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Abstract

Underlying each stock trades hundreds of options at different strike prices and maturities. The order flow
from these option transactions reveals important information about the underlying stock price movement
and its volatility variation. How to aggregate the trade information of different option contracts underlying
the same stock presents an interesting and important question for developing microstructure theories and
price discovery mechanisms in the derivatives markets. This paper takes options on QQQQ, the Nasdag 100
tracking stock, as an example and examines different order flow consolidation schemes in terms of their
effectiveness in extracting information about the underlying stock price movement and its volatility varia-
tion. The analysis shows that an effective consolidation scheme shall account for each contract’s different
exposure to the stock price and volatility movements. The scheme should also accommodate concerns on
liquidity and interference from other potential risk dimensions, such as market crashes and long-term versus
short-term volatility factors. Based on our proposed consolidation scheme, we identify significant rela-
tions, both contemporaneous and predictive, between the appropriately aggregated options order flows and
the stock returns and return volatilities. In particular, the aggregated stock buy pressure positively predicts
future stock returns and the aggregated volatility buy pressure positively predicts future changes in return
volatilities up to five minutes.
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1. Introduction

In the absence of market frictions and under the geometric Brownian motion stock price dynamics assumed
in Black and Scholes (1973) and Merton (1973), options can be perfectly replicated by a portfolio of arisk
free bond and the underlying stock. Option trading is thus redundant. In reality, however, the market shows
astrong demand for options for two major reasons. First, the risksin the stock market cannot be completely
spanned by the stock trading alone. For example, the presence of discontinuous stock price movements of
random sizes necessitates the inclusion of options across a whole spectrum of strikes to span the jump risk
(Carr and Wu (2004)). The presence of stochastic volatility (Engle (2004)), on the other market, makes the
options market the de facto market for trading volatility risks (Carr and Wu (2009)).

The second major reason for options trading is informational. Even in the absence of stock price jumps
and stochastic volatility, investors may choose to trade options to gain exposure to the stock given the high
leverage provided by options (Black (1975)). Furthermore, informed traders may prefer the options mar-
ket because they can better hide themselves among the multiple option contracts available on one security
(Easley, O'Hara, and Srinivas (1998)). Trading options also alows investors to express their view in volatil-
ity, which cannot be fully expressed with stock trading alone. On the other hand, the transaction cost on
options is usually much higher than on the underlying stock. Thus, only when the perceived information
advantage is large enough do the benefits of high leverage and multiple contract availability overshadow the

large transaction costs (Holowczak, Simaan, and Wu (2006)).

A long list of studies have investigated the information flow between the options market and stock
marketH The challenge remains on how to effectively aggregate the information in the multiple option
contracts underlying the same stock. When the underlying stock price moves, no arbitrage dictates that the
prices on all the option contracts underlying this stock will move accordingly. When an options market
maker takes on a position in any of the options underlying the same stock, the market maker will use the
same stock to perform delta hedging to remove the underlying stock exposure. Hence, it is important to
aggregate the information from the diverse option transactions at different strikes and maturities before one

links the options transactions to stock price movements.

Most existing studies either use only one pair of option contracts (e.g., Chan, Chung, and Fong (2002)

1See, for example, Manaster and Rendleman Jr. (1982), Bhattacharya (1987), Anthony (1988), Stephan and Whaley (1990),
Finucane (1991), Chan, Chung, and Johnson (1993), Easley, O'Hara, and Srinivas (1998), Jarnecic (1999), Chan, Chung, and Fong
(2002), Chakravarty, Gulen, and Mayhew (2004), and Holowczak, Simaan, and Wu (2006).



and Holowczak, Simaan, and Wu (2006)) or regard different contracts as equally informative (e.g., Easley,
O'Hara, and Srinivas (1998), Chakravarty, Gulen, and Mayhew (2004), Cao, Chen, and Griffin (2005), and
Pan and Poteshman (2006)) to simplify the problem|q Picking one pair of contracts while discarding all the
others amounts to throwing away a large amount of information, and can potentially distort the estimated
relations. One can think of the case where the chosen option contract has a small transaction while most
other options experience large transactions pointing to the opposite direction for the stock price movement.
In this case, the large transactions of the omitted option contracts, rather than the small transaction of the
chosen contract, are likely to dictate the direction of the stock price movement. Equal weighting can be
equally problematic as informed traders do not randomly pick an option contract to trade. Instead, they will

consider market depth, liquidity, and leverage to optimize their contract allocation.

Anather important but rarely raised question is how to aggregate the order flow across trades with dif-
ferent sizes. While most researchers focus on option volumes (Easey, O'Hara, and Srinivas (1998), Chan,
Chung, and Fong (2002), Chakravarty, Gulen, and Mayhew (2004), Cao, Chen, and Griffin (2005), Pan and
Poteshman (2006), Ni, Pan, and Poteshman (2008)), some scholars just count number of trades to construct
“option buy pressures’ (Bollen and Whaley (2004) and Holowczak, Simaan, and Wu (2006)). By counting
number of trades, they presume that trades are equally informative across different sizes. This method is
likely to overstate the impact of very small trades because small odd-lot trades are generally regarded as
non-informative retail trades by options market makers. On the other hand, aggregating trading volumes
assumes that the information content is linear to trade size, and this assumption can overstate the informa
tiveness of large trades. First, very large trades are often pre-negotiated in the upstairs market and thus
may not contain the most updated information. Second, informed traders often split their orders to disguise
themselves among uninformed orders. For example, Anand and Chakravarty (2003) find that medium size

option trades are often used to achieve “stealth trading” when trading volume is high.

In this paper, we propose a mechanism to aggregate option transactions across al strikes and maturities
on the same stock, and we test its effectiveness against four alternatives in terms of their effectiveness in
extracting information about future stock price and volatility movements. In extracting the information on
stock price movement, the first consideration is the stock price exposure. A call option has positive stock

price exposure and a put option has negative stock price exposure. Accordingly, aggregations of buy and

2More recently, Bollen and Whaley (2004) examine the impact of absolute deltaweighted option order flows on implied volatil-
ity functions. Ni, Pan, and Poteshman (2008) use price-scaled vega weighted option volumes to predict realized volatilitiesin the
Cross section.



sell orders on call and put options should take on opposite signs. A standard measure for the stock price
exposure is the delta of the option, which measures how much the option price moves when the underlying
stock price moves by one dollar. The second consideration is leverage. Given limited capital and private
information, an investor would want to maximize its delta exposure per dollar spent on the contract. The
delta of an option scaled by the option’s value represents the stock exposure per dollar spent. Finaly, the
investor must account for the different transaction costs on different options contracts in terms of both bid-
ask spreads and market impacts. The options market liquidity concentrates on short-term near-the-money
options. Although the stock exposure per dollar spent is the highest for far out-of-the-money options, the
high bid-ask spread relative to the option value makes these contracts prohibitively expensive to trade. We
combine al three considerations to generate an aggregate stock buy pressure (ASBP) for option transactions.

We show that this ASBP measure generates significant predictions on future stock price movements.

We also propose an aggregate order flow measure that reveal sthe information in the underlying volatility.
In this case, we focus on the volatility risk exposure, or vega, of each option contract instead of its delta
exposure. We combine the vega exposure with the leverage and liquidity considerations to construct an
aggregate volatility buy pressure (AVBP) for option transactions. We find that this AVBP measure predicts
future stock volatility as measured by the standard deviation of realized stock returns.

To address the second question on how to aggregate across trade size, we directly test the effectiveness
of three candidate measures. number of trades, volume, and the natural logarithm of trading volume. We
find that the log volume outperforms the rest regardiess of how we aggregate order flows across strikes
and maturities. Under the natural log transformation, odd-lot transactions are heavily discounted for the
information content. The information content is assumed to increase with the trade size, but flattens out up

to acertain size.

Many studies investigate the information flow between the options market and the stock market, often
with conflicting findings. Early studies such as Manaster and Rendleman Jr. (1982) and Bhattacharya (1987)
find that the options market reveals information about the underlying security prices. Easley, O’'Hara, and
Srinivas (1998) do not find the option prices to be informative but they find that signed option volumes are
informative about future stock prices athough the directions are not as expected. Using the information
share approach developed by Hasbrouck (1995), Chan, Chung, and Fong (2002) and Chakravarty, Gulen,
and Mayhew (2004) find that the stock market leads the option market in price discovery. Holowczak,
Simaan, and Wu (2006) find that the statistical significance of price discovery varies with option trading



intensity and sidedness. Using a unique data set, Pan and Poteshman (2006) find option call-put volume
ratios predict future stock returns; and Ni, Pan, and Poteshman (2008) find that daily dollar-vega weighted
order flow predicts future realized volatility.

Our work contributes to the literature by providing a systematic analysis on the aggregation of option
transactions across different strikes, maturities, and size. One cannot possibly obtain robust results on the
information flow between the options market and the stock market without first resolving the aggregation
issue. We focus our analysis on the aggregation of option transactions, but the same mechanism can aso
be applied to aggregations of option quotes. Our finding of significant relations between option order flows
and stock market movement in high frequency public data also provides direct empirical evidence for infor-

mation trading on options market.

The rest of the paper is organized as follows. Section[2 discusses various order flow aggregation ap-
proaches and propose our own aggregation method based on balanced considerations of exposure, leverage,
and transaction cost. Section[3| describes the data we use to test the effectiveness of different aggregation
schemes. Sectionl4 reports the findings from the comparative analysis. SectionS further explores the power

of aggregate option buy pressures under changing market conditions. And sectiorf@ concludes.

2. Aggregating Options Order Flow

2.1. Determining thedirection of each transaction

The transaction data base normally does not have a flag on whether the non-market maker party in atrade
is the buyer or the seller. In order to determine the option order flow, we follow Lee and Ready (1991) to
classify trades into three categories. buyer-initiated, seller-initiated, and unclassified. The signing algorithm
isasfollows. If atrade price is above the last effective mid quote, it is classified as buyer-initiated. If atrade
price is below the mid quote, it is classified as seller-initiated. If atrade price falls exactly on the mid quote
and is higher than the last different trade price, it is classified as buyer-initiated. If atrade price falls exactly
on the mid quote and is lower than the last different trade price, it is classified as seller-initiated. Everything

elseisunclassified.

With this signing algorithm, we are able to classify most trades, leaving only 0.86% of the total trades

in the unclassified category. These trades normally occur in market opens when there are no valid quotes or

4



last different prices. We discard these unclassified trades from our analysis.

Unlike Lee and Ready (1991), however, we examine the last (t) effective quotes on the same exchange
rather than the five-second proceeding (t — 5) quotes. Thereporting lag is hot heeded for the options data be-
cause we find that the proportion of trade-through trades (with the price outside the quote bounds) increases
with the time lag and using zero delays generates the largest proportion of trades exactly on the bid or the
ask.

2.2. Aggregating the net buy pressure of each contract

For each option contract, we define the net buy pressure as the buy transactions minus the sell transactions
over acertain time horizon, and we use CBP(K, T) to denote the net buy pressure from acall option at strike

K and expiry T, and use PBP(K, T) to denote the buy pressure of a put option at strike K and expiry T.

Aggregating horizon is not atrivial choicein microstructure studies. As market efficiency improves over
time, the speed of information dissemination across markets also increases. A long aggregating horizon may
not be sensitive enough to capture the information content in option transactions as trade imbalance gradu-
aly dies out. A short aggregating horizon, on the other hand, can increase the underlying price sensitivity
to option buy pressures. However, it may also inflate the effect of noise in trading, especialy when trading
isinactive. Thereis clearly a tradeoff between a long observation horizon and a short one. In this paper,
we choose an ETF as the underlying security and one may argue that informed trading is not likely to occur
for an ETF and its options because of less information asymmetry at portfolio level. While it is true that
the macro variables driving the ETF's price and volatility are more transparent than single stock fundamen-
tals, there can be as much, if not more, liquidity information in the market, which dictates the movement
of the underlying price and volatility in short-term intervals ranging from a few seconds to a few minutes.
Therefore, we choose a relatively short aggregating horizon of one minute to conduct our analysis. The
observation length is less than the traditional length of five minutes in, for example, Stephan and Whaley
(1990) and Eadley, O’'Hara, and Srinivas (1998). The selection is not likely to overstate the noise impact
from inactive trading periods because in our sample there are 12.07 option trades in an average one-minute
observation period, more than 2.57 option trades in an average five-minute observation period in the sample
of Easley, O’'Hara, and Srinivas (1998). For robustness check, we also repeat our analysis for aggregating

horizons at five seconds, ten seconds, thirty seconds, five minutes, and fifteen minutes. Our main results



remain unchanged qualitatively.

When there are multiple buy and sell transactions of different size within the same time period, we
must decide on how the transactions of different size are aggregated. We consider three alternative ways of

aggregation on each option contract.

1. Number of trades, where each transaction istreated as one unit when being aggregated, regardless of
the size of the transaction. Several empirical studies on stock market microstructure have found that
number of trades is more informative than trade volume, e.g.,Jones, Kaul, and Lipson (1994), Ané

and Geman (2000), and 1zzeldin (2007).

However, using number of tradesis likely to overstate the importance of very small trades in options.
In the stock options market, orders of five contracts or less are referred to as “odd lots,” and are
generally considered as non-informative retail trades. Indeed, at some options exchanges such as the
International Options Exchange, alarge proportion of the odd-lot trades are rewarded to the primary

market maker as a compensation for the extra responsibilities (Simaan and Wu (2007)).

2. Trade volume, which amounts to assume that the importance of each trade is proportional to its size.
In the stock market, very large trades are often negotiated in the upstairs market and are put into the
print at alater time. As aresult, the reported large trade tend to be lagged report and is thus not as
informative. The same practice also happens on the options exchanges. Thus, using trading volume
is likely to overestimate the information value of very large trades. Furthermore, with the explosion
of eectronic trading, large ingtitutional trades are increasingly being diced into smaller orders in
the stock market as a way to mitigate the market impact (Anand and Chakravarty (2003)). Such
strategic order placing technique is also applied in the options market now, quite often referred to as
"board surfing” by practitioners. Informed traders are more likely to slice orders to hide their trading
intention. Thetotal trade volume is not able to capture the order dlicing effect and may understate the

information content in the sum of small to medium sized trades.

3. Log volume, where the contribution of each trade is proportional to the natural logarithm of the trade
size. By taking natural logs, we apply a discount to the odd-lot trades, and allow the information
value to increase with increasing trade size. Nevertheless, the marginal contribution declines as the
trade size further increases. Furthermore, when an institution deliberately split alarge transaction into

several consecutive medium sized transactions, the aggregated information val ue becomes higher than



the value from a single, non-split orderH

2.3. Aggregating net buy pressure across different option contracts

To aggregate the net buy pressure across different option contracts, we must consider the following factors:

1. Exposure: If we intend to infer the underlying stock price movement from the options order flow,
a buy pressure from a call option is likely to have the opposite effect to a buy pressure from a put
option. Indeed, according to put-call parity, buying acall option while selling a put option at the same
maturity and strike price is equivalent to long a forward contract on the underlying stock. It is this
idea that has motivated most empirical research to find call and put option pairs at the same maturity
and strike, and compute the net stock buy pressure from the pair as the call buy pressure minus the
put buy pressure,

SBP(K,T) =CBP(K,T) - PBP(K,T), D

where SBP(K, T) denotes the net stock buy pressure originated from the options transactions at strike
K and maturity T. While the put-call parity is only applicable to European options, the idea can

nevertheless be borrowed to aggregate order flows from American-style stock options.

On the other hand, if the objectiveisto infer the underlying stock volatility movement, a European call
option and a European put option at the same maturity and strike share the same volatility exposure
as they have the same time value. Thus, we propose to aggregate the volatility buy pressure at each
strike and maturity as,

VBP(K,T) =CBP(K,T)+PBP(K,T), 2

where VBP(K, T) denotes the net volatility buy pressure originated from the options transactions
a strike K and maturity T. Again, potentialy early exercise on American options can induce an
asymmetric effect on the call and the put options at the same strike and maturity. We ignore this
usually small effect on the order flow aggregation.

2. Liquidity: Options orders are mostly concentrated at short maturities and at strikes close to the spot

level. These options contracts also tend to have narrower bid-ask spreads. Thus, everything else

3A potential problem with log(volume) is that it regards one-lot trades as completely uninformative. Alternatively. we have
also used log(volumet1) to incorporate the impact of one-lot trades and find that log(volume+1) does not perform better than
log(volume) in aggregating option buy pressures.



equal, informed traders are likely to allocate more of the capita to the most actively traded options
to mitigate market impact. On the other hand, transactions at illiquid strike/maturity regions such as
deep out of the money and/or at very long maturities can be motivated by other considerations instead

of information on the stock or volatility.

3. Leverage: Given limited capital, an informed investor may want to maximize its exposure (stock
price or volatility) per dollar spent on the contract. Far out-of-the-money options have low stock price
and volatility exposures per contract, but their stock price and volatility exposures per dollar spent
are actually very high because of the low dollar value of the contract. However, margin requirements
can mitigate the effect of leverage, especialy for writing options. For example, when a customer sells
a far out-of-the-money put option, the customer is required to hold a margin greater than the sales

receipt.

4. Other considerations: Investors can buy or sell options for other considerations. For example, in-
gtitutional investors often buy far out-of-the-money put options to hedge against market crash risk.
Investors can also use calendar spreads to trade on the variation of the volatility term structure, a-
lowing for potentially separate movements for short-term and long-term volatilities. Thus, when one
uses the Black-Merton-Scholes vega to denote the volatility exposure, the vega at different strike and

maturity regions can be driven by different stochastic factors.

In developing aggregation schemes for the stock and volatility buy pressures, we strive to achieve a
balance among the different considerations. Formally, we construct the aggregate stock buy pressure (ASBP)
as,

1

N
ASBP = jglm—jSBP(K,-,T,-)n(d,-), ©)

where N denotes the number of options contracts, M; = max (1,12 x T;) denotes a truncated maturity mea-
sure (in months) for the option contract, and n(d;) denotes the probability density function of a standard

normal variable, with
B In(Fj/Kj) + %GZTJ'

dj = /T, ,

and o being some return volatility estimate for the underlying stock. In application, we use an average

(4)

implied volatility estimate from the previous day to proxy .



The aggregation in (3) combines al four considerations. First, the stock buy pressure at each strike and
maturity (K;, T;), defined in (T), recognizes the opposite stock price exposure for the call and the put options
at the same strike and maturity, and cancels out the contribution of volatility exposures. Second, across
different strikes, the n(d;) weighting in (3) puts more weight on near-the-money options because near-the-
money options tend to be more liquid than out-of-the-money options. Third, across different maturities, the
option value scales approximately in the order of v/T. Through the 1/M j weighting, we divide the buy
pressure by maturity to discount the contribution of longer-term contracts for liquidity concerns. We convert
the maturity scaling in months and set the minimum to one month to avoid extreme weighting for options at

very short maturities.

The aggregate volatility buy pressure (AVBP) is constructed analogously,

N
A/BP =Y ——_VBP(K;,Tj)n(d;). (5)

11\/_

First, at each strike and maturity, we sum the call and the put buy pressure to generate a volatility buy
pressure in (2) that is relatively insensitive to directional movements in the stock price. Second, along
the strike dimension, we use the n(d;) weighting to assign more weights to near the money order flows.
Third, along the maturity-dimension, we use 1/\/M_j maturity scaling to balance out theincreasing volatility
exposure with the decreasing liquidity as maturity increases. By focusing more weights on short-term near-
the-money options, we aso reduce the impact of other factors such as crash risk and long-term volatility

risk to contaminate our measure for short-term market return volatility.

2.4. Alternative aggregating schemes

We compare the information contents of our proposed aggregate stock and volatility buy pressures to three

alternatives that have been used in the literature.

1. One strike-maturity point. This approach has been applied in in Chan, Chung, and Fong (2002)
and Holowczak, Simaan, and Wu (2006). In our implementation, we pick the stock and volatility
buy pressures at the strike and maturity point with the highest number of option trades. The chosen
strike-maturity point is always near the money and ay short maturity. In total, this one point accounts

for 24% of the total number of trades in our sample.



We have also experimented with the most number of calls and the most number of puts asthe selection

criterion. The results are similar.

. Equal weighting: Equal weighting has been used in, for example, Easley, O’'Hara, and Srinivas
(1998),Chakravarty, Gulen, and Mayhew (2004), Cao, Chen, and Griffin (2005), and Pan and Potesh-
man (2006). The aggregation is the sum of option buy pressures of al individual contracts.

. Greek weighting: The aggregate stock buy pressure is computed as the delta weighted sum of buy
pressures on each option. The aggregate volatility buy pressure is computed as the vega weighted sum
of the buy pressure on each option. The delta and vega are computed using the Black-Merton-Scholes
formula with an average implied volatility as the volatility input. This weighting scheme focuses
squarely on the risk exposure of each option contract based on the Black-Merton-Scholes model and
ignores other considerations such as liquidity, leverage, and other risk dimensions. If liquidity is not
a concern and the underlying stock moves according to the Black-Merton-Scholes model, this greek

weighting should be the right choice.

. Greek per dollar weighting: The greek weights (delta for stock buy pressure and vegafor volatility
buy pressure) are divided by the dollar value of the option contract to adjust for the leverage con-
sideration. Ni, Pan, and Poteshman (2008) use this weighting scheme to predict the future realized
volatility. This weighting method also assigns more weight to out-of-the-money options than to in-
the-money options. Chakravarty, Gulen, and Mayhew (2004) find that out-of-the-money options have

higher information share in price discovery analysis than in-the-money options.

2.5. Performance measure

In order to evaluate the effectiveness of our aggregate option buy pressures, we look at both contempora

neous and forecasting correlations of aggregate option buy pressures and the underlying price and volatility

movements. The squared univariate correlation is equivalent to the R-squared of an Ordinary-L east-Squared

regression. Thus we can use the magnitude of the univariate correlations to indicate the effectiveness of dif-

ferent aggregation option buy pressures. If option trading does not contain information about the underlying

market, we expect the aggregate option buy pressures to be insignificantly correlated with stock returns and

volatilities. For the purpose of detecting information based trading in the options market, one might think

that the forecasting power of aggregate option order flows should be given more attention than the contem-
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poraneous relations. However, the contemporaneous correlations reflect the impact of option trading on the

stock market and are also important.

Alternatively, we also run the following multiple time series regressions to examine the impact of ag-

gregate option buy pressures over time:

k
Ret; = 00+ Y, 0l ASBR i+ &, (6)

i=0

and

j
Vol = B0+ BLAVBR_j +&, 7)
i=0

where Ret; denotes the return at time t, Vol; denotes the realized volatility at timet, and ASBP and AVBP
are aggregate stock and volatility buy pressures, respectively. We test the null hypothesize of redundant
options trading, i.e. al and 1 are O at all lags. The regression results do not change our conclusion about
the effectiveness of different aggregation methods. For reporting simplicity, we only report the time series

regression results for the most efficient aggregation method in univariate correlation analysis.

3. Data

3.1. Sample selection

The options data are from the Option Price Reporting Authority (OPRA), which records every option quote
and trade message across al option exchanges in the United States. The underlying security price data
comes from New York Stock Exchange Trade and Quote (TAQ) database.

We perform our analysis on one underlying security, the NASDAQ 100 index tracking stock (QQQQ).
Options on QQQQ are traded on al options exchanges in the United States and are among the most actively
traded stock options (Holowczak, Simaan, and Wu (2006)). Our sample covers 231 trading days from
February 1st to December 29th, 2006. There are 1,572,865 trade records during this sample period. We
filter the trading records by excluding off-hour trades, trades that happen within the first 15 minutes of the
market open and the last five minutes before the market close, and trades on options that expire within 10
calendar days. These filtering reduces the sample to 1,087,778 trade records, which average about 4,709
trades per day.
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The trade size averages at 65 contracts, with a median of five contracts, a minimum of one contract and
a maximum of 275,000 contracts. The transactions are heavily concentrated at small sizes. In particular,
about 51% of the transactions are “odd lots” (with five or fewer contracts). Figure]] plots the histogram of
the trade size represented in natural logarithms of the number of lots. Even after taking the logs, the trade

size distribution is still heavily skewed to small sizes.

[Figure 1 about here]

Table[ further classifies the option transactions in terms of call and put options and across different
moneyness and maturity regions. Among the 1,087,778 trades, 506,948 of them, or 46.6%, are call options
and 580,830 trades, or 53.4%, are put options. The put option trade sizes average higher than the call option
trade sizes. As a result, the average daily trading volume for the put options at 184,494 |ots represents a

larger percentage (60%) of the total trading volume.

When we classify the option transactions in terms of moneyness, 44.19% of the transactions have strikes
close to the spot, with the delta of options between 37.5% and 62.5%. 41.26% of the transactions are out-
of-the-money (OTM) options with the delta below 37.5% and only 14.55% are in-the-money (ITM) options
with the delta above 62.5%.

Table[d also shows that the majority (79.91%) of the transactions are short term options expiring in less
than two months. The trade direction is slightly imbalanced with 52.06% of trades initiated by buyersin the
entire sample. Call options are more balanced with 49.32% trades being buyer-initiated and put options are
more imbalanced with 54.46% trades being buyer-initiated. The proportions in tabl€] are computed with
number of trades.

[Table[ about here.]

3.2. Main variables

We calculate returns and volatilities of the underlying security QQQQ as our dependent variables. Raw
returns are calculated asthe difference between the log mid quotes of the National Best Bid and Ask (NBBO)
at the beginning and the end of each one minute interval during trading hours. TabléZ reports that the mean
of the one-minute raw return is -0.006 basis points (bp). Bid ask bounce of the stock price can cloud the

validity of our findings through serial correlations. Following Easley, O’ Hara, and Srinivas (1998), we use
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MA (1) process to remove the autocorrelation of the returns for each trading day. We name the residual of
MA(1) excess return and use that as the dependent variable to examine the impact of ASBP. The first order
serial correlation inthe return seriesis reduced from -0.013 to -0.007 after performing the MA (1) procedure.

The mean of one minute excess return is-0.002 bp in our sample with standard deviation of 4.516 bp.

To measure stock return volatility, we calculate the standard deviation of second by second returns
within each one-minute observation interval and standardize it to annua volatility assuming the stock price
follows alog normal process. Tablel2 reports that the mean of this annualized volatility is 3.035%. We find
using other volatility measures such as (high-low)/average and option implied volatility does not change our
results qual itatively@

[Table[2 about here.]

Table[Z also reports the mean and standard deviation of each aggregate option order flow we construct
in section[2l We use three month implied volatility from Bloomberg and assume O interest rate and dividend
rate to compute the B-S-M Greeks. The mean aggregate stock buy pressures are generally negative and
the mean aggregate volatility buy pressures are al positive although none is statistically different from 0.
The consistency in order flow directions shows the aggregate option buy pressures are not illy measured.
We apply Augmented Dickey and Fuller (1979) test for all buy pressure variables with lags of 20. Not
surprisingly, the p-values are all less than 0.001, strongly rejecting the null hypothesis of non-stationarity.

4. Comparative analysis

4.1. Aggregate stock buy pressures

Aninformed trader can trade options to profit from directional movement of the underlying security price.
If our aggregate stock buy pressures are correctly constructed, they are supposed to be positively correlated
with the excess returns. Easley, O'Hara, and Srinivas (1998) find option volumes are informative about
stock prices. However, they find a significantly negative coefficient of the contemporaneous five-minute
option volume instead of the hypothesized positive one. We report the correlations of excess returns and
ASBPin table[3 Contradicting their result, we find that all contemporaneous correlations are positive and

significant (at 1% level) as expected in our sample as shown in panel A of tabld3, supporting the existence

4Results for alternative volatility measures are available upon request.
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of information based trading in options market.
[Table[3 about here.]

The second result emerging from Panel A of table[3 is that using log(volume) always outperforms the
other aggregations across trade size regardless of what method is used to aggregate across strikes and matu-
rities. Between number of trades and volume, number of trades has twice to three times the coefficients of
those of volume except for one pairand delta. per_dollar, which generate close coefficients for both aggre-

gation methods.

Among the aggregation methods across strikes and maturities, delta per_ shareoutperforms the rest with
equal _weightingand our proposed HHWclosely tied in the second place. The differences between these three
are small. delta_per_dollarcomes after with a larger gap and one pairalways has the smallest coefficient.
A surprising result is the underperformance of delta. per_dollarto delta per sharebecause the former is ex-
pected to capture the leverage effect which should be one of the main reasons for information trading in
options market. One possible explanation is that delta. per_ dollaraggregation overstates the effect of penny
trades of deeply OTM options and ignores the liquidity effect which is more important. The largest coeffi-
cient (0.411) belongs to ASBP from delta_ per_shareand log(volume). And the smallest coefficient (0.050)

belongs to ASBP from one_pairand number of trades.

To show the results are not driven by our choice of the observation horizon at one minute, we perform
the same analysis for different observation horizons ranging from 5 seconds to 15 minutes. The contempora-
neous correlations are plotted in figurel2l Generally we see that the contemporaneous correlations increase
in the observation length and the main results from Panel A of tabl€3 holds in different observation lengths,
i.e. delta_per_shareand log(volume) outperform the other aggregation methods in their categories. Figuré?
also shows that different aggregation methods across strikes and maturities converge to a great extent under
log(volume) aggregation except for one pair. It seems the contemporaneous correlation is more sensitive to

the aggregation method across trade size than the aggregation method across strikes and maturities.

[Figure 2 about here]

Now let us turn to forecasting the excess returns with aggregate stock buy pressures. Panel B of table3
reports the correlations of the excess returns and one period lagged (t-1) ASBP. All significant correlations

are positive, consistent with our hypothesize. Comparing the aggregation methods across sizes first, we
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can see that number of trades is not informative about future returns as the correlations are all insignificant.
Between the other two methods, volume weighting seems to lead the race. Four out of five measures (except
delta_per_dollar) aggregated from option volume generate significant and positive correlations to future
excess returns although the correlations are much smaller than corresponding contemporaneous correlations.
Log(volume) weighting generates two significant correlations for ASBP of one pair (statistically significant

at 1%) and HHW(statistically significant at 10%).

Among the aggregation methods across strikes and maturities, HHWand one pairhave two significant
correlations of ASBP aggregated from volume and log(volume). delta. per. shareand equal weightinghave
one significant correlation of ASBP aggregated from volume only. And delta per_ dollar ASBP again does
not have any significant correlation with the excess returns. Volume weighted ASBP aggregated with both

HHWand one_pairhave the largest correlation of 0.011 with succeeding one-minute excess returns.

Figure 3 plots the correlations in different observation horizons. At short-term observation horizons
(less than five minutes), we find the correlation pattern is consistent with the results documented above.
However, at longer horizons, the aggregate stock buy pressures give very different predictions and some
are even negatively correlated with future excess returns. Although not reported, the correlations generally

become statistically insignificant after the observation length increases to five minutes.

[Figure 3 about here]

What can we say about the effectiveness of these aggregate stock buy pressures then? First of all, among
aggregation methods across strikes and maturities, our proposed HHWA SBP persistently generates large and
significant correlations regardless of what method is used to aggregates across sizes. delta per shareand
equal _weightingASBP also have comparable contemporaneous correlations. However, they do not have
the same predictability as HHWASBP. one_pairworks well in predicting future excess returns. However,
this extreme filter discards too much information compared to other aggregations and does not revea the
contemporaneous impact on the stock market as well. Considering both contemporaneous and forecasting
relations, we find our HHWmethod should be preferred to the other aggregation methods. Second, among
aggregation methods across sizes, log(volume) works best in contemporaneous correlations and volume
weighting excels in forecasting. Which aggregation to choose then depends on the nature of particular

research questions.
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4.2. Aggregate volatility buy pressures

Volatility information is also profitable in the options market and we expect the aggregate volatility buy
pressures constructed in section[2/to be positively correlated to the volatilities of underlying returns. Similar
to the test of ASBP, we report both contemporaneous and forecasting correlations of AVBP with volatilities
in table[l

[Table[ about here.]

Panel A of table[ reports the contemporaneous correlations between AVBP and underlying volatilities.
Comparing aggregation methods across strikes and maturities, HHWAV BP always have positive and signif-
icant correlations regardless of what method is used to aggregate across sizes and the correlations are gener-
ally larger than the other correlations in the same row. one pair, equal weighting, and vega per. shareAVBP
each has two out of three correlations being positive and significant. vega per. dollar AVBP, however, has
only one negative and significant correlation with contemporaneous volatilities. Comparing correlations
across rows, log(volume) and volume weighted AVBP each has four out of five correlations being sig-
nificant while only two out of five AVBP constructed from number of trades are positive. Log(volume)
weighted AVBP also has larger correlations than the other two methods except in the third column where
vega_per_shareisused. Thelargest correlation (0.018) in panel A belongs to HHWand | og(volume) weighted
AVBP. Figured plots the correlations in different observation horizons and we can see that the result is not
sensitive to the choice of observation horizon. The results here lead usto believe that HHWand |og(volume)

weighted AVBP isthe right way to extract the contemporaneous volatility information in the options market.

[Figure 4 about here]

Next we examine the predictability of AVBP in panel B of tableld. Across rows, number of trades does
not generate informative AVBP about future volatilities. Both volume and log(volume) weighted AVBP
have some positive and significant correlations with future volatilities but log(volume) weighted AVBP
always has larger and more significant correlations. Across columns, HHWAVBP has the largest and most
significant correlations. one_pairand equal_ weightingAV BP generate positive and significant correlations
but the magnitude is smaller. vega per_shareAVBP does not generate significant correlation for volume
weighting and vega_per_dollar AVBP is not informative. Figurel plots the forecasting correlations of AVBP

in different observation horizons. Itisclear that the result is not sensitive to the choice of observation horizon
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except that one_pairvolume weighted AV BP loses forecasting power once the observation horizons reaches
5 minutes. The evidence presented here shows that HHWand log(volume) weighted AV BP has the greatest
forecasting power of future volatilities. The patterns of contemporaneous and forecasting relations of AVBP
and volatilities are consistent. Therefore, we are confident to say that when analyzing the impact of options

trading on the volatility of stock returns, HHWand log(volume) weighted AV BP should be preferred to other
aggregations.

[Figure 5 about here]

As a short summary of the results produced so far, we examine the correlations between aggregate op-
tion order flows and the underlying returns and volatilities and find that our proposed HHWASBP and
HHWAVBP are informative about both contemporaneous and future market movement. Log(volume)
weighting generally outperforms volume and number of trades in constructing informative option buy pres-
sures except that volume weighted ASBP better predicts future returns than log(volume) weighted ASVP.

The results are robust to alternative observation horizons.

4.3. Robustness

The significant correlations reported in previous subsections are often small and one may worry that the im-
pact of abnormal data points can be huge. In this subsection, we repeat the analysis above using winsorized
variables to remove the impact of outliers. The treatment should improve the performance of number of
trades and volume weighted buy pressures more than that of log(volume) weighted buy pressures because
the logarithm mechanically smoothes the data already. We winsorize all dependent and independent vari-
ables at top and bottom 0.1% level and report the results in tablel5. By comparing the results in panel A
or table[§ and panel A of table[3, we find that winsorizing increases the contemporaneous correlations of
ASBP weighted with number of trades and volume, but not much of ASBP weighted with log(volume), as
expected. However, log(volume) weighting still generates the largest correlations. Across columns, HHW,
delta_per_share, equal_weightingA SBP are more informative than one pairand delta per. dollar ASBP, con-
sistent with previous results Panel B of tablel5 shows that the winsorizing effect is not clear on forecasting
excess returns. The correlations slightly decrease in winsorized sample for most aggregation methods but

surprisingly HHWand volume weighted ASBP, the previously most informative aggregation, gains dightly
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more correlation, indicating that data smoothing may enhance only the predictability of accurately aggre-
gated option buy pressures. Panel C and D of tablel5 show that in the winsorized sample, AVBP has larger
correlations to both contemporaneous and future volatilities for all aggregation methods. The order of mag-
nitude of univariate correlations, however, remains the same, i.e. HHWand log(volume) weighted AVBP
always has the largest correlations. The results presented here clearly show that our conclusion about the
effectiveness of aggregation methods is not driven by the extreme observations.

[Table about here.]

4.4. Timeseriesregression

We have shown the importance of aggregation methods in extracting information content from option trans-
actions. In this subsection, we run time series regressions of equation[@ and equation [7 to further test the
effectiveness of aggregate option buy pressures in the multivariate setup. For reporting simplicity, we only
report the results for our proposed HHWand log(volume) weighted aggregate option buy pressures because
this aggregation method has shown great consistency and efficiency in previous discussions. Using other
aggregating methods generates weaker coefficients in the regression results and the significant coefficients
appear at different time lags. However, the general pattern is consistent and will not change our conclusion.
In the rest of the paper, we will also stick to this aggregation method for time series analysisif not otherwise

specified.

We report the estimation results of equation[@ and equation[7 in table[@ Contemporaneous ASBP is
strongly correlated to excess returns with a coefficient of 0.318. ASBPlags, though, are negatively correlated
to excess returns. For example, thefirst lag ASBP has a coefficient of -0.079 while the univariate correlation
of lag ASBP and excess returns is significantly positive. In fact, the first five lags are al negative and
significant at 1% level. We report up to the tenth lag because longer lags become statistically insignificant.
The result demonstrates that the contemporaneous impact of ASBP dominates lagged ASBP. The volatility
regression result shows that all AVBP terms have positive and significant correlations. The magnitude of the
coefficient does not decrease sharply in lags, suggesting the impact of AVBP lasts longer in the underlying
market than ASBP. Again, the results clearly show that option transactions have important information about
the underlying market.

[Table[@ about here.]
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5. Aggregate option buy pressures under changing market conditions

5.1. Extreme option buy pressures

We have documented that option trading is informative about the underlying market in previous sections.
The relationships, however, may not be linear. On one hand, large option trading imbalance may imply sig-
nificant new information arriving at the market, increasing investors' awareness and hence the correlations
of aggregate option buy pressures and the movement in the underlying market. On the other hand, large
option trading imbalance is often a result of trades at large sizes. If such trades have been negotiated in
the upstairs market before reporting to the exchange, the aggregate option buy pressures will become less
informative in those periods. The overall effect is thus unclear. In this subsection, we analyze the tails of
the aggregate option buy pressures to see if the underlying market sensitivity responds to the strength of
aggregate option buy pressures.

For each aggregate option buy pressure, we construct a subsample of observations with top and bottom
1% values and repeat the same univariate analysis in the previous section. The results are reported in
table[/]l Panel A shows that the contemporaneous correlation with excess returns almost doubles for all
ASBP, indicating that large imbalance in option trading does attract more attention across markets. In fact,
the contemporaneous correlations of log(volume) weighted ASBP and excess returns can reach 0.75. Panel
B shows that the correlations of ASBP and future excess returns also increase significantly although the
statistical significance dightly decrease. For example, HHWand volume weighted ASBP has a correlation
of 0.062 to future excess returns, compared to 0.011 in the full sample. The results clearly show that the
options market becomes moreinformative about the underlying stock price in the presence of large aggregate
stock buy pressures. However, extreme AVBP are no longer significantly correlated with stock volatilities
as shown in panel C and D. Although the correlations also increase in magnitude, the only significant
contemporaneous correlations are of HHW(0.043) and one pair(0.041) AVBP weighted with log(volume)
while no AVBP is significantly correlated with future volatilities. It seems that extreme aggregate option
buy pressures contribute more in price discovery than in volatility discovery.

[Table[7 about here.]

Alternatively, we run the following time series regressions in the full sample to study the informativeness
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of extreme aggregate buy pressures.

k k k
Ret; = 00+ Y oLk ASBR i+ Y 02D1+ Y 03(Dly+ ASBR ) + &, (8)
i=0 i=0 i=0

and

j j k
Vol = B0+ Y BLAVBR_j+ Y B2D2+ Y B3k(D2+ ASBR i) + &, (9)
i=0 i=0 =0

i
where D1 and D2 are dummy variables equal to 1 for periods with the top or bottom 1% value of ASBP
and AVBP respectively, and O otherwise. The coefficients of the interaction terms, a3 and B3 will then
illustrate the power of aggregate option buy pressures in the tails. For reporting simplicity, we again choose
HHWand log(volume) weighted aggregate buy pressures and report the results of regression model with
two lags in table[8 The surprising result is that a3 ¢ is -0.102 with t-value of -22.11, indicating that
the contemporaneous correlation between ASBP and excess returns becomes weaker in the tails of ASBP
controlled for lag ASBP. However, the predicting power of the tails of ASBPis strong. Both o3_1 (0.044)

and o3> (0.024) are positive and significant at 1% level. The ASBP terms keep the same signs, i.e. the
contemporaneous ASBP has a positive coefficient and lag ASBP have negative coefficients. Unlike ASBP,
however, AVBP becomes less informative in the tails. B3_g is negative but insignificant and $3_; and

B3, are significantly negative, indicating that the predicting power of AVBP decreases when the options
market experiences large volatility buy pressures.

[Table[8 about here.]

5.2. Extreme option trading volume

Holowczak, Simaan, and Wu (2006)) document that the options market becomes more informative when
option trading is active. Intuitively, if uninformed trading intention does not correlate with trade occurrence,
large trading volume is likely to be due to active informed trading. And we should expect the aggregate
option buy pressures to be more informative in such periods. In this subsection, we repeat our univariate
analysis in a subsample of observations with top 1% option trading volumes and report the results in tabl €9,

Panel A shows that the contemporaneous correlations of ASBP and excess returns significantly increase
during periods when options are actively traded. However, the increment in magnitude is less than in panel
A of table[dexcept for ASBP weighted with number of trades. The maximum contemporaneous correlation

of ASBP and excess returnsis around 0.5. The correlations of ASBP and future excess returns also increase
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athough log(volume) weighted ASBP lose forecasting power as shown in panel B. Panel C and D show that
the correlations of AVBP and volatilities also increase when the options market is active. However, only
log(volume) weighted AVBP remain significant. These results demonstrate that option trading intensity
seems to increase only the price information about the underlying stock.

[Table[@ about here]

We a'so run the following time series regressions in the full sample:

k k k
Ret; = 00+ Y, 0Lk ASBP_+ Y, 02Dy + Y, 03¢ (Dic x ASBR ) + &, (10)
i=0 i=0 i=0
and _ _
J J k
Vol = 0+ Y PLAVBR_j+ > B2Dx+ Y B3k(Dk* ASBR k) + &, (11)
i=0 i=0 i=0

where D is a dummy variable equal to 1 when the total option trading volume reaches the top 1%, and
0 otherwise. If the option trading volume is irrelevant to the information content, we would expect the
coefficients of the interaction terms, o3 and B3 to be insignificant. Table[IQ reports the results of these
regressions. The coefficient of ASBR_g* D¢_g is -0.152 with t-value of -20.30, indicating that the high
trading volume reduces the contemporaneous impact of ASBP. However, The predicting power of ASBP
increases as the lag interaction terms have significant coefficients of 0.063 (t-value=8.43) and 0.014 (t-
value=1.94). Theinformativeness of AVBP seemsto be uncorrelated with the options volume as none of the
interaction terms has significant coefficient.

[Table[10 about here.]

5.3. Shock in aggregate option buy pressures

Other than the level effect shown in the previous discussion, we are aso interested in the marginal effect of
aggregate option buy pressures. We want to test if the shocks in aggregate option buy pressures can be used

as a better indicator for the information content in the options market.

5.3.1. First order difference of buy pressures

To measure the shocks in aggregate option buy pressures, we consider the first order difference of each

ASBP and AVBP time series. We repeat the univariate correlation analysis with the first order difference
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terms instead of level terms and report the results in tablelldl The strong statistical correlations in panel A
and panel B clearly show that the shocks in ASBP has information about the price movement. However, the
shocks in AVBP do not seem to be informative about the volatility movement.

[Table[1T] about here.]

We then run the following time series regressions and report results in tabld12t

k
Ret; = 00+ > ol dASBR_+ &, (12)
i—0

and

j
Voly = B0+ > BLAAVBR_j +&, (13)
i=0

where dASBP, _ and dAVBP,_k denote the first order differences of ASBP and AVBP at lag k, respectively.
The results of the return regression are consistent with the univariate analysis. dASBP is informative about
excess returns up to 10 minutes later and the magnitude of the coefficients do not decrease sharply with
time lags. The coefficient of dASBR _5 is0.100, one third of the coefficient of the contemporaneous shock,
dASBR,_. The volatility regression sheds some light on the impact of shocks in AVBP. Consistent with
the univariate analysis, contemporaneous and lag 1 dAVBP are not informative about stock volatilities.
However, lag 2 to lag 5 dAVBP have positive and significant coefficients, indicating shocks in AVBP aso
contain volatility information but the underlying market takes more time to respond.

[Table[12 about here.]

5.3.2. Expected and residual buy pressures

We use an alternative way to measure the expected aggregate option buy pressures and shocks. We per-
form exponential smoothing for each ASBP and AVBP time series with smoothing parameter of 0.06. The
smoothing parameter israndomly chosen at areasonable value and does not generate conflicting results with
aternative smoothing parameters. We use the fitted values as the expected aggregate option buy pressures
and the residuals as shocks.

[Table[13 about here.]

Table[13 shows the univariate correlations of expected aggregate buy pressures and the underlying mar-
ket movement. It is noted that the expected ASBP is negatively correlated with both contemporaneous
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and one-period ahead excess returns and the expected AVBP is positively correlated with volatilities. The
univariate correlations are significant for amost all aggregation methods. Tabl€e14] shows the univariate
correlations of shocks in aggregate buy pressures and the underlying market movement. ASBP shocks
are positively correlated with excess returns while AV BP shocks are negatively correlated with volatilities.
Comparing these two tables, we find that the overall market impact mainly comes from shocks of ASBP and
the expected AVBP.

[Table[14 about here.]

We also run the time series regressions on expected and residual aggregate option buy pressures sepa-
rately and report the results in tablel15l Panel A shows that the expected ASBP has a positive and significant
contemporaneous coefficient of 0.112. The lag expected ASBP has only negative and significant coefficients
atlag 1, 6, and 9. The expected AVBP also has a positive and significant contemporaneous coefficient of
0.099. The lag expected AVBP has only one positive and significant coefficient at lag 10. Panel B shows
much of the market impact of ASBP comes from shocks. The contemporaneous ASBP shock has a coef-
ficient of 0.312. Lag ASBP shocks are also significant at lag 1, 2, 3, 7, and 9 although the sign reverses
severa times. AVBP shocks, on the other hand, are not so informative as the only significant coefficient
(-0.003) in the regression belongs to lag 10 AV BP shock.

[Table[15 about here]

From the analysis in this subsection, we find that shocks in ASBP are quite informative about the stock

price but shocks in AVBP do not contain much information about volatilities.

5.4. Intra-day dynamics

The intra-day dynamic is important once we enter the high frequency world. In this subsection, we divide
the whole sample into thirteen 30-minute subsamples to examine the intra-day dynamics of links between
aggregate option buy pressures and the underlying market. Since we exclude the first 15 and last 5 trading
minutes from our sample, our first subsample contains trades in only 15 minutes from 9:45:00 to 9:59:59
and the thirteenth subsample contains trades in 25 minutes from 15:30:00 to 15:54:59. Tabld18 shows that
even with trimmed data at the market open and close, the options market is more active in the beginning
and the end than the rest of the day in terms of both number of trades and volume. The first 30-minute

subsample has 582 trades per day on average and the total volume reaches an average of 45,258 contracts.
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Both number of trades and volume present a clear U-shape pattern along the subsamples with the bottom at
the eighth subsample (13:00:00-13:29:59). Toward the end of the day, the options market becomes active
again. However, the average trade size before the market close is 54.4 contracts, less than 77.8 contracts in

market opening, indicating large trades are more likely to happen in the morning.

Table [16 also reports the univariate correlations between aggregate option buy pressures and excess
returns and volatilities. The aggregate option buy pressures are constructed from HHWand log(volume)
weighting except for the ASBP to forecast excess returns, where volume weighting is used instead of
log(volume) because volume weighting has the largest univariate forecasting correlations. Tablé18 shows
the contemporaneous ASBP is always positively and significantly correlated with excess returns and the
correlation is the strongest in the market open. However, ASBP cannot predict excess returns in the market
open. The predictability then increases gradually and peaks at noon (12:30:00-12:59:59). In the afternoon,
ASBP again becomes less informative about future returns but regains predictability in the last half hour
before the market close. The correlation between AVBP and volatilities is more complex. The contempora
neous correlation is the strongest in the 4th, 11th and 12th periods. It is aso significant in the market open
and around noon. However, for the rest of the day including the market close, AVBP does not seem to have
contemporaneous impact on stock volatilities. The forecasting power of AVBP becomes significant from
11:30:00 to 12:29:59, and from 13:30:00 to 15:29:59 while for the rest of the day including the market open
and close, AVBP cannot predict future volatilities.

[Table[18 about here.]

5.5. Exploring predictability of aggregate option buy pressures

We have focused on both contemporaneous impact and forecasting power of aggregate option buy pressures
in previous sections. In this subsection, we further explore the predictability of aggregate option buy pres-
sures by examining different aggregating and forecasting horizons. At every second t in our sample, we
construct overlapping aggregate option buy pressures up to k seconds ago (t-k) and examine the correlations
between these option buy pressures and the following j seconds (t+j) returns and volatilities. We choose
HHWand volume weighted ASBP to forecast returns and HHWand log(volume) weighted AVBP to forecast
volatilities. The results are reported in tablell7l Panel A shows that ASBP has greater predicting power in
short horizons. t-5 ASBP and t+5 excess returns have the largest correlation of 0.012, statistically significant
at 1% level. The correlation decreases in both aggregating horizon and forecasting horizon. Using ASBP ag-
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gregated in less than one minute, we are able to predict excess returns up to five minutes. For example, t-10
ASBP has a significant correlation of 0.004 to t+300 returns. On the contrary, AVBP has greater predicting
power in long horizons as shown in panel B. The forecasting correlation increases amost monotonically in
both aggregating horizon and forecasting horizon. t-300 AV BP has significant correlation of 0.040 to t+120
and t+300 volatilities. In shorter aggregating or forecasting horizons, AVBP till has significant correlations
with future volatilities although the magnitude is smaller.

[Table[I7 about here]

6. Conclusion

In this paper, we have shown that option trading contains significant amount of information about the under-
lying stock market. In particular, aggregate stock buy pressures are positively correlated with both contem-
poraneous and future excess stock returns, and aggregate volatility buy pressures are positively correlated
with both contemporaneous and future volatilities. To efficiently extract such information, however, one
needs to rely on good aggregating methods across different option contracts and trades. We summarize our

findings from the comparative anaysis as follows:

1. Both trade occurrence and size are important considerations when aggregating option order flows for
the same option contract. Generally log(volume) weighting is abetter choice than number of trades or
volume because log(volume) nests the effect of the other two methods. However, when we measure

ASBPto forecast excess returns, volume weighting generates more significant results.

2. When aggregating option order flows across strikes and maturities, our proposed HHWgenerates more
informative aggregate buy pressures than the other aggregations. Nevertheless, one should still be
able to extract significant amount of information about the underlying market using Greek per share
or equal _weightingaggregation. one pairand Greek per_dollar are less efficient though as they quite

often fail generating informative aggregate option buy pressures.

We also perform conditional time series regressions and subsample analysis with the most efficient
aggregation methods. Our results demonstrate that the options market becomes more informative about
price discovery when experiencing large trading volume or large ASBP while the volatility information

content is insensitive to trading intensity. Shocks in ASBP are more informative about the stock price than
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expected ASBP while shocks in AVBP do not seem to provide extra information. More importantly, we
show that the forecasting power of ASBP decreases in both aggregating and forecasting horizons while the
forecasting power of AVBP increases in both aggregating and forecasting horizons. We are able to predict
up to five minutes excess returns using ASBP constructed in less than one minute. And we can also predict
stock volatilities up to five minutes. These findings confirm our hypothesis of the existence of information
trading in the options market. Our results can provide useful guidance for empirical research on the options

market microstructure.
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Table 1

Data Description

The sampleincludes al option trades expiring in more than 10 calendar days with underlying ticker ' QQQQ’
recorded by the Option Price Reporting Authority (OPRA) between 9:45:00 am and 3:54:59 pm EST from
02/01/2006 to 12/29/2006. Percentages are computed based on the number of trades. abs(delta) is the
absolute value of Black-Scholes (1973) model implied delta computed with O interest rate and dividend
rate. Near-maturity options are those expiring within 60 calendar days. The trades are classified into buy,
sell, and unclassified categories following Lee and Ready (1991) without reporting lag.

Statistics All options Cdls Puts
Number of trades 1,087,778 506,948 580,830
Mean daily number of trades 4,709 2,195 2,514
Mean trade size 65 56 73
Std trade size 694 729 662
Median trade size 5 5 6
Mean daily volume 307,170 122,676 184,494

Percentage of near-the-money

0.375 <— abs(delta) <— 0.625 44.19 4492 4355
Percentage of out-of-the-money

abs(delta) < 0.375 37.23 34.81 39.34
Percentage of near-maturity 79.91 80.25 79.62
Percentage of buy 52.06 49.32 54.46
Percentage of unclassified 0.87 1.03 0.74
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Table 6

Time Series Regression Results

This table reports the regression results of equation[6 and equation [Zl Excess returns are the residuals
of MA(1) on one-minute raw returns measured by basis points. Volatilities are the annualized standard
deviation of second-by-second returns in each one-minute observation period measured by percentage. The
ASBP and AVBP are constructed from HHWand log(volume) weighting detailed in sectionl2l

Dependent: Excess returns Dependent: Volatilities

Coefficient of ASBP at lag Estimate t-value Coeffcient of AVBPatlag Estimate t-value

0 0.318 129.03 0 0.006  3.66
1 -0.079 -31.11 1 0.007 435
2 -0.026 -10.36 2 0.008 5.30
3 -0.019 -7.40 3 0.005 312
4 -0.011 -4.21 4 0.005 3.17
5 -0.008 -3.02 5 0.004 238
6 -0.003 -1.14 6 0.004 283
7 -0.012 -4.74 7 0004 235
8 -0.004 -1.44 8 0.004 244
9 0.002 0.67 9 0.004 2.68
10 -0.007 -2.83 10 0.003 2.00
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Table 8

Tails of Aggregate Option Buy Pressures and The Underlying Market: Regression Results

This table reports the regression results of equation[8 and equation @ Excess returns are the residuals
of MA(1) on one-minute raw returns measured by basis points. Volatilities are the annualized standard
deviation of second-by-second returns in each one-minute observation period measured by percentage. The
ASBP and AVBP are constructed from HHWand log(volume) weighting detailed in sectionl2l

Dependent: Excess returns Dependent: Volatilities
Coefficient Estimate t-value Coefficient Estimate t-value
intercept 0.046 3.20 intercept 2.961 443.34
ASBR, 0.372 107.37 AVBR 0.006 2.77
DL -0.188 -1.85 D2 1.296 27.81
ASBP, x D1 -0.102 -2211  AVBR xD2 -0.002 -0.73
ASBR,_1 -0.108 -30.26 AVBR_; 0.010 5.02
D11 0.349 3.40 D2 1 0.745 15.89
ASBP,_;1*xD1; 3 0.044 950 AVBR_;xD2 3 -0.007 -2.20
ASBP,_, -0.050 -1457  AVBR_; 0.013 6.34
DL > 0.059 0.58 D2, 0.726 15.59
ASBP, D1 » 0.024 520 AVBR _ ,xD2 -0.008 -2.68
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Table 10

Option Volume and Aggregate Buy Pressures. Regression Results

This table reports the regression results of equation[I0 and equation 11l Excess returns are the residuals
of MA(1) on one-minute raw returns measured by basis points. Volatilities are the annualized standard
deviation of second-by-second returns in each one-minute observation period measured by percentage. The
ASBP and AVBP are constructed from HHWand log(volume) weighting detailed in sectionl2l

Dependent: Excess returns Dependent: Volatilities
Coefficient Estimate t-value Coefficient Estimate t-value
intercept 0.046 3.25 intercept 3.002 453.16
ASBR 0.334 129.94 AVBR 0.005 3.10
Dy -0.109 076 Dy 0.770 11.57
ASBPR, * Dy -0.152 -20.30 AVBR x Dy 0.005 1.13
ASBP;_1 -0.092 -34.51 A/BR_1 0.007 441
Di-1 0.055 0.38 Di_1 0.398 5.96
AS3Pt_1* Dt—l 0.063 8.43 AVBPt_l* Dt—l 0.001 0.20
ASBPR, _» -0.039 -15.30 AVBR_; 0.010 5.99
Di_» 0.269 1.89 Di_» 0.369 5.56
ASBP,_,*D;_» 0.014 194  A/BR %D 2 -0.004 -0.75
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Table 12

First Order Difference of Aggregate Buy Pressures. Regression Results

This table reports the regression results of equation[I2 and equation[13. Excess returns are the residuals
of MA(1) on one-minute raw returns measured by basis points. Volatilities are the annualized standard
deviation of second-by-second returns in each one-minute observation period measured by percentage. The
ASBP and AVBP are constructed from HHWand log(volume) weighting detailed in sectionl2l

Dependent: Excess returns Dependent: Volatilities

Coefficient of dJASBP at lag Estimate t-value Coeffcient of JAVBP at lag Estimate t-value

0 0.300 125.12 0 0.000 031
1 0208 7231 1 0.002 1.08
2 0.169 54.03 2 0.006 242
3 0.139 4230 3 0.006 228
4 0.118 34.85 4 0.006 2.26
5 0.100 29.34 5 0005 184
6 0.087 25.75 6 0004 1.74
7 0.064 19.62 7 0.003 1.37
8 0.050 15.99 8 0.002 1.02
9 0.040 14.15 9 0.001 0.74
10 0.022 9.09 10 -0.001 -0.42
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Table 15

Expected and Residual Aggregate Buy Pressures: Regression Results

This table reports the regression results of equation(@ and equation[7] using the fitted and residual aggregate
option buy pressures as independent variables separately. Excess returns are the residuals of MA(1) on
one-minute raw returns measured by basis points. Volatilities are the annualized standard deviation of
second-by-second returns in each one-minute observation period measured by percentage. The ASBP and
AVBP are constructed from HHWand log(volume) weighting detailed in sectionZl

Panel A: Expected aggregate option buy pressures

Dependent: Excess returns Dependent: Volatilities
Coefficient of ASBP at lag Estimate t-value Coeffcient of AVBPatlag Estimate t-value
0 0112 249 0 0.099 379
1 -0.151 -214 1 0.031 084
2 -0.059 -0.83 2 -0.051 -1.39
3 0.049 0.69 3 0.002 0.05
4 0.089 1.26 4 -0.018 -0.50
5 0.005 0.07 5 0011 0.30
6 -0.199 -2.82 6 -0.011 -0.30
7 0.104 148 7 0.000 0.00
8 0120 171 8 0.003 0.08
9 -0.171  -2.45 9 -0.022 -0.61
10 0.075 1.70 10 0.102 3.98

Panel B: Shocks in aggregate option buy pressures

Dependent: Excess returns Dependent: Volatilities
Coefficient of ASBP at lag Estimate t-value Coeffcient of AVBPatlag Estimate t-value
0 0.312 128.03 0 0.000 -0.16
1 -0.065 -25.78 1 0.001 0.64
2 -0.016 -6.50 2 0.003 1.78
3 -0.010 -4.12 3 0.000 -0.24
4 -0.003 -1.28 4 0.000 -0.20
5 -0.001 -0.27 5 -0.002 -1.00
6 0.004 153 6 -0.001 -0.63
7 -0.005 -2.19 7 -0.002 -1.16
8 0.002 0.98 8 -0.002 -1.22
9 0.008 3.24 9 -0.002 -1.19
10 0.001 052 10 -0.003 -2.08




Table 16

Intra-day Dynamics

This table reports the correlations between aggregate option buy pressures and underlying excess returns
and volatilities in 30-minute subsamples. Option buy pressures are aggregated with our proposed HHW
method across strikes and maturities and with log(volume) weighting across trade sizes with the exception
that ASBP is aggregated with volume weighting for forecasting t+1 excess returns. Superscription a, b, and
c represent significance level at 1%, 5%, and 10%, respectively.

Subsample Average Number of Trades Average Volume ASBP AVBP
t+Oret t+lret t+Ovol t+1vol
9:45:00-9:59:59 582 45258 0.42# 0.009 0.030° 0.005
10:00:00-10:29:59 546 42015 0.43# 0.011 -0.010 -0.008
10:30:00-10:59:59 432 29429 0.382 0.027° -0.005 0.006
11:00:00-11:29:59 380 24890 0.38¢* 0.021° 0.036* 0.014
11:30:00-11:59:59 326 19632 0.3668¢ 0.004 0.018 0.028°
12:00:00-12:29:59 311 17372 0.35% 0.020° 0.010 0.03C°
12:30:00-12:59:59 296 18047 0.372 0.049% 0.008 0.001
13:00:00-13:29:59 287 17444 0.365' -0.024> 0.022° 0.017
13:30:00-13:59:59 299 19028 0.377 0.030° 0.027° 0.0422
14:00:00-14:29:59 353 28524 0.409* -0.002 0.002 0.021°
14:30:00-14:59:59 373 21287 0.3768 0.018 0.034* 0.0412
15:00:00-15:29:59 381 23299 0.359% -0.010 0.0422 0.0372
15:30:00-15:54:59 520 28290 0.372 0.035* 0.010 0.009
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Table 17

Predictability of Aggregate Option Buy Pressures Over Different Horizons

This table reports the correlations between overlapping aggregate option buy pressures and underlying re-
turns and volatilities. Aggregate option buy pressures are measured at each second during sample hours.
HHW and volume weighted ASBP is used to forecast excess returns and HHW and log(volume) weighted
AVBP s used to forecast volatilities. Superscription a, b, and ¢ represent significance level at 1%, 5%, and
10%, respectively.

Panel A: Forecasting returns with ASBP
t+5Sret t+ 10ret t+ 30ret t + 60ret t+ 120ret t + 300ret

t — Sasbp 0.0122 0.0112 0.009? 0.0072 0.0062 0.0032
t — 10asbp 0.0112 0.0112 0.009? 0.008? 0.006% 0.0042
t — 30asbp 0.009? 0.009? 0.0102 0.0092 0.0072 0.0032
t — 60asbp 0.0072 0.0082 0.0082 0.008? 0.005% 0.0022
t — 120asbp 0.005% 0.006% 0.006% 0.005% 0.003? 0.001
t — 300asbp 0.003? 0.0032 0.0032 0.0022 0.000 -0.001

Panel B: Forecasting volatilities with AVBP
t 4 5vol t + 10vol t + 30vol t + 60vol t + 120vol t + 300vol

t — 5avbp 0.003? 0.003? 0.0052 0.0062 0.0072 0.0072
t — 10avbp 0.0042 0.0052 0.0072 0.0082 0.0102 0.0102
t — 30avbp 0.008% 0.0102 0.0122 0.0142 0.0172 0.0162
t — 60avbp 0.0112 0.013? 0.0172 0.0212 0.0242 0.0222

t — 120avbp 0.01%2 0.0202 0.0262 0.0292 0.0312 0.0292
t — 300avbp 0.0212 0.0272 0.0342 0.0372 0.0402 0.0402
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Figurel
Histogram of QQQQ option transaction size.

47

14



Figure2
Contempor aneous cor relations between ASBP and excessreturnsover different observation horizons
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This figure plots the contemporaneous correlations between ASBP and underlying excess returns. The
observation window ranges from 5 seconds to 15 minutes.



Figure3
Forecasting excess returns over different observation horizons
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This figure plots the correlations between underlying excess returns and one-period lagged ASBP. The ob-
servation window ranges from 5 seconds to 15 minutes.
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Figure4
Contempor aneous correlations between AVBP and volatilities over different observation horizons
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This figure plots the contemporaneous correlations between AVBP and underlying volatilities. The obser-
vation window ranges from 5 seconds to 15 minutes.
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Figure5
Forecasting volatilities over different observation horizons
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This figure plots the correlations between underlying volatilities and one-period lagged AVBP. The obser-
vation window ranges from 5 seconds to 15 minutes.
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