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MIXED ZERO-ONE LINEAR PROGRAMS UNDER OBJECTIVE
UNCERTAINTY: A COMPLETELY POSITIVE REPRESENTATION

Karthik Natarajan1 · Chung Piaw Teo2 · Zhichao Zheng3

Abstract. In this paper, we analyze mixed 0-1 linear programs under objective uncer-
tainty. The mean vector and the second moment matrix of the nonnegative objective
coefficients is assumed to be known, but the exact form of the distribution is unknown.
Our main result shows that computing a tight upper bound on the expected value of a
mixed 0-1 linear program in maximization form with random objective is a completely
positive program. This naturally leads to semidefinite programming relaxations that are
solvable in polynomial time but provide weaker bounds. The result can be extended to
deal with uncertainty in the moments and more complicated objective functions. Exam-
ples from order statistics and project networks highlight the applications of the model.
Our belief is that the model will open an interesting direction for future research in discrete
and linear optimization under uncertainty.

Keywords. Mixed 0-1 linear program; Moments; Completely positive program

1. Introduction

One of the fundamental problems in mixed 0-1 linear programs under uncertainty is to
compute the expected optimal objective value. Consider the random optimization problem,

(1.1)

Z(c̃) = max c̃Tx

s.t. aT
i x = bi ∀i = 1, . . . ,m

x ≥ 0

xj ∈ {0, 1} ∀j ∈ B ⊆ {1, . . . , n}

where x ∈ Rn
+ is the decision vector and c̃ is the random objective coefficient vector. The

subset B ⊆ {1, . . . , n} indexes the 0-1 decision variables and {1, . . . , n} \B indexes the
continuous decision variables. Problem (1.1) includes the class of 0-1 integer programs and
the class of linear programs as special cases. Given distributional information on c̃, the
object of interest is the expected optimal value E[Z(c̃)].
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This problem has been extensively studied in network reliability applications. Network
reliability deals with the design and analysis of networks that are subject to random vari-
ation in the components. Such network applications arise in, for example, telecommu-
nication, transportation and power systems. The random weights c̃ on the edges in the
network represent random lengths, capacities or durations. For designated source node s

and destination node t, popular reliability measures include the shortest s− t path length,
the longest s − t path length in a directed acyclic graph and the maximum s − t flow.
The goal is to compute properties of the network reliability measure such as the average
value or the probability distribution of Z(c̃). For an excellent review on applications and
algorithms for the network reliability analysis problem, the reader is referred to Ball et al.
[2] and the references therein. Under the assumption of independence among the random
weights, Hagstrom [18] showed that computing the expected value of the longest path in a
directed acyclic graph is #P-complete, when the arc lengths are restricted to taking two
possible values each. The expected longest path is not computable in time polynomial in
the size of the input unless P = NP . The #P-hardness results for other network reliabil-
ity measures are discussed in Valiant [40] and Provan and Ball [37]. Methods developed
include identification of efficient algorithms for special cases, enumerative methods, bound-
ing methods and Monte Carlo methods. For the shortest path problem with exponentially
distributed arc lengths, Kulkarni [23] developed a Markov chain based method to compute
the expected shortest path. The running time of this algorithm is non-polynomial in the
size of the network. Assuming independence and each arc length c̃ij is exponentially dis-
tributed with mean µij, Lyons et al. [28] developed a lower bound using a convex quadratic
optimization problem,

E[Z(c̃)] ≥ min

 ∑
(i,j)∈E

µijx
2
ij : x ∈ X

 ,

where X denotes the (s, t)-path polytope. For shortest path problems on complete graphs
with n vertices and independent and exponentially distributed arc lengths with means µ,
Davis and Prieditis [14] proved the following exact result,

E[Zn(c̃)] =
µ

(n− 1)

n−1∑
k=1

1

k
.

Similar formulas and asymptotic expressions have been developed for other random opti-
mization problems including the spanning tree [17], assignment [1, 29, 26, 32], traveling
salesman [42] and Steiner tree problem [10]. In general, when the deterministic problem is
itself NP-hard, computing the expected optimal value is even more challenging. It is then
natural to develop polynomial time computable bounds.

One of the fundamental assumptions underlying most of the network reliability literature
is that the probability distributions for the random weights are known. In this paper, we
adopt the distributional robustness approach where information on only a few moments of
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the random coefficients are assumed to be known. The bound computed is distributionally
robust, i.e., it is valid across the set of distributions satisfying the given moment informa-
tion. Such a “moment” based approach has become a popular technique to find bounds in
optimization problems [4, 5, 6, 7, 13, 15, 24, 30, 33, 36, 41]. Links with conic program-
ming has made the approach attractive from a theoretical and computational perspective
[7, 34, 38]. In addition, conic programs provide additional insights into the structure of
the optimal solution. One such parameter of importance is the persistency of a binary
variable, which is defined as the probability that the variable takes value 1 in an optimal
solution [6]. The notion of persistency generalizes “criticality index” in project networks
and “choice probability” in discrete choice models [6, 30, 33].

In this paper, we develop moment based bounds for mixed 0-1 linear programs. Suppose
c̃ is nonnegative with known first moment vector µ = E[c̃] and second moment matrix
Σ = E[c̃c̃T ]. The central problem we solve is

sup
c̃∼(µ,Σ)+

E [Z(c̃)] ,

where c̃ ∼ (µ,Σ)+ denotes the set of feasible multivariate distributions supported on Rn
+

with first moment vector µ and second moment matrix Σ. In the situation without the
support requirement, the corresponding problem with sup replaced by inf in the model
reduces to a simple Jensen bound [4]. Our results naturally extend to lower bounds on the
expected optimal objective value of a mixed 0-1 linear program in minimization form with
random objective. For the longest path problem arising in project networks, the bound
corresponds to the worst-case expected project completion time. For the maximum flow
problem, the bound corresponds to the worst-case expected flow supported by the network.
In the shortest path context, this is a lower bound along the lines of the Lyons et al. bound
[28], but valid over a larger set of distributions.

Structure of the paper.
In §2, we review several existing moment models that are based on semidefinite pro-

grams, followed by a discussion on completely positive programs. Detailed descriptions
are provided in Appendices I and II. In §3, we develop a completely positive program to
compute the bound. The persistency of the variables under an extremal distribution are
obtained from the optimal solution to the completely positive program. In §4, we provide
some important extensions to our model. In §5, we present applications of our model in
order statistics and project management with computational results. We conclude in §6.

Notations and Definitions.
Throughout this paper, we use small letters to denote scalars, bold letters to denote

vectors and capital letters to denote matrices. Random terms are denoted using the tilde
notation. The trace of a matrix A, denoted by tr(A), is sum of the diagonal entries of A.
The inner product between two matrices of appropriate dimensions A and B is denoted as
A •B = tr(ATB). In is used to represent the identity matrix of dimension n× n. For any
convex cone K, the dual cone is denoted as K∗ and the closure of the cone is denoted as
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K. Sn denotes the cone of n × n symmetric matrices, and S+
n denotes the cone of n × n

positive semidefinite matrices,

S+
n :=

{
A ∈ Sn

∣∣∀v ∈ Rn, vTAv ≥ 0
}
.

A ≽ 0 indicates that the matrix A is positive semidefinite and B ≽ A indicates B−A ≽ 0.
Two cones of special interest are the cone of completely positive matrices and the cone of
copositive matrices. The cone of n× n completely positive matrices is defined as

CPn :=
{
A ∈ Sn

∣∣∃V ∈ Rn×k
+ , such that A = V V T

}
,

or equivalently,

CPn := {A ∈ Sn | ∃v1,v2, . . . ,vk ∈ Rn
+, such that A =

k∑
i=1

viv
T
i }.

The above is called the rank 1 representation of the completely positive matrix A. The
cone of n× n copositive matrices is defined as

COn :=
{
A ∈ Sn

∣∣ ∀v ∈ Rn
+, v

TAv ≥ 0
}
.

A ≽cp (≽co) 0 indicates that the matrix A is completely positive (copositive).

2. Literature Review

2.1. Related Moment Models.
Over the last couple of decades, research in semidefinite programming (SDP) has expe-

rienced an explosive growth [38]. Besides the development of theoretically efficient algo-
rithms, the modeling power of SDP has made it a highly attractive tool for optimization
problems. The focus in this section is on SDP based moment models related to our problem
of interest. The explicit formulations of these models are provided in Appendix I.

Marginal Moment Model (MMM).
Under the MMM [5, 6], information on c̃ is described only through marginal moments

of each c̃j. No explicit assumption on independence or the dependence structure of the
coefficients is made. While an arbitrary set of marginal moments can be specified in MMM,
we restrict our attention to the first two moments. Suppose for each nonnegative coefficient
c̃j, the mean µj and second moment Σjj is known. Under the MMM, the bound is computed
over all joint distributions with the specified marginal moments, i.e., solving

sup
c̃j∼(µj ,Σjj)

+, ∀j=1,...,n

E [Z(c̃)] .

For 0-1 integer programs, Bertsimas, Natarajan and Teo [5, 6] showed that this bound
can be computed in polynomial time if the deterministic problem is solvable in polynomial
time. Using SDP, they developed a computational approach to compute the bound and
the persistency values under an extremal distribution. When the objective coefficients are
generated independently, they observed that the qualitative insights in the persistency esti-
mates obtained from MMM are similar to the simulation results. However, it is conceivable
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that since the dependence structure is not captured, the bounds and persistency estimates
need not always be good. In addition, the results are mainly useful for polynomial time
solvable 0-1 integer programs where the linear constraints characterizing the convex hull
are explicitly known. Natarajan, Song and Teo [33] extended the MMM to general integer
programs and linear programs. Their formulation is based on a characterization of the
convex hull of the binary reformulation which is difficult to do typically.

Cross Moment Model (CMM).
Under the CMM, information on c̃ is described through both the marginal and the cross

moments. Suppose the mean vector and second moment matrix of the objective coefficients
is known. Mishra, Natarajan, Tao and Teo [30] computed the upper bound on the expected
maximum of n random variables where the support is in Rn,

sup
c̃∼(µ,Σ)

E [max (c̃1, c̃2, . . . , c̃n)] .

The SDP formulation developed therein is based on an extreme point enumeration tech-
nique. Bertsimas, Vinh, Natarajan and Teo [4] showed that generalizing this model to
general linear programs leads to NP-hard problems. In a related vein, Lasserre [25] devel-
oped a hierarchy of semidefinite relaxations that uses higher order moment information to
solve parametric polynomial optimization problems.

Generalized Chebyshev Bounds.
In a related vein, Vandenberghe, Boyd and Comanor [41] used SDP to bound the proba-

bility that a random vector lies within a set defined by several strict quadratic inequalities.
For a given set C ⊆ Rn defined by

C =
{
c ∈ Rn

∣∣ cTAic+ 2bT
i c+ di < 0, ∀i = 1, . . . ,m

}
,

they computed the tight lower bound on the probability that c̃ lies in the set C,

inf
c̃∼(µ,Σ)

P (c̃ ∈ C) .

We refer to this as the VBC approach. For linear programs with random objective, the
VBC approach can be used to bound the probability that a particular basis is optimal.
This follows from the optimality conditions for linear programming which is a set of linear
inequalities in c̃. For other multivariate generalizations of Chebyshev’s inequality, the
reader is referred to [7, 19, 24, 41, 43].

2.2. Completely Positive Programs and NP-Hard Problems.
One of the shortcomings of the existing SDP based moment models is the lack of bounds

for general mixed 0-1 linear programs under cross moment information. Our goal is to
develop a parsimonious model that can cover this important class of problems while cap-
turing first and second moment conditions. The approach is based on recent results that
show that several NP-hard optimization problems can be expressed as the linear programs
over the convex cone of the copositive matrices. This is called a copositive program (COP)
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[11, 12, 22]. Each COP is associated with a dual problem over the convex cone of com-
pletely positive matrices. Such a program is called a completely positive program (CPP)
[3]. A review on COP and CPP is provided in Appendix II.

Burer [12] recently showed the nonconvex quadratic programs with a mixture of binary
and continuous variables can be expressed as CPPs. Under an easily enforceable condition
on the feasible region, he proved the equivalence of the following two formulations,

max xTQx+ 2cTx

s.t. aT
i x = bi ∀i = 1, . . . ,m

x ≥ 0

xj ∈ {0, 1} ∀j ∈ B

=

max Q •X + 2cTx

s.t. aT
i x = bi ∀i = 1, . . . ,m

aT
i Xai = b2i ∀i = 1, . . . ,m

Xjj = xj ∀j ∈ B(
1 xT

x X

)
≽cp 0

Expressing the problem as a COP or CPP does not resolve the difficulty of the problem,
because capturing these cones is generally suspected to be difficult [11, 12, 16]. For instance,
the problem of testing if a given matrix is copositive is known to be in the co-NP-complete
class [31]. However, such a transformation shifts the difficulty into the respective convex
cones, so that whenever something more is known about copositive or completely positive
matrices, it can be applied uniformly to many NP-hard problems [12]. One such result
is a well-known hierarchy of linear and semidefinite representable cones that approximate
the copositive and completely positive cone [11, 35, 22]. For the numerical experiments,
we restrict our attention to the following simple relaxation of CPP,

A ≽cp 0 =⇒ A ≽ 0, A ≥ 0.

We exploit the power of COP and CPP to develop the general result.

3. The Cross Moment Model For Mixed 0-1 Linear Programs

3.1. Problem Notations and Assumptions.
Denote the linear portion of the feasible region in (1.1) as

L :=
{
x ≥ 0

∣∣ aT
i x = bi,∀i = 1, . . . ,m

}
,

and the entire feasible region as L ∩ {0, 1}B. The problem of interest is

(P) ZP = sup
c̃∼(µ,Σ)+

E

[
max

x∈L∩{0,1}|B|
c̃Tx

]
.

The key assumptions under which the problem is analyzed are discussed next.

Assumptions.

(A1) The set of distributions of c̃ is defined by the nonnegative support Rn
+, finite mean

vector µ and finite second moment matrix Σ. This set is assumed to be nonempty.
(A2) x ∈ L ⇒ xj ≤ 1, ∀j ∈ B.
(A3) The feasible region L ∩ {0, 1}|B| is nonempty and bounded.
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The nonnegativity of c̃ in Assumption (A1) is guaranteed when the objective denotes
price, time, length or demand. Checking for the existence of multivariate distributions
with nonnegative support satisfying a given mean and second moment matrix is however
a difficult problem [7, 21, 31]. For the case when the first two moments are calculated
from empirical distributions or from common multivariate distributions, (A1) is verifiable
by construction. In general, to characterize the feasibility of the first and second moments
in a support Ω ⊆ Rn, the moment cone is defined as

M2(Ω) =
{
λ (1,µ,Σ)

∣∣λ ≥ 0,µ = E[c̃],Σ = E[c̃c̃T ],

for some random vector c̃ with support Ω} .

From the theory of moments [20, 21], it is well-known that the dual of this moment cone
is given as

M2(Ω)
∗ =

{
(w0,w,W)

∣∣w0 +wTc+ cTWc ≥ 0 for all c ∈ Ω
}
.

Then, the dual of the dual of the moment cone is simply the closure of the moment cone,
i.e.,

M2(Ω) = (M2(Ω)
∗)∗.

For Ω = Rn
+, the dual of the moment cone is the cone of copositive matrices and the closure

of the moment cone is the cone of completely positive matrices. Testing for (A1) is thus a
difficult problem since(

1 µT

µ Σ

)
∈ M2(Rn

+) ⇐⇒

(
1 µT

µ Σ

)
≽cp 0.

Assumption (A2) is easy to enforce and is based on Burer’s paper [12]. If B = ∅, then
the assumption is vacuous. For problems, such as the longest path problem on a directed
acyclic graph, (A2) is implied from the network flow constraints. When B ≠ ∅ and the
assumption is not implied in the constraints, one can add the constraints xj + sj = 1 and
sj ≥ 0.

Assumption (A3) ensures that E [Z(c̃)] is finite and hence the supremum is finite.

3.2. Formulation.
Denote xj(c) to be the value of the variable xj in an optimal solution to Problem (1.1)

obtained under the specific c. When c̃ is random, x(c̃) is also random. For continuous
distributions, the support of c̃ over which Problem (1.1) has multiple optimal solutions
has measure zero. For discrete distributions with possibly multiple optimal solutions in
a support of strictly positive measure, we define x(c) to an optimal solution randomly
selected from the set of optimal solutions at c. Next, we define

p := E[x(c̃)],

Y := E[x(c̃)c̃T ],

X := E[x(c̃)x(c̃)T ].
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Note that the matrix X is symmetric, but Y is not. Then

E [Z(c̃)] = E

[
n∑

j=1

c̃jxj(c̃)

]
=

n∑
j=1

Yjj

= In • Y.

Define the vector y(c̃) as:

y(c̃) =

 1

c̃

x(c̃)

 .

Then

E[y(c̃)y(c̃)T ] =

 1 E[c̃T ] E[x(c̃)T ]

E[c̃] E[c̃c̃T ] E[c̃x(c̃)T ]

E[x(c̃)] E[x(c̃)c̃T ] E[x(c̃)x(c̃)T ]

 =

 1 µT pT

µ Σ Y T

p Y X

 .

Since c̃ ≥ 0 and x(c̃) ≥ 0, y(c̃) is a nonnegative vector. Hence, y(c̃)y(c̃)T is a completely
positive matrix. Because the set of all completely positive matrices is convex, by taking
the expectation over all the possibilities of c̃, E[y(c̃)y(c̃)T ] is a completely positive matrix.

Since aT
i x(c̃) = bi for all realizations of c̃, by taking the expectations, we get

aT
i p = bi ∀i = 1, . . . ,m.

Using a lifting technique, we obtain

b2i = aT
i x(c̃)

(
aT
i x(c̃)

)
= aT

i x(c̃)
(
aT
i x(c̃)

)T
= aT

i

(
x(c̃)x(c̃)T

)
ai.

Taking expectations again,
aT
i Xai = b2i ∀i = 1, . . . ,m.

In addition, ∀j ∈ B, xj(c̃) = xj(c̃)
2, and hence

Xjj = E[xj(c̃)
2]

= E[xj(c̃)]

= pj.

By considering p, Y and X as the decision variables, we construct a completely positive
program relaxation to (P) as follows,
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(C) ZC = max In • Y
s.t. aT

i p = bi ∀i = 1, . . . ,m

aT
i Xai = b2i ∀i = 1, . . . ,m

Xjj = pj ∀j ∈ B ⊆ {1, . . . , n} 1 µT pT

µ Σ Y T

p Y X

 ≽cp 0

Note that from Assumption (A3), the variables p andX are bounded. Moreover, each
Yij is bounded by the positive semidefiniteness of the 2× 2 matrix,(

Σii Yij

Yij Xjj

)
.

Hence, we can use "max" instead of "sup" in (C).
Since the model is based on a completely positive program, we refer to it as the Com-

pletely Positive Cross Moment Model (CPCMM).
From the construction of the model, it is clear that ZP ≤ ZC . We next show that (C) is

not merely a relaxation of (P), rather it solves (P) exactly.

3.3. Tightness.
To show that (C) and (P) are equivalent, we construct a sequence of distributions that

satisfies the moment constraints in the limit and achieves the bound. Before proving
the result, we review some important properties of the solutions to (C), which have been
demonstrated by Burer [12]. For completeness, we outline his relevant proofs in Propo-
sitions 3.1 and 3.2. It should be noted that since the feasible region is bounded in our
setting, the recession cone only contains the zero vector.

Define
F :=

{
(p, X)

∣∣ ∃Y, such that (p, Y,X) is feasible to (C)
}
.

Let (p, X) ∈ F , and consider any completely positive decomposition,

(3.1)

(
1 pT

p X

)
=
∑
k∈K

(
ζk

zk

)(
ζk

zk

)T

where ζk ∈ R+, zk ∈ Rn
+, ∀k ∈ K.

Proposition 3.1. (Burer [12]) For the decomposition (3.1), define K+ :=
{
k ∈ K

∣∣ ζk > 0
}
,

and K0 :=
{
k ∈ K

∣∣ ζk = 0
}
. Then (i) zk/ζk ∈ L, ∀k ∈ K+; (ii) zk = 0, ∀k ∈ K0.

Proof. From the decomposition, we have

p =
∑
k∈K

ζkzk, andX =
∑
k∈K

zkz
T
k .
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Then
aT
i p = bi ⇒

∑
k∈K

ζk(a
T
i zk) = bi,

aT
i Xai = b2i ⇒

∑
k∈K

(aT
i zk)

2 = b2i .

From
∑
k∈K

ζ2k = 1, we get

(∑
k∈K

ζk(a
T
i zk)

)2

=

(∑
k∈K

ζ2k

)(∑
k∈K

(aT
i zk)

2

)
.

By the equality conditions of Cauchy-Schwartz inequality,

∃δi, such that δiζk = aT
i zk, ∀k ∈ K, ∀i = 1, . . . ,m.

Since ∀k ∈ K0, ζk = 0, we have aT
i zk = 0. (A3) implies that zk = 0, ∀k ∈ K0. Thus, (ii)

holds. Furthermore,

bi =
∑
k∈K

ζk(a
T
i zk) =

∑
k∈K

ζk(δiζk) = δi
∑
k∈K

ζ2k = δi.

Since ∀k ∈ K+, ζk > 0, we get aT
i (zk/ζk) = δi = bi, so by the definition of L, zk/ζk ∈

L, ∀k ∈ K+. Therefore, (i) holds. �

Taking λk := ζ2k , vk := zk/ζk, ∀k ∈ K+, we can rewrite the decomposition (3.1) as:

(3.2)

(
1 pT

p X

)
=
∑
k∈K+

λk

(
1

vk

)(
1

vk

)T

,

where λk > 0, ∀k ∈ K+,
∑

k∈K+

λk = 1, and vk ∈ L, ∀k ∈ K+.

Proposition 3.2. (Burer [12]) Consider the decomposition (3.2). Let vk =
(
vk(1), . . . , vk(n)

)T ,
then vk(j) ∈ {0, 1}, ∀j ∈ B, ∀k ∈ K+.

Proof. From the decomposition, we have

p =
∑
k∈K+

λkvk, andX =
∑
k∈K+

λkvkv
T
k .

Fix any j ∈ B. By Assumption (A2), we have

vk ∈ L ⇒ 0 ≤ vk(j) ≤ 1, ∀k ∈ K+.

Then v2k(j) ≤ vk(j), ∀k ∈ K+.

Xjj = pj =⇒
∑

k∈K+

λkv
2
k(j) =

∑
k∈K+

λkvk(j)

=⇒
∑

k∈K+

λk

(
vk(j) − v2k(j)

)
= 0.

Since λk > 0, and vk(j) − v2k(j) ≥ 0, ∀k ∈ K+, we get vk(j) − v2k(j) = 0, ∀k ∈ K+. Thus
vk(j) = 0 or 1, ∀k ∈ K+. �
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With the two propositions established, we are ready to prove our main result, which
asserts that (C) and (P) are equivalent.

Theorem 3.3. Under Assumptions (A1), (A2) and (A3),

ZP = ZC .

Furthermore if we let (p∗, Y ∗, X∗) be an optimal solution to (C), then there
exists a sequence of nonnegative random objective coefficient vectors c̃∗ϵ and
feasible solutions x∗(c̃∗ϵ) that converge in moments to this optimal solution, i.e.,

lim
ϵ↓0

E


 1

c̃∗ϵ
x∗(c̃∗ϵ)


 1

c̃∗ϵ
x∗(c̃∗ϵ)


T
 =

 1 µT p∗T

µ Σ Y ∗T

p∗ Y ∗ X∗

 .

Proof. Step 1: Decomposing the matrix.
Consider a completely positive decomposition of the matrix, 1 µT p∗T

µ Σ Y ∗T

p∗ Y ∗ X∗

 =
∑
k∈K

 αk

βk

γk


 αk

βk

γk


T

,

where αk ∈ R+, βk ∈ Rn
+, γk ∈ Rn

+, ∀k ∈ K. Define K+ :=
{
k ∈ K

∣∣αk > 0
}
, and K0 :={

k ∈ K
∣∣αk = 0

}
. Then 1 µT p∗T

µ Σ Y ∗T

p∗ Y ∗ X∗

 =
∑
k∈K+

α2
k

 1
βk

αk
γk

αk


 1

βk

αk
γk

αk


T

+
∑
k∈K0

 0

βk

γk


 0

βk

γk


T

.

From Proposition 3.1 and 3.2,

γk

αk
∈ L, ∀k ∈ K+ and

γkj
αk

∈ {0, 1}, ∀j ∈ B, ∀k ∈ K+.

This implies that γk/αk is a feasible solution to the original mixed 0-1 linear program for
all k ∈ K+. As will be clear in the latter part of the proof, if the random vector c̃ is
realized to be βk/αk, then γk/αk is not only feasible but also optimal to Problem (1.1).
From Proposition 3.1,

γk = 0, ∀k ∈ K0.

Then the decomposition becomes 1 µT p∗T

µ Σ Y ∗T

p∗ Y ∗ X∗

 =
∑
k∈K+

α2
k

 1
βk

αk
γk

αk


 1

βk

αk
γk

αk


T

+
∑
k∈K0

 0

βk

0


 0

βk

0


T

.

Step 2: Constructing a sequence of random vectors and feasible solutions.
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Let ϵ ∈ (0, 1). We define a sequence of random vectors c̃∗ϵ together with their corre-
sponding feasible solutions x∗(c̃∗ϵ) as follows,

P
(
(c̃∗ϵ ,x

∗ (c̃∗ϵ)) =
(

βk

αk
, γk

αk

))
= (1− ϵ2)α2

k, ∀k ∈ K+,

P

(
(c̃∗ϵ ,x

∗ (c̃∗ϵ)) =

(√
|K0|βk

ϵ
, any feasible solution x

))
= ϵ2 1

|K0| , ∀k ∈ K0.

This is a valid probability distribution since∑
k∈K+

(1− ϵ2)α2
k +

∑
k∈K0

ϵ2 1
|K0| = (1− ϵ2)

∑
k∈K+

α2
k + ϵ2

∑
k∈K0

1
|K0|

= (1− ϵ2) + ϵ2

= 1.

The mean of the marginal distribution of c̃∗ϵ satisfies

E[c̃∗ϵ ] =
∑

k∈K+

(1− ϵ2)α2
k
βk

αk
+
∑

k∈K0

ϵ2 1
|K0|

√
|K0|βk

ϵ

= (1− ϵ2)
∑

k∈K+

αkβk + ϵ
∑

k∈K0

βk√
|K0|

→
ϵ↓0

∑
k∈K+

αkβk

= µ.

The second moment matrix satisfies

E[c̃∗ϵ c̃
∗T
ϵ ] =

∑
k∈K+

(1− ϵ2)α2
k
βk

αk

βT
k

αk
+
∑

k∈K0

ϵ2 1
|K0|

√
|K0|βk

ϵ

√
|K0|βT

k

ϵ

= (1− ϵ2)
∑

k∈K+

βkβ
T
k +

∑
k∈K0

βkβ
T
k

→
ϵ↓0

∑
k∈K

βkβ
T
k

= Σ.

Similarly, it can be verified that

E[x∗(c̃∗ϵ)] →
ϵ↓0

p∗,

E[x∗(c̃∗ϵ)c̃
∗T
ϵ ] →

ϵ↓0
Y ∗, and

E[x∗(c̃∗ϵ)x
∗T (c̃∗ϵ)] →

ϵ↓0
X∗.

Step 3: Evaluating the limit of the sequence of objective values.
As ϵ ↓ 0, the random vectors (c̃∗ϵ ,x

∗(c̃∗ϵ)) converge almost surely (a.s.)4 to (c̃∗,x∗(c̃∗)),
which is defined as

P

(
(c̃∗,x∗ (c̃∗)) =

(
βk

αk

,
γk

αk

))
= α2

k, ∀k ∈ K+.

4Rigorously speaking, the convergenc of (c̃∗ϵ ,x∗ (c̃∗ϵ )) to (c̃∗,x∗ (c̃∗)) is a weak convergence, i.e., conver-
gence in distribution. However, since it is up to our construction on (c̃∗ϵ ,x

∗ (c̃∗ϵ )) and (c̃∗,x∗ (c̃∗)), from
Skorohod’s Theorem, we can construct them in the same probability space with the same probability
measure and (c̃∗ϵ ,x

∗ (c̃∗ϵ )) converge to (c̃∗,x∗ (c̃∗)) almost surely (see Borkar [9]).
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From the Continuous Mapping Theorem,

c̃∗ϵ
a.s.−→ c̃∗ =⇒ Z(c̃∗ϵ)

a.s.−→ Z(c̃∗).

Furthermore, from the boundedness assumption in (A3), every feasible solution x ≤ ue

for some 0 < u < ∞, where e is a vector of ones. Hence the second moment of Z(c̃∗ϵ) is
bounded for all ϵ ∈ (0, 1), i.e.,

E[Z(c̃∗ϵ)
2] ≤

∑
k∈K+

(1− ϵ2)u2(βT
k e)

2 +
∑

k∈K0

u2(βT
k e)

2

≤
∑

k∈K+

u2(βT
k e)

2 +
∑

k∈K0

u2(βT
k e)

2

< ∞.

The finiteness of the second moment implies that the sequence Z(c̃∗ϵ) is uniformly inte-
grable. This implies that the sequence of expected optimal objective values converges to
the finite value E[Z(c̃∗)] (see Billingsley [8]), i.e.,

lim
ϵ↓0

E[Z(c̃∗ϵ)] = E[Z(c̃∗)].

Step 4: Testing for tightness
Define the space of all feasible first and second moments supported on Rn

+ and the
corresponding expected objective value as

K(Rn
+) =

{
λ (1,µ′,Σ′, Z ′)

∣∣∣λ ≥ 0, Z ′ = E[Z(c̃)] for some random vector c ∼ (µ′,Σ′)+
}
.

K(Rn
+) is then a closed convex cone. For each ϵ ∈ (0, 1), we have(

1,E[c̃∗ϵ ],E[c̃
∗
ϵ c̃

∗T
ϵ ],E[Z(c̃ϵ)]

)
∈ K(Rn

+).

Hence the limit of this sequence of points also lies in the closure, i.e.,

lim
ϵ↓0

(
1,E[c̃∗ϵ ],E[c̃

∗
ϵ c̃

∗T
ϵ ],E[Z(c̃ϵ)]

)
∈ K(Rn

+),

or equivalently,
(1,µ,Σ,E[Z(c̃∗)]) ∈ K(Rn

+).

The point (1,µ,Σ, ZP ) lies on the boundary of this closed convex cone and hence ZP ≥
E[Z(c̃∗)].
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Thus,
sup

c̃∼(µ,Σ)+
E [Z(c̃)] = ZP

≥ E[Z(c̃∗)]

≥ E
[
c̃∗Tx∗(c̃∗)

]
=

∑
k∈K+

βT
k γk,

=
∑

k∈K+

tr
(
βkγ

T
k

)
= tr

( ∑
k∈K+

βkγ
T
k

)
= tr(Y ∗)

= In • Y ∗.

The right hand side is exactly the optimal objective value of (C). Therefore, we have
shown that solving (C) provides a lower bound to (P), and hence the two formulations are
equivalent. �

From the construction in Theorem 3.3, it is clear that the moments and the bound are
achievable only in a limiting sense. In the completely positive matrix decomposition, βk

can be non-zero for some k ∈ K0 and c∗ might not be strictly feasible due to the second
moment matrix constraint.

The moments of the limiting random vector c∗ satisfy

(
1 E[c̃∗T ]

E[c̃∗] E[c̃∗c̃∗T ]

)
=


∑
k∈K+

α2
k

∑
k∈K+

αkβ
T
k∑

k∈K+

αkβk

∑
k∈K+

βkβ
T
k


=

 1 µT

µ Σ−
∑
k∈K0

βkβ
T
k


≼cp

(
1 µT

µ Σ

)
.

This leads to a corollary to Theorem 3.3 in the case that the second moment matrix is
itself unknown.

Assumption.

(A1’) The set of distributions of c̃ is defined by the nonnegative support Rn
+ with known

finite mean µ. The second moment matrix Σ′ is unknown but satisfies Σ′ ≼cp

Σ where Σ is a known finite second moment matrix. The set is assumed to be
nonempty.

Corollary 3.4. Under Assumptions (A1’), (A2) and (A3),

ZP = ZC .
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Furthermore if we let (p∗, Y ∗, X∗) be an optimal solution to (C), then there exists
a nonnegative random objective coefficient vector c̃∗ and feasible solutions x∗(c̃∗)

that satisfies

E


 1

c̃∗

x∗(c̃∗)


 1

c̃∗

x∗(c̃∗)


T
 =

 1 µT p∗T

µ Σ′ Y ∗T

p∗ Y ∗ X∗

 ,

where Σ′ ≼cp Σ.

As compared to Theorem 3.3, the bound in Corollary 3.4 is exactly achievable by a
feasible distribution.

Remark. Consider the definition of the variable pj, ∀j ∈ B:

pj = E[xj(c̃)]

= E[xj(c̃)|xj(c̃) = 1]P(xj(c̃) = 1)

= P(xj(c̃) = 1).

The optimal solutions p∗j , j ∈ B of (C) give an estimate to the persistency of the variable
xj in the original problem. To be precise, p∗j is the persistency of xj under an limiting
distribution c∗.

4. Extensions

4.1. Support in Rn.
As discussed in the previous section, testing for feasibility of distributions with nonneg-

ative support and given mean and second moment matrix is itself a difficult problem. It
is possible to relax this assumption and allow for objective coefficients to possibly take
negative values too.

Assumption.

(A1”) The set of distributions of c̃ is defined by the support Rn with known finite mean
µ and known finite second moment matrix Σ. The set is assumed to be nonempty.

Unlike Assumption (A1), testing for the existence of feasible multivariate distributions
in (A1”) is easy. The feasibility condition is equivalent to verifying the positive semidefinite
condition, i.e., (

1 µT

µ Σ

)
∈ M2(Rn) ⇐⇒

(
1 µT

µ Σ

)
≽ 0.

The problem of interest is

(PS) sup
c̃∼(µ,Σ)

E [Z(c̃)] .

Using a constructive approach as in Section 3, a convex relaxation to (PS) is
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(CS) max In • Y
s.t. aT

i p = bi ∀i = 1, . . . ,m

aT
i Xai = b2i ∀i = 1, . . . ,m

Xjj = pj ∀j ∈ B ⊆ {1, . . . , n} 1 µT pT

µ Σ Y T

p Y X

 ∈ M2(Rn × Rn
+)

The equivalence of the formulations (PS) and (CS) is shown next.

Theorem 4.1. Under Assumptions (A1”), (A2) and (A3),

ZP = ZC .

Furthermore if we let (p∗, Y ∗, X∗) be an optimal solution to (CS), then there
exists a random objective coefficient vector c̃∗ supported in Rn and feasible
solutions x∗(c̃∗) that satisfy

E


 1

c̃∗

x∗(c̃∗)


 1

c̃∗

x∗(c̃∗)


T
 =

 1 µT p∗T

µ Σ Y ∗T

p∗ Y ∗ X∗

 .

Proof. We only outline the key differences from the proof of Theorem 3.3. Consider the
decomposition of the matrix in the optimal solution from (CS), 1 µT p∗T

µ Σ Y ∗T

p∗ Y ∗ X∗

 =
∑
k∈K+

α2
k

 1
βk

αk
γk

αk


 1

βk

αk
γk

αk


T

+
∑
k∈K0

 0

βk

0


 0

βk

0


T

,

where αk ∈ R+, βk ∈ Rn, γk ∈ Rn
+, and γk/αk are feasible solutions to the mixed 0-1 linear

program for all k ∈ K+. Let the matrix B be defined as

B =
∑
k∈K0

βkβ
T
k .

Define
P

(
(c̃∗,x∗ (c̃∗)) =

(
βk

αk

+ z̃∗,
γk

αk

))
= α2

k, ∀k ∈ K+,

where z̃∗ ∼ N (0, B) is a multivariate normal random vector with mean zero and covariance
matrix B, generated independent of the scenario k. This is a valid probability distribution
since

∑
k∈K+

α2
k = 1. Furthermore, the mean of the marginal distribution of c̃∗ satisfies

E[c̃∗] =
∑

k∈K+

αkβk + E[z̃∗]

= µ.
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Similarly, the second moment matrix satisfies

E[c̃∗c̃∗T ] =
∑

k∈K+

βkβ
T
k + E[z̃∗z̃∗T ]

=
∑

k∈K+

βkβ
T
k +B

= Σ.

Thus c̃∗ ∼ (µ,Σ). Finally,

sup
c̃∼(µ,Σ)+

E [Z(c̃)] ≥ E[Z(c̃∗)]

≥ E
[
c̃∗Tx∗(c̃∗)

]
=

∑
k∈K+

βT
k γk +

∑
k∈K+

αkE[z̃
∗T ]γk

= In • Y ∗.

Since the right hand side is the optimal objective value of (CS), the two formulations are
equivalent.

�

Thus, by relaxing the assumption on the support of the objective coefficients, it is possible
to guarantee that the bound is exactly achievable. In computational experiments, a simple
relaxation for matrix inequality constraint in (CS) is to use 1 µT pT

µ Σ Y T

p Y X

 ∈ M2(Rn × Rn
+) =⇒

 1 µT pT

µ Σ Y T

p Y X

 ≽ 0,

(
1 pT

p X

)
≥ 0.

4.2. Uncertainty in Moment Information.
A natural assumption to relax is the exact knowledge of moments and incorporate uncer-

tainty in the moment estimates. This is particularly useful when confidence intervals can
be built around the sample moment estimates that are often computed from the empirical
distribution [15]. In Corollary 3.4, the assumption on the exact knowledge of the second
moment matrix is relaxed. More generally, suppose that the exact values of the mean and
the second moments are unknown, i.e. (µ,Σ) lies in a nonempty, closed and convex set
U. In this case, the problem is to choose the mean and second moment matrix and the
corresponding multivariate distribution that provides the tight bound,

(PU) sup
(µ,Σ)∈U,c̃∼(µ,Σ)+

E [Z(c̃)] .

It is easy to modify CPCMM to capture the additional uncertainty,
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(CU) max In • Y
s.t. aT

i p = bi ∀i = 1, . . . ,m

aT
i Xai = b2i ∀i = 1, . . . ,m

Xjj = pj ∀j ∈ B ⊆ {1, . . . , n} 1 µT pT

µ Σ Y T

p Y X

 ≽cp 0

(µ,Σ) ∈ U
where µ, Σ, p, X, and Y are the decision variables in the formulation.

Two examples of U are described next.

(a) Lower and upper bounds on the mean and second moment matrix can be incorporated
using simple linear inequalities, i.e.,

U = {(µ,Σ) : µL ≤ µ ≤ µU , ΣL ≤ Σ ≤ ΣU} .

(b) Delage and Ye [15] proposed the following uncertainty set in the moments parameter-
ized by γ1 ≥ 0 and γ2 ≥ 0,

(E [c̃]− µ0)
T Q−1

0 (E [c̃]− µ0) ≤ γ1,

E
[
(c̃− µ0) (c̃− µ0)

T
]

≼ γ2Q0.

The first constraint models the mean of c̃ lying in an ellipsoid of size γ1 centered at the
mean estimate µ0, and the second constraint models the matrix E

[
(c̃− µ0) (c̃− µ0)

T
]

lying in a positive semi-definite cone bounded by a matrix inequality. This uncertainty
set is characterized using the variables µ and Σ in (CU) as follows,

(µ− µ0)
T Q−1

0 (µ− µ0) ≤ γ1,

Σ− 2µµT
0 + µ0µ

T
0 ≼ γ2Q0.

These two constraints are semidefinite constraints, where the first one can be rewritten
as (

γ1 µT − µT
0

µ− µ0 Q0

)
≽ 0.

Then the corresponding U is defined as

U =

{
(µ,Σ) :

(
γ1 µT − µT

0

µ− µ0 Q0

)
≽ 0, Σ− 2µµT

0 + µ0µ
T
0 ≼ γ2Q0

}
.

4.3. Dimension Reduction for Constant Coefficients.
In CPCMM, the size of the completely positive matrix is an obvious bottleneck in com-

putation. One would want to reduce the dimension of the matrix as much as possible.
The size of the completely positive matrix in (C) is (2n+ 1) × (2n+ 1). However, we do
not need such a large matrix if there are some variables in (P) having constant objective
coefficients. Without loss of generality, assume c̃T = (c̃T1 , c̄

T
2 ), where c̃1 is a random vec-

tor of dimension k and c̃1 ∼ (µ1,Σ1)+, while c̄2 is a constant vector of dimension n − k.
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In this case, it is possible to reduce the dimension of the completely positive matrix to
(k + n+ 1)× (k + n+ 1).

Recall the definition of the variables,

p := E[x(c̃)],

Y := E[x(c̃)c̃T ].

If cj is constant, then Yjl = E[cjxl(c̃)] = cjE[xl(c̃)] = cjpl, ∀l = 1, . . . , n, which indicates
Yjl and pl are linearly dependent, and consequently one of them is redundant in the for-
mulation. Thus, we can safely drop these redundant variables, Yjl, ∀l = 1, . . . , n, ∀j ≥ k,
and adjust the objective function accordingly to obtain a slimmer version of (C),

(CC) max
k∑

j=1

Yjj +
n∑

j=k+1

c̄jpj

s.t. aT
i p = bi ∀i = 1, . . . ,m

aT
i Xai = b2i ∀i = 1, . . . ,m

Xjj = pj ∀j ∈ B ⊆ {1, . . . , n} 1 µT
1

pT

µ1 Σ1 Y T

p Y X

 ≽cp 0

where Y ∈ Rn×k is the matrix after removing the redundant parts. To show (CC) solves (P)
with some constant coefficients, we only need to modify one step in the proof of Theorem
3.3: when constructing the limiting distribution for c̃, directly use the values of c̃1 from
the decomposition of the completely matrix and plug in c̄2 to form a complete instance of
c̃, i.e.,

c̃∗ =

(
c̃∗1
c̄2

)
.

The rest of the proof follows easily.
The advantage of this reduction is significant when one has to add in many slack variables

to ensure Assumption (A2) of CPCMM. This might be necessary to ensure that the linear
equality constraints in the problem bound the binary variables in [0, 1]. If this requirement
is not met for some binary variable xj, one needs to add in a constraint xj + sj = 1, where
sj ≥ 0 is a slack variable. Then the objective coefficient for sj would be 0. The cost of
adding slack variables is the increased size of the completely positive matrix, which can be
reduced with (CC).

4.4. Increasing Convex Piecewise Linear Function of Z(c̃).
It is possible to extend the results to bound E [f (Z(c̃))], where f(x) = max

k∈K
{αkx+ βk}.

The function f(·) is a nondecreasing convex piecewise linear function with αk ≥ 0, ∀k ∈ K.
Then Problem (P) becomes

(PF) sup
c̃∼(µ,Σ)+

E

[
max
k∈K

{αkZ(c̃) + βk}
]
.
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To obtain the corresponding CPCMM for (PF), we first partition the set of c ∈ Rn
+ into

K sets with

Sk :=

{
c
∣∣ c ≥ 0, andαkZ(c) + βk ≥ max

k′∈K
{αk′Z(c) + βk′}

}
.

Define |K| sets of variables as follows,

q(k) := P (c̃ ∈ Sk) ,

µ(k) := E [c̃|c̃ ∈ Sk]P (c̃ ∈ Sk) ,

Σ(k) := E
[
c̃c̃T |c̃ ∈ Sk

]
P (c̃ ∈ Sk) ,

p(k) := E[x(c̃)|c̃ ∈ Sk]P(c̃ ∈ Sk),

Y (k) := E[x(c̃)c̃T |c̃ ∈ Sk]P(c̃ ∈ Sk),

X(k) := E[x(c̃)x(c̃)|c̃ ∈ Sk]P(c̃ ∈ Sk).

Using a similar argument as in constructing (C), we formulate the completely positive
program,
(CF) max

∑
k∈K

(
αkIn • Y (k) + βkq

(k)
)

s.t. aT
i p

(k) = biq
(k) ∀i = 1, . . . ,m, ∀k ∈ K

aT
i X

(k)ai = b2i q
(k) ∀i = 1, . . . ,m, ∀k ∈ K

X
(k)
jj = p

(k)
j ∀j ∈ B, ∀k ∈ K q(k) µ(k)T p(k)T

µ(k) Σ(k) Y (k)T

p(k) Y (k) X(k)

 ≽cp 0 ∀k ∈ K

∑
k∈K

(
q(k) µ(k)T

µ(k) Σ(k)

)
=

(
1 µT

µ Σ

)
Proving (PF) is solvable as (CF) is very similar to what we have done for Theorem 3.3,

and only requires minor modifications. The key steps of the proof can be summarized as
follows.

(1) (CF) gives an upper bound to (PF).
(2) Construct the extremal distribution from the optimal solution to (CF) based on the

partitions of c̃. With probability q(k)
∗ (the value of q(k) in the optimal solution to

(CF)), construct c̃ using the completely positive decomposition of the kth matrix as
in the proof of Theorem 3.3. The final limiting distribution for c̃ would be a mixture
distribution of |K| types and satisfy the moment conditions. The decomposition
also provides the |K| sets of feasible solutions.

(3) Under the limiting distribution constructed in Step 2, the feasible solutions identi-
fied achieve the upper bound in the limiting case. The nondecreasing condition for
function f(·) is required in this step.

5. Applications

In this section, we present two applications of our model and discuss some implemen-
tation issues. These applications demonstrate the usefulness and flexibility of CPCMM
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in dealing with random optimization problems. The first example deals with stochastic
sensitivity analysis for the highest order statistic problem. The second example is a project
management problem where the CPCMM results are compared to MMM in particular.

We also compare our results with a Monte Carlo simulation based approach. In the ap-
plications we consider, the deterministic problems are linear programs with the simulation
approach needing solutions to multiple linear programs. When the deterministic problem
is NP-hard, implementing the simulation method would require the solution to a number
of NP-hard problems. On the other hand, the CPP model requires the solution to one
NP-hard problem.

5.1. Stochastic Sensitivity Analysis of Highest Order Statistic.
The problem of finding the maximum value from a set c = (c1, c2, . . . , cn) of n numbers

can be formulated as an optimization problem as follows,

(OS) max cTx

s.t.
n∑

j=1

xj = 1

x ≥ 0

Suppose c1 > c2 > · · · > cn. Then the optimal solution to (OS) is x∗
1 = 1, x∗

j = 0, ∀j =

2, . . . , n. For the sensitivity analysis problem, consider a perturbation in the objective
coefficients. Let c̃j = cj + ϵδ̃j, ∀j = 1, . . . , n, where each δ̃j is a random variable with
mean 0 and standard deviation 1, and ϵ ∈ R+ is a factor that adjusts the degree of the
perturbation. Then the resulting jth objective coefficient c̃j has mean cj and standard
deviation ϵ. We vary ϵ to see how the optimal solution changes with different degrees of
variation in the objective coefficients.

We consider two cases: (1) Independent δ̃j; (2) Correlated δ̃j with E[δ̃δ̃T ] = Σδ. The
random vector c̃ ∼ (c,Σ)+, and Σ = ccT + ϵ2In for the independent case, while Σ =

ccT + ϵ2Σδ for the correlated case. The problem is to identify the probability that the
original optimal solution still remains optimal i.e., P(c̃1 ≥ c̃j, ∀j = 1, . . . , n) as the value
of ϵ increases. Moreover, P(c̃1 ≥ c̃j, ∀j = 1, . . . , n) is just the persistency of x1. We use
MMM, CMM, VBC and CPCMM to estimate the probability, and then compare their
estimates against the simulation results.

Computational Results.
The mean for c̃ used in both cases, is randomly generated as

c = (19.7196, 19.0026, 17.8260, 16.4281, 15.2419, 12.1369, 9.1293, 8.8941, 4.6228, 0.3701)T ,
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and for case (2), the correlation matrix of δ̃, which is equal to Σδ, is

Σδ =



1 −0.5 0 0 0 0 0 0 0 0

−0.5 1 0 0 0 0 0 0 0 0

0 0 1 0.5 0.4 0 0 0 0 0

0 0 0.5 1 0.8 0 0 0 0 0

0 0 0.4 0.8 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



.

While we have carried out the tests on many different values of c and Σδ, the results are
similar to what is shown here with this example.

We let ϵ increase from 0 to 20 at an increment of 0.1, and solve all the moment models
for each ϵ to obtain the persistency. In simulation, for each ϵ, we generate a 1000-sized
sample for δ̃ satisfying the moment conditions.5 Then we solve these samples (i.e., 1000
deterministic problems) to estimate P(c̃1 ≥ c̃j, ∀j = 1, . . . , n).

Figure 5.1 and 5.2 show the results for case (1) and (2) respectively.
From Figure 5.1, we observe that the probability estimates from CPCMM and the SDP

models, except VBC, are almost the same. When ϵ is small, like ϵ < 1, the estimated values
are almost the same as the true probabilities obtained from the simulation, and even when
ϵ is large, the difference is not significant and the estimated curves look to have the same
trend as the simulation curve, i.e. the rate of decrease in probability is well captured by
the estimates.

Another observation is that the VBC approach gives estimates that are far away from
the true values. The probability curve given by VBC model drops much faster and gets
close to zero quickly. There are two possible reasons. Firstly, the VBC model finds a
lower bound on the probability P(c̃1 > c̃j, ∀j = 2, . . . , n) which can be supported by
an extreme distribution [41]. Secondly, it bounds P(c̃1 > c̃j, ∀j = 2, . . . , n) rather than
P(c̃1 ≥ c̃j, ∀j = 2, . . . , n), which would be a larger number. The results suggest that the
Chebyshev type bounds computed using the VBC approach might be too conservative in
practice.

5To be precise, we first generate a sample for each entry of δ independently with univariate uniform distri-
bution of zero-mean and unit standard deviation. Then we apply the variance and correlation requirements
to the sample using Cholesky Decomposition method, i.e. multiplying the sample with the lower triangular
matrix obtained from the Cholesky Decomposition of the second moment matrix, Σδ. Hence, the resulting
distribution for δ will be linear combination of uniform distributions and is close to a normal distribution.
The reason for using the uniform distribution is to rule out the instances where c̃ is nonpositive, since
Assumption (A1) for the CPCMM requires the cost coefficients to be nonnegative. Moreover, we also test
the problem with a truncated multivariate normal distribution, which gives a curve very close to the one
given by the uniform distribution. Thus we omit it from this paper.
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Figure 5.1. Results for stochastic sensitivity analysis with independent perturbation
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Figure 5.2. Results for stochastic sensitivity analysis with correlated perturbation

When correlation is added to the analysis, those models that can capture the cross
moment information gain some advantages in terms of improved precision. Figure 5.2
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shows that CMM and CPCMM produce better estimates than MMM that ignores the
correlation. However, when ϵ is small, for example ϵ < 1, the three models give almost the
same estimates that are also close to the true value. Again the VBC approach provides a
very conservative estimate on the probability.

From this application, we show that for simple problems with the basic approximation
for the completely positivity condition, CPCMM can perform at least as well as the other
existing SDP models.

5.2. Project Network Problem.
In this section, we apply our model on a project management problem to estimate the

expected completion time of the project and the persistency for each activity. Then we com-
pare the results with MMM that ignores the cross moment information. The exponential-
sized formulation of CMM is based on the number of extreme points, and thus becomes
impractical for medium to large projects.

The project management problem can be formulated as a longest path problem on a
directed acyclic graph. The arcs denote activities and nodes denote completion of a set of
activities. Arc lengths denote the time to complete the activities. Thus, the longest path
from the starting node s to ending node t gives the time needed to complete the project.
Let cij be the length (time) of arc (activity) (i, j). The problem can be solved as a linear
program due to the network flow structure,

max
∑

(i,j)∈ARCS
cijxij

s.t.
∑

i:(i,j)∈ARCS
xij −

∑
j:(i,j)∈ARCS

xji =


1, if i = s

0, if i ∈ NODES, and i ̸= s, t

−1, if i = t

xij ≥ 0, ∀(i, j) ∈ ARCS
For the stochastic project management problem, the activity times are random. In such

cases, due to the resource allocation and management issues, the project manager would
like to focus on the activities (arcs) that are critical (lie on the longest path) with high
probabilities. Next, we demonstrate how to use CPCMM to help managers identify these
activities.

Computational results.
Consider the project network with the graphical representation shown in Figure 5.3. The

directed arcs are either upwards or to the right. This network consists of 17 arcs and 10
paths.

We generate 100 data sets with each data set having a set of randomly generated
means (∼Uniform(0,5)), standard deviations (∼Uniform(0,2)) and correlations for the arc
lengths.6 CPCMM and MMM are used to estimate the persistency of each activity and
expected completion time. We resort to extensive simulations to assess the accuracy of
the results numerically. A sample of 1000 instances of arc lengths were generated for each
6We used MATLAB function “gallery(’randcor’,n)” to generate random correlation matrices.
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Figure 5.3. Project network

data set 7 satisfying the moment conditions. In simulation, the linear program was solved
for each sample to assess the persistency values.

Figure 5.4 and 5.5 show the results of arc persistency estimates for the 100 instances.
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Figure 5.4. Arc persistency values for 100 instances: CPCMM vs. MMM

To interpret Figure 5.4: for each arc, we obtain three persistency values (i.e. from
CPCMM, MMM and simulation respectively), and we plot two points for every arc: one
7The method for generating the sample is the same as the one used for previous application shown in §5.1.
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with coordinates (persistency from CPCMM, persistency from simulation), and the other
with coordinates (persistency from MMM, persistency from simulation). Since there are
17 arcs for one instance in our problem, there are 3400 (17× 2× 100) points in Figure 5.4.
Over 94% of the persistency values are less than 0.1 which means that around 3200 points
are clustered in the bottom left corner of Figure 5.4. The line represents the function
“y = x”. Roughly it can be interpreted as the closeness of the results from the SDP models
to simulation. If the models are perfect and the simulation is carried out with the particular
extremal distribution, all the points should roughly lie on the line, while the error in the
estimates is presented as a deviation from the line.

From the figure, we observe that CPCMM outperforms MMM in estimating the persis-
tency values. Furthermore, we observe an “S” shaped pattern for the points plotted for
both models, which means the models tend to overestimate the small persistency values
and underestimate the large persistency values.
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Figure 5.5. Arc persistency ranking for 100 instances: CPCMM vs. MMM

For Figure 5.5, we first obtain the rankings for the persistency values from the two models
and simulation, and then record the number of times that the rank from the models coincide
with the rank from simulation. For example, Figure 5.5 tells us that out of 100 instances,
there are 99 instances for which CPCMM identifies the arc with largest persistency (rank
1), while MMM identifies that in 94 instances.
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Although CPCMM performs better than MMM in giving the persistency ranking, the
difference is surprisingly small as seen in the figure. This seems to suggest that MMM
is good in determining the ranking of the persistency for the activities, and probably
capturing the cross moment information has very little additional value on estimating the
relative criticality of the activities.
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Figure 5.6. Expected completion time for 100 instances: CPCMM vs. MMM

Figure 5.6 shows the results of expected completion time for these 100 instances. The
way to construct the figure is similar to the one for Figure 5.4.

The results from CPCMM are clearly better than MMM, whose results could be off for
certain instances. The maximum difference between the simulation results and CPCMM
results is 2.9738, and the average difference is only 1.7597. Considering that the expected
completion time from simulation ranges from 46.9413 to 72.2714, the average percentage
difference is less than 3%. Hence, the optimal objective values obtained from CPCMM
seem to be a good estimate to the project’s expected completion time.

To conclude, CPCMM outperforms MMM in estimating both the arc persistency and the
expected completion time, but MMM is good enough if only the arc persistency ranking
is concerned. However, the improved accuracy comes with a cost, one of which is the
increased computation time. The average computation time of solving one instance for
CPCMM and MMM are summarized in Table 1. The machine used to perform all the
computation is Acer TravelMate 2350 with Intelr Celeronr M 1.40GHz, RAM 768MB,



Page 28 of 36

Microsoft Windows XP Professional SP3. SDPT3 is used to solve the conic programs in
MATLAB environment with YALMIP as the user interface [27, 39].

Model Average CPU Time (secs)
CPCMM 7.89
MMM 1.31

Table 1. Computation time for CPCMM and MMM

6. Conclusion

Though CPCMM is functionally powerful, it is a challenging problem to solve computa-
tionally. Compared to MMM, one major drawback of CPCMM is the size of the completely
positive matrix which makes it more difficult to solve computationally. When there are
n variables in the original problem, i.e. Z(c̃), the completely positive matrix in (C) is of
the dimension (2n+ 1)× (2n+ 1). MMM on the other hand has 2n matrices of dimension
2× 2. Large-scale solvers might be an approach for solving the semidefinite relaxations in
these cases.

Besides the size of the matrix, capturing the completely positivity condition is the key
difficulty. Currently we implement CPCMM using the basic relaxation. Although it works
quite well in simulations, it is conceivable that the gap could be large in specially con-
structed scenarios. Higher order relaxations are computationally much more tedious and
almost impossible to function for medium to large problems under normal computational
power. This basically tells us that CPCMM does not resolve the difficulty of original
problems; it shifts the difficulty into the completely positive cones with the hope of better
understanding on these cones in the future.

Despite the computational difficulties, CPCMM holds a very strong theoretical founda-
tion, and its flexibility in handling various situations has been demonstrated through the
extensions and applications.
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Appendix I. Formulations of Related Moment Models

Marginal Moment Model (MMM).
Consider the special case of Z(c̃) with B = {1, . . . , n}, and denote it as Z01(c̃):

(6.1)
Z01(c̃) = max c̃Tx

s.t. aT
i x = bi ∀i = 1, . . . ,m

xj ∈ {0, 1} ∀j = 1, . . . , n

Bertsimas, Natarajan and Teo [6] solve the following problem:

sup
c̃j∼(µj ,Σjj)

+,∀j=1,...,n

E [Z01(c̃)]

under the assumption that the convex hull of the 0-1 problem is given by the linear con-
straints {

x| aT
i x = bi, ∀i = 1, . . . ,m, 0 ≤ xj ≤ 1,∀j = 1, . . . , n

}
.

The SDP formulation they developed for this problem is:

(MMM) sup
n∑

j=1

yj

s.t. aT
i P = bi ∀i = 1, . . . ,m

µj ≥ yj ≥ 0 ∀j = 1, . . . , n(
1 µj

µj Σjj

)
≽

(
pj yj

yj zj

)
≽ 0 ∀j = 1, . . . , n

The variables in this formulation can be interpreted as

pj = P(xj(c̃) = 1),

yj = E[c̃j|xj(c̃) = 1]P(xj(c̃) = 1),

zj = E[c̃2j |xj(c̃) = 1]P(xj(c̃) = 1).

where xj(c) is the optimal value of xj under objective c. The value pj in the optimal
solution is the persistency of corresponding variable under the extremal distribution.

Cross Moment Model (CMM).
Consider the special case of Z(c̃) with B = ∅ and denote it as ZLP (c̃):

(6.2)
ZLP (c̃) = max c̃Tx

s.t. Ax = b

x ≥ 0

Let BASIS index the set of all basic feasible solutions to this linear program and x(j) be
the jth basic feasible solution. Bertsimas, Vinh, Natarajan and Teo [4] solve the following
problem:

sup
c̃∼(µ,Σ)

E [ZLP (c̃)]

The SDP formulation they developed for this problem is:
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(CMM) sup
∑

j∈BASIS
x(j)Tyj

s.t.
∑

j∈BASIS

(
pj yT

j

yj Zj

)
=

(
1 µT

µ Σ

)
(

pj yT
j

yj Zj

)
≽ 0 ∀j ∈ BASIS

The variables pj ∈ R , yj ∈ Rn and Zj ∈ Sn in this formulation can be interpreted as

pj = P(Basis j is optimal),
yj = E[c̃|Basis j is optimal],
Zj = E[c̃c̃T |Basis j is optimal].

The exponential number of basic feasible solutions for linear programs makes this for-
mulation very large and difficult to use for general linear programs.

Generalized Chebyshev Bounds.
Vandenberghe, Boyd and Comanor [41] consider a generalization of Chebyshev’s inequal-

ity:
inf

c̃∼(µ,Σ)
P
(
cTAic+ 2bT

i c+ di < 0, ∀i = 1, . . . ,m
)

The SDP formulation they proposed for this problem is:

min 1−
m∑
i=1

λi

s.t. tr(AiZi) + 2bT
i zi + diλi ≥ 0 ∀i = 1, . . . ,m

m∑
i=1

(
λi zTi
zi Zi

)
≼

(
1 µT

µ Σ

)
(

λi zTi
zi Zi

)
≽ 0 ∀i = 1, . . . ,m

where the variables are Zi ∈ Sn, zi ∈ Rn, and λi ∈ R, ∀i = 1, . . . ,m. The VBC approach
can be used in stochastic sensitivity analysis for linear programming problems. Let B be
the index set of the basic variables in a basic feasible solution. The reduced cost c̄j of the
variable xj is defined as

c̄j := cj − cTBA
−1
B Aj,

where AB is the columns of A indexed by B, and Aj is the jth column of A. Let N =

{1, . . . , n} \B be the index set of the nonbasic variables. In order for a given feasible
solution of the linear program to be optimal, the reduced cost of all the nonbasic variables
must be nonpositive (for maximization problems). This defines a set of linear inequalities
on c̃ that we can exploit in the VBC approach, i.e. ∀j ∈ N ,

¯̃cj ≤ 0 ⇐⇒ c̃j − c̃TBA
−1
B Aj ≤ 0

⇐⇒ eTj c̃N −
(
A−1

B Aj

)T
c̃B ≤ 0

⇐⇒

(
−A−1

B Aj

ej

)T (
c̃B

c̃N

)
≤ 0,
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where ej denotes the unit vector with one on its jth entry and zeros eleswhere.
Hence, these |N | inequalities can be viewed as a set constraining c̃,

CLP =

c ∈ Rn

∣∣∣∣∣∣
(

−A−1
B Aj

ej

)T

c ≤ 0, ∀j ∈ N

 .

Then any realization of c̃ falling in this set (i.e. c̃ ∈ CLP ) will make the pre-given feasible
solution optimal. Therefore, the probability that c̃ lies in the set is just the probability
that the given feasible solution is optimal. Furthermore, when A is of rank one, i.e. there
is only one basic variable in any feasible solution, that probability is just the persistency of
that particular basic variable. One difference between CLP and C in the VBC approach is
that all the inequalities in C are strict, so when we apply the VBC model to this problem,
the interpretation of the resulting probability has to be changed to the probability that
the given feasible solution is the unique optimum. Using the VBC approach on the LP
problem, we obtain:
(VBC) min 1−

∑
j∈N

λj

s.t.

(
−A−1

B Aj

ej

)T

zj ≥ 0 ∀j ∈ N

∑
j∈N

(
Zj zj

zTj λj

)
≼

(
Σ µ

µT 1

)
(

Zj zj

zTj λj

)
≽ 0 ∀j ∈ N

Thus, for any given feasible solution, we can solve the corresponding (VBC) and obtain
the optimal objective value, which is the tightest lower bound on the probability that the
given feasible solution is the unique optimal solution to Problem (6.2).
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Appendix II. Copositive and Completely Positive Programs

The materials in this section are based on [3, 11, 16].

Properties.
The cone of completely positive matrices, positive semidefinite matrices, copositive ma-

trices and symmetric matrices satisfy

CPn ( S+
n ( COn ( Sn,

and all these cones are pointed and closed convex.

Proposition. A is completely positive if and only if there exist vectors v1,v2 . . . ,vk ∈ Rn
+

such that

(6.3) A =
k∑

i=1

viv
T
i .

Clearly, the factorization of a completely positive matrix is not unique. The represen-
tation (6.3) is called a rank 1 representation of A. The decomposition of A into the sum
of rank 1 matrices is referred to as a completely positive decomposition. The minimal k for
which there exists a rank 1 representation is called the cp-rank of A. From the definition,
it is clear that cp − rank(A) ≥ rank(A) for every CP matrix A. Equality holds when
n ≤ 3, or when rank(A) ≤ 2. An upper bound on cp-rank of A in terms of rank A (when
rankA ≥ 2) is

cp− rank(A) ≤ rank(A)(rank(A) + 1)

2
− 1.

Duality.
For a pointed closed convex cone K, its dual cone K∗ is defined as:

K∗ :=
{
A ∈ Sn

∣∣ ∀B ∈ K, tr(AB) ≥ 0
}
.

K∗ is also a pointed closed convex cone. The following shows a pair of primal-dual conic
optimization problems:

(6.4)
(Primal) min C •X

s.t. Ai •X = bi i = 1, . . . ,m

X ∈ K

(6.5)

(Dual) max bTy

s.t. S = C −
m∑
i=1

yiAi

S ∈ K∗

If both problems have a strictly feasible point, i.e. ∃X ∈ int(K), such that

Ai •X = bi, ∀i = 1, . . . ,m,
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and ∃S ∈ int(K∗), such that

S = C −
m∑
i=1

yiAi,

then Problem (6.4) and (6.5) are equivalent, i.e. the duality gap C •X∗− bTy∗ is 0 at opti-
mality, where X∗ and y∗ are the optimal solutions to Problem (6.4) and (6.5) respectively.
We verify next that the cones COn and CPn are dual cones in Sn.

Theorem. CP∗
n = COn and CO∗

n = CPn.

Proof. We first prove CP∗
n = COn, and then CO∗

n = CPn will follow since both cones are
closed. Let A ∈ Sn. Then

A ∈ CP∗
n ⇐⇒ ∀B ∈ CPn, tr(AB) ≥ 0

⇐⇒ ∀V ∈ Rn×k
+ , tr(AV V T ) ≥ 0

⇐⇒ ∀V ∈ Rn×k
+ , tr(V TAV ) ≥ 0

⇐⇒ ∀v ∈ Rn
+, v

TAv ≥ 0

⇐⇒ A ∈ COn.

Thus, CP∗
n = COn. �

Similarly, it can be shown that S+∗
n = S+

n , i.e. S+
n is self-dual. The interior of the

completely positive and copositive cone is characterized as:

int(CPn) =
{
A ∈ Sn

∣∣ ∃V1 > 0 nonsingular , V2 ≥ 0, such that A = [V1|V2][V1|V2]
T
}
.

int(COn) =
{
A ∈ Sn

∣∣∀v ∈ Rn
+,v ̸= 0, vTAv > 0

}
.

The notation [V1|V2] describes the matrix whose columns are the columns of V1 augmented
with the columns of V2.

Approximating the Copositive Cone and the Completely Positive Cone.
Klerk and Pasechnik [22] show that there exists a series of linear and semidefinite rep-

resentable cones approximating the copositive cone COn from the inside, i.e.

∃ closed convex cones {Kr
n : r = 0, 1, 2, . . . }

such that Kr
n ⊆ Kr+1

n , ∀r ≥ 0 and
∪
r≥0

Kr
n = COn.

The dual cones {(Kr
n)

∗ : r = 0, 1, 2, . . . } approximate the completely positive cones CPn

from outside, i.e.

(Kr
n)

∗ ⊇
(
Kr+1

n

)∗
, ∀r ≥ 0 and

∩
r≥0

(Kr
n)

∗ = CO∗
n = CPn.

For example, when r = 0, we have

K0
n =

{
A ∈ Sn

∣∣ ∃X ∈ S+
n , ∃Y ∈ Rn×n

+ , A = X + Y
}
,

(K0
n)

∗
=
{
A ∈ S+

n

∣∣A ∈ Rn×n
+

}
.

It can be shown that when n ≤ 4, the above two approximations are exact, i.e. K0
n = COn

and (K0
n)

∗
= CPn.
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The higher order approximation (r ≥ 1) becomes much more complicated. For instance,
when r = 1, Parrilo (2000, [35]) showed that

K1
n =

A ∈ Sn

∣∣∣∣∣∣∣∣∣
∃M (i) ∈ Sn, i = 1, 2 . . . , n

such that


A−M (i) ≽ 0, i = 1, 2 . . . , n

M
(i)
ii = 0, i = 1, 2 . . . , n

M
(i)
jj +M

(j)
ij +M

(j)
ji = 0, i ̸= j

M
(i)
jk +M

(j)
ik +M

(k)
ij ≥ 0, i ̸= j ̸= k

 .
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