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Abstract

Prominent hotel chains quote a booking price for a particular type of rooms on each day and

dynamically update these prices over time. We present a novel Markov decision process (MDP)

formulation that determines the optimal booking price for a single type of rooms under this

strategy, while considering the availability of rooms throughout the multiple-day stays requested

by customers. We analyze special cases of our MDP to highlight the importance of modeling

multiple-day stays and provide guidelines to potentially simplify the implementation of pricing

policies around peak-demand events such as public holidays and conferences. Since computing

an optimal policy to our MDP is intractable in general, we develop heuristics based on a fluid

approximation and approximate linear programming (ALP). We numerically benchmark our

heuristics against a single-day decomposition approach (SDD) and an adaptation of a fixed-

price heuristic. The ALP-based heuristic (i) outperforms the other methods; (ii) generates up

to 7% and 6% more revenue than the SDD and the fixed-price heuristic respectively; and (iii)

incurs a revenue loss of only less than 1% when using our pricing structure around peak-demand

events, which supports the use of this simple pricing profile. Our findings are potentially relevant

beyond the hotel domain for applications involving the dynamic pricing of capacitated resources.

Keywords: hotel revenue management, resource pricing, Markov decision process, approximate

dynamic programming
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1 Introduction

Many companies face the challenge of optimally setting the prices of their services or products

at different stages of a selling season so that their revenue is maximized. For example, companies

in the travel industry sell service capacity over a season, which includes seats on airline flights,

cabins on cruises, and rooms in hotels. A good pricing policy is often vital to the survival of these

companies. This problem is also common among retailers who sell perishable or fashion products.

These products usually have a replenishment lead time much longer than the selling season, and

must be discarded if they remain unsold after the season. The dynamic pricing problems faced

by these companies have two common properties (Bitran and Caldentey, 2003, Elmaghraby and

Keskinocak, 2003, Talluri and van Ryzin, 2004): (i) capacity or inventory for the selling season is

fixed, and (ii) a deadline exists after which sales must cease.

In the domain of hotel revenue management, customers typically request rooms for multiple-

day stays (products). If the hotel is out of rooms (resources) for any day within the requested

duration, the customer will turn away. We study the observed room pricing practice of quoting

only a single booking price (such as the one shown on its website) at any point in time to all

customers for the same day of stay. These prices are dynamically updated over time. This pricing

strategy falls under the umbrella of best available rate pricing (Carvell and Quan, 2005 and Rohlfs

and Kimes, 2007). It is adopted, for example, by hotels owned by Marriott International Inc. and

Intercontinental Hotels Group (IHG) with 19 and 9 hotel brands respectively. Prominent brands

in these hotel chains include Courtyard, Crowne plaza, Holiday inn, Intercontinental hotels and

resorts, Marriott, Renaissance, and Residence inn. Figure 1 provides an example of actual prices

posted on Expedia.com for a deluxe room at the Courtyard Marriott located close to the Chicago

Midway airport. Figures 1(a), 1(b), 1(c), and 1(d) correspond to bookings with lengths of stay

equal to 12, 6, 4, and 3, respectively. For instance, the 12-day stay corresponds to a check-in on

10/23/2016 (Sunday) and a check-out on 11/04/2016 (Friday), with prices quoted for 12 nights

spanning 10/23/2016 (Sunday) to 11/03/2016 (Thursday). As can be seen in these figures, the

room prices on each day coincide regardless of the chosen start and length of stay.

Hotels implementing the above pricing strategy determine the booking price for a room on each

individual day, and charge a multiple-day stay the sum of these prices over the duration of stay.
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(c) 4-day stays (d) 3-day stays

Figure 1: Booking prices for a deluxe room at the Courtyard Marriott Chicago Mid-
way Airport accessed on 10/15/2016 for different lengths of stay between 10/23/2016
(Sunday) and 11/03/2016 (Thursday).

Nevertheless, it is the average price over the multiple-day stay that is prominently displayed on

booking websites (for example, Expedia.com). The daily price breakdown is accessible with some

additional clicks. The average price derived from the booking price on each day is perceived by

customers as being more transparent, which disincentivizes them from looking at daily prices with

different windows of stay. Further, quoting the booking price for each day also allows unambiguous

adjustments in a statement if there is any extension or reduction in the length of stay.

When pricing rooms in this manner, a hotel may vary the booking prices across different days

such that it can exploit the high demands for certain days, but maintain an attractive average daily

booking price for customers willing to stay for multiple days. Is the modeling of multiple-day stays
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important when determining booking prices and does it affect the sensitivity of booking price to

demand? If some days have significantly higher demand for rooms due to a peak-demand event (for

example, a conference), what booking price should be quoted for each day? What methods can be

used to compute dynamic room pricing policies?

Motivated to shed light on these questions, we formulate a Markov decision process to model a

hotel with a single room type using the dynamic pricing practice discussed above. Customers check

the booking prices and make reservations at random points during an extended period of time known

as the pricing-booking horizon. Each reservation (usually through the Internet) spans multiple days

in a service horizon, which is an extended duration of time in the future where a booking price

for each day is specified. For the sake of simplicity, we assume these two horizons do not overlap.

Figure 2 illustrates the relationship between a pricing-booking horizon and a service horizon. A

reservation is made if there is at least one room available for all days during the multiple-day stay

and the customer is happy with the total booking price.

t
Pricing-Booking Horizon

Service Horizon

-
Time

R

Figure 2: The pricing-booking horizon and the service horizon.

Customers having the same arrival and departure dates in the service horizon belong to the

same class. Each class can have a different stochastic and non-stationary demand function. This

allows our model to capture realistic features such as a surge in room requests for a conference

approaching its start date, higher willingness to pay of customers that are attending a sports event,

and increase in their willingness to pay after they learn that their favorite teams are playing in

the event. Customers from different classes request rooms at random points in the pricing-booking

horizon (that is, we do not assume one class requests after another). Given these random requests,

our Markov decision process formulation determines the daily booking prices in the service horizon

such that the expected revenue over the pricing-booking horizon is maximized.
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We make the following contributions:

1. We provide a Markov decision process formulation that dynamically prices capacitated re-

sources. In contrast, existing models study the dynamic pricing of products, predominantly in

airline network revenue management (see, for example, §5.4 of Talluri and van Ryzin (2004))

and recently in the context of hotel room pricing (Zhang and Weatherford, 2016). Such mod-

els can be used to price multiple-day stays (products) directly, but do not represent all hotel

pricing strategies. In particular, there are prominent hotels that price rooms on each day

(resources) and charge the sum of these prices over a multiple-day stay. Our model of this

unexplored dynamic pricing practice in the hotel industry is novel.

2. We show that optimizing over the booking prices is a concave quadratic maximization problem,

which is critical for efficiently computing a dynamic pricing policy using the value function or

its approximations. We compare the optimal pricing policy with a single-day decomposition

approach and study the sensitivity of hotel room prices around peak-demand events in special

cases that are analytically tractable. Our findings suggest the following insights: (i) The

sensitivity of the room price to demand parameters differs under the optimal policy that

accounts for multiple-day stays and a policy based on the single-day decomposition approach.

(ii) To maximize revenue around peak-demand events, hotels should not only substantially

raise the booking prices for some high-demand days, but also significantly lower the booking

prices for the low-demand days that are immediately adjacent to these high-demand days.

The former insight highlights the importance of modeling multiple-day stays and the latter

insight can be used to reduce the number of prices around peak-demand events, thus making

the pricing policies potentially easier to interpret and implement.

3. To overcome the intractability of computing an optimal pricing policy, we develop heuristic

pricing policies based on a fluid approximation and approximate linear programming (ALP).

Our fluid approximation differs from ones developed in the product-pricing setting. Our

ALP-based pricing policy employs an affine value function approximation (Schweitzer and

Seidmann, 1985, de Farias and Van Roy, 2003, Adelman, 2007). Our constraint generation

algorithm to solve the ALP and compute this approximation is different from those in the

literature due to model-specific nonlinearities arising from pricing resources (rooms) instead
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of products.

We numerically benchmark our heuristics against the single-day decomposition approach and

an adaptation of a fixed-price heuristic by Gallego and van Ryzin (1994). We obtain the

following insights from our numerical study: (i) Pricing policies that incorporate multiple-

day stays are significantly better than ones that do not include this feature by up to 7%

on our instances. (ii) The ALP heuristic based on an affine approximation delivers the best

performance despite the inherent non-convexities of the problem. (iii) Imposing the pricing

structure for peak-demand events (see point (2) above) in the ALP heuristic leads to only

a less than 1% loss in revenue. (iv) The fluid approximation heuristic performs very well

when capacity is abundant but can be suboptimal when capacity is limited. Findings (i)–(iii)

are new, while (iv) is consistent with analogous observations in the product-pricing setting

(Gallego and van Ryzin, 1994, 1997).

Our model and insights are potentially relevant beyond the hotel domain for other applications

involving dynamic pricing of capacitated resources used by multiple products. For example, when

ordering customized laptops (products) from the Dell or Toshiba website, the product price is the

sum of the prices of individual components (resources) used to build it. Our research also motivates

further study on dynamic resource-pricing models, which appear to have received limited attention

in the dynamic pricing literature.

This paper is outlined as follows. We review related literature in §2. We formulate the dynamic

pricing problem for hotels and contrast it with product-pricing models in §3. We analyze the optimal

policy in §4. We propose a fluid approximation heuristic in §5. We develop several approximate

dynamic programming heuristics to obtain pricing policies that consider multiple-day stays in §6,

and benchmark them against the optimal policy (if available) and the single-day decomposition

approach in §7. We conclude in §8 and present all proofs in Online Appendix A.

2 Related literature

Kimes (1989) gives a nice overview of yield management in the hotel industry. The author

highlights that the yield management techniques for airlines are not always applicable to hotels, for

instance, due to the feature of multiple-day stays. Bitran and Mondschein (1995) study the problem

of room allocation in the hotel industry. Given a fixed capacity, the problem is to find revenue-
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maximizing policies for renting hotel rooms when customers arrive in a stochastic and dynamic

way from different market segments within a finite horizon. Bitran and Gilbert (1996) give an

excellent description of the problem of managing reservations in hotels. They present a model that

combines a tactical reservation control problem and an operational capacity allocation problem.

Carvell and Quan (2005) and Rohlfs and Kimes (2007) discuss hotels using the best available rate

strategies that share the feature modeled in our paper for quoting the room price for each day. Other

papers studying the hotel reservation problem include Rothstein (1974), Ladany (1976, 1996), and

Liberman and Yechiali (1978). None of these papers consider the dynamic pricing of hotel rooms.

Gallego and van Ryzin (1994) study a continuous-time dynamic pricing model for a single

perishable product over a finite horizon. Extending this work, Gallego and van Ryzin (1997) model

firms that sell a set of products over a finite horizon. They assume that firms have inventories of a

set of resources that are used to produce the products. The problem is to price the finished products

so that the expected revenue is maximized over the sales horizon. The formulations in Gallego and

van Ryzin (1994, 1997) assume a one-to-one relationship between the demand rate and the price.

This assumption ensures the existence of a null price for implicitly turning off a product’s demand

when one of its resources is unavailable. We refer the reader to Bitran and Caldentey (2003) and

Elmaghraby and Keskinocak (2003) for excellent reviews on dynamic pricing.

Recently, Zhang and Weatherford (2016) investigate the applicability of the Gallego and van

Ryzin (1997) model for pricing multiple-day stays in the hotel industry using data from a major ho-

tel. In this model, stays with different arrival and departure dates correspond to different products,

and room capacities of different days correspond to inventories of different resources. The authors

benchmark several popular heuristics based on a fluid approximation and approximate dynamic

programming. An approximate dynamic programming heuristic performs best and their results

show that the length of multiple-day stays has an impact on the performance of the heuristics.

In contrast to the product-pricing models above, we introduce a resource-pricing formulation

motivated by the observed dynamic pricing practice of some prominent hotels (see §1). Specifically,

we study hotels that determine the booking prices of individual days (resources) in the service

horizon and dynamically update these prices. For example, the total booking price for a customer

staying from Monday to Wednesday is the sum of the daily booking prices for Monday, Tuesday,

and Wednesday. The demand rate of a multi-day stay (product) thus depends on multiple resource
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prices. This one-to-many relationship between the product demand and resource prices generally

voids the existence of a null price when using a linear demand model. Null prices do exist under

nonlinear models (for example, exponential arrival intensity) but the optimization problem to find

room prices under such models is nonconvex. These features are unique to resource pricing and

make our model different from the product-pricing model studied in Gallego and van Ryzin (1997).

Deterministic fluid approximation heuristics have been proposed for approximating stochastic

optimization formulations arising in the dynamic pricing literature. Gallego and van Ryzin (1994,

1997) propose early heuristics of this type, and provide a static pricing policy and an upper bound

on the optimal revenue. Talluri and van Ryzin (2004) discuss related generalizations. There is also

substantial work on using deterministic models in network revenue management where the product

price is fixed (see, for example, Bertsimas and Popescu, 2003, and Jasin and Kumar, 2013). Our

fluid approximation is non-convex and needs to explicitly account for the possibility of customer

rejections, which makes it different from the one in Gallego and van Ryzin (1994, 1997).

Adelman (2007), Zhang and Adelman (2009), Tong and Topaloglu (2014), and Kirshner and Ne-

diak (2015) use approximate dynamic programming, specifically approximate linear programming,

for solving airline network revenue management problems. These papers formulate the stochastic

dynamic program arising in their application as a linear program, and apply an affine approxima-

tion to the value function. Piecewise-linear and non-separable value function approximations have

also been considered for network revenue management (Farias and Van Roy, 2007, Kunnumkal and

Talluri, 2011, Zhang, 2011, and Zhang and Lu, 2011). Constraint generation or problem reductions

are used to solve the resultant approximate linear program. We also use approximate linear pro-

gramming with an affine value function approximation. However, our constraint generation strategy

is different from the aforementioned papers due to model-specific nonlinearities.

3 Problem formulation

In §3.1 we present a Markov decision process formulation for the dynamic pricing problem for

hotels and approach its solution via stochastic dynamic programming. In §3.2 we discuss differences

between our formulation and dynamic product-pricing problems studied in the literature.
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3.1 A Markov decision process formulation

Consider a hotel with a service horizon of N days. The hotel sells its available capacity over the

service horizon in advance during a pricing-booking horizon. We divide the pricing-booking horizon

into T periods. Each period t has length δt, which is assumed to be sufficiently small that at most

one request for booking prices occurs in the period. This is an approximation of a continuous-

time model in which decisions are made only at random instants when requests arrive. Under

this approximate model, decisions are made at discrete time periods. This model serves practical

purposes well because we can approach the results of the continuous-time model by reducing δt.

As is standard in the revenue management literature, we assume that there are (i) no cancellations

once a reservation is made, and (ii) no group reservations, that is, each reservation requires exactly

one room per day of stay. For convenience, define T = {1, 2, . . . , T}, N = {1, 2, . . . , N}, and

UV = {(u, v)|(u, v) ∈ N ×N , v ≥ u}.

Suppose the hotel has a total capacity of C rooms. We define booking time t as the start of period

t in the pricing-booking horizon. The state of the hotel at booking time t can be represented by the

capacity vector xt = (xt,1, xt,2, . . . , xt,N )′, where xt,i is the number of rooms available for day i at

booking time t. Each capacity vector xt falls in the state space X = {x ∈ ZN |0 ≤ xi ≤ C, i ∈ N}.

Let pt,i denote the price for a room on day i at booking time t. At booking time t we determine

the booking prices pt = (pt,1, pt,2, . . . , pt,N )′ based on the state xt.

Define class u-v, 1 ≤ u ≤ v ≤ N , as a group of customers that would like to stay from day u to

day v (they will check out in the morning of day v+ 1). Let λ̄
[u,v]
t (pt) denote the arrival intensity of

class u-v. A class u-v customer may make a reservation only if there is at least one room available

for all days in the interval [u, v]. We use the linear arrival intensity function

λ̄
[u,v]
t (pt) := a

[u,v]
t − b[u,v]

t ×
v∑
i=u

pt,i/(v − u+ 1), (1)

where a
[u,v]
t denotes the base demand of class u-v in period t, and b

[u,v]
t denotes the price sensitivity

factor of class u-v in period t with respect to the average daily booking price. As discussed in §1,

the dependence of the arrival rate on the average price over the multiple-day stay in Equation (1)

is consistent with this average price being the main displayed price on booking websites, and the

customer’s perception of an average price being fair when it is based on room prices for each day.
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We model room availability using an indicator function A[u,v](xt) that equals 1 if there is at

least one room available on every day in the interval [u, v], and 0 otherwise. Given the state xt and

the booking prices pt at the start of period t, the actual reservations follow a Poisson process with

a rate of

λ
[u,v]
t (xt,pt) := A[u,v](xt)

(
a

[u,v]
t − b[u,v]

t ×
v∑
i=u

pt,i/(v − u+ 1)

)
. (2)

We maintain nonnegative reservation rates by defining the set of feasible booking price vectors

as Pt(xt) = {pt ∈ RN+ |
∑v

i=u pt,i/(v − u + 1) ≤ a
[u,v]
t /b

[u,v]
t , (u, v) ∈ UV and A[u,v](xt) = 1}. The

constraints in this set enforce the nonnegativity of the arrival rate for each demand class with at

least one room available for the entire duration of stay, which implies non-negative reservation rates

because the indicator function A[u,v](xt) automatically makes the reservation rate zero when the

hotel runs out of rooms on any day within the duration of stay.

We are now ready to formulate the dynamic pricing problem. The total reservation rate in

period t is Λt(xt,pt) :=
∑N

u=1

∑N
v=u λ

[u,v]
t (xt,pt). Recall our assumption that δt is sufficiently small

such that we have at most one request (thus, at most one reservation) in each period t. Moreover,

the probabilities of having 0 and 1 reservation in period t are 1 − Λt(xt,pt)δt and Λt(xt,pt)δt

respectively. Define Vt(xt) as a value function that represents the maximum expected revenue from

our Markov decision process, when starting with room capacities xt at the start of period t and

continuing until the end of the pricing-booking horizon. This value function can be determined by

solving the following stochastic dynamic program (SDP):

Vt(xt) = max
pt∈Pt(xt)

{
(1− Λt(xt,pt)δt)Vt+1(xt) +

N∑
u=1

N∑
v=u

λ
[u,v]
t (xt,pt)δt

(
v∑
i=u

pt,i + Vt+1(xt − eu,v)

)}
; (3)

where eu,v is an N -dimensional vector with all its entries equal to 0 except for the u-th to v-th

entries equal to 1. The boundary conditions are VT+1(xt) = 0,xt ∈ X ;Vt(0) = 0, t ∈ T .

The above stochastic dynamic program has multi-dimensional state and action spaces that grow

with N . To better understand the challenges of solving Problem (3), we present it in a format that
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facilitates analysis:

Vt(xt) = Vt+1(xt) + max
pt∈Pt(xt)

{ft(xt,pt)} ; (4)

where

ft(xt,pt) :=
N∑
u=1

N∑
v=u

(
v∑
i=u

pt,i −4V [u,v]
t+1 (xt)

)
λ

[u,v]
t (xt,pt)δt, (5)

and 4V [u,v]
t+1 (xt) := Vt+1(xt) − Vt+1(xt − eu,v). The term 4V [u,v]

t+1 (xt) is called the marginal value

of capacity for interval [u, v], and can be interpreted as the expected future revenue that can be

gained if the hotel does not sell a room for the interval. Thus, the term
∑v

i=u pt,i −4V
[u,v]
t+1 (xt) in

Equation (5) can be interpreted as the hotel’s net gain if a room is reserved for interval [u, v].

The benefit of the form of Problem (4) is that ft(xt,pt) is a quadratic function of the booking

prices pt. We further establish the following property of the function ft(xt,pt).

Theorem 1. For any given xt, the function ft(xt,pt) is concave in pt.

For any given xt at booking time t, Theorem 1 shows that we can efficiently compute optimal

booking prices using standard optimization procedures. In other words, the multi-dimensional

action space does not pose a challenge. Nevertheless, Problem (4) is still prohibitively hard to solve

due to the multi-dimensional state space.

3.2 Differences between resource- and product-pricing models

The Markov decision process formulation (3) prices resources under a linear arrival rate model

and differs conceptually from the product-pricing models found in Gallego and van Ryzin (1994,

1997) and Talluri and van Ryzin (2004) when employing an analogous linear model. A consequence

of this difference is that λ̄
[u,v]
t (pt) is non-invertible (the price for a room on day i, pt,i, appears in the

arrival intensity functions of multiple u-v classes) when λ̄
[u,v]
t (pt) takes the linear form in Equation

(1). Therefore, unlike in the product-pricing setting, a large “null” price is unavailable in general to

implicitly shut off demand for a product when resource capacity is unavailable. This results in the

need of an explicit indicator function A[u,v](xt) in Equation (2) to model capacity availability. We

explain using a special case with N = 3 why implicit capacity control can fail in the resource-pricing

setting.
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For N = 3, there are six classes 1-1, 2-2, 3-3, 1-2, 2-3, and 1-3. Equation (1) for classes 1-1,

2-2, and 3-3 becomes λ̄
[i,i]
t (pt,i) = a

[i,i]
t − b

[i,i]
t pt,i, for i = 1, 2, 3. We can use these equations to

eliminate prices from the formulation and obtain an intensity control problem as done in Gallego

and van Ryzin (1994, 1997). Using the substitution pt,i =
a

[i,i]
t − λ̄[i,i]

t

b
[i,i]
t

in Equation (1), the demand

for classes [1, 2], [2, 3], and [1, 3] is

λ̄
[1,2]
t = a

[1,2]
t − b

[1,2]
t

2

(
a

[1,1]
t

b
[1,1]
t

+
a

[2,2]
t

b
[2,2]
t

)
+
b
[1,2]
t

2

(
λ̄

[1,1]
t

b
[1,1]
t

+
λ̄

[2,2]
t

b
[2,2]
t

)
; (6)

λ̄
[2,3]
t = a

[2,3]
t − b

[2,3]
t

2

(
a

[2,2]
t

b
[2,2]
t

+
a

[3,3]
t

b
[3,3]
t

)
+
b
[2,3]
t

2

(
λ̄

[2,2]
t

b
[2,2]
t

+
λ̄

[3,3]
t

b
[3,3]
t

)
; (7)

λ̄
[1,3]
t = a

[1,3]
t − b

[1,3]
t

3

(
a[1,1]

b[1,1]
+
a[2,2]

b
[2,2]
t

+
a

[3,3]
t

b
[3,3]
t

)
+
b
[1,3]
t

3

(
λ̄

[1,1]
t

b
[1,1]
t

+
λ̄

[2,2]
t

b
[2,2]
t

+
λ̄

[3,3]
t

b
[3,3]
t

)
. (8)

Consider the case where capacity on days 1 and 3 are zero but the capacity for day 2 is nonzero.

Since capacity is zero on days 1 and 3, it follows that λ̄
[1,1]
t = λ̄

[3,3]
t = λ̄

[1,2]
t = λ̄

[2,3]
t = λ̄

[1,3]
t = 0.

This zeroing out of arrivals can be achieved by adding constraints λ̄
[i,i]
t ≤ xi, for i = 1, 2, 3, and

λ̄
[u,v]
t ≤ λ̄[i,i]

t , for i = u, . . . , v and (u, v) ∈ UV. Enforcing these conditions in Equations (6)–(8) gives

the following equalities involving λ̄
[2,2]
t :

λ̄
[2,2]
t = b

[2,2]
t

((
a

[1,1]
t

b
[1,1]
t

+
a

[2,2]
t

b
[2,2]
t

)
− 2a

[1,2]
t

b
[1,2]
t

)
;

λ̄
[2,2]
t = b

[2,2]
t

((
a

[2,2]
t

b
[2,2]
t

+
a

[3,3]
t

b
[3,3]
t

)
− 2a

[2,3]
t

b
[2,3]
t

)
;

λ̄
[2,2]
t = b

[2,2]
t

((
a

[1,1]
t

b
[1,1]
t

+
a

[2,2]
t

b
[2,2]
t

+
a

[3,3]
t

b
[3,3]
t

)
− 3a

[1,3]
t

b
[1,3]
t

)
.

Clearly λ̄
[2,2]
t is over-specified in general, which shows that a set of “null” prices does not exist to

handle the case of zero capacity on days 1 and 3 and nonzero capacity on day 2. In other words,

an explicit use of the indicator function A[u,v](xt) in our formulation to account for the availability

of resource capacity is necessary even for this simple case of N = 3.

The absence of a null price above can be alleviated by replacing the linear arrival rate model

(1) by a nonlinear model that, for example, truncates this linear arrival rate below at zero or is

based on an exponential arrival intensity. Under these specifications, explicit capacity control is not
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necessary but the problem of finding the optimal room prices at a given period t and room capacities

xt becomes a nonconvex optimization problem. Instead, as shown in Theorem 1, computing room

prices in our formulation requires solving a tractable concave optimization problem, which justifies

our use of a linear arrival intensity model.

We briefly describe the room pricing formulation with an exponential intensity model of the form

λ̂
[u,v]
t (pt) := e−

∑v
i=u pt,i (our arguments carry over to other exponential forms as well) to highlight the

aforementioned difficulty of computing room prices when using a nonlinear arrival intensity model.

Under this specification, setting the booking price to infinity for a day i with no available rooms

forces the arrival intensity of all classes including day i to zero. In period t, the condition that a cus-

tomer can make a reservation only if there is at least one room available can be modeled by restrict-

ing prices to the following set: P̄t(xt) :=
{

pt ∈ RN+ |λ̂
[u,v]
t (pt)δt ≤ xt,i, ∀i = {u, . . . , v}, (u, v) ∈ UV

}
.

These constraints are convex in pt and linear in xt. Defining Λ̂t(pt) :=
∑N

u=1

∑N
v=u λ̂

[u,v]
t (pt), the

analogue of formulation (4) is V̄t(xt) = V̄t+1(xt) + maxpt∈P̄t(xt)

{
f̄t(xt,pt)

}
, where V̄t(x) denotes

the value function under the exponential arrival intensity at period t given room inventory vector xt;

4V̄ [u,v]
t+1 (xt) := V̄t+1(xt)−V̄t+1(xt−eu,v); and f̄t(xt,pt) :=

N∑
u=1

N∑
v=u

(
v∑
i=u

pt,i −4V̄ [u,v]
t+1 (xt)

)
λ̂

[u,v]
t (pt)δt.

The boundary conditions are V̄T+1(xt) = 0,xt ∈ X ; V̄t(0) = 0, t ∈ T . Unfortunately, computing the

prices under the exponential arrival intensity is intractable due to the following proposition.

Proposition 1. Given any xt, f̄t(xt,pt) is non-concave in pt.

Given the high dimensional state space and the non-convexity caused by explicit capacity control

in formulation (3), a natural question is whether the existing deterministic models in revenue man-

agement (Gallego and van Ryzin, 1994, Bitran and Caldentey, 2003, §5.4 of Talluri and van Ryzin,

2004) can be leveraged to approximate our problem. These “fluid” approximations are substantially

easier to solve than the original stochastic version of the problem because they replace the random

arrivals of class u-v reservations by their respective expected arrival rates. For instance, consider

the well-known fluid approximation in §5.4.1 of Talluri and van Ryzin (2004) for pricing products

that require multiple resources with finite capacities. The dual variables of the resource capacity

constraints in this formulation may be used as resource prices. However, as explained next, these

dual prices are poor surrogates for the resource prices. Consider a situation where there is abundant

capacity for each resource so that the demand of every class is satisfied. In this case, the marginal

13



values of the resource capacities (the dual prices) will be zero but the optimal revenue from selling

rooms is clearly nonzero. In other words, the dual prices represent the marginal values of resource

capacities as opposed to the resource prices that maximize the revenue from using the existing re-

source capacities. Therefore, the resource prices in our formulation are conceptually different, which

motivates us to propose a fluid approximation specific to our resource-pricing formulation (3) in §5.

4 Understanding the optimal pricing policy

We study the behavior of the optimal pricing policy in tractable special cases to provide some

insights into room pricing on each day. In §4.1 we compare the optimal pricing policy and the

pricing policy based on a single-day decomposition in a two-day setting. In §4.2 we investigate the

room pricing profile around peak demand events assuming that the demand data is symmetric.

4.1 Comparison with a single-day decomposition

Consider a hypothetical situation in which a class u-v customer is willing to make a partial

reservation when the hotel cannot fully accommodate all days on the itinerary [u, v]. We call this

the single-day decomposition (SDD) because under this approach a class u-v customer is considered

as a group of distinct customers indexed as k = u, . . . , v. Each customer k in the group wants to

stay only on a single day k in the service horizon, for k = u, . . . , v.

Under the single-day decomposition, the problem of maximizing expected revenue can be sepa-

rated into N independent sub-problems, each corresponding to a different day. The technical benefit

of this approach is that each sub-problem is a one-dimensional stochastic dynamic program, and

hence is considerably easier to solve than the original problem (4). Under this approach, the ap-

proximate model is described as follows. Given that there are xt,i rooms available and the booking

price is pt,i for day i at the start of period t, we assume that the reservations for day i follow a

Poisson process with a rate of λit (xt,i, pt,i) := I (xt,i > 0)
∑i

u=1

∑N
v=i

(
a

[u,v]
t − b[u,v]

t pt,i

)
, where I(·)

equals 1 if · is true, and 0 otherwise. Therefore, the probabilities of having 0 and 1 reservation,

respectively, for day i in period t are 1− λit(xt,i, pt,i)δt and λit(xt,i, pt,i)δt.

Let pmax
t,i :=

∑i
u=1

∑N
v=i a

[u,v]
t /

∑i
u=1

∑N
v=i b

[u,v]
t . Given that there are xt,i rooms available for

day i at the start of period t, define the value function V i
t (xt,i) as the maximum expected revenue

for day i under the single-day decomposition from period t until the end of the pricing-booking

horizon. The value function V i
t (xt,i) can be determined by solving the following stochastic dynamic
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program:

V i
t (xt,i) = max

0≤pt,i≤pmax
t,i

{(
1− λit(xt,i, pt,i)δt

)
V i
t+1(xt,i) + λit(xt,i, pt,i)δt

(
pt,i + V i

t+1(xt,i − 1)
)}

; (9)

with boundary conditions V i
T+1(xt,i) = 0, xt,i ∈ [0, C] and V i

t (0) = 0, t ∈ T ; i ∈ N .

Problem (9) can be rewritten as V i
t (xt,i) = V i

t+1(xt,i) + max0≤pt,i≤pmax
t,i

{
f it (xt,i, pt,i)

}
, where

f it (xt,i, pt,i) :=
(
pt,i −4V i

t+1(xt,i)
)
λit(xt,i, pt,i)δt, (10)

and 4V i
t+1(xt,i) := V i

t+1(xt,i)−V i
t+1(xt,i−1), which is called the expected marginal value of capacity

for day i. It is straightforward to see that f it (xt,i, pt,i) is a concave quadratic function of pt,i. Given

a state xt at the start of period t, the problem is to maximize f it (xt,i, pt,i) subject to 0 ≤ pt,i ≤ pmax
t,i ,

for i ∈ N . Solving the first-order conditions ∂f it (xt,i, pt,i)/∂pt,i = 0, the booking prices in each

period t under the single-day decomposition can be obtained as follows:

pst,i =
ait + bit4V i

t+1(xt,i)

2bit
; (11)

where ait :=
∑i

u=1

∑N
v=i a

[u,v]
t and bit :=

∑i
u=1

∑N
v=i b

[u,v]
t , for i ∈ N . Since f it (xt,i, pt,i) is a concave

function of pt,i, set pst,i = 0 if the right hand side of Equation (11) is negative, and set pst,i = pmax
t,i if

the right hand side of Equation (11) is larger than pmax
t,i , for i ∈ N .

We now contrast the single-day decomposition pricing policy and the optimal pricing policy for

the case of N = 2. Let p∗t,1 and p∗t,2 denote the optimal prices on days 1 and 2, respectively.

Proposition 2. For N = 2 an optimal solution to Problem (3) in period t ∈ T has the following

properties:

(1) p∗t,1 increases with a
[1,1]
t and a

[1,2]
t , but decreases with a

[2,2]
t ;

(2) p∗t,2 increases with a
[2,2]
t and a

[1,2]
t , but decreases with a

[1,1]
t .

Proposition 2 implies that, for N = 2, if the demand of single-day stays for day i increases, then

the hotel should not only raise the booking price for day i, but also lower the booking price for

day j (6= i). This is to exploit the increasing demand for a certain day, but maintain an attractive

average daily booking price for two-day stays. If the demand of two-day stays increases, then the
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hotel should raise the booking prices for both days.

In contrast, from Equations (11) the booking prices under the single-day decomposition for

N = 2 are

pst,1 =

∑2
v=1 a

[1,v]
t +

∑2
v=1 b

[1,v]
t 4V 1

t+1(xt,1)

2
∑2

v=1 b
[1,v]
t

,

pst,2 =

∑2
u=1 a

[u,2]
t +

∑2
u=1 b

[u,2]
t 4V 2

t+1(xt,2)

2
∑2

u=1 b
[u,2]
t

.

It is worth noting that pst,1 is independent of a
[2,2]
t and pst,2 is independent of a

[1,1]
t . The optimal

pricing policy characterized in Proposition 2 captures the interaction of p∗t,1 and a
[2,2]
t , and the

interaction of p∗t,2 and a
[1,1]
t . These interactions are missing under the single-day decomposition.

Similarly, both the optimal booking prices p∗t,1 and p∗t,2 at period t are nonlinear functions of the

price sensitivity factors b
[1,1]
t , b

[1,2]
t , and b

[2,2]
t , whereas pst,1 and pst,2 are independent of b

[2,2]
t and b

[1,1]
t ,

respectively, under the single-day decomposition.

Proposition 3 highlights a difference in the sensitivity of prices to changes in demand under the

optimal policy and the single-day decomposition. It can be shown by simple algebra and thus the

proof is omitted. Let 4p∗t := p∗t,2 − p∗t,1 and 4pst := pst,2 − pst,1.

Proposition 3. For N = 2 if the hotel will not run out of rooms and b
[u,v]
t equals a constant b for all

(u, v) ∈ UV, then (1) 4p∗t is proportional to
a
[2,2]
t −a[1,1]t

2b ; and (2) 4pst is proportional to
a
[2,2]
t −a[1,1]t

4b .

Proposition 3 implies that under both approaches, the gap between the booking prices for days 1

and 2 is proportional to the difference a
[2,2]
t − a[1,1]

t . Furthermore, under the optimal policy the

sensitivity of this gap to the demands for single-day stays (a
[1,1]
t and a

[2,2]
t ) is two times of that

under the single-day decomposition.

In summary, the revenue generated by the single-day decomposition and the optimal policy may

differ as a result of the missing interactions and sensitivity differences highlighted using the simple

N = 2 case. In addition, the single-day decomposition does not correctly account for the capacity

needed to satisfy a multi-day stay request and may thus drastically overestimate the expected

revenue for the hotel. We expect this overestimation to happen particularly when the supply of

rooms is tight or when demand exhibits significant inter-day variability. Our numerical study in §7

explores the revenue impact of these differences by comparing the single-day decomposition with
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heuristics discussed in §5–6 that account for multiple-day stays.

4.2 Room pricing for peak-demand events

Hotels often encounter a situation where the demands on certain days are substantially higher

than others, for example, due to a conference, a sporting event, or public holidays. How should

hotels price rooms when the service horizon includes peak-demand events? We provide analysis of

special cases to shed light on this question, where we assume that the input data and room capacity

vector are “reflective”. Define r(i) := N − i + 1, for i ∈ N . We say the input data is reflective if

a
[u,v]
t = a

[r(v),r(u)]
t and b

[u,v]
t = b

[r(v),r(u)]
t , for each (t, u, v) ∈ T × UV. Further, we say a capacity

vector xt is reflective if xt,i = xt,r(i), for all i = 1, . . . , bN/2c. This assumption allows us to isolate

the impact of peak-demand days and ensures analytical tractability.

Proposition 4 establishes that the symmetry in the input data and capacity vector extends to

the value function and optimal room prices.

Proposition 4. If the input data is reflective then the following hold:

1. For capacity vectors x1
t and x2

t , if x1
t,i = x2

t,r(i), for all t ∈ T , i ∈ N , then Vt
(
x1
t

)
= Vt

(
x2
t

)
.

2. For a given period t and reflective room capacity vector, the optimal room price vector is also

reflective, that is, it satisfies pt,i = pt,r(i), for i = 1, . . . , bN/2c.

Proposition 4 supports the use of a reflective pricing policy over the service horizon when the

demand is reflective, which reduces the number of prices computed for each period by roughly

fifty percent. Indeed, the input demand data is unlikely to be reflective in practice. Nevertheless

assuming reflective room prices around a peak-demand event could lead to a potentially effective

heuristic when (i) the peak-demand event can be centered by choosing the service (planning) horizon

appropriately; and (ii) the demand on the days of the event are relatively stable compared to non-

peak days. We numerically test a heuristic that enforces reflective room prices in §7 and find that

it works well.

We now turn to understanding how prices in a reflective pricing profile change as a result of a

peak-demand event by focusing on the case of N = 8. We consider two events intended to model

a public holiday and a conference. The public-holiday and conference events have peak demand

classes 4-5 and 3-6 respectively. We model each of these events by increasing the base demand of the
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peak-demand class by a factor of α > 1 and use a constant base demand of a for the other classes.

Specifically, the base demands a
[4,5]
t in the public-holiday case and a

[3,6]
t in the conference case is

αa. We assume the demand sensitivity b
[u,v]
t is equal to a constant b for all classes. Proposition 5

highlights the sensitivity of prices to α for both events.

Proposition 5. For N = 8, assume for a given t that the capacity vector xt is reflective and strictly

positive. The following hold:

1. Public holiday: If b
[u,v]
t = b for all (u, v) ∈ UV, a

[u,v]
t = a for all (u, v) ∈ UV \ {(4, 5)},

a
[4,5]
t = αa with α > 1, and the optimal room rate vector pt is in the interior of Pt(xt), then

∂pt,3/∂α < ∂pt,2/∂α < ∂pt,1/∂α < 0 and ∂pt,4/∂α > maxi=1,...,3 |∂pt,i/∂α|.

2. Conference: If b
[u,v]
t = b for all (u, v) ∈ UV, a

[u,v]
t = a for all (u, v) ∈ UV \ {(3, 6)}, a[3,6]

t = αa

with α > 1, and the optimal room rate vector pt is in the interior of Pt(xt), then ∂pt,2/∂α <

∂pt,1/∂α < 0, and ∂pt,3/∂α > ∂pt,4/∂α > maxi=1,2 |∂pt,i/∂α|.

For the public-holiday event, the booking prices increase with α for peak days and decrease

with α for non-peak days. Interestingly, (i) the price increase on peak days is larger than the price

decrease on non-peak days, and (ii) the decrease in the booking price is larger for the non-peak

days closer to a peak day. The price sensitivity of the conference event also shares these features.

However, a new pattern emerges with respect to the price changes on the peak days. Specifically,

the prices increase by a larger amount on the first and the last peak days, but by a smaller amount

on the intermediate peak days.

Figures 3(a) and 3(b) illustrate the insights on price sensitivity using a simple example with

a = 1.0, b = 0.01, α = 8, δt = 0.001, and ∆V
[u,v]
t+1 (xt) = 0, for (t, u, v) ∈ T × UV, that is, the price

profile corresponds to a state with abundant room inventory: xt,i ≥ T for i ∈ N . We compute the

prices using their closed-form expressions in the proof of Proposition 5 in Online Appendix A. The

dotted line in each figure corresponds to the pricing profile when there is no peak-demand class. The

solid lines in Figures 3(a) and 3(b) show the pricing profiles in the presence of the public-holiday

and conference events respectively. Comparing the dotted and solid lines shows that the difference

in booking price can be substantial.

To summarize, our analysis suggests that if the base demand of a class u-v, where v > u + 1,

is especially strong, the hotel should significantly increase the booking prices for the “boundary”
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Figure 3: Booking price sensitivities for (a) public-holiday and (b) conference events.

peak days u and v, but should increase by less the booking prices for the intermediate peak days

u + 1 to v − 1. This is to exploit the strong demand of class u-v but to attract customers staying

on intermediate peak days such as classes u′-v′, where u′ ≥ u + 1 and v′ ≤ v − 1. On the other

hand, the booking prices for the immediately-adjacent, non-peak days u − 1 and v + 1 should be

substantially lowered. This is to attract customers staying on both peak and non-peak days such

as classes u′-u, where u′ ≤ u− 1, and classes v-v′, where v′ ≥ v + 1. We thus recommend the rules

in Table 1 for hotel managers. Although these rules do not determine the booking prices in detail,

they provide a simple guideline to handle a demand surge from a specific customer class. They are

potentially easier to interpret and implement. Moreover, this structure can be imposed on a pricing

heuristic, which we describe in §6.2.

Table 1: Simple rules to handle a high-demand customer class u-v.

To maximize the revenue, follow both of the rules below.

Increase booking prices : Significantly raise the booking prices for days u and v. If
the interval [u, v] spans more than two days (v > u + 1), then raise by less the
booking prices for days u+ 1 to v − 1.

Decrease booking prices : Significantly lower the booking prices for days u − 1 and
v + 1.

19



5 Fluid approximation heuristic: FAH

Computing the optimal booking prices using the exact formulation (3) quickly becomes in-

tractable as the size of the problem grows. Motivated by the discussion at the end of §3.2, we

introduce here a fluid approximation for our SDP (3) that directly price the resources. Recall that

the arrival intensity of class u-v in period t is λ̄
[u,v]
t (pt) ≡ a

[u,v]
t − b[u,v]

t

∑v
i=u pt,i
v−u+1 . We use η

[u,v]
t to

represent the rate of class u-v requests that are rejected in period t. In other words, the effective

number of class u-v reservations in period t is
(
λ̄

[u,v]
t (pt)− η[u,v]

t

)
δt. Let ηt denote the vector(

η̄
[u,v]
t ,∀(u, v) ∈ UV

)
. Let p and η denote (p1,p2, . . . ,pT ) and (η1,η2, . . . ,ηT ) respectively. Our

fluid approximation is the following mathematical program:

max
p,η

T∑
t=1

N∑
u=1

N∑
v=u

(
u∑
i=u

pt,i

)(
a

[u,v]
t − b

[u,v]
t

v − u+ 1

v∑
i=u

pt,i − η[u,v]
t

)
δt (12)

s.t.
T∑
t=1

i∑
u=1

N∑
v=i

(
a

[u,v]
t − b

[u,v]
t

v − u+ 1

v∑
i=u

pt,i − η[u,v]
t

)
δt ≤ C, ∀i ∈ N , (13)

η
[u,v]
t ≤

(
a

[u,v]
t − b

[u,v]
t

v − u+ 1

v∑
i=u

pt,i

)
, ∀t ∈ T , (u, v) ∈ UV, (14)

0 ≤ η[u,v]
t ≤ a[u,v]

t , ∀t ∈ T , (u, v) ∈ UV, (15)

0 ≤ pt,i, ∀t ∈ T , i ∈ N . (16)

The decision variables in (12)-(16) are the price pt,i charged in period t for a room on day i and the

rejection rate η
[u,v]
t of class u-v in period t. The objective function (12) is the total revenue, where

the class u-v revenue component is the product of (i) the sum of prices charged during the period

of stay and (ii) the corresponding effective number of reservations. Constraints (13) make sure that

the number of rooms sold for day i is no larger than the number of rooms available. Conditions

(14) ensure that the expected rate of rejected requests in each class is no larger than its arrival

intensity. Constraints (15)–(16) specify bounds on the decision variables. We highlight that the

role of the variables η
[u,v]
t in the objective function and constraints is akin to the indicator function

A[u,v](x) that we use in (3) to control capacity explicitly. That is, both η
[u,v]
t and A[u,v](x) allow

their respective models to reject reservations.

Formulation (12)–(16) has a non-concave objective function because of the product between
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the rejection variables η
[u,v]
t and the price variables pt,i. Removing the rejection variables from the

formulation may cause it to become infeasible because controlling the prices alone is insufficient

to switch off the demand for the days that run out of capacity, as discussed in §3.2. We thus fix

the rejection variables η
[u,v]
t to some pre-determined values η̄

[u,v]
t that ensure feasibility, and solve

the resultant restricted model, which is a convex program. For a given candidate rejection vector

η̄ = (η̄1, η̄2, . . . , η̄T ), we solve the following convex program:

max
p

T∑
t=1

N∑
u=1

N∑
v=u

[(
v∑
i=u

pt,i

)(
a

[u,v]
t − b

[u,v]
t

v − u+ 1

v∑
i=u

pt,i

)
δt − η̄[u,v]

t δt

v∑
i=u

pt,i

]
(17)

s.t.

T∑
t=1

i∑
u=1

N∑
v=i

(
a

[u,v]
t − b

[u,v]
t

v − u+ 1

v∑
i=u

pt,i − η̄[u,v]
t

)
δt ≤ C, ∀i ∈ N , (18)

η̄
[u,v]
t ≤

(
a

[u,v]
t − b

[u,v]
t

v − u+ 1

v∑
i=u

pt,i

)
, ∀t ∈ T , (u, v) ∈ UV, (19)

0 ≤ pt,i, ∀t ∈ T , i ∈ N . (20)

Formulation (17)–(20) has linear constraints. It has a concave objective function because its first

term is the same as the immediate reward in SDP (3), which we show to be concave in the proof of

Theorem 1, and its second term is linear in the prices.

We now discuss the intuition behind our approach for generating the candidate rejection vectors,

and then present a linear program for generating such vectors. The effective number of reservations

of class u-v can be reduced by either (i) increasing the relevant room prices and/or (ii) increasing the

number of rejected requests. The non-convex formulation (12)–(16) can be interpreted as trying to

determine a revenue-maximizing balance between these two strategies while satisfying the capacity

constraints. Our generation of candidate rejection vectors mimics this trade off using a weight

κ ∈ [0, 1] embedded in the following linear program:

max
p,η

T∑
t=1

N∑
u=1

N∑
v=u

[
κ

(
b
[u,v]
t

v − u+ 1

v∑
i=u

pt,i

)
+ (1− κ)η

[u,v]
t

]
(21)

s.t. (13)− (16). (22)

The first and second terms in the objective (21) correspond to the reduction in class u-v demand due

to higher room prices and a higher rejection rate, respectively. We formalize our fluid approximation
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heuristic described above in Algorithm 1.

Algorithm 1: Fluid approximation heuristic

Inputs: Discretization size M .

Initialization: Set ∆κ = 1/M , κ = 0, E = ∅, p∗ = 0, and R∗ = 0.

While κ < 1 do:

(i) Solve the linear program (21)–(22) with weight κ to obtain a rejection vector η̄.

(ii) If η̄ 6∈ E then add η̄ to set E.

(iii) κ← κ+ ∆κ.

For each η̄ ∈ E do:

(i) Solve the convex program (17)–(20) and obtain a price vector p̄ and optimal revenue R̄.

(ii) If R̄ > R∗ then set p∗ = p̄ and R∗ = R̄.

Return p∗.

6 Approximate dynamic programming based heuristics

In this section, we consider two heuristics that account for the uncertain evolution of room

availability over time. These heuristics are based on the approximate dynamic programming ap-

proach that computes and uses an approximation Ṽt(xt) instead of the exact value function Vt(xt)

to determine decisions (Bertsekas, 2012). In other words, the room price vector pt is computed by

solving

max
pt∈Pt(xt)

{
f̃t(xt,pt)

}
, (23)

where f̃t(xt,pt) :=
∑N

u=1

∑N
v=u

(∑v
i=u pt,i − Ṽt+1(xt) + Ṽt+1(xt − eu,v)

)
λ

[u,v]
t (xt,pt)δt. Problem

(23) is a convex quadratic program because Pt(xt) is convex and f̃t(xt,pt) remains concave in pt

by Theorem 1 after replacing Vt+1(xt+1) by Ṽt+1(xt+1). Thus, we can compute the booking prices

efficiently via Problem (23) once we have a value function approximation for each period.

6.1 A multiple-day heuristic: MDH

We consider a heuristic MDH that computes an approximation Ṽt+1(xt+1) by assuming that

the booking prices are kept fixed at a value from period t+ 1 until the end of the pricing-booking

horizon (a similar strategy is adopted in the fixed-price heuristic by Gallego and van Ryzin (1994)).

Assume that the demand for day i in each period τ = t + 1, . . . , T follows a Poisson process with
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rate λ̃iτ (pτ,i) :=
∑i

u=1

∑N
v=i a

[u,v]
τ − b[u,v]

τ pτ,i. The demand for day i in period τ is a Poisson random

variable with mean λ̃iτ (pτ,i)δτ . Since the sum of Poisson random variables is still a Poisson random

variable (see Ross, 2000, page 58), the demand for day i from period t + 1 to period T can be

represented by a Poisson random variable Y i
t+1 with mean

∑T
τ=t+1 λ̃

i
τ (pτ,i)δτ .

Let Ṽ i
t+1(xt+1,i, pt+1,i) denote the expected revenue generated by these Poisson arrivals from

period t + 1 until the end of the pricing-booking horizon, given that xt+1,i rooms are available for

day i and its booking price is pt+1,i at the start of period t + 1. We have Ṽ i
t+1(xt+1,i, pt+1,i) =

pt+1,iE
[
min

{
xt+1,i, Y

i
t+1

}]
. Let Ṽt+1(xt+1,pt+1) be the sum of expected revenue generated by the

demands for all days, given the state xt+1 and the booking prices pt+1 at the start of period t+ 1.

That is, Ṽt+1(xt+1,pt+1) =
∑N

i=1 Ṽ
i
t+1(xt+1,i, pt+1,i). Our goal is to find p∗t+1 ∈ Pt+1(xt+1) such

that Ṽt+1

(
xt+1,p

∗
t+1

)
=
∑N

i=1 Ṽ
i
t+1(xt+1,i, p

∗
t+1,i) ≥ Ṽt+1(xt+1,pt+1), for all pt+1 ∈ Pt+1(xt+1).

Since there is no closed-form expression for p∗t+1, we find p∗t+1 numerically (see Gallego and van

Ryzin, 1994). We then set Ṽt+1(xt+1) = Ṽt+1

(
xt+1,p

∗
t+1

)
.

6.2 Approximate linear programming heuristics: ALPH and ALPH-3P

We also compute Ṽt(xt) by solving an approximate linear program (ALP) (Schweitzer and Sei-

dmann, 1985, de Farias and Van Roy, 2003) of the SDP (3). We first derive this ALP and then

discuss heuristics to solve it.

6.2.1 Approximate linear program

We first formulate the SDP (3) as the following (infinite) linear program (Manne, 1960, Herńandez-

Lerma and Lasserre, 1996):

min
V̄

V̄1(C1N ) (24)

s.t. V̄t(xt) ≥ (1− Λt(xt,pt)δt)V̄t+1(xt) +
N∑
u=1

N∑
v=u

λ
[u,v]
t (xt,pt)δt

(
v∑
i=u

pi + V̄t+1(xt − eu,v)

)
,

∀(t,xt,pt) ∈ T × X × Pt(xt), (25)

V̄T+1(xT+1) = 0, ∀xT+1 ∈ X . (26)

The variables V̄t(xt) are surrogates for the value functions, and an optimal solution V̄ ∗t (xt) satisfies

V̄ ∗t (xt) = Vt(xt), for all (t,xt) ∈ T ×X . The objective function minimizes the value function at the

initial state C1N , where 1N is a vector of N ones (the initial state can be changed as required).
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Constraints (25)–(26) are closely related to the recursion of the SDP (3). They can be obtained by

changing the equality in (3) to an inequality and modeling the maximization over pt by an infinite

set of inequalities.

Solving (24)–(26) is not practical due to its exponentially many variables and infinitely many

constraints. We can reduce the number of variables in (24)–(26) by restricting their possible values.

Let θ and α denote the vectors (θt,∀t) and (αt,i, ∀t, i) respectively. We consider an affine restriction

V̄t(xt) = θt +
∑N

i=1 αt,ixt,i, which results in the following ALP:

min
θ,α

θ1 + C
N∑
i=1

α1,i (27)

s.t. θt +

N∑
i=1

αt,ixt,i ≥

(
θt+1 +

N∑
i=1

αt+1,ixt,i

)
+

N∑
u=1

N∑
v=u

λ
[u,v]
t (xt,pt)δt

v∑
i=u

(pt,i − αt+1,i),

∀(t,xt,pt) ∈ {1, . . . , T − 1} × X × Pt(xt), (28)

θT +
N∑
i=1

αT,ixT,i ≥
N∑
u=1

N∑
v=u

λ
[u,v]
T (xT ,pT )δT

v∑
i=u

pT,i, ∀(xT ,pT ) ∈ X × PT (xT ). (29)

ALP (27)–(29) has T (N + 1) variables: θt, ∀t and αt,i, ∀(t, i). However, it has infinitely many

constraints. Thus, its solution can be approached by generating only a subset of constraints (see,

for example, Adelman, 2004, 2007) using Algorithm 2. The termination criteria in Algorithm

2 could include a maximum number of iterations and/or a minimum improvement in the ALP

objective. If one of the termination criteria is met before the ALP is solved to optimality (while

violated constraints exist), we still obtain a value function approximation. Thus, we can interpret

Algorithm 2 as an ALP solution heuristic that delivers an affine value function approximation

Ṽt(xt) = θ∗t +
∑N

i=1 α
∗
t,ixt,i.

6.2.2 Constraint generation

A key element in the above ALP heuristic is the constraint generation problem. For a given

solution (θ,α), define the following functions that compute the difference between the right and

the left hand sides of the ALP constraints (28)–(29):

gt(xt,pt;θ,α) = (θt+1 − θt) +

N∑
i=1

(αt+1,i − αt,i)xt,i
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Algorithm 2: ALP heuristic

Inputs: Termination criteria

Initialization: Set k = 0.

While termination criteria are not met do:

(i) Solve a relaxation of ALP defined by a finite subset Ct of its constraints for each period t.

(ii) Given a solution θ∗t (k) and α∗t,i(k), ∀t, i, to this relaxation, solve a constraint generation

problem for each period t to identify the most violated constraint in (28)–(29) that is not in

Ct.

(iii) If there are no violated constraints, stop and return θ∗t (k) and α∗t,i(k), ∀t, i, as the ALP

optimal solution; otherwise, add the violated constraints to Ct, ∀t, and set k ← k + 1.

+
N∑
u=1

N∑
v=u

λ
[u,v]
t (xt,pt)δt

v∑
i=u

(pt,i − αt+1,i), ∀(t,xt,pt) ∈ {1, . . . , T − 1} × X × Pt(xt);

gT (xT ,pT ;θ,α) = −θT −
N∑
i=1

αT,ixT,i +
N∑
u=1

N∑
v=u

λ
[u,v]
T (xT ,pT )δT

v∑
i=u

pT,i, ∀(xT ,pT ) ∈ X × PT (xT ).

Given a solution (θ,α) in an iteration, the most violated constraint for each period t ∈ T can be

generated by solving the constraint generation problem:

lt (θ,α) = max
(xt,pt)

gt(xt,pt;θ,α), (30)

where lt(θ,α) is the optimal objective function value. The above constraint generation problem

is non-convex in xt due to the indicator function in λ
[u,v]
t (xt,pt). Using binary variables to model

this indicator function leads to a mixed-integer program with cubic terms in the objective function.

Such optimization problems are highly intractable, and solving them exactly at each iteration of

the ALP heuristic is not practical. In contrast, to the best of our knowledge, ALPs formulated

with an affine value function approximation in existing revenue management applications give rise

to constraint generation problems that are either linear programs or mixed-integer linear programs

(see, for example, Adelman, 2004, 2007, and Zhang and Adelman, 2009). Thus, our application

appears to be more challenging.

Since finding the most violated constraint is too challenging, we approach the solution of prob-

lem (30) by solving convex quadratic programs and integer linear programs sequentially. These
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mathematical programs can be solved using off-the-shelf commercial solvers such as CPLEX and

GUROBI. At each step of the sequential procedure either xt or pt is fixed in gt(xt,pt), and the

maximization is performed over the domain of the remaining variable. For a given x̂t, the maxi-

mization problem over pt is the following simple quadratic program maxpt∈Pt(x̂t) gt(x̂t,pt), which

we label as Pt(x̂t). For a given p̂t, the maximization problem over xt is maxxt∈X gt(xt, p̂t). Defining

f
[u,v]
t (pt) :=

(
a

[u,v]
t − b[u,v]

t

∑v
i=u pt,i
v−u+1

)
δt
∑v

i=u(pt,i−αt+1,i), we formulate this problem as the following

integer linear program labelled as Xt(p̂t):

max
xt,yt,γt

N∑
i=1

(αt+1,i − αt,i)xt,i +

N∑
u=1

N∑
v=u

γ
[u,v]
t f

[u,v]
t (p̂t)

s.t. yt,i ≥
xt,i
C
, ∀i ∈ N , (31)

yt,i ≤ xt,i, ∀i ∈ N , (32)

γ
[u,v]
t ≥

v∑
i=u

yt,i + u− v, ∀(u, v) ∈ UV, (33)

γ
[u,v]
t ≤ yt,i, ∀i ∈ {u, . . . , v}, (u, v) ∈ UV, (34)

xt,i ∈ {0, . . . , C}, ∀i ∈ N , (35)

yt,i ∈ {0, 1}, ∀i ∈ N , (36)

γ
[u,v]
t ∈ {0, 1}, ∀(u, v) ∈ UV. (37)

The objective function of Xt(p̂t) models the function gt(xt, p̂t) by virtue of constraints (31)–(37).

Constraints (31)–(32) ensure that yi is equal to 1 if and only if xt,i is at least 1. Constraints (33)–

(34) require γ
[u,v]
t to equal 1 if and only if all days in the interval [u, v] are not out of rooms. Finally,

constraints (35)–(37) define the variable domains.

Our constraint generation heuristic identifies violated constraints by iteratively solving Pt(x̂t)

and Xt(p̂t) as outlined in Algorithm 3. We set the termination criteria to be a maximum number of

iterations and/or a minimum increase in constraint violation across successive iterations. We refer

to the ALP heuristic using this constraint generation heuristic as ALPH.

We also consider a modified version of ALPH, denoted as ALPH-3P, to validate the simple

pricing profile described in Table 1. We implement this profile using only three price levels p̄,

p̄+ ∆p1, and p̄−∆p2, where ∆p1,∆p2 ≥ 0: (i) prices on days u and v equal p̄+ ∆p1, (ii) prices on
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Algorithm 3: Constraint generation heuristic

Inputs: Termination criteria

Initialization: Set k = 0 and x∗,0t = C1N .

While termination criteria are not met do:

(i) Increment k: k ← k + 1.

(ii) Solve P
(
x∗,k−1
t

)
and compute p∗,kt .

(iii) Solve X
(
p∗,kt

)
and compute x∗,kt .

Return
(
x∗,kt ,p∗,kt

)
.

days u − 1 and v + 1 equal p̄ −∆p2, (iii) prices on all the other days in the service horizon equal

p̄. Specifically, we add constraints enforcing this structure to Pt(xt), both when solving Pt(x̂t) in

Algorithm 3 and computing the booking prices in problem (23).

7 Numerical study

We numerically compare SDD, FAH, MDH, ALPH, and ALPH-3P on thirty-six instances de-

scribed below. We choose a service horizon with N = 7 (one week) and a pricing-booking horizon

with T = 300. We set the period length δt equal to 1/T . We consider the capacity C equal to 5,

50, and 200. For each of these capacity values, we design two sets of instances: The first models a

case of two public holidays within the service horizon by having peak demand from class 4-5, while

the second corresponds to a case of a 4-day conference, which we model with peak demand from

class 4-7.

For a given C, the instances in each set are obtained by choosing the base demand of the peak

class to be a multiple of a constant base demand assigned to all the non-peak classes. We call this

multiple the demand spike factor (DSF) and choose its value from the set {1, 4, 8, 12, 16, 20}. We

set the non-peak base demand as 4.4 for C = 5 and 10 for C = 50 and 200. This choice ensures

that the probability of an arrival in every period is less than 1.

We use simulations to evaluate our heuristics. Customers make reservations according to a

Poisson process with rate determined by Equation (2). We first substitute the booking prices given

by the heuristics into Equation (2), and then compute the average revenue over 1,000 simulation

runs. This average revenue is then compared across different heuristics, and against the optimal

policy for small instances. We use CPLEX V12.6 (IBM ILOG CPLEX 2014) to solve the linear,
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quadratic, and mixed-integer linear programs arising from our heuristics. When implementing

ALPH and ALPH-3P, we set the termination criteria of Algorithm 2 to a maximum iteration limit

of 500 and a minimum ALP objective function improvement of 0.01%. In addition, we set the

termination criteria of Algorithm 3 to a maximum iteration limit of 5 and a minimum increase in

the constraint violation of 0.01%. When implementing FAH, we set the discretization parameter

M equal to 50.

Tables 2 and 3 show the simulation results for the small public-holiday and conference instances,

respectively, with C = 5. The Exact-DP column in these tables display the average revenues when

using the optimal pricing policy. The remaining columns display the average revenues from the

remaining heuristics as an absolute value and as a percentage (in parentheses) relative to the

average revenue of Exact-DP. The standard errors of all the reported average revenue estimates in

Tables 2 and 3 are within 0.05% of the corresponding Exact-DP value.

Table 2: Average revenues for small public-holiday instances.

DSF Exact-DP ALPH ALPH-3P MDH SDD FAH
(% Exact-DP) (% Exact-DP) (% Exact-DP) (% Exact-DP) (% Exact-DP)

1 2597.24 2400.24 (92.41) 2317.74 (92.25) 2472.74 (95.21) 2476.43 (95.35) 2233.37 (86.00)
4 2416.00 2353.99 (97.43) 2355.70 (97.35) 2249.25 (93.10) 2234.55 (92.49) 1627.61 (67.37)
8 2336.34 2282.70 (97.70) 2264.58 (96.92) 2142.86 (91.72) 2115.79 (90.56) 1524.92 (65.27)
12 2280.68 2243.78 (98.38) 2229.66 (97.76) 2103.40 (92.23) 2072.25 (90.86) 1469.72 (64.44)
16 2258.57 2214.58 (98.05) 2210.80 (97.88) 2088.09 (92.45) 2048.08 (90.68) 1477.88 (65.43)
20 2262.85 2197.30 (97.10) 2177.20 (96.21) 2078.90 (91.87) 2037.62 (90.05) 1441.89 (63.72)

Table 3: Average revenues for small conference instances.

DSF Exact-DP ALPH ALPH-3P MDH SDD FAH
(% Exact-DP) (% Exact-DP) (% Exact-DP) (% Exact-DP) (% Exact-DP)

1 2595.58 2390.31 (92.09) 2375.76 (91.53) 2469.36 (95.14) 2472.06 (95.24) 2212.35 (85.23)
4 2796.44 2741.52 (98.04) 2747.09 (98.24) 2690.88 (96.23) 2639.74 (94.40) 2115.05 (75.63)
8 2807.94 2752.10 (98.01) 2748.31 (97.88) 2668.53 (95.04) 2656.28 (94.60) 2119.39 (75.48)
12 2787.52 2750.15 (98.66) 2752.15 (98.73) 2680.42 (96.16) 2657.47 (95.33) 2135.14 (76.60)
16 2797.91 2740.92 (97.96) 2750.42 (98.30) 2674.21 (95.58) 2657.39 (94.98) 2196.50 (78.51)
20 2802.37 2740.82 (97.80) 2758.92 (98.44) 2672.77 (95.38) 2665.82 (95.13) 2185.62 (78.00)

The average revenue of MDH is at most 2% higher than that of SDD in Tables 2 and 3. ALPH

generally dominates the other heuristics on both the public-holiday and conference instances, except

for DSF = 1, where the SDD average revenue is roughly 3% higher than that of ALPH. As DSF

increases, the average revenues of MDH and SDD deteriorate significantly. The average revenue of

ALPH is up to 7% and 6% higher than that of SDD and MDH, respectively, on the small public-
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holiday instances, while these differences are between 2-3% on the small conference instances. ALPH

outperforms FAH by a substantially larger margin: up to 33% and 22% on the small public-holiday

and conference instances respectively.

It is interesting that the ALPH-3P average revenues are within 1% of the ALPH average rev-

enues, which provides some support for using the simple price profile in Table 1. Overall, the

dynamic heuristics that account for multiple-day stays (ALPH, ALPH-3P, and MDH) outperform

the dynamic heuristic based on the single-day decomposition (SDD) and the static fluid approxima-

tion (FAH) on the small instances. The superior performance of ALPH and ALPH-3P over MDH

can be attributed to the fixed-price assumption made in MDH, but not in ALPH and ALPH-3P.

The high sub-optimality of FAH suggests that dynamically accounting for uncertainty is critical

when capacity is limited.

Tables 4 and 5 report results for the larger public-holiday and conference instances, respectively,

with C = 50 and 200. Since we are unable to compute the optimal booking prices for these larger

instances, we use the average revenue of ALPH as our reference. Standard errors of the reported

average revenues are below 0.05% of the corresponding ALPH values. The performance of ALPH-3P

is within 1% of ALPH, which corroborates the use of the simple pricing profile in Table 1.

Table 4: Average revenues for large public-holiday instances.

Capacity DSF ALPH ALPH-3P MDH SDD FAH
(%ALPH) (%ALPH) (%ALPH) (%ALPH)

50 1 17591.84 17523.23 (99.61) 17529.31 (99.64) 17568.39 (99.87) 17604.21 (100.00)
50 4 17877.73 17875.58 (99.99) 17682.58 (98.91) 17365.58 (97.13) 16756.60 (93.73)
50 8 16385.32 16325.21 (99.63) 16354.10 (99.81) 16057.61 (98.00) 14420.50 (88.00)
50 12 15634.71 15611.63 (99.85) 15581.32 (99.66) 15293.87 (97.82)) 14015.96 (89.65)
50 16 15220.59 15160.37 (99.60) 15172.40 (99.68) 14855.30 (97.60) 13573.24 (89.18)
50 20 14910.04 14878.44 (99.79) 14853.16 (99.62) 14878.44 (99.79) 13189.28 (88.46)

200 1 21080.70 20901.35 (99.15) 21032.65 (99.77) 21074.70 (99.97) 20999.45 (99.61)
200 4 25129.45 25081.02 (99.81) 25070.88 (99.77) 24439.89 (97.26) 25284.30 (100.62)
200 8 32926.07 32886.24 (99.88) 32864.99 (99.81) 30378.00 (92.26) 32826.62 (99.70)
200 12 40915.11 40892.95 (99.95) 40758.92 (99.62) 37945.36 (92.74) 40990.92 (100.19)
200 16 47382.67 47112.17 (99.43) 46737.36 (98.64) 46325.84 (97.77) 47243.92 (99.71)
200 20 48476.60 48465.46 (99.98) 48058.03 (99.14) 48376.70 (99.79) 46162.52 (95.23)

The average revenue of MDH is up to 3% worse than ALPH on some large instances but its

performance for the most part does not deteriorate as much with DSF compared to the trend

observed on the small instances. In contrast, the performance of SDD continues to vary significantly

with DSF, and is up to 7% and 4% worse than ALPH on the large public-holiday and conference

instances respectively. FAH continues to exhibit significant sub-optimality, up to 12%, on the
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Table 5: Average revenues for large conference instances.

Capacity DSF ALPH ALPH-3P MDH SDD FAH
(%ALPH) (%ALPH) (%ALPH) (%ALPH)

50 1 17554.91 17516.29 (99.78) 17543.21 (99.93) 17645.83 (100.52) 17639.08 (100.48)
50 4 21083.49 20921.15 (99.23) 20882.91 (99.05) 20454.71 (97.02) 20729.52 (98.32)
50 8 22750.95 22711.88 (99.83) 22156.49 (97.39) 21941.21 (96.44) 20566.59 (90.40)
50 12 22875.00 22782.89 (99.60) 22221.75 (97.14) 22079.38 (96.52) 20576.91 (89.95)
50 16 22822.24 22760.96 (99.73) 22269.79 (97.58) 22127.13 (96.95) 20588.22 (90.21)
50 20 22762.67 22744.11 (99.92) 22315.74 (98.04) 22247.97 (97.74) 20752.00 (91.17)

200 1 20968.15 21107.85 (100.67) 20967.75 (100.00) 21047.30 (100.38) 21086.75 (100.57)
200 4 28393.82 28170.66 (99.21) 28429.14 (100.12) 27973.61 (98.52) 28259.00 (99.53)
200 8 42149.43 41816.57 (99.21) 42142.81 (99.98) 40301.61 (95.62) 42057.65 (99.78)
200 12 57586.13 57503.04 (99.86) 57507.92 (99.86) 55178.85 (95.82) 57613.84 (100.05)
200 16 72363.25 72465.23 (100.14) 72312.95 (99.93) 71426.54 (98.71) 72353.65 (99.99)
200 20 80277.06 80700.56 (100.53) 79232.40 (98.70) 80426.35 (100.19) 79847.58 (99.52)

instances with C = 50, but is comparable to ALPH on the instances with C = 200.

Overall, our ALP-based heuristics outperform the remaining methods. Moreover, ALPH, ALPH-

3P, MDH dominate SDD once again underscoring the importance of accounting for multiple-day

stays. The former heuristics also outperform FAH for C = 50, which indicates that accounting for

the uncertain evolution of room availability is important even at this moderate capacity value. In

contrast, the excellent performance of FAH for C = 200 suggests that it can be used for pricing

when capacity is substantially larger than the base demand. This observation is consistent with

the existing theory on fluid approximations in the product-pricing setting (Gallego and van Ryzin,

1994). Finally, the performance improvement of MDH on the large instances relative to the small

instances (Tables 2 and 3) suggests that the fixed-price assumption in MDH becomes benign as the

total capacity C increases.

8 Conclusion

Dynamic pricing of rooms on each day (resources) used by multiple-day stays (products) re-

quested by customers is a practice adopted by major hotel chains. We present a novel Markov

decision process formulation of this understudied problem. Analysis of tractable special cases of

our model sheds light on the sensitivity of room prices to demand parameters, and suggests room

pricing guidelines around peak-demand events such as public holidays and conferences. We de-

velop heuristics based on a fluid approximation and approximate linear programming to overcome

the intractability of computing an optimal pricing policy. We obtain the following insights based

on numerically benchmarking these heuristics against a single-day decomposition and a fixed-price
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heuristic: (i) Heuristics considering multiple-day stays outperform the single-day decomposition by

up to 7%, which underscores the importance of accounting for multiple-day stays. (ii) The approx-

imate linear programming heuristic based on an affine value function outperforms the fixed-price

heuristic by up to 6% despite the original problem being non-convex. (iii) The revenue loss from

using a pricing profile with three distinct price levels is less than 1%, thus suggesting that the pricing

policy can be simplified around peak-demand events consistent with our analysis. (iv) The fluid

approximation is suboptimal when room capacity is low, but progressively improves and becomes

near optimal as the capacity increases, an observation in line with the performance of such models

in the product-pricing setting.
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Online Appendix

A Proofs
Proof of Theorem 1.
For convenience, we omit the subscript t of xt and pt. Rewriting Equation (5), we have the objective
function

ft(x,p) = δt

N∑
u=1

N∑
v=u

(
v∑
i=u

pi −4V [u,v]
t+1 (x)

)
λ

[u,v]
t (x,p).

Since x are constant, they can be omitted in the analysis. As a result, we have

ft(p) = δt

N∑
u=1

N∑
v=u

(
v∑
i=u

pi −4V [u,v]
t+1

)
λ

[u,v]
t (p).

Taking the partial derivative of ft(p) with respect to pj , we have

∂ft(p)

∂pj
= δt

j∑
u=1

N∑
v=j

[
A[u,v]

(
a

[u,v]
t +

b
[u,v]
t

v − u+ 1
4V [u,v]

t+1

)

− 2A[u,v] b
[u,v]
t

v − u+ 1

v∑
i=u

pi

]
.

Taking the partial derivative of ∂ft(p)/∂pj with respect to pk gives the second-order partial deriva-
tive

∂2ft(p)

∂pj∂pk
=


−2δt

j∑
u=1

N∑
v=k

A[u,v] b
[u,v]
t

v−u+1 , if j ≤ k;

−2δt
k∑

u=1

N∑
v=j

A[u,v] b
[u,v]
t

v−u+1 , otherwise;

= −2δt

min{j,k}∑
u=1

N∑
v=max{j,k}

A[u,v] b
[u,v]
t

v − u+ 1
.

If day i is out of rooms, the problem can be partitioned into two separate subproblems. Each
subproblem can be solved individually. Therefore, without loss of generality, we assume A[u,v] = 1
for all u and v.

The Hessian matrix H(N) of the objective function has elements

hjk = −2δt

min{j,k}∑
u=1

N∑
v=max{j,k}

φuv, j, k = 1, . . . , N ;

where φuv = b
[u,v]
t /(v − u+ 1) ≥ 0. Let G(N) be a matrix that has elements

gjk =

min{j,k}∑
u=1

N∑
v=max{j,k}

φuv, j, k = 1, . . . , N. (38)
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To show that the objective function is concave, it is equivalent to show that all principal minors of
matrix G(N) are nonnegative (see Winston (1994)).

We will prove by induction. For N = 1, |G(1)| = φ11 ≥ 0. The objective function is concave.
For N = 2,

G(2) =

[
φ11 + φ12 φ12

φ12 φ12 + φ22

]
.

All first principal minors are nonnegative. The second principal minor is (φ11 + φ12)(φ12 + φ22)−
φ2

12 ≥ 0. Thus, the objective function is concave for N = 2.
For N = 3,

G(3) =

 φ11 + φ12 + φ13 φ12 + φ13 φ13
φ12 + φ13 φ12 + φ13 + φ22 + φ23 φ13 + φ23

φ13 φ13 + φ23 φ13 + φ23 + φ33

 .
It is straightforward to show that all first and second principal minors are nonnegative. The third
principal minor is the determinant |G(3)|. By decomposing the first column of |G(3)| into two parts,
we have

|G(3)| =

∣∣∣∣∣∣
φ11 φ12 + φ13 φ13
0 φ12 + φ13 + φ22 + φ23 φ13 + φ23
0 φ13 + φ23 φ13 + φ23 + φ33

∣∣∣∣∣∣+

∣∣∣∣∣∣
φ12 + φ13 φ12 + φ13 φ13
φ12 + φ13 φ12 + φ13 + φ22 + φ23 φ13 + φ23

φ13 φ13 + φ23 φ13 + φ23 + φ33

∣∣∣∣∣∣ .
It is straightforward to show that the first determinant on the right hand side is nonnegative. For
the second determinant, subtracting row 1 from row 2 and subtracting column 1 from column 2, we
have

|G(3)| ≥

∣∣∣∣∣∣
φ12 + φ13 0 φ13

0 φ22 + φ23 φ23
φ13 φ23 φ13 + φ23 + φ33

∣∣∣∣∣∣ .
Decomposing the first column of the determinant on the right hand side into two parts, we have

|G(3)| ≥

∣∣∣∣∣∣
φ12 0 φ13
0 φ22 + φ23 φ23
0 φ23 φ13 + φ23 + φ33

∣∣∣∣∣∣+

∣∣∣∣∣∣
φ13 0 φ13
0 φ22 + φ23 φ23
φ13 φ23 φ13 + φ23 + φ33

∣∣∣∣∣∣ .
It is straightforward to show that the first determinant on the right hand side is nonnegative. For
the second determinant, subtracting row 1 from row 3, we have

|G(3)| ≥

∣∣∣∣∣∣
φ13 0 φ13
0 φ22 + φ23 φ23
0 φ23 φ23 + φ33

∣∣∣∣∣∣ ≥ 0.

Thus, the objective function is concave for N = 3.
We have shown that |G(1)|, |G(2)|, and |G(3)| are nonnegative. We make the following induction
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hypothesis:

|G(n)| ≥ 0, n = 1, . . . , N − 1. (39)

We will show that |G(N)| ≥ 0. The proof is a generalization of the proof for the N = 3 case.
Equation (38) gives

|G(N)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N∑
v=1

φ1v
N∑

v=2
φ1v

N∑
v=3

φ1v · · · φ1N

N∑
v=2

φ1v
2∑

u=1

N∑
v=2

φuv
2∑

u=1

N∑
v=3

φuv · · ·
2∑

u=1
φuN

N∑
v=3

φ1v
2∑

u=1

N∑
v=3

φuv
3∑

u=1

N∑
v=3

φuv · · ·
3∑

u=1
φuN

...
...

...
...

...

φ1N
2∑

u=1
φuN

3∑
u=1

φuN · · ·
N∑

u=1
φuN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Call the above determinant the full determinant. Decomposing the first column into two parts, we
have

|G(N)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ11
N∑

v=2
φ1v

N∑
v=3

φ1v · · · φ1N

0
2∑

u=1

N∑
v=2

φuv
2∑

u=1

N∑
v=3

φuv · · ·
2∑

u=1
φuN

0
2∑

u=1

N∑
v=3

φuv
3∑

u=1

N∑
v=3

φuv · · ·
3∑

u=1
φuN

..

.
...

...
...

...

0
2∑

u=1
φuN

3∑
u=1

φuN · · ·
N∑

u=1
φuN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N∑
v=2

φ1v
N∑

v=2
φ1v

N∑
v=3

φ1v · · · φ1N

N∑
v=2

φ1v
2∑

u=1

N∑
v=2

φuv
2∑

u=1

N∑
v=3

φuv · · ·
2∑

u=1
φuN

N∑
v=3

φ1v
2∑

u=1

N∑
v=3

φuv
3∑

u=1

N∑
v=3

φuv · · ·
3∑

u=1
φuN

...
...

...
...

...

φ1N
2∑

u=1
φuN

3∑
u=1

φuN · · ·
N∑

u=1
φuN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

For the second determinant on the right hand side, subtracting row 1 from row 2 and subtracting
column 1 from column 2, we have

|G(N)| =

φ11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2∑
u=1

N∑
v=2

φuv
2∑

u=1

N∑
v=3

φuv · · ·
2∑

u=1
φuN

2∑
u=1

N∑
v=3

φuv
3∑

u=1

N∑
v=3

φuv · · ·
3∑

u=1
φuN

..

.
..
.

..

.
...

2∑
u=1

φuN
3∑

u=1
φuN · · ·

N∑
u=1

φuN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N∑
v=2

φ1v 0
N∑

v=3
φ1v · · · φ1N

0
N∑

v=2
φ2v

N∑
v=3

φ2v · · · φ2N

N∑
v=3

φ1v
N∑

v=3
φ2v

3∑
u=1

N∑
v=3

φuv · · ·
3∑

u=1
φuN

...
...

...
...

...

φ1N φ2N
3∑

u=1
φuN · · ·

N∑
u=1

φuN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The first determinant on the right hand side can be transformed into a new determinant of a
corresponding (N − 1)-day problem. Each element of the new determinant is defined as

gjk =

min{j,k}∑
u=1

N−1∑
v=max{j,k}

Φuv, j, k = 1, . . . , N − 1;
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where

Φuv =

{
φ1,v+1 + φ2,v+1, if u = 1;

φu+1,v+1, if u = 2, . . . , N − 1;

for v = 1, . . . , N − 1. According to the induction hypothesis (39), this new determinant is nonneg-
ative. Thus, we have

|G(N)| ≥

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N∑
v=2

φ1v 0
N∑

v=3
φ1v · · · φ1N

0
N∑

v=2
φ2v

N∑
v=3

φ2v · · · φ2N

N∑
v=3

φ1v
N∑

v=3
φ2v

3∑
u=1

N∑
v=3

φuv · · ·
3∑

u=1
φuN

.

..
.
..

.

..
.
..

.

..

φ1N φ2N
3∑

u=1
φuN · · ·

N∑
u=1

φuN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Note that we have removed φ11 from the analysis. Let the determinant on the right hand side above
be the full determinant for the subsequent analysis.

Repeating a similar procedure, we can remove φ1j , for j = 2, . . . , N , from the analysis one at a
time. In short, for each iteration j, we remove φ1j by performing the following steps:

1. Decompose the first column of the full determinant into two parts. The first part corresponds
to a column that contains φ1j as its first element and zero for the remaining elements. Thus,
the full determinant can be decomposed into two determinants.

2. The first determinant can be transformed into a determinant corresponding to an (N−1)-day
problem. Under the induction hypothesis (39), this determinant is nonnegative and can be
removed from the analysis.

3. For the second determinant, subtract row 1 from row j+1 and subtract column 1 from column
j + 1. Let the resultant determinant be the full determinant for the next iteration.

For the last iteration N , the second determinant is zero and this concludes that |G(N)| ≥ 0.
Lastly, all n-th principal minors of G(N), for n = 1, . . . , N − 1, can be transformed into a

determinant corresponding to an n-day problem. According to the induction hypothesis (39), all
these principal minors are nonnegative. This proves that the objective function for an N -day
problem is concave.

Proof of Proposition 1.

To prove the claim, it suffices to show that ∂2f̄t(xt,pt)
∂p2t,1

can be positive. We have

∂f̄t(xt,pt)

∂pt,1
= δt

N∑
v=1

[
e−
∑v

i=1 pt,i

(
1 +4V̄ [1,v]

t+1 (xt)−
v∑
i=1

pt,i

)]
,

and

∂2f̄t(xt,pt)

∂p2
t,1

= δt

N∑
v=1

[
−e−

∑v
i=1 pt,i

(
2 +4V̄ [1,v]

t+1 (xt)−
v∑
i=1

pt,i

)]
.
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Since pt ∈ RN+ , there exists p̂t such that the term 2 +4V̄ [1,v]
t+1 (xt)−

∑v
i=1 pt,i < 0 for pt ≥ p̂t, which

implies that ∂2f̄t(xt,pt)
∂p2t,1

is strictly positive in this range.

Proof of Proposition 2.
For convenience, we omit the subscript t of xt and pt. By solving the equations ∂ft(x,p)/∂p1 = 0
and ∂ft(x,p)/∂p2 = 0, we have

p∗1 =

{
A[1,2](x)b

[1,2]
t

[
A[1,1](x)

(
a

[1,1]
t + b

[1,1]
t 4V [1,1]

t+1 (x)
)
−A[2,2](x)

(
a

[2,2]
t + b

[2,2]
t 4V [2,2]

t+1 (x)
)]

+

2A[2,2](x)b
[2,2]
t ×

2∑
v=1

A[1,v](x)

(
a

[1,v]
t +

b
[1,v]
t

v
4V [1,v]

t+1 (x)

)}
/d(x),

p∗2 =

{
A[1,2](x)b

[1,2]
t

[
A[2,2](x)

(
a

[2,2]
t + b

[2,2]
t 4V [2,2]

t+1 (x)
)
−A[1,1](x)

(
a

[1,1]
t + b

[1,1]
t 4V [1,1]

t+1 (x)
)]

+

2A[1,1](x)b
[1,1]
t ×

2∑
u=1

A[u,2](x)

(
a

[u,2]
t +

b
[u,2]
t

3− u
4V [u,2]

t+1 (x)

)}
/d(x),

where d(x) = A[1,2](x)b
[1,2]
t × 2

∑2
i=1A

[i,i](x)b
[i,i]
t + 4

∏2
i=1A

[i,i](x)b
[i,i]
t . The theorem follows.

Lemma 1 below is needed in our proofs of Part 2 of Proposition 4 and Proposition 5. Recall

that r(u) := N − u+ 1. Define At(i) =
∑i

u=1

∑N
v=i a

[u,v]
t δt, gt(i) :=

∑i
u=1

∑N
v=i b

[u,v]
t δt/(v − u+ 1),

Gt(i,xt) =
∑i

u=1

∑N
v=i b

[u,v]
t ∆V

[u,v]
t+1 (xt)δt/(v−u+ 1), and ht(i, j) :=

∑j
u=1

∑N
v=i b

[u,v]
t δt/(v−u+ 1).

Lemma 1. If a
[u,v]
t = a

[r(v),r(u)]
t and b

[u,v]
t = b

[r(v),r(u)]
t for each t = 1, . . . T and (u, v) ∈ UV, then

At(i) = At(r(i)) and gt(i) = gt(r(i)) for i ∈ N ; and ht(i, j) = ht(r(j), r(i)) for each (i, j) ∈ UV.

In addition, at period t, if ∆V
[u,v]
t (xt) = ∆V

[r(v),r(u)]
t (xt) for each (u, v) ∈ UV, then Gt(i,xt) =

Gt(r(i),xt).

Proof. For a given i ∈ {1, . . . , N}, the equality At(i) = At(r(i)) follows directly from our assumption

a
[u,v]
t = a

[r(v),r(u)]
t . The equalities gt(i) = gt(r(i)) and ht(i, j) = ht(r(j), r(i)) hold because the

term b
[u,v]
t δt/(v − u + 1) corresponding to class u-v in both gt(i) and ht(i, j) is equal to the term

b
[r(u),r(v)]
t δt/(r(u) − r(v) + 1) corresponding to [r(v), r(u)] in both gt(r(i)) and ht(r(j), r(i)). The

equality Gt(i,xt) = Gt(r(i),xt) is true for analogous reasons after accounting for ∆V
[u,v]
t (xt) =

∆V
[r(v),r(u)]
t (xt).

Proof of Proposition 4.
1. We proceed by backward induction on the number of stages. For t = T , we have that

∆V
[u,v]
T+1 (xT+1) = 0. Therefore,

VT (xT ) = max
pT∈PT (xT )

N∑
u=1

N∑
v=u

(
v∑
i=u

pT,i

)(
a

[u,v]
T −

b
[u,v]
T

∑v
i=u pT,i

(v − u+ 1)

)
A[u,v](xT ).

Note that the objective function defining VT (xT ) above has a term for every class u-v. Consider the
terms corresponding to classes u-v and r(v)-r(u) in the objective functions of VT (x1

T ) and VT (x2
T ),
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respectively.

(VT (x1
T ) [u, v] term):

(
v∑
i=u

pT,i

)(
a

[u,v]
T −

b
[u,v]
T

∑v
i=u pT,i

(v − u+ 1)

)
A[u,v](x1

T ). (40)

(VT (x2
T ) [r(v), r(u)] term):

 r(u)∑
i=r(v)

pT,i

(a[r(v),r(u)]
T

−
b
[r(v),r(u)]
T

∑r(u)
i=r(v) pT,i

(r(u)− r(v) + 1)

A[r(v),r(u)](x2
T ). (41)

Since we assume x1
T,i = x2

T,r(i) for all i = 1, . . . , N , we have that A[u,v](x1
T ) = A[r(v),r(u)](x2

T ).

Moreover, given our assumption that a
[u,v]
T = a

[r(v),r(u)]
T and b

[u,v]
T = b

[r(v),r(u)]
T for each (u, v) ∈ UV,

and (v − u+ 1) = (r(u)− r(v) + 1), (41) is equivalent to r(u)∑
i=r(v)

pT,i

a[u,v]
T −

b
[u,v]
T

∑r(u)
i=r(v) pT,i

(v − u+ 1)

A[u,v](x1
T ).

Therefore, relabeling the variables pT,i as pT,N−i+1 (i.e. permuting them) makes the above term
equivalent to (40). Since we chose class u-v arbitrarily, it follows that the objective functions of
VT (x1

T ) and VT (x2
T ) are equivalent under a relabeling of variables. Moreover, constraints in PT (xT )

remain equivalent under this relabeling. Therefore, the optimization problems determining VT (x1
T )

and VT (x2
T ) are equivalent and VT (x1

T ) = VT (x2
T ).

Assume that for t = t′ + 1, . . . , T we have Vt(x
1
t ) = Vt(x

2
t ) for all pairs (x1

t ,x
2
t ) such that

x1
t,i = x2

t,r(i) for all i = 1, . . . , N . We now show this property to hold for period t′. Recall that

Vt′(xt′) = max
pt′∈Pt′ (xt′ )

N∑
u=1

N∑
v=u

(
v∑
i=u

pt′,i −∆V
[u,v]
t′+1 (xt′+1)

)(
a

[u,v]
t′ −

b
[u,v]
t′

∑v
i=u pt′,i

(v − u+ 1)

)
A[u,v](xt′).

(42)

If ∆V
[u,v]
t′+1 (x1

t′+1) = ∆V
[r(v),r(u)]
t′+1 (x2

t′+1), we can show that Vt′(x
1
t′) = Vt′(x

2
t′) by mirroring the

arguments used in our proof for stage T , that is, we can establish that the optimization problems

determining Vt′(x
1
t′) and Vt′(x

2
t′) are equivalent. The equality ∆V

[u,v]
t′+1 (x1

t′+1) = ∆V
[r(v),r(u)]
t′+1 (x2

t′+1)
follows because (i) Vt′+1(x1

t′) is equal to Vt′+1(x2
t′) and (ii) Vt′+1(x1

t′ − eu,v) is equal to Vt′+1(x2
t′ −

er(v),r(u)). Condition (i) is a direct consequence of our induction hypothesis. Condition (ii) also
follows from the induction hypothesis because the i-th components of x1

t′ and eu,v coincide with

the r(t)-th components of x2
t′ and er(v),r(u), respectively, which implies that the vectors x

[1,u,v]
t′ :=

x1
t′ − eu,v and x

[2,r(v),r(u)]
t′ := x2

t′ − er(v),r(u) satisfy x
[1,u,v]
t′,i = x

[2,r(v),r(u)]
t′,r(i) . Thus, Vt′(x

1
t′) = Vt′(x

2
t′)

and the proof is complete based on the principle of mathematical induction.
2. We provide an overview of our proof strategy before discussing the details. Consider the optimiza-
tion problem (3), which we label P , determining p∗t in period t and state xt, where xt,i = xt,N−i+1

for all i = 1, . . . , bN/2c by assumption. We also construct a problem P ′ starting from P by rela-
beling its variable pt,i as p′t,r(i) for each i = 1, . . . , N . Our focus will be to show that the vector

p′∗t defined as p′,∗t,i := p∗t,i for all i = 1, . . . , N is an optimal solution to P ′. This relationship plus
the transformation we applied (pt,i = p′t,r(i) for each i = 1, . . . , N) implies that p∗t,i = p∗t,r(i) for all
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i = 1, . . . , bN/2c.
Since the room capacity vector xt is reflective, we have that A[u,v](xt) = A[r(v),r(u)](xt). We

therefore suppress the indicator function A[u,v](xt) in the discussion below to ease exposition. Con-
sider the original and transformed problems:

p∗t := argmax
pt∈Pt(xt)

N∑
i=1

pt,i

[
(At(i) +Gt(i,xt))−

N∑
i=1

pt,igt(i)

−

 i−1∑
j=1

pt,jht(i, j) +
N∑

j=i+1

pt,jht(j, i)

 ; (43)

p′
∗
t := argmax

p′
t∈Pt(xt)

N∑
i=1

p′t,i

[
(At(r(i)) +Gt(r(i),xt))−

N∑
i=1

p′t,igt(r(i))

−

r(i)−1∑
j=1

p′t,r(j)ht(i, j) +
N∑

j=r(i)+1

p′t,r(j)ht(j, i)

 . (44)

From Lemma 1 it immediately follows that the objective function coefficients of the linear and
quadratic terms of pt,i and p′t,i are the same. Since ht(i, j) = ht(r(i), r(j)), also by Lemma 1, the

sums
∑i−1

j=1 pt,jht(i, j) and
∑N

j=i+1 pt,jht(j, i) are identical to the sums
∑N

j=r(i)+1 p
′
t,r(j)ht(j, i) and∑r(i)−1

j=1 p′t,r(j)ht(i, j), respectively. Thus, the objective function terms corresponding to pt,i and p′t,i
in (43) and (44), respectively, are the same (except for the cosmetic label p and p′). It is also easy
to verify that the constraints involving pt,i and p′t,i are the same. Thus, it follows that p′∗t is an
optimal solution to (44).

Proof of Proposition 5.

Since xt > 1, we haveA[u,v](xt) = 1, for all (u, v) ∈ UV. Define Ḡt(i,xt) =
∑i

u=1

∑N
v=i ∆V

[u,v]
t+1 (xt)/(v−

u+ 1), ḡt(i) :=
∑i

u=1

∑N
v=i 1/(v − u+ 1) and h̄t(i, j) :=

∑j
u=1

∑N
v=i 1/(v − u+ 1). By assumption

the optimal room rate vector is in the interior of Pt(xt). Therefore, these optimal room rates solve

p∗t := argmax
pt

N∑
i=1

pt,i

i× aδt × r(i) + bδtḠt(i,xt)
i−1∑
j=1

−
N∑
i=1

bδtpt,iḡt(i)− bδt

 i−1∑
j=1

pt,j h̄t(i, j) +
N∑

j=i+1

pt,j h̄t(j, i)

 .
The objective function is concave (by virtue of Theorem 1), p∗t is determined by the following first
order conditions of this function with respect to the room prices:

2piḡt(i) +

i−1∑
j=1

pj h̄t(i, j) +

N∑
j=i+1

pjht(j, i) = i× a

b
× r(i) + Ḡt(i,xt),∀i ∈ {1, . . . , N}. (45)

We now focus on the case of N = 8. To ease notation we suppress dependence on t, and define
I1,1 = 2ḡ(1) + h̄(8, 1), I1,2 = h̄(2, 1) + h̄(7, 1), I1,3 = h̄(3, 1) + h̄(6, 1), I1,4 = h̄(4, 1) + h̄(5, 1),
I2,2 = 2ḡ(2) + h̄(7, 2), I2,3 = h̄(3, 2) + h̄(6, 2), I2,4 = h̄(4, 2) + h̄(5, 2), I3,3 = 2ḡ(3) + h̄(6, 3),
I3,4 = h̄(4, 3) + h̄(5, 3), and I1,1 = 2ḡ(4) + h̄(5, 4). Since we assume a reflective capacity vector, by
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Proposition 4, pi = pr(i) for i = 1, . . . , bN/2c in the solution of the first order equations. Further,
by applying this condition and Lemma 1 (with aδt and bδt equal to 1) we obtain the following set
of four equations that determine p1, p2, p3, and p4:

I1,1p1 + I1,2p2 + I1,3p3 + I1,4p4 =
a

b
N + Ḡt(1,xt);

I1,2p1 + I2,2p2 + I2,3p3 + I2,4p4 = 2
a

b
(N − 1) + Ḡt(2,xt);

I1,3p1 + I2,3p2 + I3,3p3 + I3,4p4 = 3
a

b
(N − 2) + Ḡt(3,xt);

I1,4p1 + I2,4p2 + I3,4p3 + I4,4p4 = 4
a

b
(N − 3) + Ḡt(4,xt).

Applying Gaussian elimination, the expression for p1, . . . , p4 can be obtained in closed form (and
thus by Proposition 4 the remaining prices as well). Define

D := I2
1,4I

2
2,3 − 2I1,3I1,4I2,3I2,4 + I2

1,3I
2
2,4 − I2

1,4I2,2I3,3 + 2I1,2I1,4I2,4I3,3 − I1,1I
2
2,4I3,3

+ 2I1,3I1,4I2,2I3,4 − 2I1,2I1,4I2,3I3,4 − 2I1,2I1,3I2,4I3,4 + 2I1,1I2,3I2,4I3,4 + I2
1,2I

2
3,4

− I1,1I2,2I
2
3,4 − I2

1,3I2,2I(4, 4) + 2I1,2I1,3I2,3I(4, 4)− I1,1I
2
2,3I(4, 4)− I2

1,2I3,3I(4, 4)

+ I1,1I2,2I3,3I(4, 4);

C1,1 := − (I2
2,4I3,3 − 2I2,3I2,4I3,4 + I2,2I

2
3,4 + I2

2,3I4,4 − I2,2I3,3I4,4);

C1,2 := − (−I1,4I2,4I3,3 + I1,4I2,3I3,4 + I1,3I2,4I3,4 − I1,2I
2
3,4 − I1,3I2,3I4,4 + I1,2I3,3I4,4);

C1,3 := − (I1,4I2,3I2,4 − I1,3I
2
2,4 − I1,4I2,2I3,4 + I1,2I2,4I3,4 + I1,3I2,2I4,4 − I1,2I2,3I4,4);

C1,4 := − (−I1,4I
2
2,3 + I1,3I2,3I2,4 + I1,4I2,2I3,3 − I1,2I2,4I3,3 − I1,3I2,2I3,4 + I1,2I2,3I3,4);

C2,1 := − (−I1,4I2,4I3,3 + I1,4I2,3I3,4 + I1,3I2,4I3,4 − I1,2I
2
3,4 − I1,3I2,3I4,4 + I1,2I3,3I4,4);

C2,2 := − (I2
1,4I3,3 − 2I1,3I1,4I3,4 + I1,1I

2
3,4 + I2

1,3I4,4 − I1,1I3,3I4,4);

C2,3 := − (−I2
1,4I2,3 + I1,3I1,4I2,4 + I1,2I1,4I3,4 − I1,1I2,4I3,4 − I1,2I1,3I4,4 + I1,1I2,3I4,4);

C2,4 := − (I1,3I1,4I2,3 − I2
1,3I2,4 − I1,2I1,4I3,3 + I1,1I2,4I3,3 + I1,2I1,3I3,4 − I1,1I2,3I3,4);

C3,1 := (−I1,4I2,3I2,4 + I1,3I
2
2,4 + I1,4I2,2I3,4 − I1,2I2,4I3,4 − I1,3I2,2I4,4 + I1,2I2,3I4,4);

C3,2 := (I2
1,4I2,3 − I1,3I1,4I2,4 − I1,2I1,4I3,4 + I1,1I2,4I3,4 + I1,2I1,3I4,4 − I1,1I2,3I4,4);

C3,3 := (−I2
1,4I2,2 + 2I1,2I1,4I2,4 − I1,1I

2
2,4 − I2

1,2I4,4 + I1,1I2,2I4,4);

C3,4 := (I1,3I1,4I2,2 − I1,2I1,4I2,3 − I1,2I1,3I2,4 + I1,1I2,3I2,4 + I2
1,2I3,4 − I1,1I2,2I3,4);

C4,1 := (I1,4I
2
2,3 − I1,3I2,3I2,4 − I1,4I2,2I3,3 + I1,2I2,4I3,3 + I1,3I2,2I3,4 − I1,2I2,3I3,4);

C4,2 := (−I1,3I1,4I2,3 + I2
1,3I2,4 + I1,2I1,4I3,3 − I1,1I2,4I3,3 − I1,2I1,3I3,4 + I1,1I2,3I3,4);

C4,3 := (I1,3I1,4I2,2 − I1,2I1,4I2,3 − I1,2I1,3I2,4 + I1,1I2,3I2,4 + I2
1,2I3,4 − I1,1I2,2I3,4);

C4,4 := (−I2
1,3I2,2 + 2I1,2I1,3I2,3 − I1,1I

2
2,3 − I2

1,2I3,3 + I1,1I2,2I3,3).

The closed form expression for the room price on day i ∈ N is

pi ≡ pr(i) =
Ci,1
D

(a
b
N + Ḡt(1,xt)

)
+
Ci,2
D

(
2
a

b
(N − 1) + Ḡt(2,xt)

)
+
Ci,3
D

(
3
a

b
(N − 2) + Ḡt(3,xt)

)
+
Ci,4
D

(
4
a

b
(N − 3) + Ḡt(4,xt)

)
. (46)

In the public holiday case, the class (4, 5) demand is αa, while the demand of the remaining
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classes remains at a. Accordingly inflating the base demand in the term corresponding to day four
in equation (46) gives

pi ≡ pr(i) =
Ci,1
D

(a
b
N + Ḡt(1,xt)

)
+
Ci,2
D

(
2
a

b
(N − 1) + Ḡt(2,xt)

)
+
Ci,3
D

(
3
a

b
(N − 2) + Ḡt(3,xt)

)
+
Ci,4
D

(
4
a

b
(N − 3 + (α− 1)) + Ḡt(4,xt)

)
.

The derivative of price with respect to α is

∂pi/∂α ≡ ∂pr(i)/∂α =
a

b
× Ci,4

D
for each i = 1, . . . , bN/2c.

The ratio a/b does not affect either the sign or the ordering of derivatives ∂pi/∂α, i = 1, . . . , bN/2c
because it is strictly positive and appears in each derivate. Therefore, it suffices to check C1,4/D,
C2,4/D, C3,4/D, and C4,4/D, which evaluate to−0.0073, −0.0151, −0.0343, and 0.0837, respectively,
for N equals to eight. The sign and ordering of these numbers confirms our claimed results for the
public holiday setting.

For the conference setting, the high-demand class is (3, 6) and equation (46) transforms to

pi ≡ pr(i) =
Ci,1
D

(a
b
N + Ḡt(1,xt)

)
+
Ci,2
D

(
2
a

b
(N − 1) + Ḡt(2,xt)

)
+
Ci,3
D

(
3
a

b
(N − 2 + (α− 1)) + Ḡt(3,xt)

)
+
Ci,4
D

(
4
a

b
(N − 3 + (α− 1)) + Ḡt(4,xt)

)
.

The derivative of price with respect to α is

∂pi/∂α ≡ ∂pr(i)/∂α =
a

b
× Ci,3 + Ci,4

D
for each i = 1, . . . , bN/2c.

Using the same arguments as in the public holiday case, we can verify the order/sign of the deriva-

tives for the conference case by computing the ratios
C1,3 + C1,4

D
,
C2,3 + C2,4

D
,
C3,3 + C3,4

D
, and

C4,3 + C4,4

D
, which evaluate to −0.0201, −0.0447, 0.0758, and 0.0494, respectively. Hence, our

claimed results hold.
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