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Abstract A new scheme to cope with two-stage stochastic optimization prob-
lems uses a risk measure as the objective function of the recourse action, where
the risk measure is defined as the worst-case expected values over a set of con-
strained distributions. This paper develops an approach to deal with the case
where both the first and second stage objective functions are convex linear-
quadratic. It is shown that under a standard set of regularity assumptions, this
two-stage quadratic stochastic optimization problem with measures of risk is
equivalent to a conic optimization problem that can be solved in polynomial
time.

Keywords Conic duality - quadratic programs - risk measures - stochastic
optimization
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1 Introduction

In the two-stage recourse model of stochastic optimization, a vector x € R™
must be selected optimally with respect to the first (current) stage costs and
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constraints as well as certain expected costs and induced constraints associated
with corrective actions available in the second (future) stage. The second stage
costs and constraints depend on the choice of z as well as a random vector
Z:=%(w) € LM (02, F,P) that is not yet realized at stage one. It is convenient
to denote the first and second stage cost functions by fi(x) and fa(x, 2),
respectively, and formulate the two-stage stochastic optimization problem as

(2SS0) min f1(z) + Ep[fo(z, 2)],

where E stands for expectation, P is the joint probability distribution of z.
Implicitly, we assume here that for each feasible solution z € X = dom f; ,
the random variable fa(z,Z) is measurable.

There is no need to assume that Z is continuously distributed or discretely
distributed at this juncture although the mathematical tools of treating these
two types of problems might be different. However, in classical numerical
stochastic optimization it is always assumed that the distribution of P is given,
either in the form of a distribution function or as a complete scenario tree,
for otherwise the value of Ep[fa(x, Z)] is not computable. This requirement is
seriously restrictive since usually only partial statistical information, such as
certain order of moments and the range of support of Z, is available in practice.

Yet, another disadvantage of the (2SSO) model is that the expectation
Ep(-) may not be a good measure for the “risk” of the second stage recourse
action. In many applications, a “coherent” risk measure is much preferred.
Here by “risk measure” we mean a functional that maps a random variable to
a real number that satisfies certain “coherency” requirements. Let ., be the
space of a certain random variable and R be the risk measure. The specific
choice of .7}, depends on the applications, it could be £ [23] or % [3] for
examples. Then we have R : £, — (—o00,+00]. For detailed discussion about
“convex” or “coherent” risk measures and their impact on optimization, see
[17,19,25]. We will provide more details of R in Section 2.1. Nevertheless, a
more reasonable model than (2SSO) is

(RM-28S0)  min fi(z) + R(fa2(z,2)),

where R(-) is a coherent risk measure.

Much of the recent work, for instance, [2,9,11,12,15,16], on computational
methods for solving (RM-2SSO) focus on the linear case although the ultimate
importance of quadratic stochastic programming has been clear in the litera-
ture [21,22,27]. In this work, we aim to develop a new solution scheme for the
case where both f; and fy are convex and quadratic (or where one of them
is linear as a special case). We assume that Z is a continuously distributed
random vector without a known distribution, except that certain information
on its expectation and support is given. We will make these assumptions clear
in Section 2.

The basic problem we would like to address is

1
(P) min §$TC$ +cf'z 4 sup E[yp(z, 2)], over all z € X C R™,
PeP
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where C € S}, ¢ € R", X is a convex polyhedron, and v (z, Z) is the cost of the
second stage recourse problem that depends on (z, Z). Here as usual, T stands
for the transpose, S™ stands for the space of all symmetric n X n matrices
and S is the cone of positive semidefinite symmetric matrices. Moreover, we
suppose a representation

Y(x,z) = sup {wT[h(z) —T(2)z] — 1wTH(z)w} , (1)

weW(z) 2

where w,h(z) € RY,T(z) € RW x R", H(z) € SY¥, and W(2) is a convex
polyhedra. This “quadratic conjugate” format of ¢ is well known to be able to
cover a wide class of constrained recourse problems including the case where
the second stage is a convex quadratic programming problem [21,22]. As ex-
plained in detail in [22], ¥(z, Z) could also be thought of as a penalty for the
violation of the constraints h(Z) — T'(Z)x = 0, while suppcp E[] is a coherent
risk measure for such a penalty.

A basic condition is imposed on the given data. We assume W(z), h(z), T(2)
and H(z) are such that for every z € X the set

argmax U}T zZ)— Zﬂf*le Z)w
e {u1(2) = T()e] ~ 3o H (- | @

is nonempty and bounded. This assumption will make the optimal recourse ac-
tion to exist in the second stage in response to any feasible first stage decision,
which can be made true by a certain “pre-processing” procedure as described
in [20].

The major result in this paper shows that, under a standard set of assump-
tions on the sets P and W(z) and on the functions h(z),T(z) and H(z), the
problem (P) is equivalent to a conic optimization problem that can be solved
in polynomial time. Indeed, this is quite surprising given that the function
¥(x, z) is in general piecewise quadratic in  (and therefore not generally dif-
ferentiable). It also completely eliminates the “curse of dimensionality” that
arises in the traditional algorithms used in stochastic programming. On the
other hand, since the format of the set P that we choose is highly expressive as
demonstrated in [28], the theoretical result is widely applicable. In particular,
a spectrum of statistics could be utilized in “designing” the set P and thus to
create different risk measures. These characteristics reinforce our confidence
in viability of using risk measures in the modeling of stochastic optimization
problems.

2 Structural assumptions on set P and function ¥ (x, z)

2.1 Notations and coherent risk measures

We denote a random quantity, say z, with the tilde sign. Matrices and vectors
are usually represented as upper and lower case letters, respectively. If x is
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a vector, we use the notation x; to denote the ith component of the vector.
Given a regular (i.e. pointed, proper, and with nonempty interior) cone I,
such as the second-order cone or the semidefinite cone, for any two vectors
x,y, the notation x <x y or y = = means y — x € K. The dual cone of K is
denoted by

K" :={y:(y,z) >0,V € K}.

The set Po(RM) represents the space of probability distributions on RM and
Po(RM x RT) represents the space of probability distributions on R™ x RT,
respectively. If Q € Py(RM x RT) is a joint probability distribution of two
random vectors 2 € RM and @ € R7, then [[,Q € Py(RM) denotes the
marginal distribution of Z under Q. We extend this definition to any sets
Q C Po(RM x RT) by setting [], @ = Ugeo{l]. @} Note that there is no
assumption on the dependence among Z;s and ;s — they could be dependent
if they are so in practice.

A risk measure R : %, — (—00, +00] is coherent if it satisfies the following
axioms.

(A1) R(C) = C for all constant C,

(A2) R(I-MDX+IX") < 1-=NR(X)+AR(X’) for A € [0, 1] (“convexity”),
(A3) R(X) < R(X')if X < X’ almost surely (“monotonicity”),

(A4) R(AX) = AR(X) for A > 0 (“positive homogeneity”).

In early literature on coherency [1] it was required to have R(X+C) = R(X)+
C'. It can be shown that this follows automatically by (A1) and (A2) [25]. A
coherent risk measure is necessarily representable by a support function, as
shown in Proposition 2.91 of Follmer and Schied [13] and Rockafellar, Uryasev
and Zabarankin [24]. Therefore, the term suppcp Ept)(z, Z) that appears in
problem (P) is a coherent risk measure of 9 (x, 2).

2.2 Assumptions on the set P

Here we adopt the “distributionally robust” approach of Wiesemann, Kuhn
and Sim [28] (WKS format for short) to define the coherent risk measure R.
That is,

RW(% Z)) ‘= sup EP(¢(Ia 2))

PecP
It is always convenient from the application point of view that we introduce an
auxiliary random vector @ and think of the set P used above is the projection
of aset @ in Po(RM xRT) onto Py(RM). This scheme does not complicates our
analysis in this paper; however, it opens a fertile field of imposing constraints
involving high order moments and absolute deviations of Z through a lifting
procedure, see [28] for details.
The key point of the WKS format is the description of P, which is
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P = HQ, and
_ | Eg[AZ+ Bii] = b,
o= {eemmxmn s G T

where Q represents a joint probability distribution of the random vector (Z, @).
We assume that A € REXN B ¢ REXT p ¢ RE. 2 is the support set of Q
and is defined as

2={(z,u) e RN xR : Ez+ Fu =¢ d}, (3)

where E € REXN F ¢ REXT and K is a proper cone. We moreover assume
that the set {2 has a non-empty interior and is bounded. A more general
definition of P was first appeared in [28] and therefore we call the above set
Q the ambiguity set, since this phrase was used in [28]. This set is closely
connected with the notion of “risk envelope” in the theory of risk measure [3,
13,19].

2.3 Assumptions on h(z),T(2), H(Z) and W(2)

We specify W(Z) := {w : D(Z)w < p(2)} with D(z) € RM x RY, p(z) e RM.
Let us consider the functions h(2),T(2), H(Z), D(Z) and p(2) appearing in
the definition of ). We assume that their dependence on Z is affine. In other
words, we suppose that there exist H,, € SW,T,, € RW x R", h,, € RV,
D,, € RM x RW and p,, € RM for m = 0,1, ..., N such that

H(2) = Y5 _y Humm + Ho, D)= SN Dz + Do,
T(Z) = SN Twim +To, and
h’(é) = 2717\/;:1 RnZm + ho; p(i) = 22:1 PmZm + Po-

In addition we need assume H(Z) > 0 a.e. although H,, may not be positive
semidefinite for some of the indices m. Overall, these assumptions are called
the affine decision rule, which has been used first by Ben-Tal and Nemirovski
[4] and subsequently used in many literatures, e.g., [2,6-8,28] as a standard
assumption. It could be thought of as a first order approximation of other

(nonlinear) relationships among z, h(2),T(2), H(Z), D(Z) and p(2).

2.4 Duality of quadratic programming
Consider the following convex quadratic conic programming

st. Ax —be Ci,x € CQ,
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where @ is a self-adjoint positive semidefinite linear operator from X to X,
A: X — Y is a linear map, ¢ € X and € )Y are given data, C; C )Y and
Cy; C X are two closed convex cones, X and ) are two real finite dimensional
Hilbert spaces. The Lagrangian function associated with problem (4) is given
by

1
L({L‘;y,t) = 5 <$,Q(E> + <q7$> + <y7b - A$> - <t7$> .
Then, the dual of problem (4) is given by

max _% <Ua QU> + <b> y>
s.t. t—Qu+ A*y =g, (5)
teCs,yeCiveV,
where V C X is any subspace such that Range (Q) C V, €7 and Cj are the
dual cones of C; and Cs , respectively.

Lemma 1 (Strong duality of quadratic conic optimization [5, Theo-
rem 1.7.1]) If the primal problem (4) is bounded below and strictly feasible
(i.e. Ax =¢, b,z € int Co for some x), then the dual problem (5) is solvable
and the optimal values in the problems are equal to each other.

If the dual (5) is bounded above and strictly feasible (i.e., exists t € int C}
and y € int C3 such that t — Qu + A*x = ¢), then the primal (4) is solvable
and the optimal values in the problems are equal to each other.

The conditions to guarantee strong duality can be relaxed, as described in the
following lemma, if the conic programming (4) is in fact a classical quadratic
programming in the sense that Q € S,C; = {0} and C; = R}, whose proof
can be found in Dorn [10].

Lemma 2 If (4) and (5) are in fact a pair of classical quadratic programming
problems and (4) and (5) both have feasible solutions, or either (4) or (5) has
finite optimal value, then both have optimal solutions and

min(4) = max(5).

This occurs if and only if the Lagrangian has a saddle point (Z;y,t), in which
case the saddle value L(Z;y,t) coincides with the common optimal value in (4)
and (5), and the saddle points are the pairs such that T is an optimal solution
to (4) and there exists v such that (§,v,t) is an optimal solution to (5).

3 Conversion of problem (P) to a conic optimization problem

The last term in the objective function of problem (P) is indeed the optimal
value of the following optimization problem

616515 Ep(z, Z) ( = Eq¢(z, 5))

st. Eg(AZ+ Bii) =b
Q(Ez + Fii = d) = 1,
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where the last constraint means that the probability of (Z,4) € {2 is one. We
may write the problem explicitly as

max / Y(x, 2)dQ
Q Q

s. t. /Q (Az 4+ Bu)dQ = b, (6)

/ 1[(9]d@ =1,
(9

where 1p) is the characteristic function of set (2. According to the theory of
semi-infinite programming [14], the dual of (6) is a semi-infinite program as
follows
ming , b7 3+ (1)
st. (Az+Bu)TB+n>¢(x,2) Y(z,u) € £,

where (3,7) € RM x R are the dual variables.

Lemma 3 Strong duality holds between (6) and (7) in the sense that (6) is
solvable and max(6) = min(7).

Proof. Observe that for any fixed z, due to our assumptions on ¥ (z, z) and
the compactness of (2, ¥(x,z) is a bounded quantity over (z,u) € {2, say
|(x, z)| < ¢, where £ may depend on z but not on z. Thus, the point 8 = 0
and 7 = ¢ + 1 is a generalized Slater’s point for the dual problem. Applying
Theorem 18 of Rockafellar [18], strong duality holds in the specified sense. O

Lemma 3 leads to the following result.

Theorem 1 Under the affine decision rule, problem (P) is equivalent to the
following semi-infinite program.

1
min  —z7Cx 4+ Tz + 078+
z,B8,m,y,0,t 2

st. (Az 4+ Bu)' g +n > min {;’UTH(Z)’U — p(z)Ty} V(z,u) € 2

Y,v,t
~Hw+Dl'y=Tix—h; i=0,1,..,N (8)
reXveV,y>0

where V is any subspace such that Range (Q) C V.

Proof. In view of Lemma 3, problem (P) can be written as

. 1 T T T
—z' C b
zgcl,rﬁl,n 5% r+cax+b B+

st. (Az+ Bu)" + 0> ¢(x,2) Y(zu) € 2.
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By the assumption on (2), 1(x, z) is finite for every € X. Then by Lemma
2, one has

Uz = sup (W h(z) ~ T(2)r) — su H(zw)
weEW(z)

— — min (o7 [T()e — b)) + 5uT H:)w)
T 1 5 —H(2)v+ D(2)Ty = T(2)z — h(z)
- _Iyrfﬁi({p(z) yo v HEE ) s V(ZZ{U)G.Q }

Since int Q # (), it follows from the affine decision rule that the relation
—H(z)v+ D)y =T(2)x — h(z) V(z,u) € N2
is valid iff
~Hw+Dl'y="Tx—h; Vi=0,1,.., N,

which completes the proof. (|

Corollary 1 Problem (8) is equivalent to

. 1
ming y +.t.8,n ixTC’x +cTx+ bTﬁ +1n

s.t. (Az+Bu)'B+n> %UTH(Z)U —p(2)Ty Y(z,u) €N
—Hw+DI'y=Tix—h;, i=0,1,..,N (9)
reX,veV,y>0.

Proof. Let
F .= {(x,y,v,t):xEX,UEV,yEO,t—Hiv—i—DZTy:Tix—hi, i=0,1,..,N}.

Clearly, F'is a closed convex set. Its projection onto the (y, v, t)-space is defined
as

HF :={(y,v,t) : Iz such that (z,y,v,t) € F}.

yut

The first constraint in (8) can be written as

V(z,u) € 2, Fy,v,t) e HF : (Az4+Bu)T B+n— BUTH(Z)U —p(z)Ty} >0,

yut

or equivalently

1
i Az 4 Bu)T — | =0TH(2)v — p(2)T > 0.
Juin (y7”7t)rr1€ar>l<wF{( z+ Bu)' B+ {QU (z)v—p(x)"y|p 20
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The function is convex in (z,u) and concave in (y,v,t) and both sets, {2 and
[1,.: I’ are closed and convex. In addition, §2 is bounded. By Sion’s minimax
theorem [26], we have

1
(zI,IIBIGl_Q (y,v,t)meeiz[(y,,t B {(Az +Bu)T3+n— |:2’UTH(Z)’U — p(z)Ty} }

1
= max min Az + Buw) T8 + —[UTHZU— ZT]}
(y,v,t)enym F (z,u)eN {( ) ﬁ n 2 ( ) p( ) y

The first constraint in (8) is therefore equivalent to

Iy, v,t) € HF, V(z,u) € 2: (Az+ Bu)T B+n— {;UTH(Z)U —p(z)Ty} >0,

yvt

which proves the corollary. O

For simplicity of notation, let P := [py, ..., py]. Then p(2)Ty = yT Pz+ply.
Note that here P is a matrix and each p;,72 =1, ..., N is a vector.

Lemma 4 Under strong duality, or under the condition that one of Hy, ..., Hy

is positive definite, the semi-infinite constraint in (9)

(Az + Bu)—r B+n— %UTH(Z)U —p(2)Ty| >0 Y(z,u)en  (10)

is equivalent to the following set of constraints: IN € K*, A € SW such that

AN+ (H+0,4) >n+ply

<H17A>

ET\+ : = A"+ Py
<HN,A>

F'x=Bp

(3 “AT> - 0. (11)

Proof. Since H(z) = 0 over {2, the constraint (10) means that the optimal
value of the semidefinite program

1
MaXf, 5y §vTHv —(Az + Bu)Tﬁ —yT'Pz

N
st. H=Y Hpzm=H (12)

m=1
Ez+ Fu=<xd
H=0

is less than or equal to 7 + pd y.
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If strong duality holds, then the optimal value of (12) is less than or equal
to n + pTy if and only if its dual optimal value is so, namely,

miny 4 (d7N+ (Ho, A)) <n+ply
(Hy, A)
st. ETA+ : = AT+ Py (13)
(Hy, A)
F'A=BTp, e K"
A= %UUT.
Observe that

win (dA+ (Ho, ) <0+ pfy <= 3N A) = d" A+ (Ho, 4) <0+ pjy

and r
1 20
= Zovl = 0.
/1_21)11 = (v /1) =0
Hence, if strong duality holds between (12) and (13), then the conclusion of
this lemma is true.
It remains to show that if one of Hy, ..., Hy is positive definite, then strong
duality holds for problem (12) and (13). Since H(z) * 0 over {2 and int  # 0,
there exists (20, u%) € int Q that satisfy

N
Ez"+ Fu® =y dand H = ZHngn—l—HOtO.

m=1

Suppose without loss of generality that H; > 0. Then for small € > 0, the
point
(2t ut) = (2 + 6,29, 2N, ud, o ud) T € int ©

and it satisfies

N
Ez' 4+ Fu! = d and H := ZHmz}n+HO:H+5H1>O.

m=1

Therefore (2!, u', H) is a strictly feasible point of (12), and (12) is bounded
above by n+ pi'y. Hence, by Lemma 1, strong duality holds between (12) and
(13). The proof is thus completed. (]

Since the semi-infinite constraint in (8) can be converted to a set of conic
constraints, whose dimension is polynomial in the given data, we come up to
the following theorem, whose proof is evident.

Theorem 2 Under the affine decision rule the quadratic risk measure two-
stage stochastic optimization problem (P) with WKS format of ambiguity sets
can be solved in polynomial time as a conic optimization problem.
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