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Ad Revenue Optimization in Live Broadcasting

Dana G. Popescu

Department of Technology and Operations Management, INSEAD, Singapore 138676,
dana.popescu@insead.edu

Pascale Crama

Department of Operations Management, Lee Kong Chian School of Business, Singapore Management University,
Singapore 178899, pcrama@smu.edu.sg

n live broadcasting, the break lengths available for commercials are not always fixed and known in advance

(e.g., strategic and injury time-outs are of variable duration in live sports transmissions). Broadcasters actively
manage their advertising revenue by jointly optimizing sales and scheduling policies. We characterize the opti-
mal dynamic schedule in a simplified setting that incorporates stochastic break durations and advertisement
lengths of 15 and 30 seconds. The optimal policy is a “greedy” look-ahead rule that accounts for the remaining
number of breaks; in this setting, there is no value to perfect information at the scheduling stage, and hence
knowing the duration of all breaks would not change the schedule. We present heuristics to help solve schedul-
ing problems of even greater complexity. The performance of these heuristics under various scenarios is tested
by running simulations calibrated using industry data. The simple greedy heuristic is shown to perform well
except when revenues are concave in ad length, in which case the look-ahead aspect of the optimal schedule
becomes more important. Finally, we recommend ways for broadcasters to balance their portfolio of booked
ads by determining the optimal overbooking level and mix of ads as a function of their associated revenues

generated and penalties incurred.

Keywords: live broadcasting; advertising; scheduling; random capacity

1. Introduction

Broadcasters generate a large part of their revenue
through advertising. For CBS, the most-watched U.S.
broadcast network, TV advertising accounts for two
thirds of total revenue (Fixmer 2010). Major live
events—such as election night, the Super Bowl, the
Olympics, and the FIFA World Cup—strongly boost
such revenues because advertisers are willing to pay
a premium for their ads to air during the live broad-
cast of these events. In 2010, for instance, the cost of
a 30-second spot during the Super Bowl was between
$2.5 and $2.8 million, or 18 times higher than the cor-
responding prime-time advertising rates. Similarly, a
30-second spot during the Winter Olympics in the
same year generated between $360,000 and $490,000,
which was about three times the rate of an average
prime-time spot (Kacen 2010). However, the selling
and scheduling of advertisements in such an environ-
ment is a challenging task. This is especially true for
sports events that involve unpredictable breaks dur-
ing which ads can be shown. A case in point is cricket,
a major sport in South Asia, whose matches have
breaks of random duration.! The uncertainty about

!In cricket, two batsmen attempt to score runs against the fielding
team. The fielding team’s bowlers throw six balls in succession,

break durations creates an obvious problem for the
broadcaster: how to schedule (in real time) the ads
that have been sold while respecting the relevant con-
straints. The broadcaster must respect not only capacity
constraints, under which the total duration of the ads
scheduled during a break cannot exceed the length of
that break, but also diversity constraints, under which
two ads from the same advertiser (or from advertis-
ers in the same industry) cannot be shown during the
same break.

Suboptimal or infeasible schedules have many un-
desirable consequences for a broadcaster. If the sched-
ule violates diversity constraints, then no revenue will
be earned and capacity will be wasted.? A sched-
ule that violates capacity constraints could lead to
rescinding of the broadcast rights or other costly

called an “over,” from opposite ends of the field. The fielding team
can rearrange its players’ positions in the field between successive
overs, and ads can be shown during that time. As soon as the
players have taken up their new positions, the game restarts and
the broadcaster resumes its live coverage.

2Contracts between broadcaster and advertiser typically specify
that the advertiser will pay only if its ad is shown in full and not
in a commercial break during which the same ad—or one for a
competing product—is also shown.


mailto:dana.popescu@insead.edu
mailto:pcrama@smu.edu.sg

2

penalties.® For example, cricket broadcasting rights
require the broadcaster to guarantee live coverage of
every ball of every match.

We model a television network that has a stochas-
tic capacity of advertising airtime during a live event.
This capacity consists of a number of commercial
breaks of random duration. Breaks occur sequentially
over a period of time and must be filled immedi-
ately upon arrival. When a break occurs, its dura-
tion is known to the scheduler. This paper illustrates
how to optimize revenue from live events by deriv-
ing dynamic scheduling policies and improving the
ad portfolio booking decisions.

Our research offers theoretical, practical, and man-
agerial contributions. From a theoretical perspective,
identifying the optimal scheduling policy allows us
to specify the conditions under which uncertainty has
no effect on the broadcaster’s revenue (i.e., when per-
fect information (PI) has no value). In the absence of
diversity constraints, the optimal policy is a greedy
look-ahead rule that takes the remaining number of
breaks into account irrespective of the probability
distribution of break durations. We determine the
minimum set of conditions under which perfect infor-
mation holds no value, which helps us better under-
stand when and why break duration uncertainty may
pose a problem to the broadcaster. We find that one of
the two conditions most likely to be violated in prac-
tice, a restriction on the ad lengths booked, is some-
thing that the broadcaster could affect—for example,
by contractually limiting the ad lengths that can be
submitted by advertisers. Doing so could help pre-
vent uncertainty from creating losses in a wide range
of scenarios, but it might not maximize the broad-
caster’s revenue.

We then expand our theoretical analysis to inves-
tigate a more realistic setting with multiple ad for-
mats. We derive bounds for the value function and
use different relaxations of the more general prob-
lem to craft simple yet efficient heuristics. We per-
form an extensive numerical analysis to compare the
performance of these heuristics under scenarios char-
acterized by various overbooking levels and revenue
ratios for long and short ads. We calibrate our simu-
lation parameters using industry data collected from
a live cricket tournament. The most important lesson
from the numerical analysis is that, under fairly gen-
eral conditions and despite the problem’s complex-
ity, the simple greedy heuristic performs extremely
well. Note that the factors affecting this heuristic’s

% For instance, in 2011, the Indian government issued a show-cause
notice to the Ten Cricket channel for violating the country’s adver-
tising codes during its coverage of India’s tour of South Africa,
claiming that the broadcaster’s ads had interfered with the pro-
gram (ESPN Cricket Info. Show-cause notice for Ten Cricket chan-
nel. Accessed September 15, 2015, http://www.espncricinfo.com/).

success—namely, the ratio of average revenue of short
to long ads and the diversity profile—are at least
partly under the broadcaster’s control; hence, it can
design portfolios that are robust to uncertainty.

Finally, our analysis extends to another fundamen-
tal concern: constructing the initial ad portfolio. When
creating that portfolio, one can reduce the negative
effects of uncertainty by making it flexible. On the one
hand, the broadcaster must decide how much airtime
to sell. Random capacity and high prices drive it to
sell in excess of expected airtime capacity, which low-
ers the service level and leads to advertiser dissatis-
faction or even penalties. Thus, the broadcaster will
need to identify the level of overbooking that balances
the trade-off between capacity utilization and penalty
payments. At the same time, the broadcaster must
also consider the ad portfolio’s composition in terms
of ad duration. Because short ads enhance schedul-
ing flexibility, we find that the higher the variabil-
ity in break duration, the higher the proportion of
short ads in the portfolio and the greater the discount
on short ads the broadcaster is willing to accept to
retain scheduling flexibility. These insights on portfo-
lio composition are of paramount importance to the
first stage of contract negotiation and ad sales.

The analysis reveals that a broadcaster’s initial
question—namely, how best to schedule ads during
breaks of uncertain duration—is a prelude to the
more strategic issue of how to craft a profitable ad
portfolio. Thus, the managerial contribution of our
work is that it highlights the importance of devising
a flexible portfolio with the right amount of over-
booking. Encouraging advertisers to submit short ads
through differential pricing of short and long ads,
or even contractually requiring some short spots in
the advertiser’s mix, would be of great value to the
broadcaster; the shorter the ad, the more flexibility
it provides. Thus, the typical observed portfolio mix
in our data (with its range of various ad lengths) is
beneficial to the broadcaster even though this benefit
arises serendipitously from market characteristics and
not as a consequence of the broadcaster’s own plan-
ning. If judiciously employed, proactive revenue man-
agement tools could generate more value than merely
reactive changes in scheduling practices.

2. Literature Review

Previous work on media revenue management has
examined the joint problem of scheduling and
order acceptance while assuming deterministic break
lengths (Bollapragada et al. 2004, Bollapragada and
Garbiras 2004, Kimms and Miiller-Bungart 2007). For
example, Bollapragada and Garbiras (2004) formu-
lated a goal-oriented programming model to solve
the scheduling problem. The emphasis in that model
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is on satisfying as many product conflict constraints
and ad position constraints as possible by choos-
ing an appropriate penalty for each constraint that
is violated with the objective of minimizing the
total penalty cost incurred. Kimms and Miiller-
Bungart (2007) formulated an integer program that
maximizes the broadcaster’s revenue while accom-
modating product conflict constraints and specific
scheduling requests; they proposed several heuris-
tics and conducted extensive numerical analyses
that compared the performance of different solution
methods. In contrast with those papers, which assume
that capacity is deterministic and so derive static
scheduling policies, we derive dynamic scheduling
policies that account for stochastic capacity and for
the sequential arrival over time of breaks that must
be filled immediately.

Our problem is related to revenue management
under conditions of random yield, a research field
whose results are typically applied to production plan-
ning (for reviews of the literature, see Grosfeld-Nir
and Gerchak 2004, Yano and Lee 1995) or supply chain
management (e.g., Tomlin 2009). Applications in the
field of media revenue management focus on ran-
dom yield due to either ratings uncertainty (Araman
and Popescu 2009) or demand uncertainty (Roels and
Fridgeirsdottir 2009). In our case, uncertainty stems
from the duration of breaks; this poses scheduling dif-
ficulties when ads are of various lengths and some of
those lengths exceed the duration of some commercial
breaks.

Much less attention has been given to the ran-
dom yield caused by stochastic capacity. The work of
Ciarallo et al. (1994) is the first to explore the effect of
random capacity. These authors find that a so-called
order-up-to policy is optimal for minimizing produc-
tion costs. Khang and Fujiwara (2000) establish the
conditions under which the myopic order-up-to pol-
icy is optimal in a multiperiod setting. Hwang and
Singh (1998) extend the analysis to a multistage pro-
duction process and find that the optimal policy is
characterized by a sequence of two critical numbers
for each stage: a minimum input level, below which
no production takes place, and a maximum desired
production level. Wang and Gerchak (1996) incorpo-
rate randomness in both yield and capacity while
showing that the optimal policy is characterized by a
single reorder point in each period. That critical point
is not constant because it varies as a function of the
current inventory level.

Our model differs in two important aspects from
the multiperiod random capacity models advanced
by the works just cited. First, those papers assume
a single product, whereas we consider a multiprod-
uct setting with varying prices and production costs;
this means that the products (i.e., ads sold) must be

scheduled based on their profitability and the amount
of capacity they consume. Second, we assume inte-
ger units, which entails orders of fixed size. Hence,
the broadcaster cannot simply “max out” its capacity
and hold inventory (i.e., airtime) to complete an order
across multiple periods. In other words, each order
must be entirely processed within a single production
period.

This observation points to another related stream
of literature: job scheduling with stochastic machine
breakdowns and preemptive repeat. In that scenario,
if a machine breaks down during the processing of a
job, then all work done on the job is lost and process-
ing must begin again from scratch (Birge et al. 1990,
Cai et al. 2009, Pinedo and Rammouz 1988). Birge
et al. (1990) briefly discuss the preemptive repeat
model in the context of jobs characterized by deter-
ministic processing time. The objective is to minimize
the total weighted completion time, and the opti-
mal rule schedules jobs ranked in increasing order of
a ratio of functions of processing time and weight.
Cai et al. (2009) expand that model to include jobs
with stochastic processing time, incomplete informa-
tion, and more general objective functions. The opti-
mal schedules under different conditions are similarly
based on appropriately tailored rankings that relate
the weight and expected processing time of the jobs.
In this paper, we simplify the job structure by restrict-
ing ourselves to deterministic ad durations of two
lengths and by assuming that the duration of the cur-
rent commercial break is known. This approach makes
sense in our setting and allows us to focus on gen-
erating insights about which ads to air and how to
select the ads to be considered for broadcasting (i.e.,
the ad portfolio) in the first place.

Finally, the optimization problem addressed in this
paper has much in common with both the stochastic
cutting stock problem and the dynamic stochastic
knapsack problem, which have applications in such
industries as materials (wood, steel, paper) and trans-
portation. Consider the transportation industry, where
airlines can ship cargo via freighter planes and also
in the holds of their scheduled passenger flights. In
the latter case, cargo capacity varies among flights as
a function of the booking level and the amount of
passengers’ checked-in luggage. Thus, airlines face a
problem similar to the one described in §1 as they seek
to maximize revenue under stochastic capacity for a
given a set of transport requests.

The cutting stock problem originated as a knapsack
problem and involves minimizing unused capacity or
waste (for the topology of cutting and packing prob-
lems, see Wéscher et al. 2007); it was introduced by
Gilmore and Gomory (1961), who later proposed a
set of specialized solution techniques (Gilmore and
Gomory 1965). This problem has been extended to
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address stochastic capacity and quality while mini-
mizing waste (Ghodsi and Sassani 2005, Scull 1981).
Our problem is a generalization of the multiple het-
erogeneous knapsack problem (see Martello and Toth
1990), where a heterogeneous set of small items char-
acterized by a given weight and yield must be packed
into a set of knapsacks of different capacities. The
packed items must not exceed the knapsack capac-
ity, and the number of packed items across all knap-
sacks must be maximized. The generalization in our
case results from three aspects of the knapsacks (i.e.,
the commercial breaks): they have stochastic capaci-
ties, they arrive sequentially over a period of time,
and they must be filled immediately upon arrival. In
broadcast advertising, the packed items must satisfy
not only capacity constraints, but also diversity con-
straints. To the best of our knowledge, the literature
on cutting and packing problems has addressed nei-
ther how the properties of the items to be packed
affect the algorithm’s performance, nor which such
properties would be desirable.

3. Model (Base Case)

Consider a television network that has a random
capacity of advertising airtime during a live event. We
take as given the portfolio of ads to air during this
event. The ad revenues and durations are variable.
For the base case model, we assume that the length of
each ad is either S or 25 seconds. Let s° ={s}, s, ...}
and 1°={13, 15, ...} be the sets of revenues generated
by ads of length S and 25, respectively. We use super-
script “0” to denote the initial set of long and short
ads. Later on, we will drop this superscript to refer
to the sets of short and long ads not yet aired at the
time a break occurs. For simplicity of exposition (and
without loss of generality (w.l.o.g.)), we assume that
the cardinality of sets 1° and s° is infinite. Note that
the revenue from many of these ads will be zero. We
also standardize the length of the short ads to S=1.
Moreover, we order sets 1° and s’ such that [{ > I7 ,
and s} > s}, for all positive integers i.

The airtime capacity consists of N commercial
breaks of random duration. We assume that when a
break occurs, its duration is known to the scheduler.
We use {b,, ..., by} to denote the set of breaks, where
b, represents the duration of break n. Then the total
advertising air time capacity is given by B= )"}, b;.
Let D ={d;, ..., dg} be the set of all possible break
durations (in seconds), and let p, ; be the probabil-
ity of break n having duration d;. For the base case
model with two ad lengths, we allow the duration
of the breaks to vary in multiples of S seconds. This
setup is equivalent to a general nonnegative distribu-
tion because, if ads must run in their entirety, then
any break length that is not an integer multiple of S

seconds must be rounded down to the nearest such
integer.

As mentioned in the introduction, networks typ-
ically face restrictions regarding which ads can air
during a given break. For instance, two ads from the
same advertiser cannot be shown in the same break
(advertiser diversity constraint), and two ads for prod-
ucts in the same industry cannot be shown in the
same break (industry diversity constraint). For now we
shall ignore these diversity constraints and study opti-
mal scheduling for the simpler problem with only
capacity constraints. In our numerical results in §5,
we will analyze the impact of these constraints on
the performance of the proposed scheduling policies.
We analyze an extension of the model with adver-
tiser diversity constraints in the electronic companion
(available as supplemental material at http://dx.doi
.0rg/10.1287 /mnsc.2015.2185).

Let 1 and s denote, respectively, the ordered sets of
long and short ads not yet aired. To avoid excessive
notation, we do not explicitly index sets 1 and s with
the break number n; however, 1 and s always repre-
sent the sets of remaining long and short ads not yet
aired before the current break occurs. The (expected)
revenue to go at stage 1 <n < N, given ad vectors 1
and s, can be written as follows:

K A 6
Vil1,8) = T | S0t st Vsl ),
=1 2 -1 =l
s\{s,...,S}) |2/\+6§dj};

Vnia(1,8)=0.

We study the optimal dynamic scheduling policy
under this setting. Despite simplifying the original
problem somewhat, this formulation still captures the
problem’s main characteristics: (i) stochastic capac-
ity; (i) a heterogeneous assortment of ads of differ-
ent values that can be classified into “short ads” and
“long ads”; (iii) a heterogeneous assortment of break
durations, some of which cannot be maximally uti-
lized using long ads only (i.e., commercial breaks with
duration a multiple of 2S are the only ones that can
be filled using long ads only); and (iv) limited airtime
capacity, so that not all ads can be accommodated.

3.1. Model Discussion
We have made a number of assumptions to achieve
a tractable version of the broadcaster’s original prob-
lem. These assumptions are needed to generate
closed-form theoretical results and clear insights into
the cost of uncertainty, the optimal scheduling pol-
icy, and the portfolio selection question. Here we
briefly discuss how these assumptions compare with
the real-world problem.

First, we assume that the break length is known
at the start of the break. This assumption is based
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on the broadcaster’s deep knowledge of the live
event. In cricket, for instance, broadcasters spend con-
siderable effort studying the break distributions per
type of bowler transition (i.e., fast or slow bowler)
and for different styles of play. The person calling
the length of the break to the ad scheduler takes
these considerations—as well as other team- and
match-specific factors—into account when judging
the length of each individual break. Additionally, live
broadcasting frequently has some amount of delay
or “timeline shift” upon start-up. Such intentional
delay reflects either organizational concerns (e.g., so
that programs begin exactly on the minute or half-
minute) or the desire to maintain a short time delay
to guard against the broadcasting of inappropriate
material (Redhead 2007). These short delays help with
accurately estimating the current commercial break’s
length. It therefore seems reasonable to assume that
scheduling challenges in a live broadcast arise less
from uncertainty over the current break length than
from uncertainty over future break lengths.

Second, most of our analytical results are obtained
for two ad lengths, S and 2S. This is a valid assump-
tion in many parts of the world and across various
sports. In the United States, 90% of ads are sold as
15- or 30-second spots (Green 2006). There is some
variation for special events; for example, ads that air
during the Super Bowl are either 30 or 60 seconds (yet
thus still satisfy the “S or 25” assumption) (Stampler
2013). In Japan, most ads are 15 seconds; purchasing
two consecutive 15-second slots commands a large
premium, which explains the dearth of 30-second
ads there (Kawashima 2006).* The European mar-
ket deviates from this norm; for instance, ads in the
United Kingdom are 10, 20, or 30 seconds long with
respective market shares of 20%, 20%, and 45% (Green

*Given the media industry’s nontransparent nature, it is seldom
straightforward to assess the premiums (or discounts) associated
with longer ad lengths. The premium or discount varies from coun-
try to country and from broadcaster to broadcaster. In the United
States and Australasia, where the 15-second and 30-second formats
are predominant, for ROS ads (i.e., “run off schedule” ads that can
be placed in any show at the network’s discretion), the 15-second
types generally sell at a premium: the media cost of a 15-second ad,
although half the length of a 30-second ad, is typically 60%-80%
as much as the cost of a 30-second ad (Newstead and Romaniuk
2010). In the United States, however, an even shorter ad typically
sells at a discount (e.g., a 10-second ad is sometimes only 15%-—
20% the cost of a 30-second ad). In the United Kingdom, where
10-second ads are more popular than 15-second ads (Newstead and
Romaniuk 2010), the Channel 5 network reports that a 30-second
commercial costs twice as much as a 10-second ad and half as
much as a 60-second ad (How to advertise FAQ—How much does
it cost to advertise on television?” Accessed September 15, 2015,
http://about.channel5.com/faqs/how-to-advertise). In South Asia,
discussions between the authors and media industry profession-
als indicate that the price of an advertisement tends to be a linear
function of the ad’s length.

2006). The ad lengths in our data set exhibit a sim-
ilar range, with 90% of them lasting 10, 15, 20, or
30 seconds. As a consequence, we have extended our
analysis to define some properties of the scheduling
problem with multiple ad lengths. We use the insights
from the optimal schedule for two ad lengths along
with the upper bounds derived for the problem with
multiple ad lengths to propose heuristics in §4.

Third, we assume that the number of commer-
cial breaks in the broadcast transmission is known.
This assumption is motivated by the lack of variation
observed in our data, most likely due to the struc-
ture of the game, where breaks occur naturally at
certain stages (e.g., every time a wicket falls or after
an “over”). However, we perform numerical experi-
ments to establish that this assumption is not critical
for our results.

Fourth, in our treatment of the penalties for not air-
ing an ad (i.e., penalties for ads that were booked but
not aired because of insufficient airtime), we assume
that the penalty associated with each ad is known
ex ante. It is actually quite difficult to quantify these
penalties; however, the broadcaster is well aware of
the need to avoid excessive overbooking because it
damages the relationship with advertisers. Although
such penalties are not always specified in the con-
tract between advertiser and broadcaster, they some-
times materialize in the form of lost business and/or
“make-goods”: ads that are shown for free during a
different (nonpremium) program.

Finally, the analytical results ignore both advertiser
and industry diversity constraints. In an extension
of the model reported in the electronic companion,
the optimal schedule of the problem with advertiser
diversity constraint is shown to be a modification of
the optimal schedule without such a constraint that
aims to preserve diversity in the remaining ad portfo-
lio. A numerical study of the problem with industry
diversity constraints—which also imply advertiser di-
versity constraints—shows that, at the level of diver-
sity observed in the real-life portfolio, the existence of
diversity constraints does not strongly affect the per-
formance of our heuristics.

3.2. Optimal Scheduling Policy

The central property of the optimal scheduling policy
that we devise is a strong result concerning the value
of perfect information. Therefore, we begin by charac-
terizing the optimal solution under PI, when all future
break durations are known. Under PI, the scheduler
must solve the following integer problem:

N
n=1 611

)
B+ > s
i=1

N_ A

Zn—l
max
A, HEN{ g

2\, +0,<b,,

Vn:l,...,N}, 1)
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where A, and 6, are the respective numbers of long
and short ads scheduled during commercial break 7.
These constraints ensure that the total duration of the
ads scheduled in a break does not exceed the duration
of that break.

Since all elements of 1° and s° are nonnegative, and
since the cardinality of the two sets is infinite, it fol-
lows that the scheduler will always (weakly) prefer to
air an ad in an empty slot, and thus to earn nonneg-
ative revenue, over the option of allowing the slot to
remain empty and thus earning zero revenue. Thus,
the N constraints will always be tight; that is,

0,=b,—2\,. 2)

If we put A=Y A, then (1) can be reduced to an
optimization problem over a single decision variable
as follows:

n n

B2\

A
max[31 3
AN Ui i1

ProprosITION 1. Let A* < YN |b,/2] be the greatest
integer such that 13 > sp_,, .1 +Sp_5,,,- If n0 such integer
exists, let A* =0. Then, A* solves (3).

From Proposition 1 it follows that, given N (remain-
ing) breaks of length b,, ..., by, the optimal set of ads
to be scheduled under perfect information consists of
the first A* long ads and the first B — 2A* short ads
from the respective sets 1° and s°. (If A* =0, then only
short ads will be scheduled.)

One way to interpret this PI solution is as fol-
lows. The optimal policy will first set aside the u =
B—2%N 1b,/2] highest-revenue short ads to sched-
ule in each of the breaks with odd duration, and the
remaining airtime will be filled (in accordance with
a greedy policy) from the remaining set of ads. First,
I3 will be compared to ads s; + s;,; and then sched-
uled if it is higher. Subsequently, if ads [, ..., { ; and
Sut1s - Suyj—1 have already been scheduled, then [}
will be scheduled provided [ > s;.; +s,,;,; (and
so forth).

However, such a schedule requires the broadcaster
to know how many breaks are of odd duration,
which in turn requires knowledge of all break dura-
tions by, ..., by. A surprising result is that, even with-
out perfect information about the duration of future
breaks, one can still construct a schedule that achieves
the optimal PI revenue. This schedule is described in
the following proposition.

A< ZLbn/zj}. )

n=1

ProrosiTioN 2 (OpTiMAL PI ScHEDULE). The follow-
ing rule generates an optimal PI schedule. In break n
(n=1,...,N), schedule the highest-paying unaired A,
long ads from set 1° and the highest-paying unaired
b, —2A,, short ads from set s°, where A, < |b, /2] is recur-
sively defined as the largest integer SL'lCh that l”z;,: W=
SEr -2 )eN-ne1 S5 ymanyen—nea I 10 such integer
exists, then A, =0.

Note that the schedule for break # does not depend
on the duration of breaks n+1, ..., N. The only infor-
mation required to construct the schedule for break n
is the identity of the ads aired in the previous breaks.
Thus, the rule described in Proposition 2 can be
directly applied to a dynamic setting with uncertainty,
in which the duration of future breaks is unknown
to the scheduler. Under the optimal policy, then, the
expected value of perfect information is zero. So even
though capacity is uncertain, the broadcaster—given
a portfolio of booked ads—is guaranteed to obtain the
same revenue as if capacity were known at the start
of the live event. However, this does not mean that
uncertainty about capacity has no effect on the broad-
caster’s revenue. Although such uncertainty makes no
difference at the scheduling stage, it naturally plays
a role at the (prior) selling stage, during which the
broadcaster decides how many short and long ads to
sell to different advertisers.

This result requires our assumption that ads can
only be of length S or 2S. If that assumption is relaxed,
then the optimal policy will no longer be independent
of the distribution of break durations. Consequently,
if there are more than two possible ad lengths (or if
there are only two ad lengths but one is not twice as
long as the other), then we can expect any scheduling
policy to generate less revenue than the PI schedule.”
Another crucial assumption is knowing the number
of breaks that will occur in the program.® We show in
§5 that, for our data set, typically the value of perfect
information is extremely low even when these two
assumptions are relaxed.

Although the optimal policy is not the greedy pol-
icy, it has the structure of a greedy look-ahead policy:
At stage n, given that N —n 41 breaks remain unfilled,
for a current break of length b, > 1, the revenue from
the most lucrative long ad remaining is compared
with the combined revenue from the N —n+b, — 1

®Suppose ads can be either 15 or 45 seconds long and that the
duration of a commercial break can be 15, 30, or 45 seconds with
respective probability a;, a,, or 1 — a; — a,. Under this scenario,
if break N — 1 has a duration of 45 seconds, then, with one break
remaining, clearly the optimal policy is to schedule I, (i.e., the
highest-paying unaired 45-second ad) whenever (1 —a;)l; > a;s, +
(a; + a,) (55 + 54) + @555 in all other cases, it is optimal to sched-
ule (s;, 55, 5;) (i.e., the three highest-paying unaired 15-second ads).
Thus, the scheduling policy now depends on the probability distri-
bution of the remaining capacity.

®Suppose ads are either 15 or 30 seconds long and that the last
break can have duration of 0, 15, or 30 seconds with respective
probability oV, o, or 1 —al¥ — ). Now if break N —1 has a dura-
tion of 30 seconds, then, with one break remaining, the optimal pol-
icy is to schedule /; (i.e., the highest-paying unaired 30-second ad)
whenever (o + a))l; > all(s; +s,) + &) (s, + 5;); otherwise, it is
optimal to schedule (s}, s,) (i.e., the two highest-paying unaired
15-second ads). Once again, the policy is therefore no longer inde-
pendent of the probability distribution of the remaining capacity.
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and N —n + b, most lucrative short ads remaining.
If the former is higher, then the long ad is selected.
This step is repeated until the break has been entirely
filled with a combination of long and short ads. Of
course, the broadcaster may air a long ad in the cur-
rent break—despite it being less profitable than the
greedy combination of short ads—to avoid schedul-
ing less profitable short ads in the event that all future
breaks have odd durations and thus require a short
ad. In other words, the optimal schedule accepts an
initial revenue loss at stage 1 to safeguard revenue at
future stages; this feature explains the “look-ahead”
aspect (Atkinson 1994).

The optimal policy will coincide with the greedy
policy whenever short ads sell at a discount relative
to long ads (i.e., if s} <[9/2 for all nonzero s} € s° and
I7 €1°) because the greedy heuristic will always sched-
ule as many long ads as possible in a given break, as
is optimal. If short ads sell at a premium (sf > [7/2
for all nonzero s} € s’ and I} €1°), then the greedy
heuristic will be suboptimal because it always prefers
to schedule short ads and so might run out of short
ads before the end of the horizon.

We illustrate with a simple example in which there
are only two possible break durations: either S or 2S5
seconds. In Figure 1 we plot the revenue of the greedy
and optimal policies, for constant short and long ad
revenues and under different ratios of short-to-long
ad revenue, as a function of the probability a of a
short break occurring. The heuristic’s performance is
affected by the distribution of break durations. As
expected, the greedy and optimal policies coincide at
the extremes—that is, when either all breaks are long
or all breaks are short—and the performance gap is
largest for intermediate probabilities of short breaks.

3.2.1. Penalties for Unaired Ads. It is likely that
advertisers incur a disutility whenever their ads are

Figure 1 Base Case: Performance of Optimal vs. Greedy Policy
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not shown. As a consequence, contracts may specify
a penalty that the network must pay to the advertiser
when a booked ad is not actually aired. In that case,
if ad [? (s?) does not air during any commercial break,
then the broadcaster will not earn revenue I{ (s7) and
also must pay a penalty of 37 (y{) to the client whose
ad [{ (s{) was not aired. It is easy to see that if we
rearrange the sets of long and short ads in decreas-
ing order of the sum of revenue and penalty for each
ad, then we can use the optimal scheduling policy
described in Proposition 2.

4. The Problem with Multiple
Ad Lengths

Let (r°, x°) be the initial portfolio of ads with nonzero
revenue, where 1/ is the revenue generated by ad i
and x} is the duration (in seconds) of ad i. In this
section, we assume that ads can have more than two
possible lengths, so that x{ is no longer restricted to
be in the set {S, 2S}. As before, we use the notation
(r, x) to denote the portfolio of ads not yet aired when
the current break occurs. The value function for the
dynamic scheduling problem with multiple ad length
can be computed recursively via the Bellman optimal-
ity equations; we obtain

K x|
V,(r,x) = an,;maX{Zriyi+Vn+1 (r\{ri}lyi:l1X\{xi}lyi:1)
i=1

j=1

Ir|

Y xyi<d;,y:€l0, 1}}, 4)
i=1

VN+1(r/ X) =0;

here y;,=1 if and only if (iff) ad with revenue r; is
scheduled in break n. An optimal policy for (4)—at
stage n when the remaining ad set is r and a break
of duration b, occurs—is to schedule a subset of ads
r* Cr that fit in the current break and satisfy

2tV (A, x\x) 2 3 4V (1, x\x) - (5)

rjer* rier’

for all subsets of ads r'Cr such that 3, . x;<b,,
where x*={x; ex|r;er*} and X' ={x; ex|r;er’}.

Solving problem (5) requires storing all possible
values of V,(r,x) for all n=1,...,N and all 2" sub-
sets of ads in r. Given the large ad set and the
large number of breaks, there are significant computa-
tional challenges—in terms of both computing times
and storage requirements—to solving this dynamic
program. Any method with practical appeal must
be solvable in real time during the live event. For
this reason, we are not concerned with solving the
dynamic program and instead study relaxations of
the problem that can be used to design practical
heuristics.



4.1. Relaxations and Bounds

For any fixed sample path b={b,, ..., by}, the perfect
information solution to (4) is given by the following
0-1 integer program:

V(r’,x°,b)
N |9 x| N
Zmax{zzrioyi,n ngyi,nfbn' Zyi,nfll
n=1i=1 i=1 n=1

v ,€{0,1}, Vi=1,...,|r|, Vn:l,...,N}, (6)

where y; , =1 iff ad with revenue 7/ is scheduled in
break n.

Problem (6) is a 0-1 multiple knapsack problem that
has been thoroughly studied in the literature (see, e.g.,
Martello and Toth 1990). A straightforward relaxation
of (6) is given by the simple knapsack problem with
only one long break of duration B=Y1_b, (in the
literature, this is often referred to as the “surrogate”
relaxation of the multiple knapsack problem):

|
vV (r°,x°,B) = max{Zri"yi

i=1

y;€{0,1}, Vi:l,...,|r”|}, (7)

I’

fo%SBr

i=1

where y;=1 iff ad with revenue r{ is in the optimal
schedule.

There are two main advantages of studying the
single-break relaxation. First, the single-break prob-
lem is easier to solve. Despite its non-polynomial
time complexity, many instances of the 0-1 knapsack
can be solved quickly. Second, thinking ahead to this
problem’s stochastic version, it is easier to obtain a
more accurate forecast of the total airtime in a game
B than it is to accurately forecast the duration of each
break individually.

Let A and Q be the optimal set of ads for prob-
lems (6) and (7), respectively. An immediate observa-
tion, which will prove useful for designing one of the
heuristics described in the next section, is as follows.
If there is a feasible schedule for (6) that uses all ads
in Q, then

A=Q and YV (x°,x°,b)=7(x°,x°, B). (8)

This follows immediately because (7) is a relaxation
of (6), and so if the solution to (7) is feasible for (6),
then it is also optimal. One circumstance in which the
two sets differ is when the ads in () are not granular
enough to utilize the airtime of the N breaks.”

7 This does not mean that ads must be greater in length. Suppose,
for example, that there are only two breaks left. Suppose also that
the set Q) contains three 20-second ads worth $8 each (for a total

Consider now the continuous relaxations of prob-
lems (6) and (7) such that the variables y; , and y; are
not restricted to be integer. Then,

c(V(x°,x°, b))
N |9 |r°] N
Zmax{zzrioyi,n Zx?yi,nfbnfzyi,nfllOSyi,nfll
n=1i=1 i=1 n=1

Vi=1,...,|r"|,Vn=1,...,N}; 9)

I’

c(V (x°,x°,B)) =max{2rﬁyi

i=1

Ir’|

> xy;<B,0<y,<1,

i=1

Vi:l,...,|r”|}. (10)

ProrosiTioN 3.
Vi(x°,x°) =e(7'(r*,x°, E[b])) =c(V/(x°,x°, E[B])).

It follows from this proposition that c((x’,x°,
E[B])) is an upper bound for (4). As shown in Martello
and Toth (1990), other continuous relaxations for the
0-1 multiple knapsack problem yield the same objec-
tive value as c(7 (r°,x°, E(B))).

4.2. Heuristics for the
Multiple-Ad-Length Problem

In this section we describe several heuristics that
will be tested in §5: (a) a myopic greedy heuris-
tic that maximizes the revenue in the current break
while ignoring future breaks; (b) a greedy look-ahead
(GLA) heuristic that rations the use of shorter ads, as
suggested by Proposition 2; and (c) an upper-bound
heuristic with look-ahead (UBLA) that uses the solu-
tion of /' (r, E[B]) in trying to recreate the PI schedule.

4.2.1. Greedy Heuristic. The greedy heuristic
selects the combination of ads (to show in the current
break) with revenues from the set r that maximizes
current revenue. Toward this end, the greedy heuris-
tic solves a knapsack problem for each break as soon
as that break’s duration b, is revealed:

[1|

max { > ry;

i=1

[1]
inyisbn,yie{o,l}w=1,...,|r|},

i=1

where y;=1 iff ad with revenue r;, and duration x; is
scheduled in the current break. After each break, the
sets r and x are updated to reflect the ads that have
already been scheduled. Because the size of each indi-
vidual knapsack problem is small, this heuristic can
efficiently solve the scheduling problem in real time.

revenue of $24) and that there are two 30-second ads in the port-
folio worth $10 each. If it turns out that the current break and the
subsequent break are each of a 30-second duration, then the PI
schedule will try to schedule the $10 30-second ads in each break
(for a total revenue of $20).



4.2.2. Greedy Heuristic with Look-Ahead. The
greedy look-ahead heuristic is based on the insight
from the optimal scheduling policy in Proposition 2,
which offers a rule that favors long ads over short
ads by setting a lower threshold (than would a greedy
policy) for scheduling long ads. To apply that insight
to the case of multiple ads, we split the different ad
lengths into two groups—*“short” and “long” ads. Let
X, be the category of short ad durations, and let x; be
the category of long ad durations. Then, for every pair
of such durations of the form {x,2x} with xex, and
2x ex,, the GLA heuristic’s first step consists of apply-
ing the rule of Proposition 2 as if only ads of those
two durations exist in the portfolio; we use this out-
come as an upper bound g, on the number of ads of
duration x that can air in a particular break. The sec-
ond step consists of choosing a subset of ads from the
whole portfolio that maximizes the revenue and also
satisfies the upper-bound constraints on the number
of short ads. Thus,

Ir]

max { > ny;
i=1

Vxex,, y;€{0,1}, Vi:l,...,|r|},

Ir] Il

inyi Sbnl le,:xyi = qx/
i=1 i=1

where y;=1 iff ad with revenue 7; is scheduled in the
current break. The sets r and x are then updated to
account for the ads that have been scheduled.

4.2.3. Upper-Bound Heuristic with Look-Ahead.
Upper-bound heuristics have been widely studied in
the literature (see, e.g., Amaruchkul et al. 2007, Zhang
and Cooper 2005). We propose an upper-bound look-
ahead (UBLA) heuristic built on the insight derived
from (8): if it is possible to schedule all ads from
within the N breaks, then the PI revenue will be auto-
matically achieved. So this heuristic starts by approx-
imating the set Q) via ), which is obtained by solving
the following deterministic single-break problem:

I’
max { > orfzl
i=1

1]
3 x°z¢ <E[B], z°€{0,1}, Vi:l,...,|r”|}.

i=1

If z)=1, then r{ €. This knapsack problem is only
solved once before the start of the live event. As
before, let (r,x) be the portfolio of ads not yet aired
at the time break n occurs, and let z={z,,z,,...} be
such that z;=1 iff r,€ Q. Then, the heuristic will try
to schedule the subset of ads that maximizes the
weighted sum of (a) the current revenue in a break
and (b) a reward for using ads from Q:

Ir] Ir] Ir]

maX{Zn-yf +w) v(x)zy; | D%y <b,,y;€{0,1},

i=1 i=1 i=1
Vi:l,...,|r|};

here y;=1 iff ad with revenue r; is scheduled in the
current break. The sets r, x, and z are then updated to
account for the ads that have been scheduled.

The “reward” function v(x), which depends on the
ad’s length, is designed to skew the objective function
in favor of longer ads in fl,‘ the reason is that longer
ads have less scheduling flexibility and can therefore
fit only in a subset of the breaks.® The tuning parame-
ter w should be chosen in such a way that the greedy
objective of maximizing the current break’s revenue
is balanced with the objective of using ads exclusively
from the set Q. For extremely small w, this policy
reduces to the greedy heuristic. If w is large, however,
then the heuristic will seek to schedule the ads from
Q first—starting with the longest ads—and will go
outside that set only if there is extra airtime left. This
policy is similar in structure to the greedy look-ahead
policy first described by Atkinson (1994). In prioritiz-
ing the use of ads from (), the policy is similar also
to the heuristic proposed by Fisk and Hung (1979)
for the deterministic 0-1 multiple knapsack problem.
In our numerical experiments, we choose a value of
w high enough to differentiate this heuristic from the
greedy heuristic.

Industry Diversity Constraints. Observe that when
there is an industry diversity constraint, each of these
heuristics will incorporate a condition that prohibits
two or more ads from the same industry from being
shown in the same break.

5. Numerical Results

In practice, the advertisement scheduling prob-
lem may display features that make it analytically
intractable, in which case perfect information would
be of value. We perform an extensive numerical anal-
ysis to assess the performance of heuristics commonly
used in the literature and of heuristics based on our
theoretical results. As a measure of heuristic quality,
we use the percentage gap from the revenue under
perfect information, which is obtained by solving the
optimization problem (6).

We use real (but appropriately disguised) data from
the broadcaster, which feature not only multiple break
lengths, but also multiple ad lengths and random
numbers of breaks. We examine the problem with all
of its attributes: diversity constraints, multiple break

8 This intuition comes from the problem of two ad lengths. There,
the main consideration for a scheduler when implementing the PI
solution is to ensure that all the long ads from the set {I7,...,15.}
not yet aired (during the first n commercial breaks) will fit in the
remaining N —n breaks. A straightforward way of satisfying that
condition is to schedule, in each break, as many long ads as pos-
sible until all A* long ads have been scheduled. If a break has a
duration that is not a multiple of 25 seconds and/or if all A* long
ads have already been aired, then the remaining airtime is filled
with short ads.
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Table 1

Percentage Revenue Gap Without Diversity as a Function of Overbooking Level, Ad Distribution, and Pricing

Linear pricing

Concave pricing

Overbooking

level (%) Ad distrib. Greedy GLA UBLA Greedy GLA UBLA
0 31 0.01:0.00 0.20+0.02 0.44+0.03 0.880.05 0.390.03 1.08::0.06
1:1 0.01+0.00 0.36:0.02 0.27+0.02 1.55:£0.08 0.860.05 0.90+£0.05

13 0.05£0.01 0.590.04 0.07£0.01 3.09+0.12 1.87+0.09 1.68£0.09

Real life 0.01-0.00 0.390.03 0.30+£0.00 1.50£0.08 0.87+0.05 0.640.04

20 3:1 0.00-£0.00 0.37£0.01 0.25-£0.01 0.640.03 0.23+0.01 1.68:£0.03
1:1 0.00:0.00 0.650.02 0.18£0.01 1.12:£0.05 0.66-0.03 0.97+0.03

13 0.01+0.00 1.01+0.01 0.06-0.00 2.99+0.03 2.07+0.02 1.04+0.03

Real life 0.00:0.00 0.660.02 0.23£0.01 117£0.04 0.660.03 0.63+0.03

Note. Entries in bold show the best-performing heuristic for each category.

lengths, multiple ad lengths, and a random number
of breaks. The simulation uses data from a recent
cricket tournament that included 1,234 commercial
breaks in 27 matches. In the simulation, the average
number of breaks is set to 50, with N drawn from
a discrete uniform distribution defined on the inte-
ger set {45,46, ...,55}. Breaks were of random length,
with a mean of 65 seconds and a standard devia-
tion of 22 seconds. We selected a log-normal distri-
bution with appropriate parameters as the closest fit.
The most commonly found ad lengths were 10, 15,
20, and 30 seconds. The revenues for 30-second spots,
assigned via a spread-preserving scaling (for confi-
dentiality purposes), follow the continuous uniform
distribution 1{ ~%(7,000;10,000). As before, we ana-
lyze both linear and concave pricing.’

The ad portfolio’s composition—in terms of air-
time sold as short (10 and 15 seconds) versus long
(20 and 30 seconds) ads—is also varied and reflects
four different settings: (i) thrice as much time sold
to short ads (3:1 ratio); (ii) equal time sold to short
and long ads (1:1); (iii) thrice as much time sold to
long ads (1:3); and (iv) actual (“real-life”) sales, which
fall in between the second and third scenarios. The
number of each ad type is equally split in each of
these four settings. We consider two overbooking lev-
els (0% and 20%) consisting of 15 and 18 advertisers,
respectively, with each advertiser booking a total of
200 seconds. There are seven industries in our diver-
sity setting.!” We shall investigate the effectiveness of
the heuristics described in §4.2 by comparing their
expected revenue with the results obtained under per-
fect information.

° Under linear pricing we apply factors (1/3,1/2,2/3,1) to calculate
revenues for respective ad lengths of (10,15,20,30) seconds (e.g.,
if the revenue from a 30-second ad of advertiser 1 is 9,000, then
the revenue from a 10-second ad of this advertiser is 3,000, from
a 15-second ad is 4,500, and from a 20-second ad is 6,000). Under
concave pricing we apply the factors (,/1/3, /1/2, /2/3, 1).

°In the case without overbooking, advertisers are allocated to the
seven industries as {3,3,3,3,1,1,1}; in the case with overbooking,
they are allocated as {4,4,4,3,1,1,1}.

Table 1 reports results for the case with no diver-
sity constraints; Table 2 reports results for the case
with diversity constraints. We shall discuss each case
separately. As expected from the analytical results,
the greedy heuristic performs outstandingly well in
the simple case of linear revenues without diversity
constraints and obtains (near) optimal revenue. Yet
when we introduce concave revenues in the absence
of a diversity constraint, we are able to propose
simple heuristics that outperform the greedy heuris-
tic. For example, if short ads are plentiful, then the
greedy look-ahead heuristic performs better, whereas
if short ads are scarce, the upper-bound heuristic with
look-ahead dominates. Heuristics with the look-ahead
feature avoid overutilizing short ads early on, thus
prolonging the portfolio’s scheduling flexibility. That
being said, the optimality gap in comparison with the
greedy heuristic remains small in all scenarios, pro-
vided short ads are not extremely scarce (scenario 1:3).
This result also indicates that broadcaster revenue is
driven more by airtime utilization than by ad selec-
tion per se. The greedy heuristic generally performs
well in terms of utilizing airtime, unless short ads are
priced at a premium (i.e., concave pricing) and rela-
tively few of them were sold, in which case the greedy
heuristic quickly runs out of short ads.

Adding diversity constraints is expected to reduce
the performance of all heuristics, because scheduling
becomes more difficult. Although the greedy heuristic
typically remains the best-performing one in the lin-
ear pricing case, it no longer strongly dominates: the
UBLA heuristic occasionally outperforms the greedy
heuristic, and their confidence intervals sometimes
overlap. Interestingly, we remark that the diversity
constraint improves the greedy heuristic’s perfor-
mance under concave revenues; indeed, the optimal-
ity gap shrinks when diversity constraints are added.
Diversity constraints have the unintended side effect
of reducing the number of short ads shown early
on in the match because the greedy heuristic can
no longer schedule only short ads in longer breaks,
since there are only seven industries from which to
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Table 2 Percentage Revenue Gap With Diversity as a Function of Overbooking Level, Ad Distribution, and Pricing
Overbooking Linear pricing Concave pricing
level (%) Ad distrib. Greedy GLA UBLA Greedy GLA UBLA
0 3:1 3.11+0.13 3.05+0.12 2.77+0.12 0.89+0.05 0.96+0.05 1.64+£0.07
1:1 1.82+0.10 2.06+0.09 1.9940.09 1.17+0.06 1.35+0.06 1.03+£0.05
1:3 1.15+0.08 1.63+0.08 1.264-0.08 2.71£0.11 2.31£0.09 1.57+0.07
Real life 1.80+£0.10 1.97+0.09 1.70+0.08 1.16+0.06 1.32+0.06 0.95+0.06
20 3:1 1.72+0.11 1.90+0.11 2.03+0.11 1.06+0.04 1.16+0.05 1.77+£0.05
1:1 0.67+0.06 1.21+0.06 0.95+0.07 0.68+0.03 0.74+0.02 1.07+0.03
1:3 0.40+:0.04 1.344+0.04 0.56+0.05 2.54+0.06 2.26+£0.04 1.12+0.05
Real life 0.51+0.05 1.08+0.04 0.7540.05 0.824+0.03 0.78+0.03 0.9140.03

Note. Entries in bold show the best-performing heuristic for each category.

choose. The other heuristics do not benefit from this
boost because they were already preferring longer to
shorter ads in the match’s early breaks; thus, they
only suffer the drawback of an additional scheduling
constraint. If we take the case featuring overbooking,
concave revenues, and diversity, the greedy is the top-
performing heuristic or sees its confidence interval
overlap with the best-performing heuristic in three
out of the four ad distribution scenarios considered,
and it only fails when short ads are in extremely short
supply. This confirms that even in complex settings—
with multiple ad lengths, diversity constraints, and
concave pricing—the greedy heuristic performs rea-
sonably well. Hence, there is no need to design elab-
orate heuristics that would be difficult for the broad-
caster to understand and implement.

6. Portfolio Composition
The random capacity characteristic of live television
events, when combined with the high yield of adver-
tising during such events, induces the broadcaster to
sell in excess of expected airtime. Doing so lowers the
service level (i.e., many of the booked ads will not
be aired), which can lead to advertiser dissatisfaction
(i.e., goodwill loss) and also to penalties in the case of
contractual guarantees. If there are contractual penal-
ties for unaired ads, then the broadcaster must choose
a level of overbooking that balances the trade-off
between capacity utilization and penalty payments.
At the same time, the broadcaster must balance the
trade-offs involved when splitting the booking lev-
els between short and long ads. Short ads give the
broadcaster more scheduling flexibility because they
can air during any type of break. So for a given over-
booking level, increasing the number of short ads sold
raises average capacity utilization. Yet if long ads sell
at a premium (i.e., if the revenue per second generated
by an ad is increasing in its length), then short ads
become less profitable. The premium or discount as
a function of ad length varies among countries and
also among broadcasters. It is seldom straightforward
to assess the premium (or discount) associated with

longer ads because of the media industry’s nontrans-
parent nature. Even so, it is important to quantify the
trade-off between yield and scheduling flexibility as
reflected in the optimal sales ratio of short to long ads.

Taking ad prices as an exogenous input to the
model, we look for the ideal mix and quantity of short
and long ads to sell conditional on (a) their respective
revenues and penalties for nonairing and (b) imple-
menting the optimal policy at the scheduling stage.

Much as before, we assume that there is an exoge-
nous set of ads of short (S) and long (2S) durations,
and that from these the broadcaster must choose a
subset to accept for possible airing during the live
broadcast. (Recall that booking does not guarantee
transmission.) Let 6 be the overbooking level, defined
as the percentage of airtime sold in excess of expected
capacity. We assume there is a penalty—proportional
to the revenue that airing the ad would generate—
that the broadcaster must pay to the advertiser if an
ad is booked but not actually aired; let 8 €[0, 1] be this
penalty. To simplify matters, we first abstract from
variability in ad prices and also from the dynamic
aspect of demand realization during the booking
period. We shall later discuss the effect of variability
on the optimal policy and perform a numerical sensi-
tivity analysis. In addition, we will present heuristics
for solving the more general problem with multiple
ad lengths.

For now, let us assume that all long (short) ads
generate the same revenue and that the demand for
each ad category is large enough. This is a reason-
able assumption for live events with tight capacity
and high demand. Without loss of generality, we stan-
dardize the revenue and duration of short ads to 1.
Then a long ad will generate revenue equal to 2(1+¢).
We say there is a premium for long ads if £>0 and
that there is a discount for long ads if £ <0.

The discrete nature of our problem precludes the
use of differential techniques to study the proper-
ties of the optimal booking policy, so instead we
use lattice-theoretic methods. Denote by II(n;,ng):
N> — R the total expected revenue of a broadcaster
given a booking portfolio consisting of 7, long
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ads and ng short ads. That same revenue can be
expressed as a function of the number of long ads
and the overbooking level: I(n,,8): L— R, where 6=
(ng+2n;)/E[B]—1 denotes the expected overbooking
level, E[B] denotes the total expected capacity, and
L={(n;,8)eNxR|InseN s.t. 6=(ns+2n;)/E[B]—-1}.
There is a one-to-one correspondence between these
two representations of revenue, and it is easy to see
that L is a lattice.”!

6.1. Premium for Long Ads

If there is a premium for long ads, then by Proposi-
tion 2 we know that the optimal scheduling policy is
the greedy policy: the broadcaster will always sched-
ule a long ad in a long break unless there are no more
long ads left. Absent any diversity constraints, the
short ads will be scheduled in the remaining long and
short breaks. For simplicity of exposition and w.l.o.g,
we focus on the two break durations S and 2S.

Let k; denote the random number of long breaks,
and let p;:=Pr(k; =i) be the probability that the total
number of long breaks in a game is i for i=1,...,N.
In this case, the expected revenue of a broadcaster is
given by

L
(n;,ng) = Y [2i(14&)+min{ng, N —i}
i=0
—2(n,—i)B(1+e)
—max{0,ns—N+i}B]p;
N
+ > [2n,(1+&)+min{ng, N+i—2n}

i=np+1

—max{0, ns—N —i+2n,}B]p;

Similarly, the expected revenue can be expressed as a
function of the number of long ads and the overbook-
ing level:

ny

1i(n,,8) = >[2i(1+&)+min{(8+1)E[B] —2n,, N —i}

o —)B(1+e)
—max{0, (3+1)E[B]-2n, —N +i}Bp;
N

+ > [2n,(1+e)

i=np+1

+min{(8+1)E[B] —2n,,N+i—2n,}
—max{0, (§+1)E[B]—N —i}B]p;.

"' The set X CR" is a lattice if, for every x,y€X, we have xvyeX
and x Ay € X; here x VVy is the componentwise maximum of x and y,
and x Ay is their componentwise minimum. Let (1], §°), (n),8)el;
then (n},8")v (n),8) €l and (n},8)A(n],8) €. To see the former
consequence, assume that ni >n, and 6'<8/ (all other cases are
either similar to this one or trivial). Let ni=(8'+1)C—2n}, and
let n,=(8+1)C—2n}. Then there exists an nleN such that &=
(n{+2nt)/C—1. Now simply take n{=n{+2(n] —n}) and note that,
since &/ > &', we have ne > n%. One can similarly show that (1}, 8) A
(n],,8) €L by constructing nf; =n+2(n} —n,).

In the following proposition we characterize some
properties of the revenue function.

ProrosiTioN 4 (REVENUE FUNCTION PROPERTIES).
1. The function ﬁ(nL,S): L— R is supermodular.
2. Let All(n,,8)=11(n,,8)—1I1(n, —1,8). Then
ATi(n,, 8) satisfies the following properties:
(a) All(n,,8%) > All(n,,8") for all (n,,8")el and
5> 8
(b) ATI(1, +1,8) <All(n,,8) for all (n,+1,8)€l.

Here supermodularity is equivalent to increasing
differences: the higher the level of overbooking, the
greater the effect (on the broadcaster’s expected rev-
enue) of adding one more long ad. Therefore, the
optimal number of long ads (7} (8)) is weakly increas-
ing in the level of overbooking. Finding the optimal
(n},6%) amounts to maximizing a supermodular func-
tion over a lattice (see, e.g., Topkis 1998). Note that
the supermodularity of the expected revenue function
implies complementarity between its arguments. One
can easily show that II(n;,ng) is submodular, which
implies that its arguments are substitutes.

From part 2 of Proposition 4 we see that, for a given
number of long ads, the marginal expected revenue
is increasing in the level of overbooking; moreover,
for a given overbooking level, the marginal expected
revenue is decreasing in the number of long ads. The
first property follows directly from the expected rev-
enue function’s supermodularity. The second prop-
erty is intuitive and simplifies the control policy when
the level of overbooking is given. For instance, if the
overbooking level is fixed at , then the optimal num-
ber of long ads, nj, is the smallest integer such that
ATI(nt,8) <0.

6.2. Discount for Long Ads

If there is a discount for long ads then, by Propo-
sition 2, short ads will be scheduled in a long
break unless not enough short ads are available. As
before, let k; be the number of long breaks. If k; <
(ng—N)*, then no long ads will be scheduled (i.e.,
realized capacity is B=2k; +(N —k;)=k;+N), given
that 1<2(1+4+¢) <2; however, if k; > (ng—N)*+1, then
u(k,, n;,ng)=minf{n;  k; — | (ng—N+k;)*/2]} long ads
will be scheduled, and v(k,,ns)=min{N —k;,ng}+
2| (ng—N+k;)*/2] short ads will be scheduled. The
expected revenue function will now be

H(nL ’ nS)
(ns—N)*

— Y [min{ng, N+i}—(n5—i—N)*B—2n,8(1+)]p,

i=0
N

+

i=(ng—N)*t+1

—2(ny —u(i,ng, ns))B(14€)— (ns— (i, ns)) B]p:-

[2u(i, n,, 1) (1+ ) +0(i, n5)
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ProrosITION 5. Under the optimal booking policy,
n} =0, and n} is the smallest integer such that

1

N1

This result leads us to make two observations. First,
if there is a discount for long ads (i.e., if £<0), then
the optimal number of long ads is zero. This find-
ing is intuitive because only short ads offer the ben-
efit of flexibility. So, absent a premium for long ads,
the broadcaster will prefer to sell only short ads and
thereby reduce the risk of unutilized airtime capac-
ity. Second, choosing the right number of short ads to
book can be reduced to a simple newsvendor inven-
tory problem in which the overage cost is 8 and the
underage cost is the revenue of a short ad s=1.

Pr(k, <ns—

6.3. A Heuristic for the Multiple-Ad-Length
Portfolio Problem

The foregoing discussion clearly shows the similar-
ity between this problem and the multiclass airline
booking problem. The main difference here is that
the capacity is not homogenous as in the case of air-
lines, in which a high-fare customer will consume
the same unit of capacity as a low-fare customer.
Here, two 15-second ads can displace a 30-second
ad, but the reverse need not hold (unless the 15-
second ads occupy consecutive time slots). Thus, the
well-known heuristics used by airlines (such as the
Expected Marginal Seat Revenue (EMSR)-a,b algo-
rithms; see Belobaba 1987) cannot be directly applied
to this problem. Nevertheless, they can form a start-
ing point from which customized heuristics can be
devised for this setting. The purpose, of course, is not
to solve the problem with only two ad lengths, but
rather to derive algorithms that can be easily general-
ized to multiple ad durations.

Similarly to the EMSR algorithm, the heuristic
described here aims to determine optimal booking
levels in a sequential fashion, from the longest to
shortest ads, by approximating the multiple ad length
problem via a series of simpler newsvendor inventory
problems.

Let {x;,x,,...,x,} be the set of ad lengths ordered
from longest to shortest, and let ¢; be the premium/
discount associated with ad length X;. As before,
w.Lo.g. we normalize both the revenue and the dura-
tion of the shortest ads to 1; hence, the revenue result-
ing from an ad of length x; is x;(1+¢;).

First, for each possible break duration d; (i=1,

.,K), we find the revenue-maximizing combination
of ads to schedule in such a break while assuming
unlimited availability of ads of all lengths:

m

e Al

max
i1, i, €N

{Zn, xi(1+¢))

where 7, ; is the number of ads of length x; to be
scheduled in a break of duration d;.

Second, for each possible ad length x; (j=1,...,m)
we want to estimate the underage cost—in other
words, the opportunity cost of not having enough ads
of this length in the portfolio. We estimate this under-
age cost by finding the best combination of ads to
replace an ad of length x; in a break:

S g sx,} 12)

i=j+1

max { Y qi,xi(1+e

qj1,jr++rm, € i=j+1

where (g; ;) is the number of ads of length x; <x; (i=
j+1,...,m) in the combination. The underage cost is
therefore given by

i q;,%i(1+£;). (13)

i=j+1

xi(1+e&;)—

Third, we compute the booking level 7; for each ad
length x; (j=1,...,m), starting with 7, in two stages.
In the first stage, we find Fj, the distribution function
of X;, which is the number of ads of length x; needed
in all of the N breaks of the broadcast, provided
that 71; ads of length x; have been already booked,
where i=1,...,j—1. Thus, we obtain

N j—1 N +
Xj= ZXJH "‘Z%,]‘ (ZXIH _”i> ,
n=1 i=1 n=1

where X} is the random number of ads of duration
x; needed in break 7 if there is unlimited availability
of ads of other lengths (e, X!'=n,; if b,=d;).” In
the second stage, we solve a newsvendor inventory
problem while assuming that (a) the “demand” distri-
bution is F, (b) the underage cost is given by (13), and
(c) the overage cost is equal to Bx;(1+¢;). We repeat
this third step for all m ad lengths.

ExampLE 1. We illustrate the steps of this heuris-
tic for the two-ad-length problem with a premium
on long ads. Assume that the duration and revenue
of a short ad are both standardized to 1 (i.e., S=1
and s=1). Assume further that the duration of a long
ad is L=2 and that its revenue is [=2(1+¢), where
e>0.

 Step 1. The optimal combination of ads to sched-
ule in a break of duration d, is n; ; =|d;/2] long ads
and n; s=d;—2|d;/2] short ads (i=1,...,K).

e Step 2. The opportunity cost for long ads is [—
2s=2¢; for short ads, this opportunity cost is 1.

12 Recall that p, ; is the probability that break n has duration d; (1=
1,...,N,i=1,..., K). Then Pr(X} <x) :Zf 11,11 i=xPuis where I,, = is
the indicator function that takes the value 1 only if n; ;<x.
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Figure 2
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Percentages of Long and Short Ads from Total Expected Airtime Capacity Under the Optimal Policy and the MALP Heuristic
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Notes. We use HU, MU, and LU to denote high, medium, and low levels of uncertainty in capacity, respectively. We assume N =20 and the following distri-
butions for the total number of long breaks: distribution HU, Pr(k, =/i)=1/20, k, €{1,...,20}; distribution MU, Pr(k, =i)=1/10, k, €{6,...,15}; distribution
LU, Pr(k, =i)=1/2, k, €{10,11}. We use the following values for premiums and penalties: low premium and low penalty, e=0.1 and =0.1; high premium

and high penalty, e=1and g=1.

» Step 3. Compute the distribution function of the
number of long ads needed (X; =Y\, X}, where X} =
|b,/2]). Then, solve a simple newsvendor inventory
problem while assuming that (a) the demand distri-
bution is the distribution function of X;, (b) the unit
opportunity cost of underbooking is 2¢, and (c) the
unit cost of overbooking is 26(1+¢). Let 7i; be this
booking level.

Now repeat Step 3 to determine 7ig, the number
of short ads to book. First, compute the distribution
function of the number of short ads needed, given
that 71; long ads have already been booked (X;=
SN XE42(X, —17i;)t, where X!=b,—2|b,/2]). Then,
solve a newsvendor inventory problem while assum-
ing that (a) the demand distribution is the distribution
function of Xg, (b) the unit opportunity cost of under-
booking is 1, and (c) the unit cost of overbooking
is B. Using an argument similar to the one in Proposi-
tion 5, it is easy to show that 7 is the smallest integer
such that

1
>
~1+B
If long ads sell at a discount (ie., if £<0), then
the multiple-ad-length problem (MALP) heuristic will

coincide with the optimal policy for the two-ad-length
problem.

Pr(N —nig <k <iig+2ii, —N)

In Figure 2 we compare the booking levels derived
under the MALP heuristic with the optimal booking
levels for different penalty and premium levels. In all
but three scenarios the booking levels are the same.
The only time the MALP heuristic gives significantly

different recommendations is when the premium is
low and the penalty is high. In that case, the MALP
heuristic tends to underbook long ads and overbook
short ads. For both the optimal policy and the MALP
heuristic, we observe that the higher the uncertainty
in break duration, the higher the percentage of short
ads relative to long ads—even if premiums for long
ads are high. So when there is high uncertainty in
the break duration, the flexibility afforded by shorter
ads is more valuable than the premium generated by
longer ads.

6.4. Variable Ad Yields

So far we have assumed that ad revenues are con-
stant for ads of the same length; in reality, however,
ads have variable yields. In this case, the previously
derived properties of the expected revenue function
might not always hold."® For the general case with

BFor example, consider the following sets of revenues for
30-second and 15-second ads: 1={7, 7,7, 7} and s=1{5, 1,1,1, 1, 1,
1, 1}. Note that the average price of a 30-second spot is higher than
twice the average price of a 15-second spot. Assume that there is a
penalty 8=10% and that there are two possible levels of overbook-
ing: P6,=0 (i.e.,, 0%) and 8,=1 (100%). For simplicity, we assume
that the capacity is deterministic and consists of two 30-second
breaks. Then it is easy to check that none of the properties derived
in §6.1 hold. We have 1I(4,1)=12.6, 11(3,1)=12.7, 11(2,1)=13.2,
T1(1,1)=12.6, and TI(0,1)=7.6; also, I1(2,0)=14, TI(1,0)=13, and
f[(0,0) =8. Observe that neither is the expected revenue func-
tion supermodular in this case, since AI1(2,8%)=1.2> AI1(2,6')=1.
Moreover, for a given level of overbooking, the marginal return
need not be decreasing in the number of long ads: AIT(4,1)=—0.1>
AII(3,1)=—0.5.
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Figure 3
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Notes. HU, MU, and LU denote high, medium, and low levels of uncertainty in capacity, respectively. The values for premiums and penalties are the same as

for Figure 2.

variable ad yields, it is no longer possible to have a
closed-form expression for the expected revenue func-
tion, since that would require an expression for the
optimal schedule on every sample path given any sets
of ads 1° and s°. Nonetheless, our assumption of con-
stant ad yields employed so far can serve as the basis
for a simple heuristic that the broadcaster can use to
determine what proportion of short and long ads to
book. Relative to the optimal policy, such a heuris-
tic, which uses expected yield values for ads of the
same length, will underbook, as shown in the follow-
ing proposition.

ProrosITION 6. Let (nj,n%) be the optimal booking
policy when all long (resp., short) ads have constant
yields [ (resp., s), and let II(n},n%) be the correspond-
ing expected revenue of such a portfolio. Consider now
the sets of long ads {L,,...,1,.} and short ads {s,,...,s,.}
with variable yz’eé@’s and such that (i) [, > zl”z ; (il) s; >
ez, (i) YL L/np =1 and (iv) Xo;Lys;/ng=s. Let
H({L, ..., L}, n5) e the expected revenue from a portfolio
consisting of {l,..., 1.} long ads and ng short ads with
constant yield equal to s. Similarly, let TI(n},{sy,...,S,:})
be the expected revenue from a portfolio consisting of nj
long ads with constant yield equal to I and {s,,...,s,.}
short ads. Then the following inequalities hold:

L. II(n} +1, ng) —1(ny, ng) <HU({L, ..., L, }U{l}, ng) —
H({h, oo b} 13);

2. H(ny, ni+1)—Il(n;, n) <Il(n},{s,, ...
H(ng, {sy, - Su:})-

We know that if (n],n}) is the optimal booking pol-
icy when ads have constant yields, then the marginal

5, JUls)) -

revenue from one additional long (resp., short) ad
must be negative. Proposition 6 shows that this is not
necessarily true for the case of variable yields, where
the marginal revenue from an additional long (resp.,
short) ad is always higher than the corresponding
marginal revenue when yields are constant. The intu-
ition behind this result is as follows. The scheduling
policy always airs the ads with higher revenue first;
therefore, penalties will be paid only for the cheaper
ads that are not aired, whereas revenue is gained from
the more expensive ads that are aired.

Figure 3 summarizes the simulated optimal pro-
portions of short and long ads (expressed as a per-
centages of total expected airtime capacity) and over-
booking levels under both constant and variable ad
yields.'* We notice that variability in ad yields results
in a higher overbooking level. The overbooking level
is significantly higher when penalties are low, irre-
spective of the uncertainty in break duration. How-
ever, there seem to be no significant changes in the
proportion of short and long ads. Table 3 shows the
revenue gap obtained from applying a heuristic that

14 Because we cannot derive the optimal booking policy for variable
ad yields, this policy was obtained via a large-scale simulation. For
this we used the booking policy (1}, n%) that yielded the maximum
average revenue. The ad revenues were generated from the uni-
form distributions s~U[1+0] and [~U[2(1+¢&)+20], where o€
{0,0.3}. The optimal booking policy for the case of constant ad
yields was determined using the results from the previous section
and while assuming that each short ad generated revenue s=1 and
each long ad generated revenue [=2(1+¢).
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Table 3 Percentage Gap in Average Revenue Obtained Using Optimal
Policy Under Constant Yields (I1,,;,) Relative to Average
Revenue Obtained Using Optimal (Simulation-Wise) Policy
Under Variable Yields (ITopyy)
Degree of uncertainty in break duration
Penalty, High Medium Low
premium uncertainty uncertainty uncertainty
lgpyy —Ilopcy lgpyy —Topcy Iopyy —opcy
(B, €) Toppy - % 100 ooy - X 100 Topny - X 100
(0.1,0) 0.49+0.25 1.78+£0.25 4.08+0.25
(1,0 0.43+0.28 0.29+0.28 0.064-0.28
(0.1,0.1) 2.56+:0.26 3.96+0.29 5.53+0.30
(1,0.1) 0.30+0.31 0.47+0.33 0.774+0.37
(0.1,1) 0.88+0.28 1.69+:0.24 4.69+0.27
(1,1 0.23+0.33 0.68+0.28 0.29+0.30

Note. Entries in bold show the best-performing heuristic for each category.

assumes constant yields in a situation where yields
are actually variable. The percentage gap is highest
when the penalties for overbooking are low, and the
lower the uncertainty in break duration, the higher
the gap.

Our results suggest the following procedure for
crafting a good ad portfolio for the general prob-
lem with multiple ad lengths and variable ad yields.
First, use the MALP heuristic that assumes constant
ad yields to determine what proportion of ads of
different lengths should be in the portfolio; second,
increase the overbooking level while maintaining the
same proportion of ads of different lengths to account
for the variability in ad yields. The lower the penal-
ties, the higher this adjustment in the overbooking
level should be.

7. Conclusion

The problem of how best to sell and schedule tele-
vision advertising has been widely studied in the
literature for the case of deterministic commercial
breaks. In live broadcasting, however, the duration
of commercial breaks is often unknown at the time
of scheduling. Many live events—such as sports
and election coverage—enjoy high ratings, and their
advertising slots command a significant premium
over regular shows. For this reason, maximizing the
use of commercial airtime during live events can
greatly enhance a broadcaster’s revenue.

In the absence of diversity constraints, we can
determine the optimal scheduling rule when ads
are of the two commonly found lengths (15 and
30 seconds): a greedy look-ahead policy that is easy
to implement and achieves the perfect-information
profit. The composition of the broadcaster’s ad port-
folio can be manipulated to increase expected profit.
The stochastic nature of total capacity naturally leads
to overselling, which must be balanced against pos-
sible no-show penalties. The balance between short

and long ads in the portfolio is also important. Short
ads are valued for the flexibility they lend to schedul-
ing; in fact, if there were no premium on long ads,
then the optimal portfolio would consist exclusively
of short ads.

For more complex settings with industry diversity
constraints within breaks and multiple ad lengths, we
perform a large-scale numerical analysis to compare
several scheduling heuristics. We find that the greedy
heuristic performs well under many scenarios, in line
with our theoretical results. The greedy heuristic is
impaired in the presence of concave revenues, and we
propose more elaborate heuristics (based on our ana-
lytical insights) to reduce the optimality gap further
in that case.

At the ad-selling stage, we show how to build the
optimal portfolio of short and long ads for constant
revenues and two ad lengths. We build a heuristic to
extend our portfolio recommendations for the case of
multiple ad lengths. We find that the heuristic per-
forms close to optimal in most scenarios of ad pricing,
no-show penalties, and break duration uncertainty.
When ad revenue is variable, we show that a higher
level of overbooking—relative to the constant ad rev-
enue scenario—is optimal.

Although our research yields preliminary results
on the question how short and long ads should be
priced to maximize the broadcaster’s expected rev-
enue, much remains to be done in this area. Future
work could profitably look into the following issues:
(i) manipulating the relative (sales) prices of short and
long ads to shape an optimal ad portfolio under break
uncertainty and diversity constraints and (ii) design-
ing a range of price levels (and concomitant ser-
vice guarantees) that would maximize the revenue
extracted from advertisers.
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Appendix

PrOOF OF ProposITION 1. Let m(A)=Y1 194+ 50,

Then, for A<A*, we have 7w(\*)—mw(A)=I+--+5.—
Sp_pre41— """ —5B_s) =0 because

0 0 0
B >5p ppsq1 53 opep and

0 [ [ 0 0 0 0
Bz 2B 20 285 oy S5 0pe g0 =" =S5 0y 1 +S50)-
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The first inequality follows from our choice of A*, whereas
the second line of inequalities follows because the sets s°
and 1° are ordered and A+1 <A*.

Similarly, for A* <A< YN |b,/2], we have 7(A*) — m(A) =
—I§ujq 4413 >0 because

0 0
Sp_oa+1 7 T Spooa

() 0 0
Sg_ore—1tSp_one 2 [3eyq  and
0 0 0 0 [ [
SBoat1 T SB-oa2 = = SEope 1 TS5ope 2 ey 20 205

The first inequality follows from our choice of A* (ie,
the greatest integer less than Y.\ |b,/2]| such that I3, >
SB_op*41 T SB_ox=42, Which implies that either IS, ; <sp_,\._;+
85 5 of A*=Y"N |b,/2|; hence there exists no A such
that A* <A<YN |b,/2]). The second line of inequalities
again follows because the sets s° and 1° are ordered and

A+1<A O

Proor of ProrosITION 2. To prove optimality, it suffices
to show that A*=Y"1 A, It is easy to see that 3N A, <A,
since

N N
> A<) |b/2] and

i=1 i=1

I° >s? s? .
YN A =7B2y N A + B2y N A+2

Yet by definition we know that A* is the greatest integer
satisfying these inequalities.

We now show that 3"¥ A;>A*. Assume the contrary.
Then A*—Y"N A;>1. Let t be the smallest index for which
N =Yl A =>YN, [bi/2]+1, in which case A*—Y i1\ <
Y bi/2].

First we show that A, +1<|b,/2]. From our choice of ¢ it
follows that

t N b.
voyaz x| |
i=1

i=t+1

t—1 N b.
S M+H1<A =Y A= Y {—’J
i=1 i=t+1 2
N|b, N1 b, b
lz)-2[3)-3)
i=t 2 i=t+1 2 2

Next we show that

lO

> [ 0
S A 255 bt ) aN—t1 TSy

L bi—2(X A+ +N—t42°

To see this, note that

(i-a) 225 U] sane §

i=t+1 i=t+1

b—1

+2

t
=B-)> b;—N+t+2;

i=1

this expression implies that

t t
B—2A*+1§Zbi—2<2/\i+1)+N—t+1.

i=1 i=1

Therefore,

%

0 0 0 0
I an Z Do Z8poanein +85200 10

+5¢

[
Syt bi—2(0t A D)AN—+1 T O bo2(5 A+ )N 2]

Thus, A, is not the largest integer that satisfies inequalities

0 1 0 .
A =|b/2] and lzle,\i Z 55 -2 +N-t+1 TOS (h-2a)N-t12

a contradiction. Hence, Zfi 1A, =A%, which implies that
YN A=A O

Proor or ProrositioN 3. It is shown in Martello and
Toth (1990) that c(7 (x°,x°, E[b]))=c(¥ (r°,x°, E[B])). Also,
because c(7(r°,x°,b)) is a concave function, by Jensen’s
inequality we have E[c(7/'(r°, x°, b))]<c(7 (x°, x°, E[b])).
But Vi(r°, x°) <E[7(r°, x°, b)]<E[c(7(x°, x°, b))]; thus
Vi(x°,x°) <c(V(x°, x°,E[b])). O

PrOOF OF PROPOSITION 4. Part 1. Note that if there is a
strict premium for long ads, then it is always optimal to
schedule the highest-paying long ad available whenever a
long break occurs.

To prove that the profit function is supermodular, we
must show that TT(x,)+11(x,) <IT(x, vx,)+I1(x; AX,) for all
x;=(n},8") el and all x,=(n?,5%) L. We analyze the case
of nf >n? and 8! <&?%; the case n? >nl and 8 <4! is anal-
ogous, and the inequality is trivially satisfied for the two
other cases (i.e, when n} >#? and §' > 8% and when n? >n}
and §*>8'). We have nlvn?=nl, 8'v82=8%, n} An?=n?,
and 6' A82=5". We need to show that TT(n} , 8%) +11(n2,8') >
T1(n},8")+11(n?,8%) or, equivalently, that

A:=1l(n},8%) —1I(n!,8")>B:=11(n?,8%) —11(n?,5").

Let [I(n},8") =T(n},nl), Ti(n?,8%) =1(n2,n3), Ti(n},6%) =
II(n},n3), and 1(n?,8')=1I1(n?,nt). We claim that n}<n?
and n¢ <n?. To see this, note that

2n; +ni=(1+8")E[B], (14)
2n? +n%=(1+8%E[B], (15)
2n; +nd=(1+8%E[B], (16)
212 41t = (14+8")E[B]. (17)

Then (14) and (17) yield ni=n¢+2(n? —n}) <ni, whereas
(15) and (16) yield n2=n}+2(n} —n?)>n3. By (14) and (16)
we have n}=E[B](6!-8%)+ni<n, and by (15) and (17)
we have n%=E[B](8%—8')+nt>nt. Therefore, ni<ni and
nt <n?. Observe also that ni+n3=n3+nt. Therefore,

M(n},8%) —Ti(n}, 8")
=M(ny, n3) —T(ny , ng)

ny
=Y ([min{n}, N —i} —min{n§, N —i}]

i=0
—[max{0, n} — N +i} —max{0, ng — N +i}]1B8)p;
N
+ > [min{n, N+i—2n;} —min{ni, N+i—2n}}]p;
i=nl+1
N
— Y [max{0, n{—N—i+2n} }—max{0, ng—N—i+2n; }|Bp;.
i=n}+1
Define

yi,],(a)=min{n;,a}—min{né,a} and

;,i(a) =max{0, ng—a}—max{0, ”é —aj.
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Then

1
L

A= 2[73,1(N_i)_’//3,1(N_i)3]pi

n

i=l

N
+ 2 [Vs,l(N‘H—z”D—¢3/1(N+i—2”1)3]r’n (18)

i1
i=np +1

and
2

7

B =3 [v24(N=i)—th s(N—i)B]p;

N
+ > [’Yz,4(N+i_2”i)_¢2,4(N+i_2”%)B]Pi~ (19)

i—1n2
i=ny+1

Define I'(a,, a,) = V3,1 (a1) - 72,4(‘12) and W(a,,a,) = ‘//3,1 (@) —
¥, 4(ay). Then, by subtracting (19) from (18), we obtain

" n
A-B=YT(N—-i, N-i)p;+ Y I'(N—i, N+i—2n})p;
i=0 i:n%+1
N
+ Y I'(N+i—2n;,N+i—2n?)p;
i=n,{+1

n
B[ v - N =i,

i=0 n{

+ > W(N—i,N+i—2n)p;

i=n%+1
N
+ > W(N+i—2n{,N+i—2n§)pi]. (20)
i=n}+1

LEmMA. If the following three conditions hold, then
I'(a,,a,) >0 and ¥(a,,a,) <0:

(i) 0=ay—a, <2(nj —nj);

(i) ni<nd and nt<n;

(iii) ni—ni=n2-nd=2(n} —n?).

Proor. We analyze all possible scenarios as follows.

e If g, <n} and a, <nt, then I'=0>0 and ¥=0<0.

e If g, <n! and a,>n}, then a,—a, >nt—nl, so this sce-
nario does not satisfy condition (i).

e If a,>n} and a,<ni, then I'=min{n?,a,}—n{>0 and
W=max{0,n}—a,}+nt—n2. If ni>a;, then ¥=nd—a+
nt—ni=nk—a, <0; if n} <a,, then ¥=n—n%<0.

o If ay>nl and a,>ni, then I'=min{n}, a,}—nl—
min{n2, a,}+nt.

— If a; <n}, then a,<n2 (else conditions (i) and (iii)
would be violated), so I'=a; —n} —a,+n%>0 by (i) and (iii).
Also, ¥ =n3—a, —nt+a,=-2(n} —n?)+a,—a, <0 by (i).

— If ay>n}, then I'=n—ni—min{nd, a,}+nt=n%—
min{n2,a,}>0; also, ¥ =—max{0, n3—a,} <0.

When combined with (20), this lemma yields TI(1},6?) —
H(n!,8")—11(n?,8%) +11(n2,8")>0. Therefore, I(1;,6) is
supermodular. O

Part 2. The first inequality follows directly from the
supermodularity of II(n., ). To prove the second inequal-
ity, let I(n;, 6) =I1(n; , ns). We have

ATl(n; +1,8) = (n, +1,n5—2) —T(n;, ng)
nL
= Y [min{ns—2,N —i} —min{ng, N —i}]p;
i=0

nL
—2B(1+€)) p;
i=1
ng
— [max{0,ng—2—N+i}
i=0
—max{0, ng—N+1i}]Bp;

N
+2¢ Y pis
i=np+1
ATl(n; ,8) = (1, ng)—M(n, —1,n5+2)
np—1

= Y [min{ng, N —i} —min{ng+2, N —i}]p;

i=0

np—1

—2B(1+€) ) p;
i=1
np—1
— Y [max{0,ng—N+i}
i=0
—max{0, ng+2—N+i}]Bp

N
+2¢3 pi-
i=np,
Then
ATI(n, +1,8) —All(n, , 8)

np—1

=Y [min{ns—2, N —i}—2min{ng, N — i}
' +min{ng+2,N—i}]p;
— Y [max{0,ns—2—N+i}—2max{0, ng— N +1i}
+max{0, ns+2—N+i]]Bp,
—(26+2B(1+E))an
+ [min{ng—2, N —n; } —min{ng, N —n}|p,,
— [max{0, ng—2—N+n; } —max{0, ns—N+n,}|Bp,, -

For all a>0, we have

min{ng—2,a}—2min{ng,a}+min{ng+2,a} <0,
max{0, ng—2—a}—2max{0, ng—a}+max{0,ns+2—a}>0,
2e+2B(1+¢€)>28,
and
min{ng—2, N —n;}—min{ng, N —n, }
—[max{0, ng—2—N+n; } —max{0,ns—N+n,}|3<2B.

Hence, All(n, +1,8) <All(n;,8). O
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PROOF OF PROPOSITION 5. One can easily show that it
is suboptimal to have fewer short ads than the number of
breaks N when short ads sell at a premium (i.e., when long
ads sell at a discount), since the short ads will necessarily be
aired (because capacity is always greater than N S-second
spots). For brevity we focus our attention on the case ng>N
and s=1<[=2(1+¢€) <2s=2. Let n} be the optimal number
of long ads, and let 6* be the optimal overbooking level.
We show that if 1} >1, then T1(1} —1,8%) > [1(n}, 6*), which
would contradict the optimality of n}. Therefore, nf =0.

It is clear that

H(n,—1,n542)—11(ny, ns)

=—2¢[Pr(k; >ns—N+1)—BPr(k, <ns—N)],  (21)
110, 15 +1) —T1(0, 1)

=Pr(k;, >ng—N+1)—BPr(k, <ns—N). (22)

Let ng=argmax, II(0, n5). (If there are multiple optima, we
choose the lowest of them.) Then

Pr(k; >ni—N+1)—BPr(k, <ni—N) <0, (23)
Pr(k, >ni—N)—BPr(k, <nf—N—-1)>0. (24)
Moreover, it follows trivially that Pr(k; >ng—N+1)—
BPr(k; <ng—N) <0 for all ng>n} (since Pr(k; >ns—N+1) <
Pr(k; >n${—N+1) and Pr(k, <ng—N)=>Pr(k, <nf{—N) for
all ng>n¥) and that Pr(k, >ng—N+1)—BPr(k; <ng—N)>0
for all ng <n§. Also, from (22) we have
I1(0, ng+2n; ) —I1(0, ng)

2np -1
= Y [Pr(k,>ns—N+1+i)—BPr(k, <ns—N+i)]. (25)

i=0
Next, by (21),
10, ng+2n; ) —II(n;, ng)

np—1

=-2¢ Y [Pr(k, >ns—N+1+2i)
= BPr(k, <ng—N+2i)]. (26)
From (25) and (26) we derive
H(n, ns)—11(0, ng)

np—1

=Y [-Pr(ng—N+142i <k, <ns—N+1+2i+1)
i=0
—BPr(ng—N+2i <k <ng—N+2i+1)]

np—1

+2(1+6) 3 [Pr(k, = ns—N+1+2i)

i=

which is negative for all ng>ng.

For all ng<ni—1 and n;>1, the broadcaster’s rev-
enue II(n; , ng) cannot be optimal because II(n; —1,n5+2) >
I(n;,ng) (by (21) and (24)). From (23) and (27) it fol-
lows that II(n; , ng) <II1(0, ng) <II(0, n%) for all ng>ng. Thus,
we cannot have nj >1. Consequently, n; =0, and II(0, n%)
is the maximum revenue. From (23) we now obtain the
desired result; namely, n} is the smallest integer such that
Pr(k, <n5—N)=1/(1+p). O

ProoF ofF ProrosiTioN 6. (a) We know from Proposi-
tion 5 that if /<2s, then nj=0, and the result follows
trivially. We now analyze the case I>2s. When ads have
constant yields, the marginal revenue from booking one
extra long ad, while keeping the same number of short
ads, is given in the second column of Table A.1, for all
the various cases. When long ads have variable yields, then
the marginal revenue from booking one extra long ad with
yield I, while keeping the number of short ads constant,
is given in the last column of Table A.l, for all the vari-
ous cases.

The reasoning is as follows.

e If k; >nj and n{ >N +k; —2nj, then all capacity will be
utilized. Moreover, there would be a long break with two
short ads in it. By booking one extra long ad with revenue
I>2s, we can replace the two short ads with the long ad and
get a higher revenue. We would, however, incur a penalty
on the two short ads, which will no longer be aired. When
long ads have variable yields, it is also possible that the long
break with two short ads in it is not the long break with the
lowest revenue. There could be a long ad lj <2s, in which
case the extra ad [ would be used to replace that long ad in
the break. In this case, the marginal revenue from booking
one extra long ad is [ —1; —Bl; > 1—2s—2fs.

o If ky>n} and n{=N+k —2n;—1, then all breaks
except one long break will be fully utilized. That long break
will have only one short ad in it. By booking one extra
long ad, we can replace that short ad with the long ad. The
marginal revenue will be I —s— fs. As before, when long ads
have variable yields, it is also possible that the long break
with one short ad in it is not the long break with the low-
est revenue. There could be a long ad lj <s, in which case
the extra ad I would be used to replace that long ad in the
break. In this case, the marginal revenue from booking one
extra long ad is I—I; —Bl; > —s—fs.

o If k; >nj and n§<N+k;, —2nf —2, then there will be
at least one long break that is empty. By booking one extra
long ad we can fill the empty break and generate a marginal
revenue of /.

e If k; <nj, then not all long ads will be aired. By book-
ing one extra long ad, four scenarios are possible: the ad
does not get aired (in which case we incur a penalty of BI);

Table A.1 Marginal Revenue from Booking One Extra Long Ad When Ads Have Constant Yields

Case (m; +1,n5) —1(n;, n%) H({l1,...,I"Z}u{/},ng)—H({l1,...,lnz<},n§)
k >nf, mg=N+k —2n; |—25—2Bs I—2s—2Bs or [ —1;,—pl;, with |, <2s
k> ny, ng=N+k —2n; -1 I—s—Bs I—s—psor/—I,—pl, with ;<s
ko>nf, mg<N+k —2n; -2 / /

k <n; —Bl —Blor/—2s—2Bsor/—s—pBs

or/—1I,—pl; with /; <2s
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the ad gets aired and replaces a long ad with a lower rev-
enue in a long break (in which case the marginal revenue
will be l—l]-—Bl]» > —BI, because lj <I); the ad gets aired and
replaces two short ads in a long break (in which case the
marginal revenue will be | —2s—28s> —plI, because 2s <1I);
finally, the ad gets aired and replaces one short ad in a long
break (in which case the marginal revenue will be [—s—
Bs> —plI, because s <]).

Note now that under all scenarios, the marginal revenue
from booking one extra long ad when long ads have vari-
able yields is at least as high as the marginal revenue from
booking one extra long ad when ads have constant yields.

The proof for part (b) is similar, and we omit it for
brevity. O
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