We then consider two scenarios: when the initial intensity is low at 60 

and high at 100. In each scenario, we vary κj, the speed of adjustment toward the mean, from 2 

to 30, and then compute the corresponding risk-neutral claim-arrival probability per period. The 

latter is based on the average or integrated intensity over the quarter. The results show that 1) 

in the low initial intensity case, as the speed of adjustment increases, clustering weakens and 

mean-reversion toward the higher mean strengthens, leading to increasing claim-arrival 

probability, but 2) in the high initial intensity case, as the speed of adjustment increases, 

clustering weakens and mean-reversion toward the lower mean strengthens, leading to 

decreasing claim-arrival probability.   

     ______________________________ 

              Insert Figure 1 About Here 
         ______________________________ 

    

Note the probability that news (transaction) will arrive in the second period is then 

(5)      
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The future forward-looking mt+i, i=2,3,…, and so on, can thus be similarly calculated as Et{j(i([T-

t]/n))}- Et{j([i-1]([T-t]/n))}. 

 

3.2. Risk-Neutralization  

  Next we apply the discrete-time no-arbitrage martingale pricing methodology to 

determine the price-change martingale probability and then develop the risk-neutral tree. No-

arbitrage dictates the following one-period martingale representation for the futures price:  
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(6) ,)1()1( dFpmFmuFmpF   

 
where p and 1-p are the respective equivalent martingale probability measures over one step for 

the asset price to move up and down; and m and 1-m are the respective equivalent martingale 

probability measures over one step for transaction arrival and non-arrival.  As we have shown 

before, m = g.  

 Solving and simplifying Eq. (6), we obtain the price-change martingale probability: 

 

(7) 
du

d
p






1
, 

 

where u (=exp(1)) and d (= 1/u) are the gross up/down movements of the futures price. This 

probability measure resembles closely in format to the standard binomial measure with one 

difference - u and d here are determined by the per-transaction volatility 1 only.  This is 

because in our model the futures price will only jump when a transaction arrives, irrespective of 

the passage of calendar time. 

 To summarize, the risk-neutral trinomial tree is obtained by superimposing a jump 

process on a standard binomial process such that the movement of the underlying asset at 

calendar time t over a generic calendar-time period is modeled by the following trinomial setup: 

 
  uFt  with probability p1 = mp, 
       /                 
 Ft    -     Ft             with probability p2 = 1-m,            
       \ 
  dFt  with probability p3 = m(1-p), 
 

where in each period, a transaction arrives with probability m and upon its arrival futures price 

either jumps up to uFt  with probability p or jumps down to dFt  with probability 1-p.  However, 

because the transaction-arrival probability is time-varying, the futures price should evolve over 

two time periods as follows.  
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where per Eq. (4) a transaction arrives with probability mt  in the first period but with probability 

mt+1 in the second period, allowing for varying news arrival probabilities. 

3.3. Stochastic Time Change and Transaction-Time Option Pricing    

  In the spirit of SP modeling, a stochastic time change from calendar time to transaction 

time restores the stationary binomial parent process.  However, since the number of transaction 

arrivals in an n calendar time-step trinomial tree (where n x intervals equal T) may vary from a 

minimum of zero to a maximum of n, assuming n is chosen to be sufficiently large, the restored 

binomial tree has a random number of time step, k, where k   n,0 . For example over two 

calendar time periods we would have:  

 

1) when k = 0 with probability (1-mt) (1-mt+1), Ft   does not change because no news arrives over 

two time periods, 

2) when K = 1 with one news arrival and probability [(1-mt) mt+1+ mt(1-mt+1)],  
                       

                    uFt             with probability p,             
         Ft   <  
                    dFt             with probability 1-p, 

 
3) when K = 2 with two consecutive news arrivals and probability mt mt+1,  
                   

 

 

 

u2Ft    with probability mtmt+1p
2 

 

 
uFt          with probability [mt (1-mt+1)+(1-mt)  
                                     mt+1]p 
 
udFt        with probability 2mtmt+1p(1-p) 
 
Ft               with probability (1-mt) (1-mt+1) 
 

 

 
dFt             with probability [(1-mt) mt+1+ mt                        
                                     (1-mt+1)] (1-p) 
 

 
d2Ft       with probability mtmt+1(1-p) 2

, 
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                                u2Ft             with probability mtmt+1p
2 

                    uFt   <                 
         Ft   <               udFt             with probability 2mtmt+1p(1-p) 
                    dFt    <                               
                             d2Ft             with probability mtmt+1(1-p) 2. 

 

In other words, our task now is to price an isomorphic option with random maturity in transaction 

time. We solve this problem by using the Euler equation as a conditional expectation over the 

transaction arrival uncertainty. More specifically, the normalized price of an n-period call option 

can be solved as a random sum of the arrival-probability-weighted normalized prices of n+1 k-

transaction fixed-maturity options (denoted as Ck):  

 

(8)  
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where BT  is the price of the matching bond, kM  is the transaction-arrival martingale probability 

measure of  k claim arrivals in n periods, and Ck is the transaction-time American binomial 

futures call price with k transactions in maturity. In the case of European options with an N 

transaction-time-step setup, Ck is 

 

(10)  


 
N

i

iN

k

i

kkTk XFduiPBC
0

)( , 

 

where 
iN)

k
p1(i

k
p

)!iN(!i

!N
)i(

k
P 


  is the N-step martingale probability that the ending futures 

price level is Fdu iN
k

i
k

  with  ,
u

1
d ,eu

k
k

N/k
k

1  σ and
kk

k
k

du

d1
p




 .  Since Ck is now priced by 

the standard binomial model defined over transaction time but not calendar time, the size of the 

gross up/down rate now depends on the transaction-time interval N/kk  .   

 As in CCY, this pricing model links an option value to the expected intensity of 

transaction arrival and the per transaction futures volatility (1). As the intensity increases, the 

tree grows faster, and thus the option price increases to reflect the larger expected total price 

volatility, and vice versa.  For forecasting however we will need at least three transactional 
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option prices to simultaneously track three parameters: 1) the per transaction volatility (1); 2) 

the speed of intensity adjustment (κj); and 3) the long-run mean intensity level (mj). By equation 

(7), it is seen that 1 also determines u as well as p, the probability the destructive power will go 

up.  By equation (5), it is seen that, given the current intensity j(t) and  κj and mj, we can forecast 

the probability of news arrival in the future periods, mt+i. Collectively, these values offer a market 

consensus view as to how likely a hurricane will change activity level in the next time period, 

and if it does happen, how likely the change would be to accentuate and to what new level.  

 

4. Model Comparative Statics, Calibration and Forecasting 

 We shall construct the hurricane derivatives based on a named storm with 90 days to 

expected landfall, or expected maturity at T=1/4. Conditional on T, and supposing the number of 

transactional events that impact the CHI is not more than 30 per quarter, we set n=30. The 

random arrivals of transactions during [t,T] imply that total number of transactions in this forward 

period is kЄ[0,n]. Suppose current intensity is observed to be j(t)=100. We shall first construct 

the intensity process in equation (1) and show how the probability of transaction events, mt+i, 

occurring in the future period [t+iΔt, t+(i+1)Δt] for i=0,1,2,….,29, is computed using values κj = 2, 

15, 30, and mj = 80. We also include the case of κj = 15 and j(t) = 60 for comparison as the latter 

is a case of upward adjustment instead. 

 This transaction arrival probability forecast under stochastic intensity is shown in Figure 

2 where each period is 3 days. In practice, the number of intervals may be increased in this 

discrete framework to improve on the estimates. The limitation of finite discretized intervals is 

that it imposes an arbitrary assumption that the transactions arrive either once or none during 

these regularly spaced intervals.  

 

                                                                 ______________________________ 

              Insert Figure 2 About Here 
         ______________________________ 

 

Figure 2 shows that mt+i reduces over time if j(t)>mj, but increases over time if j(t)<m. The rate of 

increase or decrease is higher or lower depending directly on the value of κj. The sequence of 

values {mt, mt+1, mt+2,…} for a particular parameterization {κj , mj} is then employed to find the 

probability of number of transactions Mk shown in Figure 3.  
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                                                                 ______________________________ 

              Insert Figure 3 About Here 
                                                ______________________________ 

 

 This probability is different from existing models in that we accommodate a stochastic 

intensity specification as in (1). These probabilities form the risk-neutral probabilities Mk for 

pricing in (9) under transaction time-scale k. We vary κj to examine the probability distribution Mk 

and find that for a given mj  and j(t)>mj, as κj increases, the mode of the distribution tends to 

decrease and likewise its probability. This is because under downward adjustment since j(t)>mj, 

increasing κj implies reduction in future probability mt+i of transaction arrival, and hence lower 

probabilities for total number of arrivals.  The figure also shows that for j(t)<mj, the lower 

intensities typically produces a probability distribution that is lower in number of arrivals and its 

attendant probabilities. A comparison with a constant intensity specification mjΔt = 80 x 0.0083 = 

0.6667 as in the dotted curve shows that for an upward adjustment j(t)>mj, the probability 

distribution dominates that from using an averaged constant intensity. The situation is converse 

for the case of downward adjustment where j(t)<mj. 

 Next, we employ Nk time-steps to compute the discretized binomial American option 

prices with random maturity at transaction times k=1,2,…,30. For parsimonious reasons, let Nk 

be the same N  n  k. We choose N=n in this case. The transaction-time volatility is fixed at 

1=0.2k/N and separately 1=0.4k/N in order to evaluate the hurricane futures option no-

arbitrage prices. The latter prices are computed for options with different strike prices at K=6 (in-

the-money), K=8 (at-the-money), and K=10 (out-of-the-money) for a named storm with a traded 

CHI futures at value Ft=8. For option pricing, an annual riskfree rate of 2% is assumed. The 

price results for different sets of parameterizations are shown in Table 1 below. N in principle 

should be as large as is computationally feasible, and as N increases, the binomial trees under 

transaction maturity should converge to their counterparts under lognormal diffusion. For 

computational tractability, we demonstrate the methods here using N=n=30 for all k. 

 

                                                                 ______________________________ 

              Insert Table 1 About Here 
                                                ______________________________  

 

From Table 1, it is seen that the American-styled hurricane futures option prices increase 

significantly with increase in transaction-time volatility 1, with moneyness, and with decrease in 
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κj (since j(t)-mj=20 here indicates an adjustment downward toward the long-run mean). We also 

compared the American futures option prices with European ones without early exercise and for 

cases of low transaction volatilities, the early exercise premium becomes more significant as 

American-styled futures options are worth more than European-styled futures options when the 

upward price potential becomes less and immediate exercise for positive profit becomes more 

valuable. Comparing with the case of long-run constant intensity by setting j(t)=mj=80, it is seen 

that whenever j(t)>mj, the American futures option prices will be higher than in the case of 

constant intensity. 

In Figure 4 below, we plot in 3-dimension the hurricane futures option price as a function 

of κj taking the range 2 to 30, and of 1 under unit transaction time taking the range 0.1 to 0.9. 

Current futures price is F0=8, and the strike price is K=8. Maturity is T=1/4. Riskfree interest rate 

is assumed to be 2% p.a. It is seen that the price surface increases in 1 and decreases slowly 

in κj (in the case j(t)>mj) for any given option with strike K. The price surface corresponds to a 

particular value of mj. Here mj=80 and j(t)=100. 

 

                                                                 ______________________________ 

              Insert Figure 4 About Here 
         ______________________________ 

 

 

Any given futures option price level forms a three-dimensional surface in the mj -j –κj 

space. Two such surfaces from two derivatives would form an intersection of a curve at points 

equivalent to the observed market prices of the two derivatives. Three derivatives would be able 

to provide an intersection equivalent to a point in the mj -j –κj space, and hence providing the 

implied values of ,ˆ,ˆ
jjm   and ĵ . Once the three parameters are implied at any trading time t 

before landfall, they can be used to form a risk-neutral or similarly physical probability 

distribution of the CHI values at the expected landfall or maturity time. This is done using the 

random variable t

iN

k

i

kT FduF 
~

 
for different k= 1 to n, and for each k, i = 1 to N, where as seen 

earlier,   1 N/k
k eu


 and 

k

k
u

d
1

 .  We employ all the binomial trees for each k to construct the 

implied risk-neutral distribution of TF
~

 for our forecasting and risk management purposes. For 

each k, we have N nodal values of FT at T, and thus N probability values. Conditional on k, 

these probability values sum to one. Since the probability of observing k transactions in T is Mk, 
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we have the unconditional probability of nodal value 
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Next suppose three traded futures options with strikes at K=6, K=8, and K=10, are 

priced at 2.73, 1.92, and 1.38 in terms of CHI units respectively in the market. Using the above 

theoretical model, we can imply out the parameters ,ˆ,ˆ
jjm   and ĵ  to be 80, 0.15, and 20 

respectively, given j(t)=100 which is assumed to be observed. Then the risk-neutral distribution 

of CHI values at expected landfall is shown in Figure 5. This implied probability distribution 

provides a forecast of how destructive it will be when it makes landfall with time-varying arrival 

probabilities. As the implied probability distribution is tracked over time, it also provides 

information on how its expected destructive power will behave over time from inception to 

landfall. Figure 7 shows that the mean and also mode of the distribution is 8, the current future 

value, with a probability of about 30%. The distribution is skewed to the right. 

 

                                                                 ______________________________ 

              Insert Figure 5 About Here 
         ______________________________ 

 

The distribution also provides a way of measuring the risk or probability of hurricane 

devastation when the CHI value is expected to exceed certain thresholds. Hurricane Katrina for 

example made landfall with a CHI value of 19.0, a considerably destructive storm. In contrast, 

Florida’s Hurricane Dennis had only a CHI value of 6.9, a mild to medium-sized storm. From the 

distribution, we can infer that the probability of exceeding CHI value of 20 is about 4.95% or 

close to 5%. Hence there is a 5% chance of a serious hurricane hit within 90 days in this 

example. 

Finally, In Table 2 below we illustrate the implementation of a dynamic market-

consensus hurricane forecasting model as to how the expected destructive power of a hurricane 

would evolve from news arrival to news arrival as a multi-period transaction-time binomial tree. 

We use the following implied parameters: m=80, k=20, =0.15; u=1.1618, d=0.8607, p=0.4625, 

given an expected number of transactional arrival of 30 over 90 days. As shown in the Table, 

the value in the cell of each node of the binomial tree denotes the expected destructive power in 

that period with an initial CHI value of 8.00 and after 30 arrivals this value will involve into a 

range from a low of 0.09 with probability of 0.15529 to a high of 720.14 with probability of 

0.08982. The probability values at the bottom rows denoted as “prob” represents the probability 
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news will arrive in the next 3 days, and the term “period” labels the transaction count with a total 

of 30 expected transaction arrivals in 90 days.  

 

                                                                   ______________________________ 

              Insert Table 2 About Here 
                      _________________________ 

6. Concluding Remarks and Futures Research directions 

By using transactional price changes of traded hurricane derivative contracts as the 

predictor in a doubly-binomial hurricane futures and futures-option pricing framework, we have 

developed a dynamic market-consensus hurricane forecasting model.  Our model can forecast 

when a hurricane will make landfall and how destructive it will be, and how this destructive 

power will evolve from inception to landfall.  Since from operational forecasting we know that 

model consensus is usually superior to any individual physical model, our market consensus 

forecast could provide a functional alternative to prevailing individual physical models. Since 

tropical cyclones arrivals are also modeled in the climatic science domain, one possible 

extension is to incorporate additional stylized effects of measurable physical variables into the 

financial futures price process. Empirical verifications to examine the performance and 

robustness of our market-based predictor would be important and provide exciting possibilities 

to enhance the realm of physical science in hurricane forecasting. 
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Figure 1: Risk-Neutral Claim Arrival Probability per period under Constant Averaged 

Intensity 
 

We assume that the claim arrival intensity follows a mean-reverting Ornstein-Uhlenbeck process 
and then we examine how the risk-neutral transaction claim-arrival probability, mt, is affected by 
the deviation of the current level of arrival intensity from the long-run mean rate, j(t)-mj,  and the 
speed of adjustment, κj. With the long-run arrival intensity set at 80 and the number of time 
steps at 30 in an event quarter, we compute mt as a function of κj ranging from 2 to 30 in two 
scenarios: when the initial intensity is low at 60 and high at 100.  
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Figure 2: Transaction Arrival Probability Forecast 
 

We assume that the claim arrival intensity follows a mean-reverting Ornstein-Uhlenbeck 
process. T=1/4, n=30, mj=80. Different values of k and initial intensity j0 are used to forecast the 
transaction arrival probability mt+i at future period [t+iΔt,t+(i+1) Δt] for i=0,1,2,….,29. Each period 

is 3 days in this current setup. 
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Figure 3: Probability of Number of periods of Transaction Arrivals 
 

We assume that the claim arrival intensity follows a mean-reverting Ornstein-Uhlenbeck 
process. T=1/4, n=30, mj=80. Different values of k and initial intensity j0 are used to forecast the 
transaction arrival probability mt+i at future period [t+iΔt,t+(i+1) Δt] for i=0,1,2,….,29. The 
sequence of values {mt, mt+1, mt+2,…} for a particular parameterization {κj , mj} is then employed 
to find the probability of number of transactions Mk shown below. The case of constant intensity 
m is derived using mjΔt = 80 x 0.0083 = 0.6667 as per period probability. 
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Figure 4: Futures Call Price Surface 

 
The price surface corresponds to mj=80, j(t)=100, and varying levels of κj taking the range 2 to 

30, and of 1 under unit transaction time taking the range 0.1 to 0.9. Current futures price is 
F0=8, and the strike price is K=8. Maturity is T=1/4. Riskfree interest rate is 2% p.a. 
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Figure 5: Discrete Risk-Neutral Probability of CHI at Maturity 
 

We suppose 3 traded futures options with strikes at K=6, K=8, and K=10, are priced at 2.73, 
1.92, and 1.38 in terms of CHI units respectively in the market. Current futures price is F0=8, 
maturity is T=1/4, and j(t)=100. Riskfree interest rate is 2% p.a. Using these prices, we employ 

our theoretical model to imply out the parameters ,ˆ,ˆ
jjm   and ĵ  as 80, 0.15, and 20 

respectively. These values are used to find the probability of occurrences of number of 
transactions over T based on the mean-reverting Ornstein-Uhlenbeck process. The 
unconditional risk-neutral distribution of CHI values at expected landfall can be obtained via the 
binomial trees. The histogram is smoothed as follows. 
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                                                       Table 1 
 Hurricane Futures Option Prices based on expected maturity of T=0.25, 

Current futures price of Ft=8, and discretization scheme of N=n=30. 
 

Prices in CHI value 1=0.2 1=0.4 

Different parameterizations K=6 K=8 K=10 K=6 K=8 K=10 

mj =80, κj =15, j(t)=100 3.23 2.53 2.06 4.99 4.58 4.34 

mj =80, κj =30, j(t)=100 3.21 2.50 2.03 4.96 4.54 4.30 

mj =80, κj =2, j(t)=100 3.31 2.64 2.19 5.10 4.72 4.51 

mj =80, κj =15, j(t)=60 3.14 2.41 1.92 4.86 4.41 4.14 

constantintensity  mjΔt=0.6667 3.19 2.47 1.99 4.93 4.50 4.25 
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Table 2 
The market-consensus forward-looking forecast as to how the expected destructive power of a 
hurricane would evolve from news arrival to news arrival as a multi-period transaction-time 

binomial tree using implied parameters m=80, k=20, =0.15; u=1.1618, d=0.8607, p=0.4625. 
Parameters are conditioned on 30 transaction arrivals over 90 days, and each period in the 
binomial tree denotes 3 days. The term “prob” denotes the probability news will arrive in the 
next 3 days, and the term “period” labels the transaction count with a total of 30 expected 
transaction arrivals in 90 days. The initial CHI value is 8.00 but after 30 arrivals the value will 
range from a low of 0.09 with probability of 0.15529 to a high of 720.14 with probability of 
0.08982.  

 

                75.90 
                65.33 56.23 
               56.23 48.40 41.66 
              48.40 41.66 35.85 30.86 
             41.66 35.85 30.86 26.56 22.86 
            35.85 30.86 26.56 22.86 19.68 16.94 
           30.86 26.56 22.86 19.68 16.94 14.58 12.55 
          26.56 22.86 19.68 16.94 14.58 12.55 10.80 9.29 
         22.86 19.68 16.94 14.58 12.55 10.80 9.29 8.00 6.89 
        19.68 16.94 14.58 12.55 10.80 9.29 8.00 6.89 5.93 5.10 
       16.94 14.58 12.55 10.80 9.29 8.00 6.89 5.93 5.10 4.39 3.78 
      14.58 12.55 10.80 9.29 8.00 6.89 5.93 5.10 4.39 3.78 3.25 2.80 
     12.55 10.80 9.29 8.00 6.89 5.93 5.10 4.39 3.78 3.25 2.80 2.41 2.07 
    10.80 9.29 8.00 6.89 5.93 5.10 4.39 3.78 3.25 2.80 2.41 2.07 1.79 1.54 
   9.29 8.00 6.89 5.93 5.10 4.39 3.78 3.25 2.80 2.41 2.07 1.79 1.54 1.32 1.14 
  8.00 6.89 5.93 5.10 4.39 3.78 3.25 2.80 2.41 2.07 1.79 1.54 1.32 1.14 0.98 0.84 
 prob 0.82 0.80 0.78 0.76 0.75 0.73 0.72 0.71 0.71 0.70 0.70 0.69 0.69 0.68 0.68 0.68 
 period 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
 

              720.14 
              619.83 533.49 
             533.49 459.18 395.22 
            459.18 395.22 340.17 292.79 
           395.22 340.17 292.79 252.00 216.90 
          340.17 292.79 252.00 216.90 186.69 160.68 
         292.79 252.00 216.90 186.69 160.68 138.30 119.04 
        252.00 216.90 186.69 160.68 138.30 119.04 102.46 88.19 
       216.90 186.69 160.68 138.30 119.04 102.46 88.19 75.90 65.33 
      186.69 160.68 138.30 119.04 102.46 88.19 75.90 65.33 56.23 48.40 
     160.68 138.30 119.04 102.46 88.19 75.90 65.33 56.23 48.40 41.66 35.85 
    138.30 119.04 102.46 88.19 75.90 65.33 56.23 48.40 41.66 35.85 30.86 26.56 
   119.04 102.46 88.19 75.90 65.33 56.23 48.40 41.66 35.85 30.86 26.56 22.86 19.68 
  102.46 88.19 75.90 65.33 56.23 48.40 41.66 35.85 30.86 26.56 22.86 19.68 16.94 14.58 
 88.19 75.90 65.33 56.23 48.40 41.66 35.85 30.86 26.56 22.86 19.68 16.94 14.58 12.55 10.80 
 65.33 56.23 48.40 41.66 35.85 30.86 26.56 22.86 19.68 16.94 14.58 12.55 10.80 9.29 8.00 
 48.40 41.66 35.85 30.86 26.56 22.86 19.68 16.94 14.58 12.55 10.80 9.29 8.00 6.89 5.93 
 35.85 30.86 26.56 22.86 19.68 16.94 14.58 12.55 10.80 9.29 8.00 6.89 5.93 5.10 4.39 
 26.56 22.86 19.68 16.94 14.58 12.55 10.80 9.29 8.00 6.89 5.93 5.10 4.39 3.78 3.25 
 19.68 16.94 14.58 12.55 10.80 9.29 8.00 6.89 5.93 5.10 4.39 3.78 3.25 2.80 2.41 
 14.58 12.55 10.80 9.29 8.00 6.89 5.93 5.10 4.39 3.78 3.25 2.80 2.41 2.07 1.79 
 10.80 9.29 8.00 6.89 5.93 5.10 4.39 3.78 3.25 2.80 2.41 2.07 1.79 1.54 1.32 
 8.00 6.89 5.93 5.10 4.39 3.78 3.25 2.80 2.41 2.07 1.79 1.54 1.32 1.14 0.98 
 5.93 5.10 4.39 3.78 3.25 2.80 2.41 2.07 1.79 1.54 1.32 1.14 0.98 0.84 0.73 
 4.39 3.78 3.25 2.80 2.41 2.07 1.79 1.54 1.32 1.14 0.98 0.84 0.73 0.62 0.54 
 3.25 2.80 2.41 2.07 1.79 1.54 1.32 1.14 0.98 0.84 0.73 0.62 0.54 0.46 0.40 
 2.41 2.07 1.79 1.54 1.32 1.14 0.98 0.84 0.73 0.62 0.54 0.46 0.40 0.34 0.30 
 1.79 1.54 1.32 1.14 0.98 0.84 0.73 0.62 0.54 0.46 0.40 0.34 0.30 0.25 0.22 
 1.32 1.14 0.98 0.84 0.73 0.62 0.54 0.46 0.40 0.34 0.30 0.25 0.22 0.19 0.16 
 0.98 0.84 0.73 0.62 0.54 0.46 0.40 0.34 0.30 0.25 0.22 0.19 0.16 0.14 0.12 
 0.73 0.62 0.54 0.46 0.40 0.34 0.30 0.25 0.22 0.19 0.16 0.14 0.12 0.10 0.09 
 0.68 0.68 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67  
 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
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