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Abstract

Our article investigates the effect of macro socio-economic drivers on Australian
households’ allocation of expenditure in a category (household appliances) and
conditional on the allocated category expenditure, preferences for products (clothes
washers) within the category. At the category-level, we quantify the effect of changes
in social mobility, disposable income, housing prices and the 2009 stimulus
payments on purchase propensity and expenditure. At the product-level, we
investigate how households trade off between price, energy efficiency and loading
capacity conditional on allocated category expenditure, measuring nonhomotheticity
in preferences. We use the model to study a number of hypothetical scenarios, where
we simulate the effect of changes in macro socio-economic drivers and fiscal policies
on market structure and revenue.
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”The radical recasting of federal fiscal policy in response to the global

financial crisis in 2008-09 stands out as the single most important

macro-economic policy development this decade ... Given the tens of billions of

dollars of public spending involved, the budget deficit and public debt legacy

it has left, as well as the precedent that massive fiscal stimulus has set for

responding to future foreign financial crises, evidence-based policy

evaluation demands ongoing investigation of its economy-wide impact.” -

Tony Makin, The Australian (italics added)1

INTRODUCTION

Successful planning of long-term marketing strategy depends on a comprehensive

understanding of consumer reactions to both macro socio-economic drivers and fiscal

policy changes (often enacted as a response to a crisis to offset the impact of a negative

shock). Without a detailed quantitative assessment of the impact of the macro climate on

consumers, a marketing manager will be unable to optimally update strategies (e.g.,

Gordon et al. 2012 show that price elasticities in a grocery store, and by implication

optimal pricing strategies, co-move with gross domestic product). Additionally,

studying the impact of policy responses is of import to policy makers tasked with

managing the economy. For example, in the recent global crisis, decreased discretionary

income, decreased home values (private assets), and decreased social mobility, combined

to significantly dampen consumer spending. To encourage consumer spending,

governments responded by introducing stimulus measures. For example, the Australian

government spent AUS$21 billion on tax bonuses in 2009 (see Leigh 2012 for details).

There has been considerable debate on the response of consumers to the fiscal stimulus.

Prior work in both marketing and economics has considered the impact of macro

socio-economic drivers on category choice. For example, Du and Kamakura (2008),
1http://www.theaustralian.com.au/opinion/fiscal-stimulus-did-not-save-us/story-e6frg6zo-

1225897744621
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Kamakura and Du (2012) and Dutt and Padmanabhan (2011) study the impact of

business cycles, economic contractions/expansions, and currency crises respectively, on

category level measures of consumer expenditure. Additionally, Ma et al. (2011) examine

the impact of gasoline prices on consumer purchases in the grocery store. Lamey et al.

(2007) describes the evolution of private label share across business cycles, while Lamey

et al. (2012) investigates the role of marketing conduct in the adoption of private label

products across business cycles. Finally, Albuquerque and Bronnenberg (2011) study the

impact of an economic crisis on prices and dealer networks in the automobile industry.

However, considerably less attention has been paid to the impact of such factors on

consumer preferences, and hence rates of substitution across, differentiated products.

Accordingly, our study investigates the impact of changes in income, mobility, and

fiscal policy on purchases, and traces the impact of a stimulus payment on category

incidence, expenditure and preferences. Substantively, we focus on household

appliances (differentiated durable goods), with particular focus on the brand shares of

clothes washers. Household appliances represents a large component of the Australian

economy, with approximately AUS$6 billion in annual revenue and approximately

AUS$600 million in clothes washer sales. A negative change in economic climes affects

the demand for household appliances in two ways. First by reducing income, a

recessionary shock reduces a consumer’s ability to spend in the category. As consumer

durables represent significant financial decisions for most households, they are likely to

be especially vulnerable to changes in household finances. Second, recessions decrease

population mobility (for several reasons including a consumer being locked into a home

mortgage). Unique to a small subset of product categories that cater to households

changing addresses, the decreased mobility translates into a decrease in the need (and

hence decrease in primary demand) for the product.

Methodologically, we build on the Aggregate Random Coefficients Logit model

henceforth ARCL model (Berry et al. 1995, Sudhir 2001, Chintagunta et al. 2003). First,
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we specify a dynamic panel model for category consideration (discussed by Ching et al.

2009) and expenditure. Our model controls for both state dependence and unobserved

heterogeneity. We use the model to examine the impact of the macro climate on category

consideration in addition to the impact on preferences and brand shares. Next, we

model the purchase decision for clothes washers. We allow preferences to rotate with the

allocated category expenditure, allowing consumer preferences to be nonhomothetic:

marginal rates of substitution across alternative products are allowed to change with

category expenditure.

We find that nonhomothetic attribute preferences imply that a change in macro

socio-economic drivers (which impact households’ prosperity) changes aggregate and

product level elasticities, brand shares and revenues. For example, we find that

households prefer to trade up to larger (and more energy consuming) machines with

increasing disposable income, reshaping market structure by changing expenditure

allocation and preferences. Further, we simulate the impact of different scenarios that

reflect recent events, particularly focusing on the impact of mobility, prices of residential

homes and changes in disposable income. Most noteably, our findings suggest that the

targeted stimulus used in Australia, with the size of payments aligned with income, had

a substantially larger impact than a similar (equivalent in cost to the Australian

government) uniform stimulus on total expenditure in household appliances.

More broadly, we answer prior calls to the use of structural models to relate macro

socio-economic drivers to consumer behavior (c.f. Hausman 2003, for a discussion on

using structural models to develop a more accurate consumer price index). These

authors suggest that by treating consumer preferences as primitives, a structural model

is better able to understand and predict consumer behavior in different financial climes.

Indeed, Dutt and Padmanabhan (2011) suggest that ”decision makers seeking to obtain a

proper assessment of the impact of [a] crisis on their business need to start by

understanding the impact of [the] crisis on their consumer’s behaviors.” In response to
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such calls, we simulate and quantify the impact of the macro climate and policy

responses on a focal brand or category. Beyond the impact of these on consumer

spending, our approach also provides guidance on the ancillary effects of a stimulus on

product attributes. Hence, for example, our model can be used to simulate if rebates for

cars may increase the likelihood of a consumer trading up to a larger car, with lower gas

mileage (and a larger carbon footprint).

The remainder of the paper is structured as follows. In the next section we outline

our framework for studying consumer purchases in clothes washers, discuss the major

modeling challenges and describe the formal model and our estimation strategy. Next,

we describe our findings, both for purchases in consumer appliances and for clothes

washers. We conclude by describing our counterfactuals and discussing the substantive

implications of our work.

DATA AND MODEL

Data

We estimate the category expenditure model on disaggregate data from the Household

Income and Labor Dynamics survey (henceforth HILDA) survey, a longitudinal panel of

households that includes a wide range of measurements regarding income, wealth,

subjective well-being, family dynamics and expenditures. Wave 1 of the panel started in

2001 with 7,682 households (19,914 individuals), with interviews conducted with all

adult members of each household, every year. Across the years, ongoing recruitment

efforts are used to counteract panel attrition, and ensure the panel stays representative of

the Australian population. The survey includes a measure of the annual spending of

each household on household (consumer) appliances, as well as a number of additional

household descriptors. Each measure is further cross-validated by HILDA researchers to

ensure accuracy.

Second, we model the choice of a product in the category. We build on the ARCL
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model to allow for nonhomotheticity in preferences. We estimate the product choice

model on unit volume data, made available by GfK (Australia and New Zealand) for

each state in Australia. The data is based on a retail store audit, collected and

commercially sold by GfK to retailers throughout Australia. We use annual data from

July 2007 to June 2010. The data includes the average price (transactional price, net of

any price promotions) per unit sold, and the attribute level descriptors for all products

available for sale in the market.

We focus on two clothes washer attributes: loading capacity and energy efficiency.

The loading capacity is the maximum capacity of a clothes washer, measured in

kilograms of (dry) clothing. Energy efficiency is measured using the Energy Star rating

index. The ”Energy Star” program is a 1992 initiative of the US Environmental

Protection Agency. The scale provides consumers with information about the energy

efficiency of a product, based on a typical usage profile. In Australia, it is a mandatory

requirement for all household appliances to calculate and report their Energy Star

rating2. The Energy Star rating, ranging from one (least efficient) to five (most efficient),

is printed on a prominent label adhered to the machine at point of sale. The program is

backed by a range of publicly available information on the correct use, and the basis for

computation, of the rating scale.

We focus on the 8 brands with the largest market share in clothes washers (that

jointly account for 92.1% of all purchases, with the 9th brand accounting for 1.69% of

purchases). While our model does not use any typology of brands (our estimates are

agnostic to any classification), to facilitate the discussion of our results, we refer to

brands as being lower or higher tier. Our discussions with marketing practitioners in

Australia indicate that Bosch is generally regarded as a premium brand, followed closely

by Electrolux, Fisher & Paykel and Whirlpool. LG and Samsung are generally perceived

as being lower in quality, with Simpson being viewed as an ’entry-level’ brand.

2Mandatory eco-labels are also required by other countries. In the USA, for example, manufacturers are
required to report estimated annual energy consumption in a ”EnergyGuide” label.
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We observe and model shares for each clothes washer stock keeping unit (SKU) sold

in Australia. We make two simplifications to reduce outliers where a product was in

limited distribution. First, for SKUs that sell less than 50 units in a state and a period

(that is for the lowest 1.5% of our sample), we form a composite product for each brand

in each state and period, that has the median attribute and median price of the products.

Second, we form a composite product for the trade brand, and use the median attributes

in the state and period for its attributes.

Formal model

Category expenditure allocation model. A key challenge in modeling cross-category

allocations of household expenditure is accounting for households not purchasing in a

category (e.g. Du and Kamakura 2008, Drèze et al. 2004). To account for such ”corner

solutions”, we build on the Tobit 2 model (used prior in marketing, e.g. by Algesheimer

et al. 2010), and separately model consideration and expenditure. We specify a dynamic

panel model, where in state s, year t, for household h ∈ {1, . . . , H}, the decision to

purchase (chst = 1[c∗hst > 0]) and expenditure in the category ehst conditional on

purchase, is a function of past expenditure (ehst−1), past consideration (chst−1),

observables (zhst = {zchst, zehst}) and state and year fixed effects({Dcst, Dest}):

c∗hst = λchst−1 + θczchst + Dcst + ωch + εchst,(1)

ehst =

 γehst−1 + θezehst ++Dest + ωeh + εehst if chst = 1,

0 if chst = 0.
(2)

We treat unobserved household heterogeneity (ωch, ωeh) and household-period specific

i.i.d. shocks (εchst, εehst) as being zero mean bivariate normal with covariance matrices:

Σω =

 σ2
ωc ρωc,ωe σωc σωe

ρωc,ωe σωc σωe σ2
ωe

 , Σε =

 1 ρεc,εe σεe

ρεc,εe σεe σ2
εe

 .

7



The covariance terms can be combined via summation, with overall covariance structure:

(3) Σω+ε =

 1 + σ2
ωc ρ

√
(1 + σ2

ωc)(σ
2
ωe + σ2

εe)

ρ
√
(1 + σ2

ωc)(σ
2
ωe + σ2

εe) σ2
ωe + σ2

εe

 ,

where the total correlation is:

ρ =
ρεc,εe σεe + ρωc,ωe σωc σωe√

(1 + σ2
ωc)(σ

2
εe + σ2

ωe)
.

The expected category expenditure conditional on purchase in the category, for any

household h in state s, year t is:

(4) E[ehst | zhst, chst = 1] = Ψehst + ρ
√

1 + σ2
ωc Λ(ahst),

where ahst = Ψchst/
√

1 + σ2
ωc , Ψchst = λchst−1 + θczchst + Dcst, and

Ψehst = γehst−1 + θezehst + Dest.

We study the effect of disposable income (net of taxes and governmental transfers),

the value of the primary residence (if the household owns the home), and distance

moved in the previous year (expressed in kilometers) on category expenditure.

Appendix A characterizes properties of the expenditure allocation model. Table 1

reports summary statistics, and provides corresponding HILDA data names.3

[Table 1 about here.]

Product choice model. We write the indirect utility for a household h choosing a

model of clothes washer j from a choice set J as:

(5) Vhjst = αh log(pjst) + βhxj + Fst + ξ jst + ζhjst.

3Maintained at http://www.melbourneinstitute.com/hilda/doc/doc hildamanual.html or available
from the Melbourne Institute of Applied Economic and Social Research. Consistent with prior literature,
we winsorize, and transform measures to their natural logarithm.
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Fst is a fixed effect for state and year. The product-specific demand shock, ξ jst, is

assumed to be observed by everyone in the market, but unobserved by the researcher.

The indirect utility for the outside good is represented by Vh0st which represents the

option of not purchasing a clothes washer and is assumed to be driven only by total

category expenditure and a stochastic term (we normalize ξ0st = 0):

(6) Vh0st = ζh0st.

The household specific coefficients {αh, βh} = {αh, βh1, . . . , βhR} are modeled as

comprising of three terms: (a) a homogenous component, common across all

households, (b) a heterogenous component that is distributed multivariate normal across

households, and (c) a component that is directly proportional to the expected category

expenditure, conditional on category consideration. For notational convenience, denote

a vector νh = {νhα, νh1, . . . , νhR} as a draw from a multivariate iid standard normal

distribution (N(0, I), denoted by Fν). Then each coefficient, is the sum of the mean

coefficient (common across households), νh multiplied by the corresponding standard

deviation for the coefficient (e.g. κα for price), and a coefficient, (e.g. κep) multiplied by

the expected category expenditure allocation ehst. Separating the indirect utility into

mean utility, and deviations from the mean, based on (5) and (6), implies:

(7) Vhjst = δjst(xj, pjst; α, β, Fst, ξ jst) + µhjst(xj, pjst, ehst; K) + ζhjst,

where the homogenous component is δjst = α log(pjst) + βxj + Fst + ξ jst, and the

heterogenous component is:

(8) µhjst(xj, pjst, ehst; K) =
(
κανhα + κepehst

)
log(pjst) +

R

∑
r=1

(κrνhr + κerehst) xrj.

K = {κα, κep, κ1, κe1, . . . , κR, κeR} is the set of heterogeneity and nonhomotheticity
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parameters on price and observed characteristics.

We provide a framework for measuring nonhomotheticity. As we study durable

differentiated goods, consistent with Fader and Hardie (1996) and Bell et al. (2005), we

treat choices as customers’ evaluations across sets of attributes and model attribute-level

preferences. ”Engel curves”, named after Ernst Engel, describe changes in expenditure

on a product or category with changes in economic resources (for example, household

income). Hence, we label parameters that govern changes in utility with ehst, as ”Engel

parameters” (κep and κer, r = 1, . . . , R). A formal test for homotheticity is the hypothesis

that κer = κeR = κep = 0, ∀r = 1, . . . , R. Our article thus provides evidence on consumers

rotating towards or rotating away from clothes washer attributes with changes in

expenditure allocation. Note that while our model is related to Allenby and Rossi (1991),

our model is less restrictive as it allows customers to rotate toward or away, from

different attributes. Integrating over ζhjst (assuming ζhjst is i.i.d. extreme value), the

probability of household h purchasing product j, when faced with the allocation ehst for

the category is:

P(j | xst, pst, νhst, chst = 1; α, β, Fst, ξ jst, K) =

exp
{

δjst(xj, pjst; α, β, Fst, ξ jst) + µhjst(xj, pjst, ehst; K)
}

1 + ∑J
k=1 exp

{
δkst(xk, pkst; α, β, Fst, ξkst) + µhkst(xjst, pjst, ehst; K)

} .(9)

To reduce notational clutter, we abuse notation by dropping the parameters from the

expression, and write

P(j | xst, pst, νhst, chst = 1) = P(j | xst, pst, νhst, chst = 1; α, β, Fst, ξ jst, K).

Integrating over households, the market share of product j in state s and time t, sjst is:

(10) sjst =
∫

H

∫
R1+R

P(j | xst, pst, νhst, chst = 1)︸ ︷︷ ︸
I

P(dνhst)︸ ︷︷ ︸
II

P(chst = 1 | hhst)︸ ︷︷ ︸
III

P(hhst)︸ ︷︷ ︸
IV

,

The first component (I) is the probability of purchasing product j conditional on the
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attributes and prices of the products available in the choice set, heterogeneous

preferences, allocated category expenditure and the household considering the category.

The second component (II), describes unobserved cross-household heterogeneity in the

1 + R heterogenous attributes. The third component (III) is the conditional category

consideration probability, given household h with characteristics hhst. The fourth

component (component IV) is the probability that a household with characteristics hhst

exists in the population (H), as estimated by HILDA. Thus, we model market share as

being the expected probability of purchasing product j conditional on the attributes and

prices of the products available in the choice set, with expectations taken over the 1 + R

nuisance parameters and HILDA estimated probabilities.

Model analytics

We derive four metrics that capture the impact of a change in a socio-economic driver, on

household purchases. The first three metrics4 correspond to measuring changes in the

probability of purchasing a household appliance, the expected expenditure in household

appliances, conditional on purchase, and the change in clothes washer purchase

probability, with a change in a socio-economic driver. The fourth metric characterizes

the change in price elasticity, thus accounting for the tertiary impact of a change in the

macro climate on market structure (by changing preferences and hence elasticity). While

we can derive an analogous metric for any marketing mix instrument, we choose to

focus on price as it is the most salient marketing instrument in our context. Additionally,

Gordon et al. (2012) focus on measuring changes in price elasticity in differentiated

consumer packaged goods with the macro climate. As we focus on measuring similar

constructs in differentiated durables, our studies are complementary in developing

empirical generalizations. When considering either the probability of a household

4To ease exposition, we discuss household elasticities. To obtain corresponding aggregate demand elas-
ticities, the analyst can marginalize household-level derivatives (e.g. ∂P(chst=1|zhst)

∂zrhst
), over households to

obtain rates of changes in aggregate variables.
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purchasing a household appliance, or a clothes washer, we use quasi elasticities5 in place

of elasticities. The household consideration quasi elasticity is (see Appendix B):

ηP(chst=1|zhst),zrhst
=

|θcr|φ (ahst)√
1 + σω2

c
Φ (ahst)

=
|θcr|Λ (ahst)√

1 + σω2
c

,

where Λ = φ/Φ is the inverse Mills ratio, and ahst = Ψchst/
√

1 + σω2
c
. Assuming that ehst

is expressed in logarithmic scale, the category expenditure elasticity, conditional on

category consideration, is (see Appendix B for a derivation):

ηE[ehst|zhst,chst=1],zrhst
= |θer − ρθcrΛ(ahst)(ahst + Λ(ahst))|.(11)

If ∂P(chst=1|zhst)
∂zrhst

> 0 and ∂E[ehst|zhst,chst=1]
∂zrhst

> 0, as in our application,6 then the quasi

elasticity of purchasing product j with respect to zrhst is (see Appendix B):

ηP(j|xst,pst,νhst,zhst),zrhst
=

∣∣∣ηP(chst=1|zhst),zrhst
+

ηE[ehst|zhst,chst=1],zrhst

(
R

∑
r=1

κer∆xjrst + κep∆pjst

) ∣∣∣,(12)

where

∆xjrst =

(
xjrst −

J

∑
k=1

P(k | xst, pst, νhst, ehst, chst = 1)xkrst

)
,

and

∆pjst =

(
pjst −

J

∑
k=1

P(k | xst, pst, νhst, ehst, chst = 1)pkst

)
.

are mean-centered deviations (arithmetic mean, weighted by the conditional probability

of purchase of each product) of the focal product’s attribute r, and price, respectively.

If the Engel parameters are zero, macro climate changes cause category expansion or

5Quasi elasticities describe changes in the conditional probability of an event, with respect to a change
in a focal variable. The quasi elasticity of e w.r.t. x, expressed in logarithmic form, is ηe,x =

∣∣ ∂log(P(e|x))
∂x

∣∣.
6It is straightforward to extend our results to alternative cases. For brevity, we focus on the case that

corresponds to our application.
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contraction but do not affect product shares. If the Engel parameters are non-zero, then

the sum of the deviations for each brand (across attributes) influences the degree of

rotation towards or away from the brand. For example, with increasing disposable

income, if a household increases the allocated expenditure for the category, then its

demand for product j will depend on the match between the attributes of product j, and

the household’s increasing/decreasing sensitivity to those attributes. If the product is

inferior, in the sense of possessing attributes that the household rotates away from with

increased expenditure allocations, then its demand elasticity for product j may be

negative. Conversely, products benefit from negative macro socio-economic changes if

the Engel rotation is sufficiently large to induce an increase in shares and revenue that

offsets category contraction. Specifically in a category where disposable income has a

non-negative impact on category consideration and category expenditure allocation

( ∂P(chst=1|zhst)
∂zrhst

> 0 and ∂E[ehst|zhst,chst=1]
∂zrhst

> 0) products benefit from a negative shock if:

(
R

∑
r=1

κer∆xjrst + κep∆pjst

)
< −

ηP(chst=1|zhst),zrhst

ηE[ehst|zhst,chst=1],zrhst

.(13)

The Engel parameters also lead to a change in the quasi price elasticity with macro

socio-economic drivers, with the rate of change being a function of the propensity,

expenditure allocation and Engel parameters. For different parameter values, the quasi

price sensitivity in a category may be increasing, unaffected, or decreasing relative to

disposable income. Specifically, the rate of change of the quasi price elasticity with

respect to zrhst for household h in state s, time t, assuming ∂E[ehst|zhst,chst=1]
∂zrhst

> 0, is (see

Appendix C for a derivation):

∂ηP(j|xst,pst,νhst,zhst),pjst

∂zrhst
=

(
1− Prjhst|chst

)
sgn

(
α + κανhα + κepehst

)
κepηE

−Prjhst|chst

(
R

∑
r=1

κer∆xjrst + κep∆pjst

)
ηE|α + κανhα + κepehst|,(14)
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where for brevity, we define Prjhst|chst
= P(j | xst, pst, νhst, zhst, chst = 1), sgn (x) is a step

function indicating the sign of x, and ηE = ηE[ehst|zhst,chst=1],zrhst
. There are two special

cases where Equation (14) implies that quasi price sensitivity is not affected by macro

climate changes. First, if a macro socio-economic driver does not affect category

expenditure allocation (ηE = 0), and second if the Engel rotation parameters are zero

(consumer preferences are homothetic).

Estimation strategy

In the category expenditure allocation model we estimate Θ = {θc, θe} (the effect of

covariates on the propensity and expenditure), λ (category-level state dependence in

propensity), γ (category-level state dependence in expenditure), and the covariance

parameters Σω and Σε. The likelihood of household h’s category-level decisions is:

Lh(Θ, λ, γ, Σε | ωh) =
T

∏
t=1

Lhst(chst, ehst | ωh),

=
T

∏
t=1

(
P[c∗hst < 0](1−chst) ( f (ehst | c∗hst > 0)P[c∗hst > 0])

)chst
,

=
T

∏
t=1

Φ [− (Ψchst + ωch)]
1−chst

[
1

σεe

φ

(
ehst − (Ψehst + ωeh)

σεe

)

Φ

Ψchst + ωch +
ρεc ,εe
σεe

(ehst − (Ψehst + ωeh))√
1− ρ2

εc,εe

chst

.(15)

We marginalize over H households’ unobserved components to derive the joint

likelihood (across multiple time periods), and estimate by the method of maximum

likelihood;

L(Θ, λ, γ, Σω, Σε) =
∫

R2 ∏H
h=1 Lh(Θ, λ, γ, Σε | ωh) f (ωh)dωh.(16)

We use bivariate Gauss-Hermite quadrature to marginalize over unobserved

heterogeneity (see Raymond et al. 2010 for details), and BOBYQA (see Powell 2009) to
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find the argmax. As the HILDA data is longitudinal, identification proceeds from

changes in household level socio-economic descriptors, and in the expenditure allocated

to the category for each household. Heuristically, identification of heterogeneity stems

from similarities in household decision patterns across periods, while identification of

the idiosyncratic component of the unobserved shocks stems from changes in decision

patterns, across periods.

We estimate the model of clothes washer choice, using the generalized method of

moments. We invert shares to recover ξ jt (K). We construct and minimize the objective

function, m̂ (K)′Wm̂ (K), where Zjt is the instrument vector, m̂ (K) is the sample analog

of population moments Em (K) = EZ′jtξ jt (K), and W is a weight matrix. We estimate the

model under the assumption of homoskedastic errors. Next, we use the estimated

demand shocks (at the argmin) to update the weight matrix and re-estimate the model.

We use 500 Sobel draws (to ensure quadrature accuracy) when integrating over the

heterogeneous component of the utility function. Identification in the product choice

model is driven by changes in the distribution of the latent category expenditure and

purchase probability, across households, across years.

We treat prices as being endogenous. Following Nevo (2001) we use the following

instruments: the sum of attributes of competing brands, by brand, and the price of the

same clothes washer in other states. When the price of the clothes washer in other

regions is not available, we use the average price of clothes washers in the region. This

approach is consistent with prior applications of the ARCL model and is well supported

in our substantive application as we (a) choose a mature product category with limited

technological change in the period of interest, and (b) study demand in a country that

represents a small portion of worldwide household appliances. Additionally, (c) as

clothes washers are either imported into Australia or have several imported

components, exchange rate fluctuations induce correlations in prices across regions,

independent of unobserved demand shocks.
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FINDINGS: MACRO SOCIO-ECONOMIC DRIVERS OF PURCHASE

Table 2 describes the the average loading capacity, energy efficiency, and the number of

unique SKUs of clothes washers, by state and year. In addition, table 2 includes a

description of clothes washer sales. Over the years, there is no clear pattern of a change

in clothes washer SKUs, as expected in a mature product category. We see that sales of

clothes washers increased across Australia from 2007 to 2008, by 4.4 per cent on average

(with differences across states). In contrast, in 2009, sales decreased by approximately

7.5% across states. Table 3 describes attribute and brand shares (aggregated across

states). We see that a few of the brands (e.g. Samsung, LG) increased shares, while others

(e.g. Bosch) decreased in shares. Shares of high capacity clothes washers increased by

4%, while high energy efficiency washer shares decreased by 9%, amounting to

approximately a 120,000 unit decline in demand.

[Table 2 about here.]

[Table 3 about here.]

Household expenditure allocation

Table 4 reports results for both the homogenous (estimated setting heterogeneous

parameters to be 0) and heterogenous category expenditure models, including estimates

of the distribution of household level unobserved heterogeneity in expenditure

allocation, ω. We find that including the heterogenous component reduces the

magnitude of the variance of the consideration and expenditure equations (σε), and

attenuates the correlation among the two equations (ρεc,εe). The high negative correlation

among the consideration and expenditure equations can be interpreted to mean that

smaller expenditures tend to be made more frequently. The high negative correlation

among heterogeneity terms combined with a small positive correlation among the

stochastic terms of the consideration and expenditure equations, balance out to give a
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small negative (not statistically significantly different from zero) total correlation across

the two equations (ρ) of -0.012 (standard error = 0.023, computed by the delta method).7

[Table 4 about here.]

We find that the heterogenous model is well supported by the data, with the

goodness of fit statistic based on the likelihood ratio

(∆G2 = −2 log LLhomogenous + 2 log LLheterogenous = 719, with

p = Prob(χ2
3 ≥ ∆G2) < 0.001). Hence, we report results based on the heterogeneous

specification. We find all three drivers are positive and significant, suggesting that they

are positively associated with both higher likelihood of purchasing household

appliances, and higher expenditure allocation conditional on purchase. Of these,

disposable income is the largest driver in both equations. Past consideration in the

category has a moderate positive effect on current consideration, suggesting a degree of

persistence in category consideration. While we do not report fixed effects for state and

years, we find a statistically significant negative effect in 2009 for category consideration

(with 2007 as the base year).

Results for choice among clothes washers

Table 5 reports estimates from the ARCL model including the Engel rotation parameters.

The top panel presents the linear components of the model (relating to the attributes of

energy efficiency and loading capacity, and price), and the bottom presents the

”non-linear” parameters, which are driven by heterogeneity and the Engel rotation. We

omit estimates of the dummies (brand, year and state fixed effects) for brevity. Except for

the intercept, all reported linear estimates are statistically significant. All Engel

parameters, except energy efficiency, are statistically significant. The heterogeneity

parameters for price and loading capacity, suggest that there is considerable variation

7cov(ρ̂) = DΘΣ̂ΘD′Θ where Θ = [ρε, ρω, σεe , σωc , σωe ] is the vector of estimated parameters, Σ̂Θ is the
covariance of estimates and DΘ is a vector of the partial derivatives of ρ, with respect to elements in Θ.
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across households in price sensitivity and preference for the loading capacity of clothes

washers. The Engel parameter for price is negative, suggesting that households with

greater expenditure allocations are more price sensitive. The baseline (intercept) Engel

parameter is negative, while the Engel parameter for loading capacity is positive, which

taken together suggests a rotation in preference towards larger loading capacity

machines, with increased category expenditure allocation. Finally, in support of the

validity of the instruments, the J-test for overidentifying restrictions, admits the null

(p = Prob(χ2
11 ≥ 0.010) < 0.001).

[Table 5 about here.]

Elasticities

Table 6 presents summary statistics for the category consideration elasticity (Equation

11), category expenditure allocation elasticity (Equation 12), and product demand

elasticity. We find that disposable income has the largest impact on each of these

elasticity metrics, followed by mobility, then residential home prices. While Table 6

averages elasticities across products and households, Figure 1 is a histogram describing

average clothes washer quasi elasticities with respect to disposable income, by product.

There is considerable heterogeneity in the elasticities across products, which we attribute

to the amount of product differentiation and nonhomotheticity. These differences (across

products) in elasticity have an important implication: brands, through their product

portfolios, will likely be affected differently by changes in disposable income.

[Figure 1 about here.]

[Table 6 about here.]
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COUNTERFACTUALS: DEMAND IMPACT OF MACRO SOCIO-ECONOMIC SHOCKS

Scenarios

We choose scenarios analogous to those discussed in the extant literature. Given the

impact of each scenario on the distribution of household socio-economic conditions, we

predict changes in aggregate purchase patterns by aggregating over household purchase

decisions. Our paper thus provides conservative guidance on the impact of such macro

climate on revenues of focal products or brands (the variables of interest to a marketing

manager).

We focus on changes in the three socio-economic variables considered in the model:

mobility (distance moved by households in the year), residential property prices and a

change in disposable income. To examine the impact of an increase in social mobility, in

scenario 1, we simulate the effect of 10% of households that did not relocate in 2009,

moving by distances drawn from the empirical distribution. In scenario 2, we examine

the impact of a decrease in property prices (and hence the value of residential homes) by

10%. And in scenario 3, we examine the effect of a 10% decrease in disposable income

for all households.

We consider three fiscal policy scenarios, that provide more detailed insights about

the impact of redistributions of incomes. In scenario 4 (”Robin Hood” policy), we

consider the impact of reducing the disposable income of the top decile of earners in

Australia by 10%, and redistributing their wealth uniformly across all other households.

Broadly, this simulates the impact of wage redistribution by increasing/decreasing

marginal tax rates, and governmental transfers, to change the income distribution

(reduce income inequality). Figure 2 describes the distribution of received benefits of the

observed stimulus in 2009 when the total stimulus payment per household depended on

the composition of the household. Scenario 5 simulates shares in the absence of observed

stimulus payment. Scenario 6 examines an alternative cost-neutral uniform stimulus
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where the total stimulus is distributed uniformly across households in Australia.

[Figure 2 about here.]

Impact on total demand for household appliances and clothes washers

The relative impact on clothes washers compared to the impact on consideration and

expenditure household appliances, differs markedly across scenarios. Table 7 describes

changes in the number of households purchasing household appliances (rows labeled

”HN”), total expenditure in household appliances (rows labeled ”HE”) and on clothes

washers (rows labeled ”CW”) in each scenario. Scenarios 1 and 2 lead to small changes

in all metrics. We find that scenario 3, a 10% decrease in disposable income, has the

largest effect on aggregate demand for clothes washers. In this scenario, the expected

impact is approximately 2% on household appliance expenditure, and 0.56% on clothes

washer sales. The ”Robin Hood” policy (scenario 4), predicts a moderate increase in

consideration and expenditure on household appliances, but a small decrease in clothes

washer sales.

In scenario 5, we find that the stimulus payments increased purchase incidence in

household appliances, with an additional 50,923 households purchasing household

appliances, and a total increase in category expenditure of AUS$60.415 million. Note that

scenario 5 simulates the impact of the absence of observed stimulus payments. Hence,

results relevant to this scenario should be interpreted in reverse if considering the impact

of the stimulus payments. The impact of the stimulus on clothes washers was more

limited, with a net increase of 197 units, and a total revenue increase of AUS$133,000. In

contrast, the alternative uniform stimulus (scenario 6), relative to the targeted stimulus

increases category incidence for household appliances with an additional 1,731

households buying within the category, but decreases total category expenditure by

approximately AUS$1.599 million, relative to the targeted stimulus. Compared with the

uniform stimulus, the targeted stimulus also leads to lower sales in clothes washers (698
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fewer units and AUS$549,000 less in total expenditure). That is the uniform stimulus is

more effective than the targeted stimulus in increasing household appliance purchase

incidence, but not as effective in increasing expenditure on household appliances.

[Table 7 about here.]

Impact on clothes washer sales: product differentiation

Across scenarios, in contrast to the relatively small changes in aggregate clothes washer

demand, our results suggest the presence of relatively large changes in demand for

different clothes washer SKUs. These large changes in share and revenue, which differ in

both the direction and magnitude across SKUs, are consistent with our findings of large

product elasticities (as described in Figure 1). We find that, although the primary

demand effect tends to be fairly consistent across washers, substitution effects cause

different products to benefit/lose on net from changes in the macro climate, implying

that the demand elasticities are primarily driven by substitution across washers, rather

than by category expansion/contraction.

To understand the role of product differentiation, we divide clothes washers into

four groups, based on loading capacity (high: ≥ 7 kg, and low capacity: ≤ 6 kg) and

energy efficiency (high :≥ 4 stars versus low energy efficiency: ≤ 3 stars). The four ”box

and whisker” plots in Figure 3(a) describe percentage share changes within each group

of products, with each panel representing a group of products.8 Across the four groups,

the ”low kg, low energy efficiency” machine is seen to be most vulnerable to macro

socio-economic drivers.

[Figure 3 about here.]

We use weighted least squares to analyze which models benefited more/less from

the stimulus payments. We regress the average percentage change in shares on loading
8The ”box” describes the interquartile range, the dots represent observations outside the interquartile

range. The ”whiskers” are vertical lines connecting the 95th percentile interval. The horizontal line inside
each box is the median.
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capacity, energy efficiency and brand fixed effects (specified as contrasts relative to the

private label). We include the interaction of loading capacity and energy efficiency to

control for size-specific effects of energy efficiency. We find that the share changes are

predicted by product attributes (see Table 8). We find that loading capacity is a

determinant of share changes in all but the sixth scenario. Energy efficiency predicts

share changes in the fourth and fifth scenario.

The regression provides us with a tool for predicting changes in share due to the

stimulus payments. For example, the regression suggests that on average the market

share of a 9 kg machine with 1 star energy efficiency, increased by 5% due to the

stimulus. We find that the stimulus payments (in 2009) likely led to a decrease in sales of

smaller (less energy consuming9) clothes washers in favor of larger (more energy

consuming) clothes washers; Table 8 shows that shares of large clothes washers

increased due to the stimulus.

[Table 8 about here.]

Impact on clothes washer sales: brands

As brought out in the analytical results, a brand is vulnerable to changes in the macro

climate based on its assortment. For example, if a brand’s product assortment consists of

large clothes washers then our previous results suggest the brand would fare poorly in

recessions (with decreases in disposable income). The box and whisker plots (Figure 3b)

describe changes in shares for products sold by the eight largest brands. The height of

the box and whisker plots demonstrates that for several brands, their SKUs are

susceptible to large (positive and negative) changes in demand. However, the median

line being close to zero for a number of brands suggest that that these brands are well

diversified to dampen the effect of the macro climate. We find that scenarios 1, 2 and 4

9Larger washing machines, holding energy efficiency constant, tend to be more energy consuming, pre-
dominantly due to the need to heat a larger volume of water.
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have a relatively smaller impact on brand shares, while scenarios 3 and 5 have relatively

larger effects. In scenario 6 (the uniformly allocated stimulus) brand shares are similar to

those seen in the observed stimulus (base line scenario).

In Table 9, we separate between the primary demand effect (the increase/decrease in

the number of units sold due to category expansion/contraction, labeled ”PD (#)”), and

the substitution effect (the increase/decrease in units sold due to consumers substituting

to/from focal products, labeled ”MS (#)”), in each scenario, by brand (see van Heerde

et al. 2003, for a detailed exposition). The effects of the substitution, even at the brand

level, tend to be the dominant component of demand changes across scenarios. Across

the scenarios we see a number of situations where the market share effect moves

opposite to the primary demand effect. In Table 10, we tabulate the effect on demand for

products of different brands (we drop ”Bosch” and ”LG” to simplify analysis) of the

stimulus (scenario 5).

[Table 9 about here.]

[Table 10 about here.]

Often policy makers are more interested in the success/failure of policy to increase

the revenue of a domestic/regional brand than an imported brand. For example, in the

last recession, U.S. policy makers were more interested in ensuring that the ”Detroit

Three” automobile makers benefited from policy interventions to ensure the survival of

the American automobile industry, than in promoting sales of competing imported

brands. In our context, two regional brands of appliances, Fisher & Paykel and Simpson,

are of specific interest to local policymakers as their success/failures have broader

economic consequences for Australia and New Zealand. In Tables 9 and 10 we see that

both brands were negatively affected by the stimulus payments. Our results suggest that

the stimulus payments led to consumers substituting towards larger washers. As both

brands on average sell smaller clothes washers, they consequently saw a decrease in
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sales, while competing brands that sell larger washers (e.g. Electrolux and Whirlpool)

saw an increase in sales. Conversely, we find that the brands benefit from decreasing

incomes (scenario 3) as that leads consumers to substitute towards smaller washers, and

hence their product assortments.

CONCLUSION

Traditionally, macroeconomists have been more interested in modeling changes in

expenditure (for example, total spending on durables) due to changes in the macro

climate, without delving into questions relating to market structure and product shares.

Some recent work has explored the role of demographics (such as income, population,

family structure and age) on preferences and choice (see Heathcote et al. 2009 for a

review). However, thus far, the extant literature has neglected nonhomotheticity (as

pointed out by Krusell and Smith 2006): that is, does a household that changes its

expenditure in a category, also change its purchase patterns within the category?

Our article develops and applies a framework for identifying and simulating the

impact of such macro socio-economic drivers on purchase patterns, and preferences at

the category, brand and product level, and focuses on a specific category and

sub-category to illustrate the use of the model. There are several other industries to

which the framework could be applied. For example, the automobile industry is

impacted by the interest rate, which often dictates the purchasing power of the

consumer. Understanding the impact of such drivers is important for both managers,

who must continually update their marketing mix, and for policy makers, who

formulate appropriate responses. Indeed, coupled with a model that predicts changes in

macro socio-economic drivers, the insights generated may lead to an avenue for growth

for firms able to plan and optimize for changes in consumer preferences.

Our analytical results reveal, inter alia, that the effect of macro socio-economic

drivers depends on the Engel parameters and the extent to which products and brands
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are differentiated. In our application, we find that while individual products and brands

(in clothes washers) are affected differently by changes in macro socio-economic drivers,

when considering aggregate category revenue these effects often cancel out. That is, the

high degree of product substitution explains why we observe comparatively smaller

changes in the impact of such drivers at the category-level, than at the product-level.

An important message of our paper is that products differ in their vulnerability to

the macro climate, with the net impact on a brand hinging on its product line. It is

crucial for brands to assess their exposure to changes in macro socio-economic drivers.

Our model provides a tool to translate changes in the distribution of household specific

variables, into their impact on expenditure and choices for a focal set of products. Thus,

our model can be used by brand managers to compare the performance of candidate

product portfolios under different macro conditions. Our approach also enables policy

makers to quantify the market level impact of policies that change distributions of, for

example incomes, as showcased by scenarios 4, 5 and 6. Our findings suggest that there

may be ancillary effects from such policies on the size of clothes washers preferred, and

thereby aggregate energy consumption. Such findings resonate with a growing interest

in the impact of policy on consumer behavior. For example, Knittel (2011) finds that low

gasoline prices (favored by U.S. policymakers) have resulted in American consumers

purchasing larger, more powerful and hence more energy consuming cars.

Methodologically, we contribute to the literature by combining a disaggregate

dataset describing household level financial variables, and aggregate data describing

market shares. This data structure is fairly commonly encountered in marketing, where

individual or household data describes purchases or consumer behavior without

measuring brand choices, and (aggregate) market share data describes consumer

purchases, aggregated across a market. For example, while some datasets study

individual consumer decisions (for example, patient compliance), other datasets describe

aggregate purchases (market shares of competing brands). In such cases, our framework
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may allow for more granular inference (for example, measuring the impact of a policy

intervention to increase patient compliance, on a focal product’s share and revenue).

While we view this study as a useful step in exploring the implications of macro

socio-economic drivers on consumers, our study has limitations that offer opportunities

for further research. We abstract from modeling forward-looking behavior. Anecdotal

evidence strongly suggests that households typically do not wait for lower prices or

improved technology when purchasing clothes washers. Further, in order to enrich the

model and allow for forward-looking consumers, we would need to observe (or impute)

the stock of consumer durable, in each household, in each period. To the best of our

knowledge, there is no comparable dataset that records the stock of durable goods,

across Australia, for different states and years.

In the spirit of comparative statics, scenarios examined in our paper look at the

(partial) impact of a change in only one variable per scenario (to ease inference and

analysis). Our simulations can easily be extended to account for changes in multiple

variables, and measured over a number of years. As the impact of changes in multiple

macro drivers likely compound, in practice, analysts would benefit from building on our

simulations and consider the combined impact of multiple drivers.

Finally, future studies may explore the impact of macro climate on competition.

Some evidence on changes in marketing conduct has been offered by Lamey et al. (2012)

for 106 consumer packaged goods categories. In general, studying marketing conduct

co-movement requires substantially longer panel datasets than we have access to. In

addition, in durable products, technological change and firm entry/exit likely

compound data requirements. However, our findings taken together with the extant

literature imply that elasticities likely evolve over time due to changes in consumer

preferences and it would be of interest to trace the impact of such changes in demand

primitives on marketing conduct and competition.
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TABLES

NSW/
Year Description ACT QLD SA/NT VIC/TAS WA
2007 Disposable Income 44,418 44,788 36,509 44,043 45,544

Mobility 8.60 10.54 4.63 4.5 5.99
Value of Primary Residence 399,870 370,732 262,944 344,623 521,329
Expenditure on 677 629 605 707 915
Household Appliances

2008 Disposable Income 44,784 45,921 35,915 47,022 46,318
Mobility 5.59 9.75 11.26 7.03 12.47
Value of Primary Residence 402,944 380,629 266,970 374,315 494,607
Expenditure on 604 669 576 681 839
Household Appliances

2009 Disposable Income 47,259 49,278 39,789 47,386 52,421
Mobility 7.32 8.05 6.46 4.99 7.73
Value of Primary Residence 405,218 372,508 280,357 381,701 506,376
Expenditure on 614 669 521 766 787
Household Appliances

Table 1: Mean Household Demographic Descriptor, by State and Year.

State Acronyms:
NSW/ACT: New South Wales/Australian Capital Territory;
QLD: Queensland;
SA/NT: South Australia/Northern Territory;
VIC/TAS: Victoria/Tasmania;
WA: Western Australia.

Source: HILDA. Corresponding HILDA Data Names:
Disposable Income: TIFDIP, TIFDIN, TIFDIF, summed over household members, in AUS$;
Mobility: HHMOVEK, in kilometers;
Value of Primary Residence: HSVALUE, in AUS$;
Expenditure on Household Appliances: HXYWGI, in AUS$.
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NSW/
Year Description ACT QLD SA/NT VIC/TAS WA Overall
2007 Energy Efficiency 2.70 2.74 2.81 2.79 2.71 2.74

Loading Capacity 6.99 6.95 6.91 6.97 6.90 6.96
Number of SKUs 154 149 107 152 131 190
Price 747 742 744 768 764 753
Revenue (Dollars) 178,855 142,289 52,440 142,303 77,463 593,350
Sales (Units) 239,539 191,853 70,496 185,218 101,340 788,446

2008 Energy Efficiency 2.99 3.02 3.11 3.01 3.01 3.01
Loading Capacity 7.01 6.96 6.99 6.95 6.94 6.97
Number of SKUs 172 163 123 165 142 200
Price 755 735 752 773 746 753
Revenue (Dollars) 188,313 142,403 55,055 154,241 79,907 619,919
Sales (Units) 249,279 193,675 73,166 199,615 107,090 822,825

2009 Energy Efficiency 2.95 2.92 2.97 2.98 2.92 2.95
Loading Capacity 7.22 7.19 7.17 7.21 7.18 7.22
Number of SKUs 143 141 110 139 130 164
Price 789 733 784 751 751 776
Revenue (Dollars) 184,812 125,555 53,821 153,867 72,487 590,542
Sales (Units) 234,099 171,334 68,674 190,522 96,548 761,177

Table 2: Average Attributes and Revenue of Clothes Washers, by State.

Notes:
1. Attributes, including price, volume weighted averaged over all products;
2. Price given in AUS$;
3. Revenue given in ’000s of AUS$;
4. ”Overall” are weighted averages (by unit sales), models are total unique models available;
5. Source: GfK Australia and New Zealand.

State Acronyms:
NSW/ACT: New South Wales/Australian Capital Territory;
QLD: Queensland;
SA/NT: South Australia/Northern Territory;
VIC/TAS: Victoria/Tasmania;
WA: Western Australia.
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2007 2008 2009
Units Share Units Share Units Share

By Brand:
BOSCH 58,513 7% 64,950 8% 50,934 6%
ELECTROLUX 45,063 6% 76,537 9% 61,461 8%
FISHER&PAYKEL 179,316 23% 149,502 18% 141,049 19%
LG 138,099 18% 121,119 15% 114,383 15%
SAMSUNG 65,794 8% 72,024 8% 90,181 12%
SIMPSON 130,164 17% 153,916 19% 156,054 21%
TRADE BRAND 52,477 7% 41,098 5% 27,717 4%
WHIRLPOOL 52,848 7% 75,665 9% 65,819 9%
Other 66,172 8% 68,015 8% 53,578 7%

By Loading Capacity:
≤ 7kg 456,384 58% 472,248 57% 406,078 53%
> 7kg 332,061 42% 350,577 43% 355,099 47%

By Energy Efficiency:
≤ 3 stars 370,735 47% 308,057 37% 365,703 48%
> 3 stars 417,711 53% 514,768 63% 395,473 52%

Table 3: Clothes Washer, Unit Sold and Shares.
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Homogenous Model Heterogenous Model
Estimate Std Err T-Stat Estimate Std Err T-Stat

Variance
σεe 1.147 0.019 59.750 1.380 0.023 59.068
ρεc,εe 0.257 0.067 3.809 0.007 0.034 0.220
σωc 0.207 0.055 3.795
σωe 0.559 0.029 19.261
ρωc,ωe -0.256 0.118 -2.174

Consideration Equation
c̄0 -2.873 0.170 -16.906 -2.949 0.184 -16.029
λ 0.469 0.024 19.691 0.421 0.032 13.206
Disposable Income 0.195 0.016 12.234 0.202 0.005 11.751
Value of Primary Residence 0.017 0.002 8.208 0.018 0.002 8.030
Distance Moved 0.068 0.010 6.756 0.069 0.010 6.588

Expenditure Equation
ē0 3.066 0.344 8.915 3.971 0.287 13.826
γ 0.045 0.006 7.114 0.025 0.005 4.692
Disposable Income 0.249 0.026 11.141 0.207 0.026 7.986
Value of Primary Residence 0.030 0.003 8.827 0.026 0.003 7.348
Distance Moved 0.081 0.014 5.684 0.060 0.014 4.335

Table 4: Results, Category Expenditure Model.

Notes:
1. State and year fixed effects excluded (for brevity);
2. LL (homogenous) = -15,100, LL (heterogenous) = -14,740, with χ2 = −2∆LL = 719.
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Linear parameters:
Parameter

Variable Estimate Std Err T-Stat
Intercept -0.102 0.073 1.389
Price -0.930 0.014 -354.124
Energy Efficiency 0.267 0.002 145.839
Loading Capacity -0.339 0.012 -29.112

Non-linear parameters:
Heterogeneity Category Expenditure

Parameter Parameter
Variable Estimate Std Err T-Stat Estimate Std Err T-Stat
Intercept 0.000 0.325 0.062 -12.062 0.721 -16.729
Price 0.217 0.014 15.727 -2.095 0.129 -16.280
Energy Efficiency -0.000 0.123 0.004 -0.024 0.059 -0.402
Loading Capacity 0.307 0.018 16.898 3.461 0.033 104.31

Table 5: Results, Model of Clothes Washer Choice.
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Factor
Description HD HA HM

Average Household Category Consideration Quasi Elasticity 0.20 0.02 0.07
Average Household Category Expenditure Elasticity 0.21 0.02 0.07
Average Household Clothes Washer Quasi Elasticity 0.67 0.06 0.23

Table 6: Elasticities, by Macro Socio-economic Factor.

Notes:
1. Elasticities are averaged across all households in all 5 states, in 2009,
2. Clothes washer quasi elasticities are averaged across products available for purchase,
3. HD: Disposable income,
4. HA: Value of primary residence,
5. HM: Distance Moved.
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# NSW/ ACT QLD SA/NT VIC/ TAS WA Total
1 HN (#) 1,360 1,292 6,274 3,461 633 13,021

HE ($) 1,719 1,763 7,914 4,566 952 16,914
CW (#) 227 262 519 222 100 1,330
CW ($) 179 192 406 179 75 1,032

2 HN (#) -1,279 -806 -2,104 -2,974 -429 -7,592
HE ($) -2,319 -1,493 -3,329 -5,441 -1,036 -13,618
CW (#) -226 -85 -34 -87 -73 -505
CW ($) -179 -62 -27 -70 -55 -392

3 HN (#) -17,606 -10,903 -28,104 -35,861 -5,415 -97,890
HE ($) -22,830 -14,721 -32,720 -48,898 -9,514 -128,683
CW (#) -2,019 -951 -69 -525 -729 -4,292
CW ($) -1,593 -696 -54 -424 -548 -3,314

4 HN (#) 3,901 2,368 7,101 8,213 1,176 22,760
HE ($) 3,925 2,663 6,669 8,512 1,530 23,299
CW (#) 16 13 -199 -461 -8 -639
CW ($) 13 9 -156 -372 -6 -512

5 HN (#) -8,867 -5,377 -15,143 -18,784 -2,754 -50,923
HE ($) -10,182 -6,681 -15,955 -23,269 -4,327 -60,415
CW (#) -374 -157 201 337 -204 -197
CW ($) -295 -115 158 272 -153 -133

6 HN (#) 308 -80 518 860 125 1,731
HE ($) -54 -467 -525 -516 -38 -1,599
CW (#) -29 -83 -208 -336 -43 -698
CW ($) -23 -61 -163 -271 -32 -549

Table 7: Impact on Household Appliance and Clothes Washer Sales, by Scenario.

Notes:
1. HN (#): Incease in number of households purchasing household appliances;
2. HE ($): Increase in total expenditure on household appliances, in ’000s of AUS$;
3. CW (#): Increase in clothes washers sales, in units;
4. CW ($): Increase in clothes washers sales, in ’000s of AUS$.
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Scenario:
1 2 3 4 5 6

Intercept -0.534 0.806 25.671 -8.701 18.554 0.013
2.730 0.673 4.852 1.844 3.388 0.493

Brands:

BOSCH -1.729 1.125 1.207 1.220 -0.632 0.404
2.713 0.480 4.137 1.652 2.858 0.331

ELECTROLUX -1.681 0.976 1.179 1.344 -0.975 0.389
2.713 0.480 4.132 1.650 2.852 0.332

FISHER&PAYKEL -1.665 1.098 1.611 1.209 -0.775 0.353
2.713 0.478 4.122 1.650 2.848 0.332

LG -1.703 0.972 1.518 1.237 -0.892 0.317
2.713 0.477 4.125 1.648 2.849 0.330

SAMSUNG -1.642 0.926 0.968 1.420 -1.138 0.367
2.713 0.480 4.125 1.648 2.849 0.330

SIMPSON -1.745 0.960 1.145 1.213 -0.766 0.224
2.714 0.482 4.137 1.655 2.858 0.334

WHIRLPOOL -1.687 0.984 1.432 1.267 -0.860 0.302
2.713 0.482 4.134 1.651 2.853 0.334

Other -1.719 1.009 1.609 1.261 -0.950 0.195
2.713 0.480 4.116 1.649 2.843 0.331

Attributes:

Energy Efficiency 0.088 0.147 0.842 0.897 -1.835 0.180
0.101 0.147 0.721 0.288 0.554 0.122

Loading Capacity 0.327 -0.268 -4.135 1.137 -2.673 -0.020
0.043 0.070 0.374 0.117 0.254 0.051

Energy Efficiency x Loading Capacity -0.019 -0.011 0.008 -0.140 0.301 -0.026
0.015 0.022 0.110 0.041 0.078 0.017

Diagnostics:

Adj R2 0.681 0.653 0.893 0.670 0.777 0.255
F11,152 32.606 28.876 124.077 31.100 52.719 6.064

Table 8: WLS of Share Percentage Change, Projected on Product Attributes.
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Bosch Electrolux F&P LG Samsung Simpson Tradebrand Whirlpool
1 PD (#) 98 120 227 198 167 268 46 112

MS (#) -214 22 -249 164 -12 25 412 73
CW (#) -116 141 -22 362 155 293 457 185
CW ($) -99 110 -16 317 99 192 396 124

2 PD (#) -33 -40 -93 -76 -61 -102 -19 -46
MS (#) 224 -34 302 -220 9 2 -440 -68
CW (#) 191 -74 208 -297 -52 -100 -459 -113
CW ($) 164 -57 155 -260 -33 -66 -397 -76

3 PD (#) -263 -329 -802 -647 -516 -884 -165 -394
MS (#) 1,373 -910 2,190 -1,738 -44 783 -2,969 -1,266
CW (#) 1,111 -1239 1,388 -2,385 -560 -100 -3,134 -1,660
CW ($) 952 -966 1,030 -2,093 -358 -66 -2,712 -1,116

4 PD (#) -57 -62 -115 -95 -72 -122 -20 -47
MS (#) -61 424 -234 262 81 -451 209 518
CW (#) -118 362 -349 167 9 -573 188 471
CW ($) -101 282 -259 147 6 -375 163 317

5 PD (#) 4 -4 -41 -28 -25 -53 -12 -31
MS (#) 429 -713 863 -766 -85 710 -1,047 -918
CW (#) 432 -717 823 -794 -110 657 -1,059 -948
CW ($) 371 -559 611 -697 -70 430 -916 -638

6 PD (#) -57 -64 -124 -103 -81 -139 -23 -54
MS (#) 151 132 88 -8 9 -150 -110 113
CW (#) 94 68 -36 -111 -73 -289 -133 59
CW ($) 81 53 -27 -98 -46 -189 -115 40

Table 9: Impact on Clothes Washer Demand, by Brand.

Notes:
By definition, PD + MS = CW, where:
1. PD (#): Increase in clothes washer sales due to primary demand effect, in units;
2. MS (#): Increase in clothes washers sales due to a substitution effect, in units;
3. CW (#): Total increase in clothes washers sales, in units;
4. CW ($): Total increase in clothes washers sales, in ’000s of AUS$.

39



Electrolux F&P Samsung Simpson Tradebrand Whirlpool
PD (#) -4 -41 -25 -53 -12 -31
MS (#) -713 863 -85 710 -1,047 -918
CW (#) -717 823 -110 657 -1,059 -948

Attribute levels: Overall
Energy Efficiency 3.85 2.48 2.68 2.69 2.92 2.32 2.93
Loading Capacity 7.43 6.75 7.04 6.86 9.5 7.47 7.16
Price 779 742 639 654 865 672 786

Table 10: Primary Demand and Substitution Effect, by Brand, in Scenario 5.
Notes:
1. For brevity, a subset of brands is presented (excluding LG and Bosch);
2. Volume weighted average attribute, across products, in 2009, by brand;
3. Prices in AUS$.
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Figure 1: Histogram of Average Household Clothes Washer Quasi Elasticities, with re-
spect to Disposable Income.
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Figure 2: Histogram of Government Stimulus Payments.
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(a) Product shares aggregated by attributes
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(b) Product shares aggregated by brand
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Figure 3: Share Changes, by Scenario and Product.
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APPENDICES

Appendix A: Properties of the category expenditure model

Rewrite the consideration and expenditure equations, combining ωh and εh in equations

(1) and (2):

c∗hst = λchst−1 + zchstθc + Dcst + ωch + εchst = Ψchst + (ωch + εchst)

ehst =

 γehst−1 + zehstθe + Dest + ωeh + εehst = Ψehst + (ωeh + εehst) , if c∗ht ≥ 0

0, if c∗ht < 0

for Ψchst = λchst−1 + θczchst + Dcst, and Ψehst = γehst−1 + θezesht + Dest (where

chst = 1⇔ c∗hst ≥ 0). The triplet {chst, zchst, zehst} is observed, while ehst is observed only

if chst = 1. We assume that {εchst, εehst} is independent of zhst = {zehst, zchst}, and σεc = 1

in Σε, with ω conditionally independent of ε. The distribution for the combined

unobservable component (ω + ε) is the bivariate normal :

Σω+ε =

 1 + σ2
ωc ρωc,ωe σωc σωe + ρεc,εe σεe

ρωc,ωe σωc σωe + ρεc,εe σεe σ2
ωe + σ2

εe


=

 1 + σ2
ωc ρ

√
(1 + σ2

ωc)(σ
2
ωe + σ2

εe)

ρ
√
(1 + σ2

ωc)(σ
2
ωe + σ2

εe) σ2
ωe + σ2

εe

 ,

where the total correlation (ρ) is:

ρ =
ρεc,εe σεe + ρωc,ωe σωc σωe√

(1 + σ2
ωc)(σ

2
εe + σ2

ωe)
.
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Pr(chst = 1 | zhst) = Pr(c∗hst > 0 | zhst)

= Pr(Ψchst + (ωch + εch) > 0)

= Pr((ωch + εch) > −Ψchst)

= 1−Φ

 −Ψchst√
1 + σ2

ωc

 = Φ

 Ψchst√
1 + σ2

ωc

 .(17)

The conditional expectation of a bivariate normal random variable

(X, Y) ∼ BVN(0, ΣX,Y), is E[X | Y] = E[X] + ρ σX
σY
(Y− E[Y]). Thus, expected category

expenditure (conditional on household descriptors and unobservables in the

consideration equation) is:

E[ehst | zhst, ωch + εchst] = Ψehst + E[ωeh + εehst | zhst, ωch + εchst]

= Ψehst + E[ωeh + εehst]

+ρ

√
1 + σ2

ωc√
σ2

ωe + σ2
εe

((ωch + εchst)− E[ωch + εchst])

= Ψehst + ρ

√
1 + σ2

ωc√
σ2

ωe + σ2
εe

(ωch + εchst) .(18)

Applying iterative expectations on ωch + εchst, the expected expenditure (conditional on

descriptors and category consideration) is:

(19) E[ehst | zhst, chst = 1] = Ψehst + ρ

√
1 + σ2

ωc√
σ2

ωe + σ2
εe

E[ωch + εchst | zhst, chst = 1].
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Using Theorem 20.2 from Greene (2000):

E[ωch + εchst | zhst, chst = 1] =
√

σ2
ωe + σ2

εe

 φ
(
−Ψchst/

√
1 + σ2

ωc

)
1−Φ

(
−Ψchst/

√
1 + σ2

ωc

)


=
√

σ2
ωe + σ2

εe

 φ
(

Ψchst/
√

1 + σ2
ωc

)
Φ
(

Ψchst/
√

1 + σ2
ωc

)
 .

Define ahst = Ψchst/
√

1 + σ2
ω, where Λ = φ/Φ is the inverse Mills Ratio, to get:

(20) E[ehst | zhst, chst = 1] = Ψehst + ρ
√

1 + σ2
ωc Λ(ahst).

As Var[x] = E[(x− E[x])(x− E[x])] and given independence of ωh and εhst (see Bierens

2007):

Var[ehst | zhst, chst = 1] = σ2
ωe + σ2

εe − ρ2(σωe + σεe)
2Λ(ahst) (ahst + Λ(ahst)) .

Appendix B: Derivation of elasticities with respect to a socio-economic driver

Category consideration quasi elasticity. Let zrhst be an element of the vector zhst

expressed in logarithmic scale. The derivative of P(chst = 1 | zhst) with respect to zrhst is:

∂P(chst = 1 | zhst)

∂zrhst
=

∂Φ

(
Ψchst√
1+σ2

ωc

)
∂zrhst

=
∂Φ (ahst)

∂zrhst
=

θcr√
1 + σω2

c

φ (ahst) ,(21)

where ahst =
Ψchst√
1+σ

ω2
c

. Given Λ = φ/Φ is the inverse Mills Ratio, the household-level

category consideration quasi elasticity is

ηP(chst=1|zhst),zrhst
=

|θcr|φ (ahst)√
1 + σω2

c
Φ (ahst)

=
|θcr|Λ (ahst)√

1 + σω2
c

.
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Category expenditure elasticity. Taking derivatives of (20), we get

∂E[ehst | zhst, chst = 1]
∂zrhst

=
∂

∂z

(
Ψehst + ρ

√
1 + σ2

ωc Λ(ahst)

)
= θer + ρ

√
1 + σ2

ωc(−Λ(ahst))(ahst + Λ(ahst))
θcr√

1 + σ2
ωc

= θer − ρθcrΛ(ahst)(ahst + Λ(ahst)).(22)

Assuming that ehst is expressed in logarithmic scale, the conditional category

expenditure elasticity, conditional on category consideration, is:

ηE[ehst|zhst,chst=1],zrhst
= |θer − ρθcrΛ(ahst)(ahst + Λ(ahst))|.(23)

Quasi elasticity of purchasing product j. Differentiate the conditional probability

P(j | xst, pst, νhst, zhst, chst = 1) with respect to zrhst:

∂P(j | xst, pst, νhst, zhst, chst = 1)
∂zrhst

= P(j | xst, pst, νhst, zhst, chst = 1)(
∂µhjst

∂ehst
−

J

∑
k=1

P(k | xst, pst, νhst, zhst, chst = 1)
∂µhkst
∂ehst

)

×∂E[ehst | zhst, chst = 1]
∂zrhst

.

Replace for
∂µhjst
∂ehst

to get:

∂P(j | xst, pst, νhst, zhst, chst = 1)
∂zrhst

= P(j | xst, pst, νhst, zhst, chst = 1)(
R

∑
r=1

κer∆xjrst + κep∆pjst

)
∂E[ehst | zhst, chst = 1]

∂zrhst
,(24)

where

∆xjrst = xjrst −
J

∑
k=1

P(k | xst, pst, νhst, zhst, chst = 1)xkrst,
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and

∆pjst = pjst −
J

∑
k=1

P(k | xst, pst, νhst, zhst, chst = 1)pkst,

are mean-centered deviations (arithmetic mean, weighted by the conditional probability

of purchase of each product) of the focal product’s attribute r and price respectively. If
∂E[ehst|zhst,chst=1]

∂zrhst
> 0, as in our application, then the conditional quasi elasticity of product

j, conditional on category consideration, is:

ηP(j|xst,pst,νhst,zhst,chst=1),zrhst
=

∣∣∣∣
(

R

∑
r=1

κer∆xjrst + κep∆pjst

) ∣∣∣∣ηE[ehst|zhst,chst=1],zrhst
.(25)

The probability of household h buying product j is:

P(j | xst, pst, νhst, zhst) = P(j | xst, pst, νhst, zhst, chst = 1)P(chst = 1 | zhst).

The derivative of this expression with respect to zrhst is:

∂P(j | xst, pst, νhst, zhst)

∂zrhst
= P(j | xst, pst, νhst, zhst, chst = 1)

∂P(chst = 1 | zhst)

∂zrhst

+P(chst = 1 | zhst)
∂P(j | xst, pst, νhst, zhst, chst = 1)

∂zrhst
.
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If ∂P(chst=1|zhst)
∂zrhst

> 0 and ∂E[ehst|zhst,chst=1]
∂zrhst

> 0 as in our application, then it follows:

∂P(j | xst, pst, νhst, zhst)

∂zrhst
= P(j | xst, pst, νhst, zhst, chst = 1)

θcr√
1 + σ2

ωc

φ

 Ψchst√
1 + σ2

ωc


+P(j | xst, pst, νhst, zhst, chst = 1)P(chst | zhst)(

R

∑
r=1

κer∆xjrst + κep∆pjst

)
(θer − ρθcrΛ(ahst)(ahst + Λ(ahst))) ,

= P(j | xst, pst, νhst, zhst, chst = 1)θcrφ (ahst)√
1 + σ2

ωc

+ ηE[ehst|zhst,chst=1],zrhst
Φ (ahst)

×
(

R

∑
r=1

κer∆xjrst + κep∆pjst

)]
,

= P(j | xst, pst, νhst, zhst)[
θcrΛ(ahst)√

1 + σ2
ω

+ ηE[ehst|zhst,chst=1],zrhst

(
R

∑
r=1

κer∆xjrst + κep∆pjst

)]
,

∂P(j | xst, pst, νhst, zhst)

∂zrhst
= P(j | xst, pst, νhst, zhst)

[
ηP(chst=1|zhst),zrhst

+

ηE[ehst|zhst,chst=1],zrhst

(
R

∑
r=1

κer∆xjrst + κep∆pjst

)]
.(26)

The quasi elasticity of product j with respect to zrhst (conditional on observed product

attributes and prices, household observables, and heterogeneity) is:

ηP(j|xst,pst,νhst,zhst),zrhst
=

∣∣∣ηP(chst=1|zhst),zrhst
+ ηE[ehst|zhst,chst=1],zrhst

(
∑R

r=1 κer∆xjrst + κep∆pjst

) ∣∣∣.
Appendix C: Impact of a socio-economic driver on price elasticity

Define Prjhst = P(j | xst, pst, νhst, zhst), Prjhst|chst
= P(j | xst, pst, νhst, zhst, chst = 1),

Prchst = P(chst = 1 | zhst), and ηE = ηE[ehst|zhst,chst=1],zrhst
. Differentiate these with respect to
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pjst:

∂Prjhst|chst

∂pjst
= Prjhst|chst

(
1− Prjhst|chst

)
(α + κανhα + κepehst),

∂Prjhst

∂pjst
= Prchst

∂Prjhst|chst

∂pjst

= Prjhst

(
1− Prjhst|chst

)
(α + κανhα + κepehst),

ηP(j|xst,pst,νhst,zhst),pjst
=

(
1− Prjhst|chst

)
|α + κανhα + κepehst|.(27)

If ∂E[ehst|zhst,chst=1]
∂zrhst

> 0, as in our application, and sgn (x) is a step function indicating

the sign of x, then from (22) and (24) we get:

∂ηP(j|xst,pst,νhst,zhst),pjst

∂zrhst
=

(
1− Prjhst|chst

)
sgn

(
α + κανhα + κepehst

)
κep

∂E[ehst | zhst, chst = 1]
∂zrhst

−
∂Prjhst|chst

∂zrhst
|α + κανhα + κepehst|,

=
(

1− Prjhst|chst

)
sgn

(
α + κανhα + κepehst

)
κepηE

−Prjhst|chst

(
R

∑
r=1

κer∆xjrst + κep∆pjst

)
ηE|α + κανhα + κepehst|.(28)
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