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ELECTRIC VEHICLES WITH A BATTERY SWITCHING STATION:
ADOPTION AND ENVIRONMENTAL IMPACT

BUKET AVCI, KARAN GIROTRA AND SERGUEI NETESSINE

Abstract. The transportation sector’s carbon footprint and dependence on oil are of deep concern

to policy makers in many countries. Use of all-electric drive-trains is arguably the most realistic

medium-term solution to address these concerns. However, motorist anxiety induced by an electric

vehicle’s limited range and high battery cost have constrained consumer adoption. A novel switching-

station-based solution is touted as a promising remedy. Vehicles use standardized batteries that,

when depleted, can be switched for fully charged batteries at switching stations and motorists only

pay for battery use.

We build a model that highlights the key mechanisms driving adoption and use of electric vehicles

in this new switching-station-based electric vehicle system and contrast it with conventional electric

vehicles. Our model employs results from repairable item inventory theory to capture switching station

operation; we embed this model in a behavioral model of motorist use and adoption. Switching-

station systems effectively transfer range risk from motorists to the station operator, who, on account

of statistical economies of scale, can better manage it. We find that this transfer of risk can lead to

higher electric vehicle adoption than in a conventional system, but it also encourages more driving

than a conventional system does. We calibrate our models with motorist behavior data, electric

vehicle technology data, operation costs and emissions data to estimate the relative effectiveness of

the two systems under the status quo and other plausible future scenarios. We find that the system

that is more effective at reducing emissions is often less effective at reducing oil dependence, and the

misalignment between the two objectives is most severe when the energy mix is coal heavy and with

advanced battery technology. Increases in gasoline prices (by imposition of taxes, for instance) are

much more effective in reducing carbon emissions while battery-price reducing policy interventions are

more effective for reducing oil dependence. Taken together, our results help a policy maker identify

the superior system for achieving the desired objectives. They also highlight that policy makers should

not conflate the dual objectives of oil dependence and emissions reductions as the preferred system

and the policy interventions that further that system may be different for the two objectives.

1. Introduction

The transportation sector is a substantial contributor to carbon dioxide emissions (20%-25% share),

with its emissions growing faster than in any other energy-using sector (here and later, see World

Energy Council (2007)). Carbon emissions contribute to global warming that is associated with

climate change, which is likely to have catastrophic economic, social and moral consequences. Further,
1
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over 95% of transport energy comes from oil. The supply of oil is concentrated in parts of the world,

and a transportation sector dependent on oil is exposed to significant geopolitical oil supply risks.

Means of transportation that can diversify the sources of transportation energy to reduce oil de-

pendence and decrease the carbon footprint of this sector have thus attracted increasing attention

from environmentalists, governments, industry and academics. Vehicles with alternate drive-train

technologies including electrical, bio-fuel, hydrogen and natural gas, all hold the promise of reducing

oil dependence and carbon emissions, but, with rare exceptions, implementation of these technologies

is currently very limited due to technological, political and other issues (see Struben and Sterman

(2008) for historical notes). Electric drive-trains are perhaps the most technologically advanced

amongst these choices: electric vehicles have a lower per-mile carbon footprint than gasoline vehicles,

and the electricity used to power them can be produced from a variety of sources besides oil. Thus,

use of electric vehicles is perhaps the most realistic medium-term solution to reduce oil-dependence

and carbon emissions. Multiple countries including the United States, France and China (U.S. De-

partment of Energy (2011); Kroon et al. (2012); China Daily July 30 (2012)) have thus set objectives

for electric vehicle adoption in an attempt to achieve the dual goals of limiting oil dependence and

reducing carbon emissions.

Electric vehicles (EVs) historically predate gasoline vehicles, but have only received mainstream

interest in the last decade (see Eberle and Helmolt (2010)). The first mass-produced hybrid gasoline-

electric vehicle, the Toyota Prius, was introduced in 2003, and the first mass-use battery-powered

electric car, the Nissan Leaf, in 2010. Most other major automakers are in the process of launching

their own versions of electric vehicles. While electric vehicles are arguably the most promising of

all alternative technologies, the adoption of electric vehicles has been minimal, mainly due to two

widely accepted limiting factors. The first is range anxiety, a term introduced to highlight the fear

that a vehicle has insufficient range to reach its destination (Eberle and Helmolt (2010)). While this

term equally applies to electric and gasoline vehicles, the former usually have range limitations of

about 100 miles on a single charge, and unlike its gas-fueled counterpart, an electric vehicle takes

hours to recharge. The second factor is the cost of the battery (around $15, 000 for a 24KWh battery

that powers a small-mid size car), which is typically the most expensive component driving the cost

difference between electric and gasoline vehicles. Although the running cost of an electric vehicle

is far lower than that of a gasoline vehicles, the higher upfront costs deter many adopters despite

governmental subsidies and tax breaks. Over the last 150+ years, numerous technological advances

have been targeted towards making cheaper batteries with longer range but, to this point, their

success has been insufficient.
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Some recently established firms, such as Tesla Motors and the now failed start-up Better Place

(Girotra et al. (2011)) are attempting to address these two limiting factors, through the use of a

novel mobility system that combines (1) a network of battery switching stations and (2) a payment

system such that the motorist is charged per mile driven while the company owns the batteries. The

switching stations would be widely accessible and would allow a motorist to exchange a depleted

battery for a fully charged one in 90 seconds or less. Since the motorists would potentially have

different batteries at different points of time, the batteries would be owned by the firm. Thus, rather

than paying the large upfront cost of the battery, the motorist would pay for battery use measured

as miles driven. This mobility system still includes the traditional charging stations at a number of

locations, with all electricity costs paid by the firm. Components of this system are not entirely new:

switching stations have been long used for forklift trucks (Timmer (2009)), and purchase subsidy

combined with pay-per-use contracts have long been used by mobile phone companies among others.

The novel mobility system combines the two elements.1

The advantages of this switching-station mobility system are apparent: it eliminates the two key

barriers to adoption of electric vehicles described above. There are, however, some hidden, as yet

unstudied, disadvantages. In addition to the extensive charging infrastructure and the need to

standardize batteries to make them swappable, the mobility system must hold more batteries than

the number of cars deployed. Presumably, the cost of these (very expensive) extra batteries will

depend on the demand dynamics and the service level that the company wants to provide at the

switching station. Nevertheless, switching station systems have attracted a lot of attention, with

venture capitalists valuing the pioneer of this system, Better Place at over $2.25B at its peak, the

first annual Green Car Breakthrough Award given to the company, and several countries (including

Israel, Denmark, China and Australia) signing agreements with Better Place to deploy switching

station systems, with dozens of others currently negotiating terms right now. Tesla Motors, that has

arguably brought the most highly regarded electric vehicle design to the market in recent years has

also co-opted this promising mobility system in its offering.

There is, to our knowledge, no rigorous analysis and comparison of this mobility system with the

more conventional fixed-battery powered electric vehicle systems in terms of their ability to reduce

oil dependence and carbon emissions. Conducting this study is the goal of this paper. Our first

contribution is in proposing a model for the switching-station mobility system. We posit that charging

and storing batteries is similar to a repairable items inventory system in which running out of charge

1A similar concept was put into practice by the Hartford Electric Light company for trucks in the early 1900s, and
for owners of the Milburn electric car in Chicago in 1917 (Kirsch (2000)). Electric buses in the 2008 Beijing Summer
Olympics were also powered by switchable batteries.
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is equivalent to “failing” and the recharging process is equivalent to “repairing”. We embed this

inventory model in a model of motorist choice and provider-firm behavior in which the amount

of driving is uncertain and depends on the contractual arrangement (pay-per-use) offered by the

operator to the motorist.

Our second contribution is in analyzing this model, characterizing the optimal solution, and identi-

fying some surprising structural properties. On the motorist side, we determine the optimal driving

decision and the end-state equilibrium adoption of the technology. For the mobility system opera-

tor, we find the optimal price per mile driven and the inventory of spare batteries. We show that,

under very general conditions, the optimal motorist adoption and driving of electric vehicles in the

switching-station system are strategic complements: that is, any policy intervention (e.g., subsidies,

taxes, etc.) would have the same directional effect on both, electric vehicle adoption and driving.

Interestingly, this implies that seemingly environmentally friendly policy changes (e.g., electric vehi-

cle subsidies) would lead to higher adoption, but also to more driving of electric vehicles under the

switching station system. While the former should reduce oil dependence by shifting motorists from

gasoline to electric vehicles, the latter increases electricity consumption which, in most countries, is

still obtained using carbon emitting technologies. We demonstrate that statistical economies of scale

inherent in the switching-station mobility system is the driving force behind this result.

Our third contribution is in conducting a large-scale numerical comparison that estimates and com-

pares the effectiveness of the two systems. We calibrate our models with motorist behavior data,

electric vehicle technology data, operation costs and emissions data to identify the superior system

and its effectiveness under the status quo and plausible future scenarios. We find that, with current

technology and the U.S. electricity mix, a switching-station system will outperform a conventional

electric vehicle system on both policy objectives. This is not the case with more carbon-heavy mix

of electricity used in countries like China, where the dual policy objectives are misaligned– while

switching-station systems are preferred for reducing oil dependence, conventional electric vehicle

systems are better for reducing emissions. Further, this misalignment in objectives will also arise

with the U.S. electricity mix with modest improvements in battery technology, projected to happen

well before a switching-station system becomes a reality. On the other hand, in countries with a

low carbon intensity electricity mix, such as France, the dual policy objectives are aligned so the

same system achieves higher reductions in oil dependence and carbon emissions: typically this is the

switching-station system. Essentially, the system that is more effective at reducing emissions is often

less effective at reducing oil dependence, and the misalignment between the two objectives is most

severe when the energy mix is coal heavy and when battery technology advances.
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We find that an increase in gasoline price (by imposition of taxes, for instance) is much more effective

in reducing carbon emissions while battery-price reducing policy interventions are more effective for

reducing oil dependence. In fact, battery price reductions (by way of purchase/research/manufacturing

subsidies) and/or technology improvements may in fact be inimical to reducing emissions in the case

of switching-station systems and they generally enhance the misalignment between objectives. A

50% increase in gasoline prices can almost halve the emissions and double adoption in each system,

whereas a 50% reduction in battery prices can increase adoption four fold while achieving only ~ 10%

reduction in emissions.

Taken together, our analytical and calibrated numerical analysis can support policy makers in three

ways: First, our analysis identifies the preferred electric vehicle system to achieve the objectives of

reduction in oil dependence and emissions. Policy makers should choose the prescribed system as

per their preferred objective, and then create conditions to facilitate its introduction and adoption.

Second, we illustrate that policy makers should not conflate the dual objectives of oil dependence

and emissions reductions;2 the preferred system and the policy interventions that further that system

may be different for the two objectives. Finally, our comparison of policy interventions suggests that

increases in gasoline taxes are more effective for carbon emission reduction, while reductions in

battery prices are more effective in reducing oil dependence.

2. Literature Review

Our work contributes to the growing sustainable operations management literature. Sustainability

has become a prominent topic in operations management over recent years, especially given the

growing interest in the effects of global warming and corporate social responsibility. Kleindorfer et al.

(2005) provide a review of papers integrating sustainability into operations management published

in the first 50 issues of the journal Production and Operations Management. Adoption of green

practices and associated arrangements is a key topic in the sustainable operations literature. Corbett

and Muthulingam (2007) study the adoption of green practices using empirical data to identify the

limiting factors. Lobel and Perakis (2011) develop a model for the adoption of solar photovoltaic

technology by residential consumers. Akin to the battery contract in this paper, Agrawal et al. (2012)

study the environmental impact of pay-per-use contracts (leasing) versus outright purchases in the

context of durable products. Taking a life-cycle environmental impact perspective, they identify

conditions such that leasing is a superior strategy for the provider firm. These papers study the

2As is the case in the official policy statements of the U.S. (U.S. Department of Energy (2011)), France (Kroon et al.
(2012)) and China (China Daily July 30 (2012))
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same adoption and environmental impact issues we do, but for products that do not have any of the

demand and use dynamics arising from driving, charging, and battery-switching in our model.

The research on electric vehicles in operations management is extremely limited. Chocteau et al.

(2010) use cooperative game theory to investigate the impact of collaboration and intermediation on

the adoption of electric vehicles among commercial fleets, and they determine the conditions under

which adoption becomes economically feasible. Sioshansi (2012) presents an analysis of individual

drivers’ plug-in hybrid electric vehicle charging patterns under various electricity pricing tariffs and

compares the cost and emissions impacts of these charging patterns. Mak et al. (2013), to the best of

our knowledge, is the only paper that studies a switching-station model. Mak et al. (2013) develop

models that help the planning process for deploying battery switching network infrastructure and

the battery management at the switching stations. Our analysis includes the battery management

problem in a similar way, but we examine the effectiveness of a switching-station model in reducing

carbon emissions and oil dependence. Struben and Sterman (2008) models the dynamics of alternative

fuel vehicle adoption, taking into consideration mechanisms driving consumer adoption. While this

paper studies diffusion of a pre-selected electric vehicle system, we do study the effectiveness of

different electric vehicle systems.

The analysis in this paper uses the results developed in two streams of literature: The repairable

item inventory planning and the contracting (principal-agent) literatures. Repairable inventory mod-

els such as the METRIC model (Sherbrooke (1968)) have been widely applied to the management of

critical spare parts for the aerospace and defense industries (cf. Muckstadt (2005) for recent develop-

ments). The switching station in our model can be thought of as an application of this literature to a

novel context where an inventory of electric vehicle batteries at switching stations must be managed.

Taken together, to the best of our knowledge, our paper is the first to model the effectiveness of

different electric vehicle systems for decreasing oil dependence and greenhouse gas emissions.

3. Electric Vehicles: Alternative Business Models

We develop a model of a population of motorists that make utility-maximizing choices between

electric and fossil-fuel vehicles, taking into account subsequent utility from the use of the vehicle. We

consider the effectiveness of two alternative electric vehicle systems: 1) The Conventional Electric

vehicle system, whereby an electric vehicle with limited range is sold to a motorist, and 2) the

Switching-Station system, whereby the motorist has access to a network of "switching stations",

which allow the exchange of depleted batteries for fully charged, thereby enhancing the range of the

vehicle. In the former system, a profit-maximizing firm prices and sells a vehicle with a battery
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to the motorist. In the latter model, a profit-maximizing firm establishes and stocks the switching

stations, and prices the service per mile driven. Motorists make utility-maximizing choices about

whether to adopt electric vehicles and how much to drive. We next present a model that captures

the most salient features of this setup; an extensive discussion of alternative assumptions and model

enhancements is provided in the concluding sections.

3.1. Motorist Behavior.

3.1.1. Utility from owning a vehicle. We base our model of motorist behavior on existing empirical

work describing driving habits. Precise estimates of all parameters in the motorist behavior model

described below are provided in the scenario analysis section. We capture a motorist’s utility through

four additive components:

(1) Utility from driving: Motorists derive utility from how much they drive each day. This utility,

u (·), is increasing in the miles driven, with diminishing marginal returns, u′ (·) > 0, u′′ (·) < 0.

(2) Range Inconvenience: Motorists incur a disutility, M , whenever their daily driving exceeds the

range of the vehicle, R.3 This disutility includes the inconvenience from waiting for the electric

vehicle battery to be recharged, excessive depreciation of the battery if using a fast-charge option,

and even using an alternate means of transport to reach a destination, etc.4

(3) Green Utility: Motorists derive additional utility from owning electric vehicles: a "green" utility.

This green utility varies in our population of motorists. In particular, we assume that our

population’s green utility, Ũgr is uniformly distributed in the interval [0, d].

(4) Direct Costs: Motorists incur the costs of owning and operating the vehicle. Depending on the

vehicle type and associated operating model, this potentially includes the initial purchase price

of the vehicle, the fuel, the electricity, the battery or per-mile charges, taxes and repairs. We

normalize the initial purchase price of a fossil-fuel vehicle and that of an electric vehicle without

batteries to zero.5 Further, we assume that the life-cycle of all vehicles is the same.

3Most electric vehicle batteries can be fully recharged in less than 8 hours, typically during the night. Due to the
limited availability of a charging-point network, they are rarely charged during the day (cf. Denholm and Short (2006)
for charging characteristics). Thus, our model assumes that each day the full range of the battery is available. With
simple modifications, we can also consider cases in which less than the range is available due to an inability to charge
during the night, or more than the range is available due to charging during the day. Neither case alters our main
insights.
4All results in the subsequent sections also hold if we assume different range-inconvenience disutilities for gasoline,
conventional electric and switching-station models.
590% or more of the incremental cost of electric vehicles arises out of the battery pack that comprises individual
battery modules, an enclosure for the modules, management systems, terminals and connectors, and any other pertinent
auxiliaries (Simpson (2006); Pistoia (2010)). We note that this normalization is not essential, i.e., any difference in the
initial purchase prices can be captured by the green utility, Ũgr, which can be interpreted as the additional utility (or
disutility) from owning an electric vehicle, including any purchase, tax subsidies, etc.
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The firm offers
the price 

VEHICLE USAGE ON   D   AY   t VEHICLE PURCHASE
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EV owners incur range
inconvenience penalty
     if driving > range

t t+1 

Fce

M R
e∗

Figure 3.1. Sequence of Events with Conventional Electric Vehicles

We assume that the distance driven per day by a motorist has a planned or controlled component, e,

and an unplanned or random component, ε. The planned component captures the average daily dis-

tance that a motorist anticipates or plans to drive based on the best information available on driving

needs and costs at the time of vehicle purchase. The unplanned component captures any additional

driving due to subsequent changes in life situation, driving needs, costs of driving, unexpected detours

on any day, traffic conditions, etc. In contrast to the planned component, the unplanned driving is

realized on a daily basis and is unknown at the time of the purchase. Hence, at the time of pur-

chase, we model this unplanned driving as a random variable, ε, that will be drawn each day from a

zero-mean, finite-variance distribution with density g(·) and inverse cumulative distribution function

G(·).

3.1.2. Status Quo: Fossil-Fuel Vehicles. With the extensive network of gas stations, fossil-fuel vehi-

cles essentially have an unlimited range and consequently motorists who decide to own such a vehicle

never incur range inconvenience, nor do they derive any green utility. The direct costs of use of such a

vehicle include the purchase price of the vehicle and the fuel costs for each mile. A utility-maximizing

owner of such a vehicle can maximize her ownership utility by planning to drive eg miles per day,

such that E
ε

[u′ (eg + ε)] = cg, where cg is the per-mile fuel cost. If this utility is positive, the motorist

purchases the vehicle, else she does not own a vehicle. Specifically, owners earn an expected daily

utility, Ug ≡
(
E
ε

[u (eg + ε)]− cgeg
)+

, and drive e∗g ≡ eg · I
{
E
ε

[u (eg + ε)] > cgeg
}
miles, where I is

the indicator function.

3.2. Conventional Electric Vehicles.

3.2.1. Preliminaries. Owners of conventional electric vehicles buy a vehicle with a battery installed

and are responsible for all subsequent costs. Specifically, the conventional electric vehicle operating

model proceeds along the following steps (Figure 3.1). First, the provider firm offers a selling price,

Fce, the price premium for the electric vehicle over and above fossil-fuel vehicles. Motorists choose

between fossil-fuel or electric vehicles based on their expected utility of ownership, and they then

decide on the planned driving, e∗, based on the relevant marginal costs and benefits. Finally, for each
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day of ownership, the random unplanned component of driving is realized. If electric vehicle owners

end up driving more than the range of the battery, they incur the range-inconvenience penalty.

3.2.2. Electric Vehicle Pricing, Adoption and Use. As is typical in sequential games, we solve for

the equilibrium choices using backward induction, starting from the planned driving best response,

followed by the adoption response and the pricing decisions. Owners of electric vehicles plan driving

to maximize expected utility from their use of the vehicle. Specifically, motorists solve the following

optimization problem to obtain their optimal driving best response:

max
e

[
E
ε

[u (e+ ε)]− cee−M ·G (R− e)
]
,

where ce is the per-mile operating cost, in this case, the cost of charging and maintaining the battery.6

The utility from ownership of the vehicle, denoted by Uce, is the above maximized use utility plus

the green utility, Ũgr, minus the purchase price, Fce.7 The motorists for whom this utility exceeds

the utility from a fossil-fuel vehicle (which we assume to be the status quo) will migrate to electric

vehicles. The provider firm must decide on the purchase price, Fce, to charge for the batteries.8

Increasing the purchase price increases margins but reduces the ownership utility and consequently

the adoption of and demand for electric vehicles. The firm trades off these two concerns to arrive at

the optimal price. Specifically, the firm solves the following maximization problem:

max
Fce

Ẽ
Ugr

[I {Uce > Ugas} · (Fce − c)] ,

where c is the cost of battery normalized to a daily level.

Lemma 1. Equilibrium Adoption and Driving of Conventional Electric Vehicles

a) Owners of conventional electric vehicles plan on driving e∗ce miles, where e∗ce is such that

(3.1) E
ε

[
u′ (e∗ce + ε)

]
−M · g (R− e∗ce) = ce.

b) The firm prices the battery such that, in equilibrium, A∗ce fraction of motorists adopts the vehicles

(3.2) 2dA∗ce = E
ε

[u (e∗ce + ε)]− cee∗ce −MḠ (R− e∗ce) + d− Ug − c.

Proof. Detailed proofs are provided in the accompanying technical appendix. �

6To guarantee a unique solution, we subsequently assume E
ε

[u′′ (e+ ε)] +Mg′(R− e) < 0.
7All utility and cost values are normalized to a daily level with the daily purchase price Fce leading to a total purchase
price of Fce

(
1− (1 + i)−t

)
/i with an interest rate of i and total days of ownership of t.

8Note that in our model, the provider firm has pricing power with respect to the selling price of electric vehicles, but
the price of a fossil-fuel vehicle is exogenous (and normalized to zero). This assumption is consistent with the highly
competitive fossil-fuel vehicle market and the much less competitive electric vehicle market.
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The equilibrium driving decision (Eq. 3.1) is determined by: the trade-off between the motorist’s

marginal gain from an extra mile of driving utility; the change in the risk of incurring the range-

inconvenience penalty; and the marginal cost of driving consisting of the per-mile costs of charging

and maintaining the battery. The adoption decision (Eq. 3.2) is driven by the pricing of the firm.

Our setup is similar to a monopoly pricing situation in which the uniformly distributed green utility

leads to a traditional linear downward-sloping demand curve. As is typical in such a setting, the

profit-maximizing price of the vehicle is such that it attracts half the viable market, that is half of

the population for whom the utility of owning the vehicle is higher than the cost. In our setup, this is

half of the maximum ownership utility, E
ε

[u (e∗ce + ε)]− cee∗ce−MḠ (R− e∗ce) + d, minus the gasoline

utility, Ug, and the incremental cost of provisioning electric vehicles, the cost of battery, c.

As expected, the adoption and driving decrease in the per-mile cost of battery charging and mainte-

nance and a higher average green utility increases the adoption of electric vehicles. Further, Lemma

1 highlights the two key effects of the limited range of conventional electric vehicles. First, motorists

who own such vehicles face the risk of exceeding the battery range. While the direct marginal costs

of driving would suggest an average driving level such that E
ε

[u′ (e∗ce + ε)] = ce, due to the range-

inconvenience penalty, M , average driving is lowered and higher values of the penalty or a smaller

values of range lead to less driving as captured by Eq. 3.1. Second, range anxiety also reduces the

adoption of electric vehicles, as is evident from Eq. 3.2. Hence, our model captures the two key

features that are relevant in this setting. Owners of electric vehicles are anxious about exceeding

the vehicle’s range, so they plan to drive it less, which reduces their utility from owning an electric

vehicle. This observation implies that only those motorists who highly value having a green vehicle

would buy it, so fewer motorists switch to electric vehicles than would if electric vehicles had an

unlimited range.

3.3. Electric Vehicle with a Switching Station.

3.3.1. Preliminaries. The setup of our model is inspired by and directly follows the operating model

of the electric vehicle startup, Better Place (Girotra et al. (2011); Mak et al. (2013)). There are two

main points of departure from the conventional electric vehicle model above. 1) Instead of incurring

the range-inconvenience penalty, motorists whose driving exceeds the vehicle’s range can now utilize

a battery switching station. This switching station has a limited stock of fully charged batteries

and the motorist can swap her depleted battery for a fully charged battery. The received depleted

batteries are plugged in to charging bays and once charged, they are moved to the stock of fully

charged batteries. 2) Instead of paying directly for the electricity consumed to charge the electric

vehicle or for the battery, the motorist pays the provider firm for miles driven. The provider firm
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Figure 3.2. Sequence of Events in a Switching-Station Model

incurs the cost of charging and maintaining the batteries, be it batteries obtained at the switching

station or charged at home. The switching station business model proceeds as follows (Figure 3.2).

The provider firm proposes a price for the vehicle, Fss, sets a per-mile price, pss, and commits to

providing a level of availability for charged batteries. Based on these terms and their idiosyncratic

preference for a green vehicle, motorists choose between it and a fossil-fuel vehicle. Based on the

fraction of the population that adopts electric vehicles, the provider firm procures batteries both for

cars and for the switching station. Motorists decide on their planned driving. Finally, for each day

of ownership, the random unplanned component of driving is realized. If electric vehicle owners end

up driving more than the vehicle’s range, they visit the switching station. If the station has batteries

in stock, the motorist drives away with a replenished battery. If she does not find a battery in stock,

she incurs the range-inconvenience penalty. We formulate this problem as a sequential game in which

the firm decides on the stocking level of batteries and the pricing while motorists select their vehicle

types and daily driving. Identifying the equilibria in this game requires us to analyze the operational

dynamics of the switching-station model embedded within a pricing and consumption game.

3.3.2. Analysis of the Switching Station. At the heart of this novel operating system for electric

vehicles lies the switching station. There are two components to analyzing this system. 1) the demand

process that arises from motorists driving and exceeding the vehicle range; and 2) the charging facility.

Demand Process: Demand for a battery occurs when any motorist exceeds the range of the vehicle,

i.e., with probability G (R− ess), where ess is the planned driving. Consider a market with a popula-

tion of N motorists, of which a fraction Ass adopts these electric vehicles. Assuming N is large, the

probability G (R− ess) is small and the arrivals are stationary,9 the demand at the switching station

is a Poisson process with a mean arrival rate AssN ·G (R− ess) (Karlin and Taylor (1975)).10

9For a typical US motorist, the probability G (R− ess) is only 6% (based on a battery range of 100 miles (Better
Place Blog (2011)) and daily driving distributions provided by the US Department of Transportation Federal Highway
Administration (Hu and Reuscher (2004))). See the data-driven analysis in Section 5 for details.
10Mak et al. (2013) directly uses a Poisson process to model the demand arrival at a switching station. The fixed
demand rate assumption is in fact an approximation, because the closed-loop cycle with finite population means λτ is a
function of the number of operating cars. For example, in the case that a replacement is not available and a back-order
occurs, the motorist waits at the station until the battery is charged. As the car is not operating in this case, the
population size decreases. However, the approximation of the fixed-demand rate is reasonable in our problem context
because in practice the expected back-orders at any time are fewer than λτ and λτ � N . This ensures that, on average,
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Figure 3.3. Operation of the Switching-Station Model

Charging Facility: We conceptualize the charging facility (as illustrated in Figure 3.3) as a repairable

spare parts facility (see Muckstadt (2005)). Depleted batteries correspond to broken parts, the

charging process to the repair process, and charged batteries to the stock of spare parts. We adapt

and develop the extensive literature on managing spare parts inventory to our setup. The battery

charging process takes a random amount of time, with a mean service time of τ time units. As is

typical in these stations, a large number of (cheap) charging bays is available so “repair” capacity

is not constrained. Once the battery is fully charged, it is placed in the station’s inventory. As

suggested by Mak et al. (2013), we assume that the charged batteries are reused in a first-in-first-out

(FIFO) order. This charging process can be modeled as an M/G/∞ queuing system, which is a

typical assumption in the repairables literature. The provider firm chooses a spare battery inventory

level, Q. At any given point in time, O of these batteries are in the process of being charged,

while (Q−O)+others are available for arriving motorists. If a motorist arrives and no battery is

available, Q < O, she incurs the range-inconvenience penalty, and we assume that she waits at the

station for a new battery; that is, her demand is back-ordered. From Palm’s theorem, we know that,

in a steady state, O is Poisson-distributed. Following standard practice for large-scale repairable

service parts systems (see Kim et al. (2007)), for all further analysis we analyze O as a continuous

random variable that is distributed normally with mean and variance τAssN ·G (R− ess). Further,

we advance the standard setup by taking a slightly more complex and, we believe, more realistic

approach by considering the standard deviation to be a function of the motorist’s decision ess, which

allows us to consider even the second-order effect of the motorist’s demand choices, which turns out

to be important.

the number of motorists waiting at the station at any given time is relatively small, and the correction due to state
dependency can be safely ignored.
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3.3.3. Electric Vehicle Pricing, Adoption, Switching-Station Management and Driving. As is typical

in sequential games, we solve for the equilibrium using backward induction. We start with the last

step, the optimal driving best response, ess, followed by the number of batteries stocked at the

switching station, Q, the pricing for this service, (Fss, pss), and the resulting adoption Ass of electric

vehicles. An owner of a vehicle plans her driving level, e∗ss, to maximize her utility

ess = arg max
e

[
E
ε

[u(e+ ε)]− psse−M (1− r) ·G (R− e)
]
.

11Note here that the motorist now incurs the range-inconvenience penalty only when the charging

facility is out of stock, i.e., with probability 1− r, where r is the availability promised by the service

provider.12, 13 This is a lower penalty than that of a conventional electric vehicle. The utility from

ownership of the vehicle is the above optimal use utility plus the idiosyncratic green utility, Ũgr minus

the purchase price, Fss. A fraction, Ass, of motorists finds this utility to be higher than the utility

from a gasoline vehicle, and they adopt the electric vehicle. Anticipating these driving levels and

adoption rates, the firm selects the fixed fee and the per-mile fee for the service to maximize its profits

while ensuring that it stocks enough batteries to meet the promised service level.14 Specifically,

max
Fss,pss,Q

Ẽ
Ugr

[NAss (Fss + (pss − ce) ess − c)− cQ] ,

s.t. Pr (Q > O) ≥ r.

For each adopting motorist, the profits for the firm include the revenues from the sale of the vehicle,

Fss, the profits from the miles driven, (pss − ce) ess, the costs of batteries in the vehicle, c, and the

11Note that we focus on the part of solution space where R− e > 0 because a solution where all motorists drive more
than the range of the vehicle is neither sustainable (for the switching station firm) nor reasonable.
12Note that, in our setup, the probability that a motorist will find a charged battery in stock (the in-stock probability)
corresponds to the steady state probability that the station is in stock (the fill rate), due to the Poisson Arrivals See
Time Averages (PASTA) property of our setup (Wolff (1982)).
13All our results continue to hold even in a hypothetical scenario in which the service levels were endogenously chosen
by the switching station operator to manage the adoption-cost trade-off such that it maximizes profits.
14Better Place subscribers are guaranteed access to an inventory of batteries with a committed service level agreement
(Better Place (2011a)).
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per-motorist costs of batteries at the station, cQ/NAss.15 In addition to the purchase price of the

vehicle, the firm now also has the per-mile price to maximize its profits. The solution is as follows:

Lemma 2. Equilibrium Outcomes for the Switching-Station Model: The equilibrium driv-

ing, e∗ss, adoption, A∗ss, stocking level, Q∗, and per-mile price, p∗ss, are the solutions to the following

system of equations. First, there is the driving equation,

(3.3) E
ε

[
u′ (e∗ss + ε)

]
−M (1− r) · g (R− e∗ss) = p∗ss.

Next is the stocking-level equation,

(3.4) Q∗ = τA∗ssN ·G (R− e∗ss) + zr
(
τA∗ssN ·G (R− e∗ss)

)1/2
,

the pricing equation,

(3.5) p∗ss = ce + c · g (R− e∗ss) · Ω (e∗ss, A∗ss) ,

and finally the adoption/purchase price equation,

(3.6) 2dA∗ss = E
ε

(u (e∗ss + ε))− cee∗ss − ϕ (e∗ss, A∗ss) · Ḡ (R− e∗ss) + d− Ug − c,

where Ω (e∗ss, A∗ss) ≡ τ+1/2τzr
(
τNA∗ssḠ (R− e∗ss)

)−1/2
represents the change in the stocking level with

respect to the demand at the switching station and ϕ (e∗ss, A∗ss) ≡M (1− r) + cΩ (e∗ss, A∗ss) represents

the total expected penalty incurred in the system (the motorist+the firm) per motorist demand at the

switching station. zr is the standard normal z value.

Equation 3.3 describes the motorist’s decision regarding planned driving. As with conventional

electric vehicles, motorists trade off their utility from driving additional miles, the risk of incurring

the range-anxiety penalty, and the per-mile costs of driving. However, there are two departures.

First, the range-inconvenience penalty is now limited only to instances in which the switching station

is out of batteries, which happens with probability 1 − r. Second, the marginal cost of driving an

15To ensure a non-trivial (pss 6= 0) and unique pricing solution, we assume that the firm’s profit is concave in the
driving level, ess. Technically, this corresponds to a condition on the shape of the distribution of the unplanned driving,
the service level and the battery range: χ (ess, Ass) = δ + cτzr

(
4Ḡ(x)

√
υ
)−1

g2(x) + cτg′(x)
(
1 + zr(2

√
υ)−1) < 0,

where x = R − ess, δ = E
ε

(u′′ (ess + ε)) + M (1− α) · g′ (x) and υ = τAssN · G (R− ess). This assumption holds
for all distributions with a decreasing failure rate; for example, the Gamma distribution with a shape parameter less
than 1. Further, it often holds also for distributions with an increasing failure rate with mild restrictions on other
parameters: for example, the triangular and normal distributions also work when the battery in-stock service level, r,
is not vanishingly close to 1 and the optimal driving e∗ss is not too close to the range R. We also assume that this
concavity is large enough at the optimum such that the Hessian H (e∗ss, A∗ss) is positive. Formally, we assume that
H = γ/δ

(
cτzr · g (x) · ess ·

(
4d
√
υ
)−1 +Assχ/δ

)
− d−1(cτzr)2 · g2 (x)

(
4δ
√
υ
)−2

> 0, at ess = e∗ss and at Ass = A∗ss,

where ω = cτzr ·G (x) (4dAss
√
υ)−1 and γ = N/d (−2 + ω).
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additional mile is not the cost of maintaining and charging the battery, but the price that the motorist

pays to the provider firm. The stocking-level equation (Eq. 3.4) describes the batteries required to

meet the service level constraints. As expected, the constraint is binding and the optimal stocking

level follows directly from the amount required to fulfill the service level constraints.

The pricing equation (Eq. 3.5) characterizes the per-mile price. A decrease in the price of miles

incentivizes motorists to drive more, hence increasing firm sales, but reducing margins. This trade-

off can be managed by using the two-part pricing scheme, i.e., using the purchase and the per-mile

prices. In particular, from traditional models of two-part pricing with downward sloping demand

curves, one would expect the firm to set the per-mile price equal to the marginal cost of servicing the

mile and then to use the purchase price to extract the surplus, with the marginally green motorist

earning zero utility. This is indeed the case in our setup, but the cost of servicing a mile is very

different. There are two components to this cost. First, there is the cost of maintaining and charging

the battery, ce, which is the same as that for the conventional electric vehicles (see the first part of

the RHS in Eq. 3.5). Second, for each additional mile driven, there is the cost of servicing this mile at

the switching station. In particular, the firm is now more likely to see demand for a charged battery

at the station and it must increase its stock of charged batteries. These costs are captured by the

second part of the RHS of Eq. 3.5. In equilibrium, the firm sets the per-mile price equal to this total

cost. The per-mile price can be interpreted as the costs of charging and maintaining the battery plus

an insurance premium– an additional amount paid to limit the range risk. This insurance premium

is captured by the second term in Eq. 3.5. It increases in the battery cost, the charging time and

the promised service level. The first part of the expression Ω reflects the increase in stock due to an

increase in the mean demand at the station, while the second reflects the increase in the safety stock.

Finally, Eq. 3.6 describes the adoption level, which is driven by the vehicle’s purchase price. As

before, decreasing the price increases adoption but reduces revenues. The optimal purchase price

is such that the firm captures half the viable market, that is half the customers with green utility

between the utility of gasoline vehicles and electric vehicles with the mid-point customer earning zero

utility. We next state a fundamental result that drives subsequent results.

Theorem 1. The optimal customer adoption and driving in a switching-station model are strategic

complements, formally (with a slight abuse of the notation) ∂A∗ss/∂e∗ss > 0. This implies that any policy

intervention through a change in any exogenous parameter X will have the same directional effect on

adoption and driving. Formally,

sign

(
∂A∗ss
∂X

)
= sign

(
∂e∗ss
∂X

)
.
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The above theorem highlights an important property of the equilibrium outcome in the switching-

station model: the relationship between equilibrium adoption and driving. Namely, optimal adoption

increases in optimal driving and optimal driving increases in optimal adoption. This observation has

important implications for policy-makers trying to create a favorable environment for switching-

station vehicles. Policy actions can be thought of as changes to the parameters within which the

switching-station model must operate. For example, a battery subsidy can be thought of as a policy

intervention that reduces battery prices, c. An electric vehicle purchase subsidy can be thought of as

a change to the motorist’s green utility, i.e., d. Our theorem suggests that battery subsidies, electric

vehicle purchase subsidies, changes in electricity/gasoline prices, customer inconvenience and other

costs, will all have the same directional effect on adoption and driving. That is, if they increase

the adoption of switching-station vehicles, they will also increase the driving of these vehicles. This

fundamental property of the switching-station vehicle will be at the root of understanding their

effectiveness in decreasing oil dependence and affecting greenhouse gas emissions.

4. The Effectiveness of The Switching-Station Model

A transportation infrastructure dependent on oil is vulnerable to increasing geopolitical uncertainties

and supply disruptions. Policy makers in countries with limited domestic fossil-fuel sources thus are

attempting to design policies that limit dependence on imported fossil fuel, for strategic or economic

reasons. For example, in Israel, the birthplace of the switching-station model, limiting dependence

on imported fossil fuel is both a strategic and commercial concern.16 Adoption of electric vehicles can

limit oil dependence, as electricity used to power electric vehicles can be produced from a variety of

energy sources, including non-oil or even non-fossil-fuel sources. This diversity in the energy source

for powering electric vehicles limits the vulnerability of economies to oil price oscillations and natural

or man-made oil supply disruptions. Multiple countries have set objectives to reduce oil-dependence

by converting motorists from oil-based systems to electric vehicles.17 Thus, a common metric for the

effectiveness of an electric vehicle system in reducing oil dependence is the level of electric vehicle

adoption achieved by the system in a population.

A second source of interest in electric vehicles arises from their lower per-mile carbon footprint.

Carbon emissions contribute to global warming that is associated with climate change, which is
16See for instance, “Israel bids to end global oil dependency by 2020”, Haaretz, September 19th, 2010.
17In his 2011 State of the Union address, President Obama called for putting one million electric vehicles on the road
by 2015 – highlighting a goal aimed at reducing U.S. dependence on oil (U.S. Department of Energy (2011)). The
U.S. Department of Energy in their February 2011 Status Report sees electric vehicles as a key pathway for reducing
petroleum dependence. France set the sales goal for EVs at 100,000 cars by 2015 and 2 million cars by 2020 (Kroon
et al. (2012)). The central government’s plan in China, posted on its website, is targeting the production of 500,000
plug-in hybrid and electric vehicles by 2015 (China Daily July 30 (2012)). To facilitate this goal, China launched a
nationwide program to install large electric system charging stations.
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likely to have catastrophic economic, social and moral consequences. Reducing the transportation

sector’s carbon footprint is thus a desirable goal. The per-mile carbon footprint of an electric system

is typically only 40% of a gasoline system, so adoption and use of electric vehicles can change the

carbon footprint of the transportation sector. Our second metric for system effectiveness, which

captures the objective of carbon emissions reduction, is thus the aggregate carbon emissions from

a population of motorists that can choose between gasoline and electric vehicles. Finally, electric

vehicle systems may be built and operated by entities with commercial interests, and a third metric

for effectiveness of the system is its profitability. We analyze these three dimensions below.

4.1. Profitability of Different Electric Vehicle Businesses. EV systems may be built and

operated by entities with commercial interests and investors so we examine profitability first.

Theorem 2. 1) Equilibrium Operating Profits: The equilibrium operating profits of a switching-

station vehicle provider, Π∗ss, are higher than those of a conventional electric vehicle provider, Π∗ce iff

the cost of batteries, c is lower than a threshold c̄π, where

c̄π = 2Nd
(
A∗2ss −A∗2ce

)
zr
(
τNA∗ssḠ (R− e∗ss)

)1/2
.

2) The equilibrium profits of a switching-station vehicle provider, Π∗ss, exhibit economies of scale with

respect to the population size N . On the other hand, the equilibrium profits of a conventional electric

vehicle provider, Π∗ce, exhibit constant returns to scale. Formally,

∂ (Π∗ss/N)
∂N

>
∂ (Π∗ce/N)
∂N

= 0.

A key difference between the two electric vehicle businesses arises from the extra batteries that must

be stocked at the switching station. Thus, as Part 1 of Theorem 2 illustrates, if batteries are cheap

enough, the switching-station model earns higher profits, the numerator of the threshold battery cost

captures the adoption effects, while the denominator captures the safety stock effects.

Further, a switching-station system provider’s profits exhibit economies of scale that arise from the

key differentiating feature of the model, the switching station. The safety stock of battery inventory

required at the station does not increase linearly with the number of adopting motorists. As the

population and adopters increase, the statistical economies of scale in inventory kick in, which causes

costs to increase in a sub-linear fashion, and profits thus exhibit economies of scale.

4.2. Reducing Oil Dependence. As discussed above, oil dependence reduces in direct proportion

to the adoption level of different systems, thus we use the level of electric vehicle adoption in a system

as our metric for system effectiveness in reducing oil dependence.
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Theorem 3. Reducing Oil Dependence: A Switching-station system is more effective at reducing

oil dependence than a conventional system iff the cost of batteries, c, is lower than a threshold c.

Formally, A∗ss > A∗ce iff

c < c ≡ Mr

Ω (e∗ss, A∗ss)

where, as before, Ω (e∗ss, A∗ss), is the increase in the switching-station cost for an additional unit of

station demand. A∗ss, e∗ss and Ω (e∗ss, A∗ss) are given by Lemmas 1 and 2. Furthermore, the threshold

battery cost, c, decreases in the charging time, τ , and in the per-mile cost of electric vehicle operation,

ce and increases in the market size, N , and in the per-mile cost of fossil-fuel vehicle operation, cg.

The condition in Theorem 3 illustrates the key difference between conventional electric vehicles

and switching-station systems. With conventional vehicles, motorists bear the risk of incurring the

range-inconvenience penalty. In the switching-station model, customers bear the range-inconvenience

penalty only with some probability, 1−r, a reduction of r. The numerator of the expression represents

this reduction in risk exposure and, from the customers’ perspective, is a key advantage of the

switching-station model. However, this model also has a disadvantage. While the customer transfers

a large part of the range-inconvenience risk to the firm, the firm charges the customer for this transfer.

Recall from Lemma 2, Eq. 3.5, that the firm’s per-mile price is at a premium above the cost of charging

and maintaining batteries, which is the per-mile price that the customer pays with a conventional

electric system. This premium is the denominator of the above inequality. From the customer’s point

of view, if the gains from the risk transfer are higher than the loss due to the premium price, adoption

is higher with the switching-station model; otherwise, conventional electric vehicles dominate.

The threshold battery cost, c̄, changes with changes in charging time, per-mile costs of electric,

fossil-fuel vehicle operation and, market size along expected lines, driven by the economies of scale.

Interestingly, this threshold cost is lower than the threshold cost below which switching-station

systems achieve higher adoption, c̄π < c̄. This implies that there always exists a range of battery

costs, (c̄π, c̄) in which the policy maker interested in achieving higher adoption prefers a switching-

station system, but a commercial provider prefers to employ conventional electric vehicles.

The above discussion demonstrates the central premise for the development of the switching-station

system. The results illustrate that, indeed, in certain markets, the switching-station model can

increase the use of electric vehicles and thus reduce dependence on fossil fuels. The main mechanism

for achieving this is the range-risk transfer from the customer to the firm. Customers pay the firm

for the costs of managing this risk, which can manage it at a relatively low cost due to statistical

economies of scale. However, the operation of this seemingly beneficial mechanism has an unintended,

harmful, and as yet overlooked side effect that we demonstrate in the next Theorem.
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Theorem 4. In scenarios where the switching-station system is more effective at reducing oil de-

pendence (adoption), customers who own switching-station vehicles drive more than they would had

they adopted conventional electric vehicles. Formally, A∗ss > A∗ce iff e∗ss > e∗ce.

The intuition behind the above result is related to the strategic complementarity between driving

and adoption in switching-station models (Theorem 1). From the motorist’s point of view, the

switching-station model is an improvement over conventional electric vehicles due to a reduction of

the range-inconvenience penalty in exchange for a premium that is relatively small and decreasing

in market size. But this very reduction in the risk of incurring the range-inconvenience penalty also

incentivizes customers to drive more because, in the switching-station model, driving more does not

increase the chances of being stuck with a depleted battery as much as it does with conventional

electric vehicles. Further, note that the per-mile price for switching-station systems is at the cost

basis because of the two-part tariff. While this total cost is indeed higher, there is no per-mile margin

that the firm is charging. The two-part nature of the pricing scheme helps the firm maximize its

profits and increase adoption, but not charging the customer an extra margin has an additional effect:

it incentivizes the customer to drive more.

This above result is a manifestation of the well-known Jevon’s paradox (Jevons (1866)) In its tradi-

tional interpretation, Jevons paradox concerns technological progress that increases efficiency, which

in turn lowers the relative cost of using a resource and leads to an increase in consumption of the

resource. Our result departs from the traditional interpretation in three ways: First, in our paper,

we are comparing two models with two equally environmentally efficient technologies. Second, un-

like in the traditional interpretation, the business model innovation of the switching-station system

leads to higher per-mile usage costs than the conventional electric vehicles. The main benefit of the

innovation is not in reducing costs of consumption, but in convenience. Finally, there are unique

operational characteristics of the switching-station model (i.e. economies of scale) that reinforce and

strengthen the Jevons paradox-like effect in our case.

Further analysis allows us to narrow down the source of this adoption-driving duality in the switching-

station system. It is the economies of scale in switching station operation that lead to a cascading

effect between adoption and driving. Switching stations facilitate adoption by reducing range anxiety

while charging a usage premium, as adoption rises, this premium becomes smaller (economies of

scale), as the premium becomes smaller, customers are incented to use/drive more, which in turn

increases the desirability of the systems and leads to higher adoptions, and so on and so forth. It is

this cascading effect of the economies of scale that leads to all our key structural results. We also

examined a model (omitted for brevity) with a hypothetical switching station whose operation does
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not exhibit economies of scale. With this model, all our key structural results disappear or become

much less likely to arise, thus confirming that the economies of scale that we capture in our detailed

operational model of switching stations are at the root of our results.

Taken together, this discussion illustrates that the two key departures of the switching-station model–

reduced range-anxiety and a pricing scheme in which the upfront costs are reduced and the provider

firm is also paid for the miles driven– both help incentivize the adoption of electric vehicles, but

they both do so by increasing average planned driving. In fact, our analysis illustrates that there

is a one-to-one correspondence between adoption and driving which, as we will show shortly, has

important implications for the environmental impact of switching-station systems.

4.3. Reducing Carbon Emissions. In most countries, electricity is produced using a combination

of non-renewable and renewable sources of energy (Ambec and Crampes (2010)). Irrespective of the

exact composition of electricity in most countries, systems that use contemporary electric power-trains

have lower per-mile emissions than systems that use fossil-fuel-based power-trains (International

Energy Agency (IEA) (2010)). Thus, electric vehicles supposedly lie at the heart of establishing

a sustainable transportation infrastructure. Total emissions in our model can be computed as the

sum of the emissions from electric-vehicle users and those from fossil-fuel-based users, specifically

emissions EM , ev, ev ∈ {ce, ss} are

EMev = A∗evαee
∗
ev + (1−A∗ev)αge∗g,

where αe and αg are the per-mile emissions from electric and fossil-fuel vehicles, αe < αg. Essentially,

there are two factors that contribute to emissions: adoption of electric vehicles (a higher adoption

leads to lower emissions), and average miles driven (higher average driving leads to higher emissions).

However, as we illustrated in Theorem 4, adoption and driving always go in the same direction, which

leads to competing effects with respect to carbon emissions. Let ∆EM = EMss − EMce, so that

a positive ∆EM indicates that the switching-station system is worse at reducing carbon emissions

than the conventional system. The next theorem examines these conditions.

Theorem 5. When the switching-station system achieves higher (lower) adoption of electric vehicles

than the conventional system, it may lead to higher (lower) total carbon emissions if the electric

vehicles are not sufficiently less emitting than fossil-fuel vehicles. Formally, despite A∗ss > A∗ce,

∆EM > 0 and despite A∗ss < A∗ce, ∆EM < 0 iff αe > αgas · λ, where λ is a positive-valued function

of the model primitives, λ =
e∗g (A∗ss −A∗ce)
A∗sse

∗
ss −A∗cee∗ce

. Furthermore

1. λ < 1 if max (e∗ss, e∗ce) > e∗g.
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2. If Γ = A∗sse
∗
ss −A∗cee∗ce

A∗ss −A∗ce
is increasing in e∗ss, then λ is increasing in c and τ , and decreasing in cg.

3. If A∗ss is concave in e∗ss, Γ is increasing in e∗ss.

4. If the motorist has a quadratic utility of driving (i.e. u (e) = eθ−e2/2) and g (�) follows a uniform

distribution on the interval [−a, a] with a ≥ R , Γ increases in e∗ss.

The above theorem illustrates why the dual policy objectives of reducing oil dependence and carbon

emissions may be in conflict. While switching-station systems increase adoption and consequently

reduce oil dependence, they also incent higher driving which can lead to increased carbon emissions.

In particular, the adoption-driven benefits that switching-station systems provide over conventional

systems may be dominated by their use/driving related disadvantages. This is more likely to happen

if the per-mile emissions from electric vehicles are high enough. Following the same logic, switching-

station systems can be better for the environment even if they are adopted by fewer people. In our

detailed data-driven numerical analysis in Section 5, we highlight vital policy recommendations that

derive from this analysis.

The formal statement of the Theorem 5 further characterizes λ, the threshold carbon intensity of

electricity production at which the preferred systems for the two objectives are different. A decrease

in λ makes the key misalignment between oil-dependence (adoption) and emissions reduction in

Theorem 5 more likely. Note that function Γ is the ratio of A∗sse∗ss − A∗cee∗ce, the difference between

total expected driving for switching-station systems and conventional electric vehicles, to A∗ss −A∗ce,

the difference in adoption. When the optimal driving e∗ss increases as a result of a change in any

exogenously given primitive in our model, the increase in total expected electric system driving

dominates the effect of an increase in adoption; hence the misalignment results in Theorem 5 become

more likely. This result holds if the adoption is concave, i.e., it increases in a diminishing way with

respect to the optimal driving. More specifically, part 4 illustrates a utility function and a distribution

under which the above corollary holds. Consider a change in battery technology that leads to an

increase in both adoption and driving (such as a reduction in battery cost or charging time), so

that λ decreases. In such a case, the condition αe > αg · λ in Theorem 5 becomes more likely to

hold, making the electric vehicle system with a higher adoption worse for the environment. If it is

the switching-station system that leads to higher adoption, improvements in battery technology can

actually be worse for the environment than under a conventional electric vehicle system!

5. Scenario Analysis and Implications

In this section, we calibrate our models with motorist behavior data, electric vehicle technology data,

operation costs and emissions data to estimate the relative effectiveness of the two systems under the
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status quo and other plausible future scenarios. As before, we consider adoption and emissions as

our metrics of the two objectives. In addition to status quo parameters, we consider possible future

changes in battery technology and the likely evolution of energy prices. The changes in battery cost

and performance and changes in prices of fuel, electricity may arise out of a natural evolution of

technology, demand, supply, etc. or as a result of direct policy interventions such as subsidies and

taxes– our analysis applies irrespective of the source of changes that lead to the examined scenario.

Tables 5.1 to 5.6 show our calibrated demand parameters and the method and sources employed to

come up with the estimates. In the absence of any data on the range-inconvenience penalty, M , we

make no assumptions and present our results for many different values of M . Given cg = ¢10.9, a

penalty of M = $1 is equivalent to a gasoline customer’s total gasoline cost for 9.17 miles of driving.

Parameter Estimated Value Estimation Method/Sources
Range R = 100 miles Standard performance of a 24 kWh battery (Better Place (2011b))

Charging Time τ = 1/4 days

Battery Cost c = $7.15/ day

A battery costs $12500− $15000 (we take the average $13750) and
has a lifetime of 8 years (Better Place Blog (2011)). The daily cost
is found based on a fixed annuity amount over the lifetime of a
battery with an interest rate of 11.3%. As a proxy for the interest
rate, we used the weighted average cost of capital (WACC) for Tesla
Motors (Paradise et al. (2010)), another electric car company at a
similar stage of development as Better Place.

Table 5.1. Battery Technology Parameters

Parameter Estimated Value Estimation Method/Sources

Cost of
Gasoline cg = ¢10.9/mile

The retail price of gasoline was $2.82 per gallon in 2010 (U.S. En-
ergy Information Administration (2011b)). An average passenger
car gets 25.8 miles to the gallon based on the U.S. Environmental
Protection Agency (EPA) (2010).

Cost of
Electricity ce = ¢2.5/mile

The U.S. average retail price of electricity for the transportation
sector was $10.42 per kWh in 2010 (U.S. Energy Information Ad-
ministration (2011a)).

Table 5.2. Energy Cost Parameters

Our calibrated model predicts long-term equilibrium daily motorist driving for gasoline vehicles to

be around 28 miles for the current state of the world. The driving of conventional electric vehicles, on

the other hand, depends on the range inconvenience penalty and can range from ~48 miles per day
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Parameter Estimated Value Estimation Method/Sources
Gasoline
System
Emissions

αg = 341 gr/mile
Based on 8, 788 grams of CO2/gallon (U.S. Environmental Protection
Agency (EPA) (2005)) and a fuel economy of 25.8 miles/gallon of an
average passenger car.

EV
Emissions
(USA)

αe = 138 gr/mile

Based on 600 grams of CO2/kWh of electricity generated based on
the US electricity mix in 2009 (U.S. Energy Information Adminis-
tration (2010b)) and a range of 100 miles of a 24 kWh battery. This
value is found by dividing total CO2 emissions by total net electricity
generation in 2009, the most recent year reported.

Table 5.3. Carbon Emission Parameters

Parameter Estimated Value Estimation Method/Sources

Utility
Function

u(Y ) = 1
b

(
θY − Y 2

2

)
There is little evidence in the literature for a functional form of the
utility function for driving, but based on data a quadratic utility
function with a satiation level fits well the consumption of driving
miles (see Singh and Vives (1984) and Farahat and Perakis (2010)
for a similar use of the quadratic function). Section 6.3 discusses the
use of log, square root and power utility functions.

Satiation
Level θ = 58.54 miles

A vast literature on the estimation of gasoline demand (Dahl (1979)
and Espey (1998)) has focused on estimating the price elasticity εp
of gasoline demand by using a log-linear model specification. Brons
et al. (2008) estimate the long-run price elasticity of gasoline demand
as εp = −0.84 by using meta-analytical techniques that unify all
other studies in the literature. To find the intercept value, we use
the mean driving level e∗g = 37.14 miles from the 2001 National
Household Travel Survey and a gasoline price of $1.78 per gallon in
2001. θ is the average satiation level for motorists and b is a scaling
factor that captures the utility from driving. The implied demand
function from our utility model fits the demand function from the
literature extremely well.

Scaling
Factor b = 277.74 miles/$

Table 5.4. Driving Utility Parameters

for the extreme case of no range inconvenience penalty to lower values for high range inconvenience

penalties. With switching station vehicles, the driving is less sensitive to the range inconvenience

penalty. These estimates of driving and the subsequent estimates on system efficacy are based on

long-term price elasticities of driving– thus the differences in driving derive not only from differences

in per-mile prices and vehicle convenience, but also from to long-term choices, such as choice of

residence, urban planning, availability and competitiveness of alternate modes of transport, etc. In

Section 5.4, we re-examine our estimates with smaller values of elasticity (short-term), which lead to

smaller differences between driving levels. The central message of the subsequent results continues
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Parameter Estimated Value Estimation Method/Sources

Distribution

Gamma Shape

Gamma Scale

Gamma Location

g() ≡ Shifted Gamma

k = 1.0876

m = 34.147

p = 37.14

We use the distribution of US motorists’ daily driving dis-
tances (Hu and Reuscher (2004)) to estimate the distribution.
We use the Kolmogorov-Smirnov test to check the fit of var-
ious distributions, and we find that the gamma distribution
fits total driving distance well (p-value of 0.88). The mean
and standard deviation of distribution are calculated as 37.14
and 35.61 miles respectively. This is the distribution of total
daily driving distance and includes the customer’s decision e
as well as the noise term ε. In order to isolate ε from e, we
shift the distribution to the left by its mean.

Table 5.5. Unpredictable Demand Variability Parameters

Parameter Estimated Value Estimation Method/Sources
Switch
Availability r = 99% Marketing Materials and website of Better Place.

Green
Utility–
Maximum
Willingness to
Pay (WTP)

d = $5.30 /day

Hidrue et al. (2011) estimate the WTP for some EV attributes based
on a survey of 3029 respondents. We found how much extra a cus-
tomer is willing to pay for an EV that more or less mimics a contem-
porary gasoline system (with a range of 300 miles, a charging time of
10 minutes, etc.), but emits 60% less CO2 than a gasoline car. We
came up with an estimate of $10, 192 for the maximum WTP over
the system’s 8 years of lifetime. Daily WTP is found based on a fixed
annuity amount over the lifetime with an interest rate of 11.3%.

Table 5.6. Other Model Parameters

to hold even with these smaller values and even if the driving levels of different vehicle types are very

close due to inelastic demand or other model miscalibration.

Results. We investigate the relative effectiveness of switching-station and conventional electric ve-

hicle systems based on the parameters of existing technology and known motorist behavior patterns

in Tables 5.1–5.6 and compare it with multiple plausible scenarios including technological evolution

and energy cost evolution.

5.1. The Impact of Technology Evolution. Figure 5.1 illustrates the adoptions and emission

under different systems for the status quo (middle row) and in two future scenarios that may arise

due to improvements in battery technology. The middle row shows the results for the current state

of the world with a “high” cost of battery ($7.15) and a “low” range (100 miles). The top row

illustrates scenarios with lower battery cost ($2.86 as projected for 2020 by the Boston Consulting

Group (2010)). The bottom row illustrates a scenario with a higher range, 200 miles.



SWITCHING-STATION EVS: ADOPTION AND ENVIRONMENTAL IMPACT 25

Range-Inconvenience Penalty (M) Range-Inconvenience Penalty (M) Range-Inconvenience Penalty (M)          

Low Cost of Battery ($2.86) and Low Range (100 miles)

(d) (e) (f)

(a) (b) (c)

The Current State of the World (High Cost of Battery ($7.15) and Low Range (100 miles))

Range-Inconvenience Penalty (M) Range-Inconvenience Penalty (M) Range-Inconvenience Penalty (M)         
High Cost of Battery ($7.15) and High Range (200 miles)

Range-Inconvenience Penalty (M) Range-Inconvenience Penalty (M) Range-Inconvenience Penalty (M)          
(g) (h) (i)

50%

55%

0 1 2 3 4

Ad
op
tio
n

8.1

8.3

0 1 2 3 4

Em
iss
io
ns

Ace

Ass
EMss

EMce

-0.04

0.08

-2%

4%

0 1 2 3 4 Em
iss
io
ns

Ad
op
tio
n

EMss-EMce

Ass-Ace

10%

15%

0 1 2 3 4

Ad
op
tio
n

9.2

9.4

0 1 2 3 4

Em
iss
io
nsAce

Ass

EMss

EMce

-0.04

0.04

-3%

3%

0 1 2 3 4

Em
iss
io
ns

Ad
op
tio
n

EMss-EMce

Ass-Ace

13%

15%

0 1 2 3 4

Ad
op
tio
n

9.2

9.4

0 1 2 3 4

Em
iss
io
nsAce

Ass

EMss

EMce

-0.01

0.01

-1%

1%

0 1 2 3 4

Em
iss
io
ns

Ad
op
tio
n EMss-EMce

Ass-Ace

The black lines represent the conventional (dashed) and switching-station models (solid); the gray lines illustrate the differences
in emissions (solid) and adoption (dashed). Emissions are in kg ofCO2.

Figure 5.1. The Impact of Technological Evolution on Adoption and Emissions

First, note from Figure 5.1, panels (d) and (e), that the adoption and emissions in the conventional

system are more sensitive to the range-inconvenience penalty M given the current range of 100 miles

because the incidence of range inconvenience is much higher in the conventional system. Next note

that for high enough range-inconvenience penalties, a switching-station system can lead to higher

adoption of EVs, validating that these systems hold substantial promise as their proponents argue.

Comparing panels (a) and (d), we see that the effect of a decrease in battery cost on adoption is

substantial both for conventional and switching-station systems. Adoption can increase to as high as

55% (from panel (a)) for both systems, which is almost four times today’s maximum adoption value

of 14% (from panel (d)). On the other hand, when we look at Figure 5.1 (b) and (e), we see that a

decrease in battery cost has a much smaller effect on total emissions– it corresponds to a decrease of

about 11% from the current emissions values.

A comparison of panels 5.1 (c) and (f) suggests that switching-station systems become superior to

conventional systems in the future in terms of adoption. That is, a reduction in the cost of batteries
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favors switching-station systems. However, this also leads switching-station system to emit more in

the future, which reiterates the central misalignment of objectives, superiority in terms of adoption

does not necessarily mean lower emissions. As batteries are expected to become much cheaper in the

future, the price premium paid by customers will be much lower, hence usage of switching-station

systems will be elevated, leading to higher emissions.

Finally, we see from panel (f) that today the dual policy objectives of increasing EV adoption and

reducing carbon emissions are aligned. Switching-station systems are, in fact, preferred for achieving

reductions in both oil dependence and emissions. However, based on our model and scenario analysis,

we expect that these two goals will not be aligned in the future, if, as expected, battery costs go down

(panel (c)). When batteries become cheaper, switching-station systems will become more effective

in increasing EV adoption, but this also leads to higher emissions. Note that all of the above effects

can arise out of a reduction in battery costs due to technology advancements, but the same effects

and misaligned policy objectives will exist if battery costs are reduced due to (misguided) battery

price reducing policy interventions such as battery purchase, research or manufacturing subsidies.

Note from Figure 5.1 panels (g) and (h) that an improvement in battery range leads the two systems

to become similar both in terms of adoption and emissions. Not surprisingly, if battery range is high

enough, range anxiety ceases to be an issue and the switching-station system becomes similar to the

conventional system. When we look at Figure 5.1 (d) and (g), we see that the effect of an extension

in battery range on adoption is quite limited both for conventional and switching-station systems.

It increases adoption up to 2 − 3% maximum, depending on the level of range inconvenience. As

a result of this limited change in adoption, the change in emissions is also quite limited, less than

0.5% from the current emissions values. Note that this and the above analysis imply that battery

cost reductions have a much larger impact on adoption and emissions than battery range extension.

Finally, note in panel (i) that, as opposed to the battery cost reduction effect, the dual objectives

of increasing electric vehicle adoption and reducing greenhouse gas emissions are still aligned when

there is an extension in battery range. In other words, there won’t be any misalignment in the dual

policy objectives; however, the switching-station model does not help increase EV adoption either.

5.2. The Impact of Changing Energy Costs. Energy costs vary widely as a results of changes

in supply and demand and because of idiosyncratic taxation. In our next set of counter-factual

analyses, we investigate how a change in the costs of electricity and gasoline influence the adoption

and emissions in our two systems. In Figure 5.2, the middle row shows the current state of the world

(as before). The top row illustrates our analysis under a scenario with the long-run cost of gasoline
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at 50% more than the current long-run value (i.e., c̄g = ¢16.35, which corresponds to ~$4.20/gallon)

and the bottom row with the cost of electricity at 50% more than the current value (i.e., c̄e = ¢3.75).
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The black lines represent the conventional (dashed) and switching-station models (solid); the gray lines illustrate the differences
in emissions (solid) and adoption (dashed). Emissions are in kg ofCO2.

Figure 5.2. The Impact of Energy Cost Evolution on Adoption and Emissions

First, note from Figure 5.2 panels (a) and (d) that an increase in the cost of gasoline favors both

electric vehicles in terms of adoption, but it favors the switching-station system more. Thus, the

expected rise in oil prices in the future (U.S. Energy Information Administration (2010a)) will increase

the attractiveness of switching-station systems, which is in line with our results in Theorem 3, a

finding that is driven by the economies of scale in the switching-station system. More importantly,

comparing panels (b) and (e) shows that the reduction in emissions is quite substantial due to an

increase in the cost of gasoline: the decrease is almost 50%, much larger than all other comparisons

examined by our study. Based on this analysis, we believe that a policy of gasoline taxes that leads to

the above hypothesized increase in gasoline prices is the most effective tool in reducing emissions. The

effect of an increase in the cost of electricity is similar to the effect of the cost of gasoline, but in the

opposite way. It hurts both systems, but hurts switching-station systems more due to the economies
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of scale effect. On the other hand, the change in emissions is quite limited as seen in Figure 5.2 (h),

suggesting that making electricity cheaper would not be an effective tool for reducing emissions.

5.3. The Impact of the Electricity Mix. As Theorem 5 suggests, the ratio of the per-mile emis-

sions advantage of electric vehicles over fossil-fuel systems, αe/αg, is a key parameter that influences

the effectiveness of switching-station systems in reducing emissions. This environmental advantage

depends crucially on the mix of sources used to produce electricity. Further, the electricity mix is

also a key variable that determines whether the dual policy objectives of reducing oil dependence and

carbon emissions are aligned. In this section, we investigate the relationship between the electricity

mix and the policy objective alignment. We compare three different countries with very different

electricity mixes. First, we consider France, which has a generation mix that leads to low carbon

emissions due to the widespread use of nuclear sources (with αe/αg = 0.06). Next is the United States,

which uses a mix of nuclear, wind and fossil-fuel-based production (with αe/αg = 0.4). Finally, we

consider China, in which the generation mix is dominated by coal, and which is associated with high

carbon emissions (with αe/αg = 0.5).18 Figure 5.3 shows our results. The top row compares the

alignment of dual policy objectives in different countries with the current state of battery technology,

and the bottom row shows results in a future scenario in which batteries cost less.

Range‐Inconvenience	Penalty	(M)										 Range‐Inconvenience	Penalty	(M)										 Range‐Inconvenience	Penalty	(M)										

The	Current	State	of	the	World	(High	Cost	of	Battery	($7.15))

France								 USA								 China							

(d) (e) (f)

(a) (b) (c)

2020	Projections	(Low	Cost	of	Battery	($2.86))

France								 USA								 China							

Range‐Inconvenience	Penalty	(M)										 Range‐Inconvenience	Penalty	(M)										 Range‐Inconvenience	Penalty	(M)										

‐0.03

0.03

‐3%

3%

0 1 2 3 4

Em
is
si
on
s

Ad
op
ti
on EMss‐EMce

Ass‐Ace

‐0.08

0.16

‐2%

4%

0 1 2 3 4 Em
is
si
on
s

Ad
op
ti
on

EMss‐EMce

Ass‐Ace

‐0.24

0.24

‐3%

3%

0 1 2 3 4

Em
is
si
on
s

Ad
op
ti
on

‐0.04

0.04

‐3%

3%

0 1 2 3 4

Em
is
si
on
s

Ad
op
ti
on

Ass‐Ace

EMss‐EMce EMss‐EMce

Ass‐Ace

‐0.20

0.10

‐8%

4%

0 1 2 3 4

Em
is
si
on
s

Ad
op
ti
on

‐0.04

0.08

‐2%

4%

0 1 2 3 4 Em
is
si
on
s

Ad
op
ti
on

Ass‐Ace

EMss‐EMce

EMss‐EMce

Ass‐Ace

The solid and dashed lines represent the emissions (in kg CO2) and adoption differences respectively

Figure 5.3. Emissions in France, USA and China

Figure 5.3 panels (a) and (d), show that for an economy like France, there is no misalignment in

the policy objectives, with current technology or improved technology– the preferred system for both
18We find αFRe = 19.1 gr/mile and αCHe = 171 gr/mile based on 83 and 745 grams of CO2/kWh of electricity generated,
with the 2008 French and Chinese electricity mix (International Energy Agency (IEA) (2010)).
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reducing oil dependence and carbon emissions is the same. In the USA, the objectives are aligned

today, but misalignment is expected to happen in the future as a result of battery cost improvements.

Note that more recent anecdotal data than that used in this study suggests that battery improvements

may arrive sooner than forecast, definitely before a switching-station system can become a reality

indicating that even for the USA, a misalignment in policy objectives is highly likely. Finally, in

China, the electricity generation mix is highly polluting and the system that is more effective in

reducing oil dependence is less effective in reducing emissions. With status quo parameters, the

system that leads to higher adoption is also associated with higher carbon emissions today, an effect

that will be exacerbated in the future (panels (c) and (f)), suggesting that switching-station systems

come with tradeoffs between the dual policy objectives in these countries.

5.4. Price Elasticity of Driving. For many years, researchers and policy makers have sought to

understand motorist response to changes in the price of gasoline so as to design effective energy

and environmental policy. However, empirical study results differ greatly in their estimates of the

price elasticity of driving/gasoline demand. This is hardly surprising, given the spatial and temporal

variation between studies, the assumptions inherent in the behavioral model underlying the demand,

including measures of quantity, price, income, system ownership, countries included, the specifications

of the estimated demand function; and the econometric estimation technique. For example, Espey

(1998), using long-run and short-run price elasticity estimates from previous studies, reports that the

short-run price elasticity estimates for gasoline demand range from 0 to -1.36, averaging -0.26 and the

long-run price elasticity estimates range from 0 to -2.72, averaging -0.58. Given the huge heterogeneity

among estimates and the fact that it is a key variable that affects driving level of customers, we

investigate the relationship between the price elasticity and the policy objective alignment in this

section. We again compare the USA, France and China by using two different price elasticity values

and the projected cost of battery for 2020. In Figure 5.4, the top and bottom rows illustrate our

analysis under scenarios with price elasticities of -0.26 and -0.58 respectively, both these levels imply

a much lower responsiveness of motorist driving to changes in prices than our original estimates.

Figure 5.4 shows that for the French and the U.S. energy mix there is no misalignment in the

policy objectives, neither with the low nor with the medium price elasticities. However, in China,

increased EV adoption is associated with increased carbon emissions with the medium price elasticity,

suggesting that dual policy objectives may not be aligned in countries with a coal-based electricity

mix even if price elasticity is much lower than the value used in the original study. Note here that

even though a part of our result for the USA changes on the lower range of elasticity estimates, this

analysis is predicated on multiple conservative projections of the model parameters. For instance,
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The solid and dashed lines represent the emissions (in kg CO2) and adoption differences respectively

Figure 5.4. The Impact of Per-mile Price Elasticity on Emissions in France, USA and China

if battery technology progresses faster than the estimates we use (as seems to be the case based on

more recent data), all our results will likely hold even for these low levels of elasticity.

6. Extensions

6.1. Heterogeneity in Driving Needs. We have extended our analysis to the case in which mo-

torists differ from each other in their driving needs rather than in their desire for green products.

We built a model where motorists have a quadratic utility of driving and their satiation level is

distributed along a general distribution H. Interestingly, while previously motorists with the green

utility above a threshold level adopt electric vehicles, in the new model the adopting population is

defined by a range of satiation levels, (θν1 , θν2), ν ∈ {ce, ss}. Motorists with limited driving needs and

satiation levels below θ·1 derive limited operating cost savings from the lower per-mile costs of EVs.

On the other hand motorists with higher driving needs and satiation levels above θ·2 do not adopt

EVs as they have a higher likelihood of driving more than the limited range of EVs, incurring the

range-inconvenience penalty. Recall that this penalty is much more severe in the case of conventional

electric vehicles, where each time the motorist drives above the range, she incurs the penalty; whereas

with the switching-station model the penalty arises in the relatively rare case when the switching

station is out of batteries. Thus, for most reasonable parameter values, we find that θss2 ≥ θce2 , i.e.,

there exists a population of high driving motorists that cannot be captured by conventional electric

vehicle systems, but only by switching-station systems. From a practical point of view, our analysis
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of adoption with heterogeneous driving needs suggests that switching-station systems should target

customer segments with high driving needs, such as fleet operators, delivery systems and taxis.

Our analysis confirms that the structural properties identified in Theorems 1-5 hold even if motorists

were heterogeneous in their driving needs. Further, in replicating our numerical analysis with het-

erogeneous customers we confirm all results stated above, we find that the dual policy objectives of

reduction in oil dependence and carbon emissions are often misaligned.

6.2. Green Utility. There are limited attempts in the literature to measure and model the addi-

tional utility that customers derive from using equally performing green products, the green utility

in our model. In the absence of any data on the distribution of green utility, we assume that it is

distributed uniformly in the interval [0, d]. By assuming that the green utility is not negative, and

on average is positive, we may be inflating the adoption impact of electric vehicles. To address this

concern, we have extended our analysis to consider a distribution such that motorists are equally

likely to obtain negative or positive utility from a green product, and the average customer obtains

zero green utility. Specifically, we assume that Ũgr is uniformly distributed in the interval [−d, d].

This does not lead to any structural change in any of the Theorems. We also find that all qualitative

claims from our original scenario analysis in Section 5 continue to hold even with the use of a green

utility which has a mean of zero.

6.3. Additional Discussion. In addition to the results described above, we conducted a number

of additional analyses to verify the robustness of our results. Our original estimates are based on

a weighted average cost of capital of 11.3% but are unchanged even with a much lower cost of

5%. We considered a quadratic driving utility function with a satiation level but we replicated the

analysis with log, square root and power utility functions. While calibrating the parameters of these

functions, we find that each of them represents a more elastic response to costs of driving than

our main assumptions, this accentuates all our effects, resulting in the policy misalignment, and

all our other key results become even more likely. Finally, our analysis above relies on estimates

of the average carbon intensity of electricity in different countries. There are multiple alternate

assumptions possible here. First, some proponents of switching-station systems envision that depleted

batteries will only be charged at night, thus using base-load generation capacity, which may be less

polluting than the average capacity. By our estimates, restricting battery charging (or repairs in

our model) to only the night will significantly increase the number of batteries that will need to be

stocked at the station, which will make the system far less promising, perhaps even commercially

unviable. Another argument supports using the (much higher) marginal carbon intensity of electricity

production because charging electric vehicles is a new demand on the electric grid and as such in
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most countries it will require using the marginal or peak-load sources of electricity. On balance, we

feel that our estimates above using a relatively inelastic utility function and average carbon intensity

of electricity are very conservative, and we feel confident that the policy misalignments that we find

are quite likely to come to continue.

7. Discussion

Our model had the ambitious goal of capturing the salient features of electric system adoption

decisions by modeling range anxiety and the impact of different ownership structures (selling miles

vs. selling batteries). Although we believe our model captures these two key factors in the electric

system adoption decision, naturally, it does so at the expense of other considerations. Clearly, the

adoption of electric vehicles is a very complex decision so, in order to focus on key tradeoffs between

the two business models we discuss, we had to make a number of simplifications and assumptions.

Given that our paper is one of the very few to study this question from a modeling point of view,

there is little literature available to guide our efforts, so we had to make some choices. Some of the

obvious phenomenon that we omitted include:

. The adoption process of new technology is clearly dynamic with multiple feedback loops. An

analytical model of such a feedback process is analytically intractable (see, e.g., Struben and

Sterman (2008) for a systems dynamics approach). Our model considers adoption as a one-time

decision, even though it permits the use of non-stationary and correlated distributions describing

the driving realizations on different days. On another level, our model can be interpreted as an end-

state analysis that helps identify which system is preferred after the model attains high visibility.

This allows policy makers to identify which end state is desirable, and then appropriate policies

could be introduced to facilitate adoption and diffusion of the system.

. We chose to focus on the decision to adopt electric vehicles with a gasoline system as a base case.

One could envision more complex models in which other green modes of transportation are con-

sidered (e.g., public transportation, bicycling). Likewise, one could attempt to model a tripartite

competition among gasoline, conventional electric and switching-station systems. Naturally, we

would not expect this model to lead to many tractable results. An alternative could be to focus on

the high-level adoption decision at the expense of operational details (cf. Chocteau et al. (2010)),

which we intend to do in a follow-up paper focused on public policy.

. Our model is based on a partial equilibrium analysis that considers the differences in the use and

adoption of different electric vehicle systems. The use and adoption of electric vehciles may also

impact the use of other means of transport not considered in our model, such as air-transport,
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shipping, etc. The change in the oil-dependence and carbon emissions on account of changes

pertaining to other modes of transport are thus excluded from our analysis.

. There are other potential benefits of electric vehicles due to, for instance, lower maintenance costs

(cf. Chocteau et al. (2010)). Moreover, the switching-station model could have an advantage due

to battery recycling or reuse by the company which owns the battery or, for instance, due to better

battery maintenance by the company rather than by the individual motorists. As long as these and

other costs that we do not account for are fixed, they can be easily incorporated into the model

with predictable results.

. Our model concerns a single switching station while, in practice, one expects to see multiple

stations covering some geographical area. Studying the issue of locating these stations is a fruitful

avenue for future research (see, e.g., Cachon (2011) for research on a related issue) as a function

of population density and/or traffic patterns. These issues clearly merit a separate study and, if

anything, modeling the network of stations would further increase the economies of scale effect and

exacerbate the key misalignment result in our model.

. It is likely that the government would intervene into any large-scale electric car project by proposing

subsidies and tax breaks, along with standards and legal requirements. Similarly, a mobility project

on large scale could cause intense competition among electricity providers, car and battery manu-

facturers and infrastructure builders. Once again, these issues are clearly outside the scope of our

paper but, at present, they do not seem to play a major role: e.g., Better Place uses a single type

of battery, and cars come from a single manufacturer (Renault-Nissan) without much competition.

. There are numerous issues related to the electricity supply side which we sidestep in this paper. For

instance, batteries at the switching stations can be used to store electricity and give it back to the

network at peak demand, or the charging process can be otherwise optimized to take advantage of

fluctuating electricity prices. If this is done, we expect to see the switching-station model become

even more attractive. At present, however, it is difficult to estimate the potential impact of such

optimization since the business model is not yet tested on the electricity supply side.

Overall, we are confident that the key result of our paper– that there is an overlooked inherent

tension between the twin goals of decreasing oil dependence and reducing carbon emissions with the

use of a switching-station system– would survive if our analysis were extended to include most of

the above proposed additional factors. While we believe that, overall, the switching-station model

offers a promising operational solution to the issue of limited electric vehicle adoption (see Girotra

and Netessine (2011, 2013, 2014) for further discussion of such new business models) and can be an

effective solution to reduce carbon emissions for some countries, we advocate a cautious examination

of the effects of such a system based on a rigorous analysis of its operational dynamics.
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Interestingly, during the writing this paper, a visible promoter of switching station based vehicles to

individual motorists, Better Place, entered into bankruptcy on account of poor financial planning.

At the same time, Tesla motors has adopted the switching station concept for its luxury vehicles and

has since achieved considerable financial success. There are also budding successes in commercial

automobile fleets and warehouse equipment (fork lifts).While our models are calibrated on a generic

segment of motorists, this suggests that calibrating models with data on different market segments

might be a promising avenue for further research. More importantly, we observe that while individual

companies may have had more or less success with the model, the core concept of switching station

models remains relevant and it is critical to better understand its performance.

We urge policy makers to use our analysis in three ways: First, we have identified the preferred system

for achieving different objectives under different scenarios. Policy makers should create conditions

to support introduction of the system relevant to their setting. Second, policy makers should not

conflate the dual objectives of oil dependence and emissions reductions; the preferred system and the

policy interventions that further that system may be different for the two objectives, the departure

between the two objectives being most severe when switching-station systems are employed, when the

energy mix is coal-heavy, and when battery technology advances. Finally, gasoline price increasing

policy interventions are most effective for reducing emissions, while subsidies which reduce the total

cost of ownership of electric vehicles are best suited for reducing oil dependence.
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Appendix

Appendix A. Proofs for Lemmas and Theorems

A.1. Proof of Lemma 1 (Page 9).

Analysis of a Conventional Electric Vehicle Customer’s Problem. Customers set their optimal driving best

response e∗ce such that e∗ce = arg maxe
[
E
ε

[u (e+ ε)]− cee−M ·G (R− e)
]
. The first-order condition with respect to e

is given below:

(A.1) E
ε

[
u′ (e∗ce + ε)

]
− ce −M · g (R− e∗ce) = 0.

For e∗ce that solves Eq. A.1 to be a unique optimum, we assume that the following is true:

Assumption 1: E
ε

[u′′ (e+ ε)] +M · g′ (R− e) < 0 for ∀e.

Analysis of the Conventional Electric Vehicle Firm’s Problem. The firm solves the maximization prob-

lem maxFce Ẽ
Ugr

[I {Uce > Ug} · (Fce − c)] where Uce = E
ε

[u (e∗ce + ε)] − cee
∗
ce − M · G (R− e∗ce) − Fce + Ũgr. Given

Ẽ
Ugr

[I {Uce > Ug}] = P
(
Ũgr > Ug − E

ε
[u (e∗ce + ε)] + cee

∗
ce +M ·G (R− e∗ce) + Fce

)
and Ũgr ∼ Uniform [0, d], the

first-order condition with respect to Fce is given below:

E
ε

[u (e∗ce + ε)]− cee∗ce −M ·G (R− e∗ce) + d− Ug + c− 2F ∗ce = 0.

F ∗ce is the unique optimum, as the second-order condition is −2 < 0. Given F ∗ce, the fraction of customers who adopt

the electric vehicle A∗ce is given by

(A.2) A∗ce = Ẽ
Ugr

[I {Uce > Ug}] =
(
E
ε
[u(e∗ce+ε)]−cee∗ce−M·G(R−e∗ce)+d−Ug−c

)
/2d.

Equations A.1 and A.2 characterize Lemma 1.

A.2. Proof of Lemma 2 (Page 14).

Analysis of a Switching-Station Vehicle Customer’s Problem. Customers set their optimal driving best re-

sponse ess such that ess = arg maxe
[
E
ε

[u(e+ ε)]− psse−M (1− r) ·G (R− e)
]
. The first-order condition with respect

to e is given below:

(A.3) E
ε

[
u′ (ess + ε)

]
− pss −M (1− r) · g (R− ess) = 0.

For ess that solves Eq. A.3 to be a unique optimum, we need E
ε

[u′′ (ess + ε)] + M (1− r) · g′ (R− e) < 0 for e < R.

Given Assumption 1 , this automatically holds.

Analysis of the Switching-Station Vehicle Firm’s Problem. The firm solves the maximization problem

max
Fss,pss,Q

Πss = Ẽ
Ugr

[NAss (Fss + (pss − ce) ess − c)− cQ]

s.t. Pr (Q > O) ≥ r
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where Ass = P
(
Ũgr > Ug − E

ε
[u (ess + ε)] + pssess +M (1− r) ·G (R− ess) + Fss

)
. Given that O is distributed nor-

mally with mean and variance τAssN ·G (R− ess), at the optimal driving and adoption levels e∗ss and A∗ss, Q∗ simply

solves

(A.4) Q∗ = τA∗ssN ·G (R− e∗ss) + zr
(
τA∗ssN ·G (R− e∗ss)

)1/2
,

where Φ is the cdf of the standard normal distribution and zr is the standard normal z value. The first-order conditions

with respect to Fss and pss are given below:

∂Πss

∂Fss
= N

d

(
E
ε

[u (e∗ss + ε)]− 2p∗sse∗ss + cee
∗
ss −M (1− r) ·G (R− e∗ss)(A.5)

+c ·G (R− e∗ss) · Ω (e∗ss, A∗ss) + d− Ug + c− 2F ∗ss
)

= 0,

∂Πss

∂pss
= e∗ss

∂Πss

∂Fss
+NA∗ss (p∗ss − ce − c · g (R− e∗ss) · Ω (e∗ss, A∗ss))

∂ess
∂pss

= 0,(A.6)

where Ω (e∗ss, A∗ss) = τ + 1/2τzr
(
τNA∗ssḠ (R− e∗ss)

)− 1
2 and ∂ess

∂pss
= 1/

(
E
ε
[u′′(e∗ss+ε)]+M(1−r)·g′(R−e∗ss)

)
< 0. Next, we

show that there exist unique maximizers F ∗ss and p∗ss that solve Equations A.5 and A.6. Because ∂Πss

∂Fss
= 0 and ∂ess

∂pss
< 0

in Eq. A.6 and defining β (pss) = pss − ce − c · g (R− ess) · Ω (ess, Ass), we need β (p∗ss) = 0 at the optimality. Given

∂β

∂pss
= NAss

(
1 + cτξ(ess, Ass)

∂ess
∂pss

)
∂ess
∂pss

with ξ (ess, Ass) =

(
zr

4Ḡ(x)
(
τAssN ·G (x)

)1/2
g2(x) + g′(x)

(
1 + zr

2
(
τAssN ·G (x)

)1/2

))
and

x = R− ess, the following assumption guarantees that there exists a unique solution p∗ss that solves β (p∗ss) = 0.

Assumption 2 : χ (ess, Ass) = E
ε

[u′′ (ess + ε)] +M (1− r) · g′ (R− ess) + cτξ (ess, Ass) < 0 for ∀ess and ∀Ass.

Under Assumption 2 , the following equation characterizes the unique solution p∗ss:

(A.7) p∗ss − ce − c · g (R− e∗ss) · Ω (e∗ss, A∗ss) = 0.

The fact that ∂
3Πss

∂F 3
ss

= N

d

(
− 3cτzr ·G (R− ess)

8(dAss)2
(
τAssN ·G (R− ess)

)1/2

)
< 0 means that the first-order condition ∂Πss

∂Fss
is

concave in Fss. Therefore there can be at most two solutions that solve ∂Πss

∂Fss
= 0. Let these solutions be Fminss and

Fmaxss with Fminss < Fmaxss . As ∂Πss

∂Fss
is concave in Fss, we have ∂

2Πss

∂F 2
ss

∣∣∣∣
Fminss

> 0 and ∂2Πss

∂F 2
ss

∣∣∣∣
Fmaxss

< 0. Therefore only

Fmaxss can be a maximizer, whereas Fminss is a minimizer. Hence there is a unique maximizer F ∗ss = Fmaxss that solves

Eq. A.5.

For the optimality of F ∗ss and p∗ss, we also need H(F ∗ss, p∗ss) =

[
∂2Πss

∂F 2
ss

∂2Πss

∂p2
ss
−
(

∂2Πss

∂Fss∂pss

)2
] ∣∣∣∣

F∗ss,p
∗
ss

to be positive

evaluated at F ∗ss and p∗ss. The following assumption guarantees this:

Assumption 3 : H(F ∗ss, p∗ss) = N

d

∂2Πss

∂F 2
ss

(
N

d

∂ess
∂pss

e∗ss
cτzr · g (R− e∗ss)

4
(
τA∗ssN ·G (R− e∗ss)

)1/2
+ ∂β

∂pss

∣∣∣∣
p∗ss

)

−

(
N

d

∂ess
∂pss

cτzr · g (R− e∗ss)
4
(
τA∗ssN ·G (R− e∗ss)

)1/2

)2

> 0
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where ∂
2Πss

∂F 2
ss

= N

d

(
−2 + cτzr ·G (R− e∗ss)

4dA∗ss
(
τA∗ssN ·G (R− e∗ss)

)1/2

)
. Finally, given F ∗ss, the fraction of customers who adopt

the electric vehicle A∗ss solves the following equation:

(A.8) A∗ss =
E
ε

[u (e∗ss + ε)]− cee∗ss − (M (1− r) + c · Ω (e∗ss, A∗ss))G (R− e∗ss) + d− Ug − c

2d .

Equations A.3, A.4, A.7 and A.8 characterize Lemma 2.

A.3. Proof of Theorem 1 (Page 15). Given p∗ss defined by A.7, the customer’s optimal driving e∗ss solves

(A.9) Θ1 = E
ε

[
u′ (e∗ss + ε)

]
− ce − (M (1− r) + c · Ω (e∗ss, A∗ss)) g (R− e∗ss) = 0.

Given Θ1and Eq. A.8, the fraction of customers who adopt electric vehicle A∗ss solves the following equation:

(A.10) Θ2 = A∗ss − 1/2d

(
E
ε

[u (e∗ss + ε)]− cee∗ss − Ug + d− c−
(
E
ε

[
u′ (e∗ss + ε)

]
− ce

)
G (x)
g (x)

)
= 0

with x = R − e∗ss. Then e∗ss and A∗ss would be solutions to the simultaneous equations A.9 and A.10. Then using the

implicit function theorem, we have

∂Θ2

∂Ass

∂A∗ss
∂ess

+ ∂Θ2

∂ess
= 0 and ∂Θ1

∂ess

∂e∗ss
∂Ass

+ ∂Θ1

∂Ass
= 0.

With ∂Θ2

∂Ass
= 1 > 0 and ∂Θ2

∂ess
= G (R− e∗ss)

2dg (R− e∗ss)
χ(e∗ss, A∗ss) < 0, we have ∂A

∗
ss

∂ess
> 0. With ∂Θ1

∂ess
= χ(e∗ss, A∗ss) < 0 and

∂Θ1

∂Ass
= cτzr · g (R− e∗ss)

4dA∗ss
(
τA∗ssN ·G (R− e∗ss)

)1/2
> 0, we have ∂e∗ss

∂Ass
> 0. Hence e∗ss and A∗ss are strategic complements.

A.4. Proof of Theorem 2 (Page 17). 1) The equilibrium profits of a conventional electric vehicle provider and

a switching-station vehicle provider are Π∗ce = NdA∗2ce and Π∗ss = NdA∗2ss − 1/2czr
(
τNA∗ssḠ (R− e∗ss)

)1/2 respectively.

Given ∂Π∗ce
∂c

= ∂Πce

∂c

∣∣∣∣
A∗ce,e

∗
ce

= −N Ẽ
Ugr

[I {Uce > Ug}]
∣∣∣∣
A∗ce,e

∗
ce

= −NA∗ce < 0 and ∂Π∗ss
∂c

= ∂Πss

∂c

∣∣∣∣
A∗ss,e

∗
ss

= −NA∗ss−Q∗ <

0, we have ∂ (Π∗ss −Π∗ce)
∂c

= −N (A∗ss −A∗ce) −Q∗. First, note that Π∗ss > Π∗ce at c = 0. Second, when Π∗ss = Π∗ce, we

must have A∗ss > A∗ce. Then from Theorem 3, we know that A∗ss > A∗ce iff c < c. Hence, for c < c̄, ∂ (Π∗ss −Π∗ce)
∂c

< 0

and there exists a unique cπ such that Π∗ss = Π∗ce. At c ≥ c̄, A∗ss ≤ A∗ce, hence Π∗ss = Π∗ce can not hold true. This

proves that there exists a unique cπ such that Π∗ss = Π∗ce and for c < cπ, we have Π∗ss > Π∗ce and for c > cπ, we have

Π∗ss < Π∗ce. This also proves that cπ < c.

2) Note that Πss/N = Ass (Fss + (pss − ce) ess − c) − cQ/N and Πce/N = Ace (Fce − c). Then ∂ (Π∗ss/N)
∂N

=

∂ (Πss/N)
∂N

∣∣∣∣
A∗ss,e

∗
ss

=
czr
(
τA∗ssN ·G (R− e∗ss)

)1/2

2N2 > 0 and ∂ (Π∗ce/N)
∂N

= ∂ (Πce/N)
∂N

∣∣∣∣
A∗ce,e

∗
ce

= 0.

A.5. Proof of Theorem 3 (Page 18). Given Eqs. A.1 and A.9 and by defining ω(c) = Mr− c ·Ω (e∗ss, A∗ss) = 0, we

have e∗ce = e∗ss iff ω(c) = 0. The fact that

∂ω(c)
∂c

= −Ω (e∗ss, A∗ss) + cτzr

4
(
τA∗ssN ·G (R− e∗ss)

)1/2

(
∂A∗ss
∂c

1
A∗ss

+ ∂e∗ss
∂c

g
(
R− e

∗
ss

)
G (R− e∗ss)

)
< 0

with ∂A∗ss
∂c

=
g (x) · Ω (e∗ss, A∗ss)

∂Θ2

∂ess
+ 1

2
∂Θ1

∂ess
H(F ∗ss, p∗ss)

< 0 and ∂e∗ss
∂c

=
−g (x) · Ω (e∗ss, A∗ss)− 1

2
∂Θ1

∂Ass
H(F ∗ss, p∗ss)

< 0 proves that c is

unique.
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For the rest of the proof, we use the implicit function theorem ∂ω(c)
∂c

∂c

∂y
+ ∂ω(c)

∂y
= 0 for y = τ, ce, N and cgas. Hence

given ∂ω(c)
∂c

< 0, sign
(
∂c

∂y

)
= sign

(
∂ω(c)
∂y

)
.

Part a:

∂ω(c)
∂τ

= −c
(

1 + 1/4zr
(
τNA∗ssḠ (x)

)−1/2
)

+ cτzr

4
(
τA∗ssN ·G (x)

)1/2

(
∂A∗ss
∂τ

1
A∗ss

+ ∂e∗ss
∂τ

g (x)
G (x)

)
< 0

where ∂e
∗
ss

∂τ
=
−c · g (R− e∗ss) ·

(
1 + 1/4zr

(
τNA∗ssḠ (x)

)−1/2
)

H(F ∗ss, p∗ss)
< 0 and ∂A∗ss

∂τ
= −∂e

∗
ss

∂τ

∂Θ2

∂ess
< 0. Hence ∂c

∂τ
< 0.

∂ω(c)
∂ce

= cτzr

4
(
τA∗ssN ·G (x)

)1/2

(
∂A∗ss
∂ce

1
A∗ss

+ ∂e∗ss
∂ce

g (x)
G (x)

)
< 0

where ∂e∗ss
∂ce

=

1
2

(
−e∗ss + G(x)

g(x)

)
∂Θ1

∂Ass
− 1

H(F ∗ss, p∗ss)
< 0 and ∂A∗ss

∂τ
=

1
2

(
e∗ss

∂Θ1

∂ess
− cτzr·g(x)

4(τA∗ssN·G(x))1/2

)
H(F ∗ss, p∗ss)

< 0. Hence we have

∂c

∂ce
< 0.

Part b:
∂ω(c)
∂N

= cτzr

4
(
τA∗ssN ·G (x)

)1/2

(
1
N

+ ∂A∗ss
∂N

1
A∗ss

+ ∂e∗ss
∂N

g (x)
G (x)

)
> 0

where ∂e
∗
ss

∂N
=

−∂Θ2

∂ess

(
cτ · g (R− ess) · zr

4N
(
τA∗ssN ·G (x)

)1/2

)
H(F ∗ss, p∗ss)

> 0 and ∂A∗ss
∂N

=

cτ · g (R− ess) · zr
4N
(
τA∗ssN ·G (x)

)1/2

H(F ∗ss, p∗ss)
> 0. Hence ∂c

∂N
> 0.

∂ω(c)
∂cgas

= cτzr

4
(
τA∗ssN ·G (x)

)1/2

(
∂A∗ss
∂cgas

1
A∗ss

+ ∂e∗ss
∂cgas

g (x)
G (x)

)
> 0

where ∂e∗ss
∂cgas

=
1
2e
∗
gas

∂Θ1

∂Ass
H(F ∗ss, p∗ss)

> 0 and ∂A∗ss
∂cgas

=
− 1

2e
∗
gas

∂Θ1

∂ess
H(F ∗ss, p∗ss)

> 0. Hence ∂c

∂cgas
> 0.

A.6. Proof of Theorem 4 (Page 19). Let e∗ss = e∗ce + t. Then using Eqs. A.2 and A.10, we can write

A∗ss −A∗ce = 1
2d

(
E
ε

[u (e∗ce + t+ ε)]− cet− E
ε

[u (e∗ce + ε)] +MG (R− e∗ce)

−
(
E
ε

[
u′ (e∗ce + t+ ε)

]
− ce

)
G (R− e∗ce − t)
g (R− e∗ce − t)

)
.

Taking the derivative with respect to t, we have ∂ (A∗ss −A∗ce)
∂t

= − G (R− e∗ss)
2dg (R− e∗ss)

χ(e∗ss, A∗ss) > 0 under Assumption 2.

Given A∗ss = A∗ce when t = 0 and ∂ (A∗ss −A∗ce)
∂t

> 0 imply that A∗ss > A∗ce if e∗ss > e∗ce and A∗ss < A∗ce if e∗ss < e∗ce.

A.7. Proof of Theorem 5 (Page 20). Consider ∆EM = EMss −EMce = αe (A∗sse∗ss −A∗cee∗ce)− αge∗g (A∗ss −A∗ce).

Then ∆EM < 0 iff αe < αg · λ when A∗ss −A∗ce > 0 and ∆EM < 0 iff αe > αg · λ when A∗ss −A∗ce < 0.

1. λ < 1 iff A∗ss
(
e∗ss − e∗g

)
> A∗ce

(
e∗ce − e∗g

)
when A∗ss−A∗ce > 0 and A∗ss

(
e∗ss − e∗g

)
< A∗ce

(
e∗ce − e∗g

)
when A∗ss−A∗ce < 0.

Given Theorem 4, this holds if e∗ss > e∗g when A∗ss − A∗ce > 0 and if e∗ce > e∗g when A∗ss − A∗ce < 0. Hence λ < 1 if

max (e∗ss, e∗ce) > e∗g.
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2. Note that λ =
e∗g
Γ with Γ > 0. Then ∂Γ

∂ess
=
((

A∗ss (A∗ss −A∗ce)−A∗ce (e∗ss − e∗ce)
∂A∗ss
∂ess

))/
(A∗ss −A∗ce)2 . For an

arbitrary parameter y, we have

∂Γ
∂y

=
(

(e∗ss − e∗ce) (A∗ss −A∗ce)
∂A∗ce
∂y

+ ∂e∗ss
∂y

(
A∗ss (A∗ss −A∗ce)−A∗ce (e∗ss − e∗ce)

∂Θ2

∂ess

))/
(A∗ss −A∗ce)

2
.

For y = c, τ , we have ∂e∗ss
∂y

< 0 and ∂A∗ce
∂y

≤ 0; and for y = cg, we have ∂e∗ss
∂y

> 0 and ∂A∗ce
∂y

≥ 0. Also note that

∂A∗ss
∂ess

= ∂Θ2

∂ess
. Then if ∂Γ

∂ess
> 0, for y = c, τ , we have ∂Γ

∂y
< 0 and for y = cg, we have

∂Γ
∂y

> 0. As ∂λ
∂y

=
∂e∗g
∂y

1
Γ−

∂Γ
∂y

e∗g
Γ2 ,

we have ∂λ
∂y

> 0 given
∂e∗g
∂y

= 0 for y = c, τ and we have ∂λ
∂y

< 0 given
∂e∗g
∂y

< 0 for y = cg.

3. We can rewrite ∂Γ
∂ess

as ∂Γ
∂ess

=
(

(A∗ss −A∗ce)2 +A∗ce

(
A∗ss −A∗ce − (e∗ss − e∗ce)

∂A∗ss
∂ess

))/
(A∗ss −A∗ce)2. If A∗ss is

concave, it satisfies A∗ss(e∗ss)− A∗ss(e∗ce)− (e∗ss − e∗ce)
∂A∗ss
∂ess

∣∣∣∣
e∗ss

> 0. As A∗ss(e∗ce) = A∗ce(e∗ce) from Theorem 4, ∂Γ
∂ess

> 0

if A∗ss is concave in e∗ss.

4. Given u (e) = θe − e2

2 , g (x) = 1
2a and G (x) = a− x

2a , we have A∗ce = 1
2

(
e∗2ce
2 −

M (a−R)
2a − T

)
and A∗ss =

1
2

(
(e∗ss)2

2 −
(
M (1− r) + c · Ω (e∗ss, A∗ss)

2a

)
(a−R)− T

)
where T = V ar (ε)

2 + Ug + c − d > 0. Hence A∗ss − A∗ce =

1
2 (e∗ss − e∗ce)

(
a−R+ e∗ss + e∗ce

2

)
and ∂A∗ss

∂ess
= 1

2 (a−R+ e∗ss). Then

(A∗ss −A∗ce)
2 ∂Γ
∂ess

= 1
4 (e∗ss − e∗ce)

2
(

(a−R)
(
a−R+ e∗ss + e∗ce + M

4a

)
+ e∗ss (e∗ss + 2e∗ce)

4 + T

2

)
> 0.
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