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Asymmetries in Stock Returns:

Statistical Tests and Economic Evaluation

ABSTRACT

In this paper, we provide a model-free test for asymmetric correlations which suggest stocks

tend to have greater correlations with the market when the market goes down than when it goes

up. We also provide such tests for asymmetric betas and covariances. In addition, we evaluate the

economic significance of asymmetric correlations by answering the question that what is the utility

gain for an investor who switches from a belief of symmetric stock returns into a belief of asymmetric

returns. Applying our methodology to three portfolios grouped by size, Fama and French’s size

and book-to-market, and industry, we find that asymmetries show up in sample estimates for all

the portfolios, but they are statistically significant primarily for small size portfolios. Nevertheless,

asymmetries are of substantial economic importance for an investor who switches her symmetry

belief into an asymmetric one, irrespective of the portfolios.

JEL classification: C11; C15; G11; G12



1 Introduction

Recently, there have been a number of studies on asymmetric characteristics of asset returns. Ball

and Kothari (1989), Schwert (1989), Conrad, Gultekin and Kaul (1991), Cho and Engle (2000)

and Bekaert and Wu (2000), among others, document asymmetries in the covariances, volatilities

and betas of stock returns. Harvey and Siddique (2000) analyze asymmetry in higher moments.

Of particular interest to this paper is asymmetric correlations of stock returns with the market

indices. This line of research includes Karolyi and Stulz (1996), Longin and Solnik (2001), Ang

and Bekaert (2000), and Bae, Karolyi and Stulz (2000). In particular, Login and Solnik (2001)

find that international markets have greater correlations with the US market when it is going down

than when it is going up. Ang and Chen (2002) study the correlations between stock portfolios and

the US market and also find strong asymmetric correlations. The study of asymmetric correlations

is important for several reasons. For instance, hedging relies crucially on the correlations between

the assets hedged and the financial instruments used. The presence of asymmetric correlations

can potentially cause problems to hedging effectiveness. More importantly, the standard mean-

variance investment theory advises portfolio diversification, but the value of this advice might be

questionable if all the stocks tend to fall as the market falls.

However, assessing asymmetric correlations is not an easy matter. Stambaugh (1995), Boyer,

Gibson and Loretan (1999), and Forbs and Rigobon (2002) find that the correlation computed

conditional on the variables being high or low is an biased estimation of the unconditional correlation

by construction. Therefore, even if one obtains a conditional correlation from the real data that is

much higher than the unconditional sample correlation, it is not sufficient to claim the existence

of asymmetric correlations. A formal statistical test must be used to account for both sample

variations and the bias induced by conditioning. Ang and Chen (2002) seem the first to propose

such a formal test. Given a statistical model for the data, their test compares the sample conditional

correlations with those implied by the model. If there is a large difference, then the data cannot be

explained by the model. Despite the novelty of their test, it has two major weaknesses. First, if the

model is symmetric and if the null of no difference is rejected, the test suggests asymmetry. But

there may exist another symmetric model that fits the data perfectly well. Second, if an asymmetric

model is used by the researcher and if the null of no difference is not rejected, the test also suggests

asymmetry. But the possibility that the asymmetric model might degenerate into a symmetric one

is not ruled out.
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The first contribution of this paper is to propose a new test for symmetry in correlation. There

are several appealing features of this test. First, it is model-free. Unlike Ang and Chen’s (2002) test,

ours is computed without having to specify a statistical model for the data. This is an advantage

because a rejection of symmetry may be due to the rejection of the specified model rather than the

symmetry itself. As a result, if symmetry is rejected by our test, then the data cannot be modelled

by any symmetry distributions (under standard regularity conditions). Second, the test allows for

GARCH and general distributional assumptions on the data. Third, the test statistic is easy to

compute and its asymptotic distribution follows a standard chi-square distribution under the null

hypothesis of symmetry. Therefore, the proposed test can be straightforwardly applied to a variety

of areas to provide insights on assessing whether or not the asymmetric correlations are statistically

significant.

While correlations seem obviously important from a risk management perspective of hedging

exposures, betas are closely related to asset pricing theories, and useful in understanding the

riskiness of the associated stocks. Ball and Kothari (1989), Conrad, Gultekin and Kaul (1991),

Cho and Engle (2000) and Bekaert and Wu (2000), among others, document asymmetries in the

betas of stock returns, but there are no formal statistical tests. The second contribution of this

paper is to adapt the correlation symmetry test to obtain a model-free test of beta symmetry.

In addition, we also develop such a test for asymmetric covariances. This is of interest because

covariances are usually direct inputs of parameters for optimal portfolio choice while betas are

primarily useful in understanding the systematic risks associated with factors.

However, the presence of statistically significant asymmetry may not necessarily be economi-

cally important. On the other hand, a statistically insignificant result can be of great economic

importance. The third contribution of this paper is to provide an easy and yet informative method

to assess the economic importance of asymmetry. For this purpose, we consider the portfolio choice

problem of an expected utility maximizing investor who is uncertain about whether there exists

asymmetry in the asset returns. The portfolio choice problem is chosen because it is one of the most

asked questions in investment practice, and it is this problem to which asset pricing theory has the

most assertions and suggestions. In the spirit of Kandel and Stambaugh (1996) and Pástor and

Stambaugh (2000), we ask the question that what utility gains an investor enjoys if she switches

from a belief of symmetric returns into a belief of asymmetric returns. If the investor, who invests

in the universe of Fama and French’s (1993) 25 portfolios, believes in symmetric returns, she would

choose her optimal portfolios based on the Fama-French 3-factor model. On the other hand, if she
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believes in asymmetric return, she would choose her portfolio by utilizing the asymmetric char-

acteristics. We provide two ways for doing so. The first is intuitive in which she simply adds an

asymmetric factor into the Fama-French model. Ideally, this factor should be chosen to capture

all the asymmetries, but doing so is clearly not feasible. Ang, Chen and Xing (2002) suggest a

downside correlation factor shown be useful in capturing some aspects of correlation asymmetry.

We will use this factor as the staring point. Because the construction of the asymmetry factor is

not limited to sorting by correlations, we also form alternative factors based on betas and covari-

ances. Then, any utility gain beyond that of the Fama-French 3-factor model may be interpreted

as measures for the economic gain of an investor’s switching from a belief of symmetric returns into

a belief of asymmetric returns.

The second way of incorporating asymmetries is to alter the data-generating process of the

Fama-French 3-factor model. Ang and Chen (2002) show that certain GARCH models can capture a

fair portion of asymmetries. However, the GARCH models are difficult to apply in high dimensional

problems and their multivariate extensions, if used, often impose very restrictive assumption on

covariances which might cause biases for portfolio choices. An alternative model is the regime-

switching model of Hamilton (1989). Ang and Bekaert (2002) uses it to analyze international

asset allocation, while Ang and Chen (2002) show that this model can better capture correlation

asymmetries than the GARCH models. Hence, we will use the regime-switching model rather than

GARCH models as an alternative data-generating process of the Fama-French 3-factor model to

capture some of asymmetries in the data. If an investor believes in symmetry, she would assume

the normal data-generating process for the Fama-French 3-factor model. On the other hand, if she

believes in asymmetry, she would regard the regime-switching model as the true data-generating

process. The associated utility difference from using the normality model versus using the regime-

switching model then measures the economic gain of incorporating asymmetries.

Empirically, we find that sample estimates show asymmetric correlations in size, book-to-market

and industry portfolios, but the asymmetric correlations are only statistically significant for the

smallest size portfolio (out of the usual 10 sizes) at monthly frequency, and for the 4 smallest sizes at

daily frequency. While the results on asymmetric betas are similar, there are in general much more

asymmetries in the covariances. For example, the hypothesis of correlations or betas symmetry

cannot be rejected for both daily and weekly industry returns, but covariance symmetry can be

rejected strongly. In terms of economic value, we find that a mean-variance utility maximizing

investor can achieve substantial certainty-equivalence gain by switching from a dogmatic belief of
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symmetry into a dogmatic belief of asymmetry, where the investment universe is the four factors

plus the size portfolios or the Fama-French 25 assets or the industry portfolios. In addition, while

still in the three factor world, the use of the regime-switching data-generating process also achieves

substantial economic gain foe a power utility investor. Therefore, although asymmetry is not

statistically significant in some cases for the Fama-French and 20 industry portfolios, it is still

economically important.

The remainder of the paper is organized as follows. Section 2 provides the statistical tests for

symmetry. Section 3 discusses portfolio decisions incorporating asymmetry. Section 4 applies the

proposed approach to the size, Fama-French and industry portfolios to assess asymmetry and its

economic value. Section 5 concludes.

2 Symmetry tests

In this section, we motivate and provide three model-free tests. The first tests symmetry in corre-

lations and the other two do so for betas and covariances.

2.1 Test for correlation symmetry

Let {R1t, R2t} be the returns on two portfolios in period t. Following Login and Solnik (2000) and

Ang and Chen (2002), we consider the exceedance correlation between the two series. A correlation

at an exceedance level c is defined as the correlation between the two variables when both of them

exceed c standard deviations away from their means,

ρ+(c) = corr(R1t, R2t|R1t > c,R2t > c), (1)

ρ−(c) = corr(R1t, R2t|R1t < −c,R2t < −c), (2)

where, following Ang and Chen (2002) and many others in the asymmetry literature, the returns

are standardized to have zero mean and unit variance so that the mean and variance do not appear

explicitly in the right hand side of the definition, making easy both the computation and statistical

analysis. The null hypothesis of symmetric correlation is

H0 : ρ+(c) = ρ−(c) for all c > 0. (3)

That is, we are interested in testing whether the correlation between positive large returns of the two

portfolios is the same as that between negative large returns of the two portfolios. As pointed out
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in the introduction, this null hypothesis is of interest for its important implications on investment

diversification and risk management. If the null hypothesis is rejected, there must exist asymmetric

correlations. The alternative hypothesis is

HA : ρ+(c) 6= ρ−(c) for some c > 0. (4)

Login and Solnik (2000) use extreme value theory to test whether ρ+(c) or ρ−(c) is zero as

c becomes extremely large. In contrast, Ang and Chen (2002) provide a more direct test of the

symmetry hypothesis. For a random sample, {R1t, R2t}T
t=1, of size T , the exceedance correlations

can be estimated by their sample analogues,

ρ̂+(c) = ˆcorr(R1t, R2t|R1t > c,R2t > c), (5)

ρ̂−(c) = ˆcorr(R1t, R2t|R1t < −c,R2t < −c), (6)

that is, ρ̂+(c) and ρ̂−(c) are the standard sample correlations computed based on only those data

that satisfy the tail restrictions. Based on these sample estimates, Ang and Chen (2002) propose

a H statistic for testing symmetry,

H =

[
m∑

i=1

w(ci)(ρ(ci, φ)− ρ̂(ci))2
]1/2

, (7)

where c1, c2, . . ., cm are m chosen exceedance levels, w(ci)’s are the weights whose sum is one, ρ̂(ci)

can be either ρ̂+(ci) or ρ̂−(ci), and ρ(ci, φ) is the population exceedance correlation computed from

a given model with parameter φ. If H is large, this implies that the given model cannot explain

the observed sample exceedance correlations. If in addition the given model is symmetric, this

may be interpreted as evidence against symmetry. However, as pointed out in the introduction,

this does not exclude the possibility of the existence of another symmetry model that can fit the

data perfectly. The H statistics is also used to assess whether a given asymmetric model, like an

asymmetry GARCH one, can explain the observed sample exceedance correlations. Suppose some

model of the GARCH class passes the H test, it is also interpreted as evidence against symmetry.

This may not be adequate for two reasons. First, there is still the possibility of the existence

of another symmetry model that fits the data perfectly. Second, there is also a possibility that

the asymmetric model degenerates so that it is symmetric for the purpose of modelling the data.

Despite of these difficulties, the H statistic is clearly an informative and interesting measure, telling

to what extent the exceedance correlations computed from a given model match those observed in
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the data. However, the asymptotic distribution of H is difficult to derive because the first order

derivatives of H with respect to φ are singular in moment estimations.

Fortunately, a new test can be proposed whose asymptotic distribution is the standard chi-

square one. Intuitively, if the null is true, the following m× 1 difference vector

ρ̂+ − ρ̂− =
[
ρ̂+(c1)− ρ̂−(c1), ..., ρ̂+(cm)− ρ̂−(cm)

]′ (8)

must be close to zero. It can be shown (see the Appendix) that, under the null of symmetry and

some regularity conditions, this vector has an asymptotic normal distribution with mean zero and

a positive definite variance-covariance matrix Ω. To construct a feasible test statistic, we need to

estimate Ω. For this purpose, we need to introduce some notations. Let T+
c be the number of the

observations for which both R1t and R2t are larger than c simultaneously. Then the sample means

and variances of the two conditional series are easily computed

µ̂+
1 (c) =

1
T+

c

T∑

t=1

R1t1(R1t > c,R2t > c),

µ̂+
2 (c) =

1
T+

c

T∑

t=1

R2t1(R2t > c,R2t > c),

σ̂+
1 (c)2 =

1
T+

c − 1

T∑

t=1

[R1t − µ̂+
1 (c)]21(R1t > c,R2t > c),

σ̂+
2 (c)2 =

1
T+

c − 1

T∑

t=1

[R2t − µ̂+
2 (c)]21(R1t > c,R2t > c),

where 1(·) is the indicator function. As a result, we can express the conditional correlation as

ρ̂+(c) =
1

T+
c − 1

T∑

t=1

X+
1t(c)X

+
2t(c)1(R1t > c, R2t > c), (9)

where

X+
1t(c) =

R1t − µ̂+
1 (c)

σ̂+
1 (c)

,

X+
2t(c) =

R2t − µ̂+
2 (c)

σ̂+
2 (c)

.

Clearly, we can have a similar expression for ρ̂−(c).

Then, under general conditions, a consistent estimator of Ω is the following matrix,

Ω̂ =
T−1∑

l=1−T

k(l/p)γ̂l, (10)
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where γ̂l is an N ×N matrix with (i, j)-th element

γ̂l(ci, cj) =
1
T

T∑

t=|l|+1

ξt(ci)ξt−l(cj) (11)

and

ξt(c) =
T

T+
c

[X+
1t(c)X

+
2t(c)− ρ̂+(c)]1(R1t > c,R2t > c)

− T

T−c
[X−

1t(c)X
−
2t(c)− ρ̂−(c)]1(R1t < −c,R2t < −c). (12)

In addition, k(·) is a kernel function that assigns weights to each lag of order l, and p is the

smoothing parameter or lag truncation order (when k(·) has bounded support). An example of

k(·), as used in Newey and West (1994), is the Bartlett kernel,

k(z) = (1− |z|)1(|z| < 1). (13)

With these preparations, we are ready to define a test statistic for the null of symmetry,

Jρ = T (ρ̂+ − ρ̂−)′Ω̂−1(ρ̂+ − ρ̂−), (14)

which clearly summarizes the deviations from the null.

However, the value of p has to be provided to compute the test statistic. There are two ways for

choosing p. The first is to take p as a nonstochastic known number, especially in the case where one

wants to impose some lag structure on the data. Another choice of p is to allow it be determined

by the data with either Andrews’s (1991) or Newey and West’s (1994) procedure. Let Ĵρ be the Jρ

statistic with the nonstochastic bandwidth p replaced with a data-driven p, say p̂.

The following proposition provides the useful asymptotic theory necessary for making statistical

inference based on Jρ and Ĵρ:

Theorem 1: Under the null hypothesis H0 and under certain regularity conditions,

Jρ →d χ2
m, (15)

and

Ĵρ →d χ2
m, (16)

as T →∞.
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Theorem 1 says that our symmetry test has a simple asymptotic chi-square distribution with

degrees of freedom m. So, the P-value of the test is straightforward to compute in practice, making

it easily applied to a wide range of data series to assess their asymmetric correlations.

As can be seen from the regularity conditions in the appendix, our test is completely model-free,

and is also robust to volatility clustering which is a well-known stylized fact for most financial time

series. We have also explicitly justified the use of a data-driven bandwidth p̂, which has no impact

on the asymptotic distribution of the test statistic provided p̂ converges to p at a sufficiently fast

rate. As Jρ and Ĵρ have the same asymptotic distributions, we in what follows use only the notation

Jρ while stating explicitly how Jρ is computed.

2.2 Test for beta and covariance symmetries

As pointed out in the introduction, betas are of interest for understanding the riskiness of the

associated stocks. Analogous to the conditional correlations, we can define conditional betas at any

exceedance level c,

β+(c) =
cov(R1t, R2t|R1t > c, R2t > c)

var(R2t|R1t > c,R2t > c)
=

σ+
1 (c)

σ+
2 (c)

ρ+(c), (17)

β−(c) =
cov(R1t, R2t|R1t < −c,R2t < −c)

var(R2t|R1t < −c,R2t < −c)
=

σ−1 (c)
σ−2 (c)

ρ−(c), (18)

where

σ+
1 (c)2 = var(R1t|R1t > c,R2t > c), (19)

σ+
2 (c)2 = var(R2t|R1t > c,R2t > c), (20)

and σ−1 (c) and σ−2 (c) are similarly defined. In particular, when c = 0, β+(c) and β−(c) are the

upside and downside betas of Ang and Chen (2002). Here β−(c) can still be interpreted as the

upside and downside betas except that they are examined at an exceedance level c. If we interpret

R2t as the return on the market, then σ+
1 (c)/σ+

2 (c) is the ratio of upside asset standard deviation

(risk) to the market standard deviation (risk), and the upside beta is a product of this ratio with

the conditional correlation. Because the ratio can be different in upside and downside markets, the

betas can be asymmetric even if there are no asymmetries in the correlations. So, our earlier test

for symmetry in correlations cannot be used for testing symmetry in betas.
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To test symmetry in betas, we, similar to the correlation case, evaluate the difference,

√
T (β̂+ − β̂−) =

√
T

[
β̂+(c1)− β̂−(c1), ..., β̂+(cN )− β̂−(cm)

]′
, (21)

where c1, c2, . . ., cm are a set of m chosen exceedance levels. Here, the symmetry hypothesis of

interest is

H0 : β+(c) = β−(c) for all c > 0. (22)

Under the null and some regularity conditions, like the earlier correlation case,
√

T (β̂+− β̂−) has an

asymptotic normal distribution with mean zero and a positive definite variance-covariance matrix

Ψ which can be consistently estimated by

Ψ̂ =
T−1∑

l=T−1

k(l/p)ĝl, (23)

where ĝl is an m×m matrix with (i, j)-th element

ĝl(ci, cj) =
1
T

T∑

t=|l|+1

η̂t(ci)η̂t−l(cj), (24)

where

ηt(c) =
T

T+
c

[
σ̂+

1 (c)
σ̂+

2 (c)
X̂+

1t(c)X̂
+
2t(c)− β̂+(c)

]
1(R1t > c, R2t > c)

− T

T−c

[
σ̂−1 (c)
σ̂−2 (c)

X̂−
1t(c)X̂

−
2t(c)− β̂−(c)

]
1(R1t < −c)1(R2t < −c). (25)

Then the beta symmetry test can be constructed,

Jβ = T (β̂+ − β̂−)′Ψ̂−1(β̂+ − β̂−), (26)

where the bandwidth p is a fixed constant. Similar to the correlation case, we denote Ĵβ as the

same statistic with p estimated by the data.

Because of its importance in portfolio selections, consider now the symmetry hypothesis for the

covariance,

H0 : σ+
12(c) = σ−12(c) for all c > 0. (27)

where

σ+
12(c) = cov(R1t, R2t|R1t > c, R2t > c) = σ+

1 (c)σ+
2 (c)ρ+(c), (28)

σ−12(c) = cov(R1t, R2t|R1t < −c,R2t < −c) = σ−1 (c)σ−2 (c)ρ−(c). (29)

9



Similar to the beta symmetry test, we can construct a test for covariance symmetry,

Jσ12 = T (σ̂+
12 − σ̂−12)

′Φ̂−1(σ̂+
12 − σ̂−12), (30)

where

(σ̂+
12 − σ̂−12) =

[
σ̂+

12(c1)− σ̂−12(c1), ..., σ̂+
12(cm)− σ̂−12(cm)

]′
, (31)

Φ̂ =
T−1∑

l=T−1

k(l/p)ĥl, (32)

and ĥl is an m×m matrix with (i, j)-th element

ĥl(ci, cj) =
1
T

T∑

t=|l|+1

φ̂t(ci)φ̂t−l(cj), (33)

where

φt(c) =
T

T+
c

[
σ̂+

1 (c)σ̂+
2 (c)X̂+

1t(c)X̂
+
2t(c)− σ̂+

12(c)
]
1(R1t > c, R2t > c)

− T

T−c

[
σ̂−1 (c)σ̂−2 (c)X̂−

1t(c)X̂
−
2t(c)− σ̂−12(c)

]
1(R1t < −c)1(R2t < −c). (34)

The bandwidth p has analogous meaning as before, and Ĵβ is defined in the same way.

For hypothesis testing based on the above tests, we have

Theorem 2: Under the null hypotheses, equation (22) and (27), and under certain regularity

conditions,

Jβ →d χ2
m, (35)

and

Jσ12 →d χ2
m, (36)

respectively, as T →∞. Moreover, both Ĵβ and Ĵσ12 have the same χ2
m asymptotic distributions.

The proof of Theorem 2 is similar to that of Theorem 1 and is hence omitted here. Again, the

tests are model-free. It is unnecessary to find a parametric model to fit the data in order to answer

the question whether or not the upside and downside betas or covariances are symmetric. Once

the null is rejected, the data cannot be modelled by any regular symmetric distributions and so we

can legitimately claim that there is the presence of asymmetric betas or covariances.
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3 Portfolio decisions

As shown later in the paper that we find asymmetric correlations only for one or a few size portfolios.

This says that asymmetric correlations are present not for all of the returns, but only to a small

number of them. Then the question arises that how important the asymmetric correlations, or

other asymmetric characteristics, are from an investor’s portfolio decision point of view. In this

section, we provide two ways to assess the economic importance of asymmetries.

3.1 Factor Approach

Consider an investor who invests in the universe of Fama and French’s (1993) 25 portfolios. If

she believes in symmetric returns, it is reasonable to assume that she would choose her optimal

portfolios based on the Fama-French 3-factor model. On the other hand, if she believes in asym-

metric returns, she would choose her portfolio by utilizing the asymmetric characteristics. While

the optimal portfolio under asymmetric belief may have quite different asset allocations than the

optimal portfolio under symmetric belief, the performance of the two portfolios can be similar due

to correlations among the assets. Therefore, a measure of the overall performance difference has to

be developed to assess the economic value of knowing the presence of asymmetric correlations.

If investors believe symmetric stock returns, there are well developed frameworks for the optimal

portfolio decisions. The most widely used one is the mean-variance framework where investors are

assumed to have mean-variance utilities. While the portfolio optimization problem based on linear

factor models is well understood, both parameter estimation risk and model mispricing risk are

usually ignored in the classical statistical framework. Fortunately, Pástor and Stambaugh’s (2000)

Bayesian set-up incorporate both uncertainties into investors’ decision making. Hence, in factor

models, we will follow primarily Pástor and Stambaugh (2000) to assess investors’ economic well-

being.

To evaluate the expected utility under asymmetry, the factor approach simply suggests the use

of a fourth factor to capture the asymmetry. Ang, Chen and Xing (2002) suggests a downside

correlation factor constructed by sorting primarily on correlations. Clearly this factor is unlikely to

capture all the asymmetries. Hence, we also consider alternative factors sorted based on covariances

(see Section 4.4 for details). Therefore, if an investor believes that there is asymmetry in the stock

returns, she would use the 4-factor model instead of Fama-French’s 3-factor one. However, it should
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be pointed out that the asymmetric factors may not necessarily be independent of those Fama and

French (1993) factors.1 Nevertheless, they seem to add some asymmetric characteristics into the

standard Fama and French 3-factor model, and useful for providing a lower bound on the investor’s

utility when believing in asymmetry. This is to say, once we find the utility is sufficiently higher

than that under symmetry, the optimal factor that maximizes the use of asymmetric characteristics

must be even greater.

In the context of using a factor model, it is reasonable to assume that the investor has a mean-

variance utility. The mean-variance utility bears a cost of losing generality, but has the benefit of

being able to solve the optimal portfolio problem easily. However, the limitation may not be too

unrealistic for two reasons. First, in a factor model where the returns are assumed approximately

normal, then it is the mean and variance that matter for portfolio decisions. Second, any smooth

utility functions can have a good first order mean-variance approximation. Nevertheless, we do

allow power utility in the next subsection where the data-generating process is assumed to be

regime-switching rather than normal.

Now we illustrate how to evaluate the utility in a factor model of the stock returns. Following

the well established mean-variance framework of Pástor and Stambaugh (2000), we consider an

investment universe consisting of cash plus n risky assets. Let rt denote an n-vector with i-th

element ri,t representing the return of the i-th risky position at time t. If there is a riskiness asset

with a rate of return Rf,t, then the excess return of this portfolio is

Rp,t −Rf,t =
n∑

i=1

wiri,t. (37)

The investor is assumed to choose w so as to maximize the mean-variance objective function

U = E (Rp,t)− 1
2
A V ar (Rp,t) , (38)

where A is interpreted as the coefficient of relative risk aversion and W0 is the wealth level. If

we denote the mean vector and variance-covariance matrix of rt as E and V , then the investor’s

optimal portfolio choice problem can be rewritten as the solution to

max
w

(
w′E − 1

2
Aw′V w

)
. (39)

To conduct the necessary Bayesian analysis, let rt = (yt, xt), where yt contains the excess returns

of n − k assets and xt contains the excess returns of k factors. Consider the following familiar
1Pástor and Stambaugh (2003) provide evidence for the liquidity being the fourth factor.
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multivariate regression,

yt = α + Bxt + ut, (40)

where ut is an (n− k)× 1 vector with zero means and a non-singular covariance matrix. It is clear

that α, B and the earlier parameters E, V obey the following relationship:

α = E1 −BE2, B = V12V
−1
22 , (41)

where

E =


E1

E2


 , V =


V11 V12

V21 V22


 . (42)

Consider now the priors on α, B and Σ. If the factor model is true, the asset pricing restriction

is α = 0. To allow for the possibility of mispricing, we, following Pástor and Stambaugh (2000)

and Pástor (2000), assume the prior distribution of α is a normal distribution conditional on Σ,

α|Σ ∼ N

(
0, σ2

α

(
1
s2

Σ
))

, (43)

where s2 is a suitable prior estimate for the average diagonal elements of Σ. The above alpha-Sigma

link is also explored by MacKinlay and Pástor (2000) in the frequentist set-up. The numerical value

of σα represents an investor’s level of uncertainty about a given model’s pricing abilities. When

σα = 0, the investor believes dogmatically in the model and there is no mispricing uncertainty.

On the other hand, when σα = ∞, the investor believes the pricing model is entirely useless. The

remaining priors are straightforward. Then the expected utility can be easily evaluated (see Pástor

and Stambaugh, 2000, for details).

With above preparations, it is now ready to compare the economic value of the portfolio differ-

ences when one switches her belief from a belief of symmetric correlations into a belief of asymmetric

correlations. Under the belief of symmetric correlations, the investor makes the portfolio decision

under the Fama-French model. Given a certain mispricing prior and a certain prior on the data-

generating process, the expected utility is

EUS = w
′
SE∗ − 1

2
Aw

′
SV ∗wS , (44)

where wS is the optimal portfolio allocation under the Fama-French model. If the belief is dogmatic,

the pricing error is zero, and then wS is the holdings in the Fama-French three factors because the

investor invests only in the factors. If the belief is not dogmatic so that the model has a nonzero

pricing error, the investor invests in all of the assets based the predicative moments computed from
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the Fama-French 3-factor model. However, E∗ and V ∗ of equation (44) are the predicative moments

computed from the 4-factor model. This is because the 4-factor model is assumed the true model

and the investor should evaluate her utility based on it. If she is forced to believe a 3-factor model

or the symmetry hypothesis to have a portfolio choice wS , EUS should be the resulted utility.

Similarly, under the belief of asymmetric correlations, the expected utility is

EUA = w
′
AE∗ − 1

2
Aw

′
AV ∗wA, (45)

where wA is the optimal portfolio allocation in the four factor model by incorporating the asym-

metry. Following Pástor and Stambaugh (2000), the difference

CE = EUA −EUS (46)

is thus the ‘perceived’ certainty-equivalent gain to a mean-variance investor who switches her belief

from a belief of symmetric correlations into a belief of asymmetric correlations.2 It should be

noticed that E∗ and V ∗ in (45) are identically to those in (44). So the certainty-equivalent gain

is always nonzero or positive. The ideas of this approach can be traced back to Kandel and

Stambaugh (1996). The issue is how big this value can be. Generally speaking, values over a

couple of percentage points per year are deemed as economically significant.

3.2 Modelling Approach

As an alternative to using factor to capture asymmetries, one can propose a data-generating process

or a statistical model that would describe the asymmetries of the data. That is, one may model the

asymmetric characteristics by using a parametric statistical model rather than by using a factor.

However, modelling asymmetry is not an easy matter and the candidate data-generating process

is usually very complex. Ang and Chen (2002) show that certain bivariate GARCH models can

capture a fair portion of asymmetries, but these models are difficult to extend to high dimensional

problems. For example, it is very difficult to find and estimate a multivariate GARCH model that

is of dimension 10 or over (Bollerslev, 2001). In addition, the multivariate extensions often impose

very restrictive assumption on covariances which might cause biases for portfolio choices. Ang and

Chen (2002) and Ang and Bekaert (2002) also show that the regime-switching model of Hamilton
2Fleming, Kirby and Ostdiek (2001) provide an alternative measure for assessing the economic value of a trading

strategy or model.
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(1989) can capture a large portion of asymmetries, but this model is still difficult to implement in

our high-dimensional applications. Fortunately, Tu (2003) develops a feasible Bayesian version of

the regime-switching model which can be applied here.

In the two-regime model, the excess returns can follow one of two possible normal distributions,

rt ∼ N (Est , V st) , (47)

where st ∈ S = (1, 2) and the two regimes switch between each other with the following transition

probabilities:

Π =


 P 1− P

1−Q Q


 , (48)

where P = Pr(st = 1|st−1 = 1) and Q = Pr(st = 2|st−1 = 2). As shown by Ang and Chen (2002)

and Ang and Bekaert (2002), among others, the regime-switching model can generate asymmetries

in moments. So, to assess the economic importance of asymmetries, we provide below how to

compute the associated expected utility gain.

First, the earlier factor model can be rewritten as

yt = αst + Bstxt + ut, (49)

where ut is the residuals. Define similar the returns first two moments,

Est =


Est

1

Est
2


 , V st =


V st

11 V st
12

V st
21 V st

22


 , (50)

then αst , Bst obey similar earlier relationship:

αst = Est
1 −BstEst

2 , Bst = V st
12 (V st

22 )−1, (51)

and

Σst = V st
11 −BstV st

22 (Bst)′. (52)

Again, following Pástor and Stambaugh (2000) and Pástor (2000), we can use the following priors

to reflect the degree of mispricing uncertainty,

αst |Σst ∼ N

(
0, σ2

α

(
1

s2(st)
Σst

))
. (53)

The rest of the priors are standard.
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In the above Bayesian framework where both model mispricing and parameter uncertainties are

incorporated, a power utility investor solves

max
w

∫
W

(1−γ)
T+1

1− γ
p(rT+1|R)drT+1, (54)

where p(rT+1|R) is the predictive density of the returns, WT+1 = 1 + Rf +
∑n

i=1 wiriT+1 is the

wealth at T + 1 when time T wealth WT is assumed as $1, wi = Xi/Wt−1 and Xi is the size in

asset i, i = 1, 2, · · · , n. The first order condition is
∫

[W−γ
T+1rT+1]p(rT+1|R)drT+1 = 0. (55)

Analytical solution does not seem feasible. To solve (55) numerically, we have to evaluate high

dimensional integrals and Monte Carlo simulation is the only tractable approach. Then the key

difficulty lies in how to draw returns from their predictive density p(rT+1|R). Fortunately, this

problem is resolved by Tu (2003), so that (55) can be well approximated by

M∑

q=1

{
(W q

T+1)
−γrq

T+1

}
= 0, (56)

where W q
T+1 = 1 + Rf +

∑n
i=1 wir

q
iT+1

, rq
T+1 is the q-th draw and M is the total number of draws.

We denote the optimal portfolio weight for the two-regime model as w2R. For the one-regime

model, we can obtain similarly the optimal portfolio weight w1R by solving (56) by using draws

from the predictive distribution of the one-regime model. Therefore, expected utilities are

û2R =
M∑

q=1





(
1 + Rf +

n∑

i=1

wi2Rrq
iT+1

)1−γ

/(1− γ)



 . (57)

and

û1R =
M∑

q=1





(
1 + Rf +

n∑

i=1

wi1Rrq
iT+1

)1−γ

/(1− γ)



 , (58)

where rq
iT+1

is drawn from the predictive distribution of the two-regime model which is the assumed

true data-generating process capturing the asymmetry of the data. Then the difference in the

certainty-equivalent excess returns is

CE = [(1− γ)û2R]
1

1−γ − [(1− γ)û1R]
1

1−γ . (59)

This is the ‘perceived’ certainty-equivalent gain to a power utility investor who switches from a

symmetry belief (the one-regime model) into a belief of asymmetry (the two-regime model).
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4 Empirical results

In this section, we first apply the symmetry tests to size portfolios, the well-known Fama and

French’s (1993) 25 portfolios and a set of 20 industry portfolios. Then, after analyzing the statistical

significance of asymmetric correlations, betas and covariances, we further examine the economic

gain to a mean-variance investor who invests in the three investment universes, respectively, when

the investor makes use of the asymmetry of the data by incorporating an asymmetric factor into

the CAPM and the Fama-French 3-factor model, respectively. We also examine the gain to a power

utility investor maximizer who uses the regime-switching model to capture asymmetry rather than

the asymmetry factor.

4.1 The data

The first data set is the 10 standard size portfolios of the Center for Research in Security Prices

(CRSP). Both monthly and daily returns of the 10 size deciles portfolios as well as the value-

weighted market portfolios based on stocks in NYSE/AMEX/NASDAQ are available directly from

CRSP. To examine how the result of the symmetry test is affected by the sampling frequency, we

also use weekly returns. The weekly returns are computed, following Ang and Chen (2002), as the

holding period return from the end of Wednesday of the first week through the end of the next

Wednesday by compounding daily returns in this holding period. As it is the returns in excess of

the riskfree rate that are of interest, a proxy of the riskfree rate must be supplied. We use both

the monthly and daily returns on the one-month Treasury bill from French’s homepage.3

In recent empirical asset pricing studies, especially in linear factor models, Fama and French’s

(1993) 25 portfolios formed on size and book-to-market, are the standard test assets. As a result,

we also apply our tests to them to provide some potentially very useful asymmetric information on

this widely used data. The data is monthly returns from January 1965 through December 1999,

available from French’s website. So are available the Fama and French’s (1993) three factors. As

Fama-French 25 test assets are not available in daily form, but a set of 6 portfolios (grouped by

2 size and 3 book-to-market) is. We will also use this set in our study to provide asymmetry

information on size and book-to-market portfolios at both weekly and daily frequencies.
3We are grateful to Ken French for making this data and many others used below available at his website:

www.mba.tuck.dartmouth.edu/pages/faculty/ken.french.
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Besides those sorted on size and book-to-market, we apply our test to 20 industry portfolios.

The industry portfolios are constructed by sorting their 2-digit SIC codes following Moskowitz and

Grinblatt (1999). King (1966) shows that industry groupings well proxy the investment opportunity

set: they maximize intragroup and minimize intergroup correlations. In addition, this data set

makes a nice comparison with the size portfolios since it is also available at monthly, weekly and

daily frequencies.

4.2 Correlations

Following Ang and Chen (2002), we choose four exceedance levels, c1 = 0, c2 = 0.5, c3 = 1.0 and

c4 = 1.5. In addition, we implement the symmetry test Ĵρ by using Bartlett kernel and by letting

the data to tell what the value of p is based on Newey and West’s (1994) estimator for both weekly

and daily data. However, for the monthly data, as the observations in the tail are sometimes as

few as 10, there is simply not enough sample to estimate p. So we will use a fixed value of p = 3

for all monthly data which should capture a good amount of serial correlations, if any, in the data.

Table 1 provides the results of testing symmetry for monthly excess returns on the CRSP 10 size

portfolios. The assets are in the first column. They range from the smallest size of 1 to the largest

of size 10. The second column reports the symmetry test statistic, Jρ, and the next column is the

associated P-value in percentage points. It is seen that the P-values are all greater than 5% except

for the first asset. Hence, the null hypothesis of symmetric correlations are not rejected statistically

for the 9 assets at the usual 5% significance level. However, it is interesting to observe, from columns

4 through 7, that the sample differences of asymmetric conditional correlations, ρ+ − ρ− are all

less than zero at all values of c. This means that the downside correlations are indeed greater than

the upside correlations based on the standard correlation estimates. For example, ρ−(0) − ρ+(0)

for the second decile portfolio is as large as 43.96%! However, this does not mean that there is

necessarily a genuine difference in the population parameters as there are always differences in the

estimated conditional correlations due to sample variations. Indeed, the earlier test results show

only one rejection of symmetry after accounting for the sample variations.

There are in addition several interesting facts. First, the test statistic tends to get smaller as

the firm size increases. For example, Jρ is great than 5.6 for sizes 2 through 4, but less than 0.59

for sizes 7 through 10. Second, the test statistic appears positively related to the skewness. For

example, size 1 has the largest Jρ, 10.00 and a corresponding largest skewness of 0.87. In contrast,
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size 10 has a Jρ value of 0.01 and a corresponding small skewness of −0.37. Finally, the mean

returns, as well known, are almost strictly decreasing with firm size. The return on the size 1

portfolio is substantial greater than that on size 2, 1.373% versus 0.909% per month, and both are

much greater than 0.505% per month of the largest firm size. To the extent that size 1 portfolios

drop more when the market does, its substantial high return, 1.373 per month, seems to suggest

that investors earn the high return by taking the substantial downside risk.

While our use of the returns here and later replies on the usual simple or percentage returns,

Ang and Chen (2002) use continuously compounded returns in their study which may be well

motivated by a continuous-time utility maximizing framework. A question then arises whether

the test statistic changes drastically with respect to the use of continuously compounded returns

versus to the use of simple returns. To answer this question, we repeat our test above for the same

size portfolios with all of the excess returns being computed by continuous compounding. The

results are reported in the second column panel of Table 1. The test statistic changes from 10.00 to

10.07, and from 1.69 to 2.25, for the size 1 and 5 portfolio, respectively. Clearly the differences are

small and they have no impact on the rejection decision. Similarly, the changes on ρ−(0) − ρ+(0)

are also small. This suggests that the use of continuously compounded returns has little effect on

symmetry test, at least for the current size portfolios. However, it might be of interest to note that

the continuously compounded returns do make important differences in some other aspects. For

example, the mean returns are smaller by construction. In addition, the skewness is shifted to the

negative side. For instance, size 1 portfolio has a skewness of 0.87 in terms of simple returns, but

has a skewness of 0.30 in terms of continuous returns. Similarly, the skewness of size 10 portfolio

is shifted from −0.37 to −0.65.

Table 2 reports the results of testing symmetry for the Fama-French 25 excess returns. The 3

smallest P-values occur at size 1 portfolio with book-to-market grouping 2, 3 and 5. The S1B3 asset

has the lowest P-value of 50.6% when using simple returns, or of 56.99% when using continuous

returns. This ranking of P-values is consistent with the earlier results on size portfolios. However,

there are no rejections at the usual 5% level. This seems to suggest that book-to-market is unrelated

to size since grouping by book-to-market out of the now larger size 1 portfolio (all the stocks are

grouped into 5 rather 10 sizes now) cannot single out the asymmetric property of the earlier

CRSP smallest size portfolio. Because the differences between continuous and simple returns are

small, we will focus on the results for the simple returns. Examining the individual differences in

ρ−(c) − ρ+(c), we see that ρ−(1.5) − ρ+(1.5) of the first asset, S1B1, is equal to a value as large
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as 0.9126! On the other hand, the symmetry is not even rejected for this asset. The reason is that

there are few samples at the exceedance level of c = 1.5, and relatively much greater samples at the

exceedance level of c = 0. A further examination of ρ−(1.5) − ρ+(1.5) = 0.9126 for S1B1 reveals

that ρ+(1.5) = −0.0379, far away from the unconditional correlation of 0.8151. The sample size for

this tail is 10, so the estimate does not seem to be very accurate. On the other hand, ρ− = 0.8747,

so their difference is big. Notice that the test utilizes the effective sample sizes for each tail and

aggregate them accordingly. Because of this, the variance of the test statistic Jρ is predominantly

determined by ρ−(0)− ρ+(0) rather than by ρ−(1.5)− ρ+(1.5). The same reason applies to S1B3.

Although it has a smaller deviation of ρ−(c)− ρ+(c) at c = 1.5, its P-value is smaller than S1B1’s

because ρ−(0) − ρ+(0) = 0.3432 is greater than 0.3349. This is also consistent with asset S2B1

which has a P-value of 95.09% while ρ−(1.5) − ρ+(1.5) = 0.7703. The statistical behavior of the

symmetry test is also confirmed with bootstrap simulations below. Another interesting fact about

the Fama-French portfolios is that the skewness is small and negative for all but two. In contrast,

the skewness of the CRSP size portfolios are in general larger in absolute value and have three

positive ones.

Because the industry portfolios well proxy the investment opportunity set, it is also of interest to

examine their asymmetry. Table 3 reports the results for both the simple and continuous returns.

Like size and the Fama-French portfolios, the differences between using simple and continuous

returns are very small so we will focus only on the results for the simple returns. Like the Fama-

French portfolios, there are no rejections of symmetry for the industry portfolios. Moreover, the

industry portfolios seem very diversified in the sense that ρ−(0)−ρ+(0), which primarily determines

the rejection, does not exceed 0.2886 for all the assets. In contrast, there are 5 Fama-French

portfolios that have values over 0.3116, and 5 size portfolios that have values over 0.3369 (to a

high of 0.5226). In terms of standard deviation, the traditional measure for risk, the industry

portfolios also seem less risky. Their largest standard deviation is 6.98% per month, whereas the

largest standard deviations are 7.75% and 7.70% for the CRSP size and Fama-French portfolios,

respectively.

Now we examine how the test statistic varies at higher sampling frequencies. As the difference

is tiny between the results of using simple and continuous returns, we in what follows apply our test

only to simple returns. Table 4 reports the symmetry test results for the weekly and daily CRSP

size portfolio returns. The most noticeable fact is that the test statistic increases in magnitude

compared with the monthly data. For the weekly data, half of the magnitudes are in the 10s.
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In contrast, the maximum test statistic is 10.00 for the monthly data. Because of the increasing

magnitudes of the test statistics with both weekly and daily data, the symmetry hypothesis is

rejected for four of the assets. However, the rejection is not perfectly consistent with the use of the

same asset. While the first 3 decile portfolios are rejected by both the weekly and daily tests, the

fifth decile is rejected by the weekly test, but not by the daily one. One interesting fact is that the

skewness tends to decrease as the frequency increases. For example, the skewness value deceases

from 0.87 to 0.32 and to −0.17 for the first decile as the data frequency goes up from monthly to

weekly, and daily. It is still true that the small deciles tend to have larger skewnesses. Another

noticeable fact is that the differences in conditional correlations, [ρ−(c) − ρ+(c)]’s, are in general

smaller as the frequency increases. But why do we have rejections with the smaller differences?

This is because the sample size is now quite large, T = 1825 and 8813, respectively, for the weekly

and daily data. When the sample size increases, it would be more unlikely to still observe a sizable

difference if the population parameter were equal.

Consider now a similar weekly and daily analysis for the Fama-French 25 portfolios. However,

these portfolios are not available at the daily and weekly frequencies. But, as mentioned earlier,

Fama-French 6 portfolios are, which formed by size and boo-to-market, 2 × 3 rather than 5 × 5.

Hence, we have to apply our test to these 6 portfolios which should provide some useful information

on the Fama-French 25 portfolios. Table 5 reports the results. Unlike the size portfolios which have

more rejections at the daily and weekly frequencies than monthly, Fama-French 6 portfolios still

do not have any rejections of the symmetry hypothesis. Indeed, the sample conditional correlation

differences, [ρ−(c) − ρ+(c)]’s, actually shrink to much smaller numbers as sample sizes go large,

suggesting equal up- and down-side correlations. For example, the difference for the S1B1 asset

varies from 0.2053 to 0.7967, from 0.0174 to 0.1103, and from 0.0677 to 0.0943 for the monthly,

weekly and daily data, respectively. Therefore, a failure of rejecting symmetry for the Fama-French

25 portfolios does not seem a problem with the sample size. Rather, it looks like that asymmetry

simply disappears when one sorts portfolios by both size and book-to-market instead of by size

alone. The new mix of the firms does not carry the asymmetry characteristics of the smallest decile

of the CRSP size portfolios.

Similar results hold true for the 20 industry portfolios as well. As shown by Table 6, there are

no rejections and the P-values are more or less the same at the daily and weekly frequencies. In

addition, the sample conditional correlation differences also decrease as the frequency increases.

This is expected as there are no rejections. However, the decreases in the differences are smaller
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than those in the Fama-French 6 portfolios. The reason is that such differences are relatively smaller

to begin with at the monthly frequency. Overall, although the sample estimates of [ρ−(c)−ρ+(c)]’s

indicate some asymmetry, but it is not statistically significant at all data frequencies.

In summary, although sample estimates show asymmetric correlations in the three sets of port-

folios, these asymmetric correlations are statistically important only for the size portfolios. This

also makes intuitive economic sense. As the market goes down, say when the economy is in reces-

sion, small firms usually get a disproportional impact than the large firms in terms of sales and

financing. As is well-known, small firms have higher risks in terms of standard deviation than large

firms, but the higher standard deviation measures only symmetric risk to suggest that small firms

are more volatile than large firms whether the market is up or down. In contrast, what we found

here is that the small firms exert asymmetric correlations. So, after controlling for the market, the

small size portfolios must be asymmetric. The failure of the CAPM to explain the well-known size

anomaly, e.g., Banz (1981), may be due, in part, to the use of a symmetric model to explain the

asymmetric movements of the returns with the market.

Statistically, an unanswered issue is that whether the symmetry test is reliable in the sample

size we use. To address this question, consider the first asset of the Fama-French 25 portfolios. If

there are any rejections, this would be one of the most likely asset. We use bootstrap to analyze

the distribution of the symmetry test by drawing 10,000 samples from the data with replacements.

Table 7 reports the results. With the true data, Jρ = 2.02 and the asymptotic P-value is 73.29%.

With the bootstrap simulations, the mean estimate of Jρ is 3.82 with standard error 1.98, statis-

tically indistinguishable from 2.02. The empirical P-value, the percentage of simulated Jρ being

greater than 2.02, is 85.25%, very close to 73.29%. The small and inconsequential differences are

due to the joint effect of small sample deviations and the independent and identical distribution

assumption imposed by the bootstrap. Similar results also hold for the first asset of the Fama-

French 6 portfolios at all the data frequencies. So, in our applications, there is no evidence on small

sample problems of using the symmetry asymptotic test.

4.3 Betas and covariances

Now let us examine asymmetry in betas. Table 8 provides the results for the monthly size portfolios.

We have no in fact no rejections of symmetry in the betas. In contrast to the correlation symmetry

test, the smallest P-value occurs at the 4th decide rather than the smallest one. This is true
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regardless of using simple or continuously compounded returns. However, Table 9 shows that there

are one or two more rejections in beta symmetry than correlation symmetry at both the daily and

weekly frequencies. In addition, when one asset is rejected by correlation symmetry test, it is also

rejected by beta symmetry test. For other assets, the beta symmetry test yields very similar results

and hence they are omitted.

Finally, consider asymmetry in covariances. Tables 10 and 11 report the results on size portfo-

lios. For the monthly data, it is seen that the smallest P-value also occurs at at the 4th decide, but is

close to the value at the smallest decile. For the week and daily data, symmetry is strongly rejected

for all deciles except for the largest one! So the data is much more asymmetry in covariances than

in correlations or betas. While strong asymmetry does not show up at monthly frequency for Fama

and French’s (1993) 25 assets or the 20 industries, Table 12 and 13 demonstrate that covariance

symmetry hypothesis is rejected for many of the assets at both weekly and daily frequencies. This

is surprising as there are no rejections by using the correlation symmetry test. Therefore, we find

that asymmetry in covariances is pervasive in the data.

4.4 Utility gains

Whether or not there are statistical rejections of symmetric characteristics, it is of interest to assess

the economic value of knowing the presence of such asymmetries. To implement the utility gain

measures discussed earlier in Section 3, we need to specify some initial values for the parameters.

Following Pástor and Stambaugh (2000), we consider a mean-variance-optimizing investor with

relative risk aversion equal to 3. For the power utility, we allow it to be 3, 6 and 9. Given these

specifications, we can compute the utility gain measures based on 10,000 draws of the parameters

based on the predictive distributions.

Consider first the case where a factor approach is used to capture the asymmetry of the data.

Ang, Chen and Xing (2002) construct such a factor, CMC, based on downside correlation. As

alternatives, we also construct four similar factors, Dcov10, Dcov, CC3 and Dcorr10. The Dcov10

factor is obtained as the difference between the largest and smallest portfolio after sorting all

stocks into ten groups by downside covariance with the market. Dcov is obtained by sorting first

the stocks into two groups according to market beta, (L1, H1), and then according to downside

covariance, (L2, M2, H2). This gives rise to Dcov = (L1H2 + H1H2)/2 − (L1L2 + H1L2)/2.

CC3 is obtained similarly as the difference portfolio when the stocks are first sorted into 3 groups
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by downside covariance, and then into 3 groups by downside correlation. Finally, Dcorr10 is the

difference portfolio after sorting stocks into ten groups by downside correlation alone.

In light of the well-known Fama-French model, a mean-variance utility maximizing investor

would make her investment decisions based on this model and the 10 test size portfolios if she

has a belief of symmetric correlations, and if the investment universe consists of the CRSP 10 size

portfolios, the Fama-French three factors and one of the asymmetry factors. If the investor’s belief

is dogmatic, she would take the Fama-French model as the exact asset pricing model, so that the

pricing error α = 0. Now if she switches into a dogmatic belief of asymmetry, she would make

her investment decisions based on the 4-factor model (the Fama-French 3 factors plus one of the

asymmetry factors) with α = 0. The first panel of Table 14 presents the results. The annualized

certainty-equivalent gain of switching the beliefs, can be as low as 0.02% for the Dcov10 factor, and

as high as 9.64% for the CMC factor. It is seen that this is quite sensitive to the asymmetric factor

used. The economic gain is quite substantial for the CMC factor, but insignificant for the Dcov10

factor. To the extent that only the largest gain is of concern, the results clearly show asymmetry

is of great economic importance.

A dogmatic belief assumes no pricing errors, which is obviously an unrealistic assumption in

practice. So we also compute the gains when the model pricing errors is 0.5%, 1% to 6% away from

the standard error. When the error is infinity, it means that the pricing model is useless in pricing

the assets. At the 1% level, the largest gain is still as high as 3.10%. However, as the pricing

error grows, it is seen that the gain gets smaller and smaller, and eventually becomes insignificant,

suggesting that the gain is sensitive to model pricing errors. Intuitively, this should be the case. If

one does not believe the 4-factor model that much, the gain should be small when using it.

Now when we assume that the investment universe consists of the Fama-French 25 portfolios,

their three factors as well as one of the asymmetry factors, the gains are in general greater. For

example, as reported in the second panel of Table 14, the largest gain under a dogmatic belief

is 13.54%, much greater than the earlier gain of 9.64%. The intuition is that the Fama-French

25 test assets is more difficult to model in the factor model regression than the 10 size portfolios

because the 25 asset represent more cross-sectional difference in expected returns. Hence, once the

asymmetry factor is introduced, there is more gain for the Fama-French 25 test assets than the the

10 size portfolios. In general, consistent with earlier results, we find substantial economic value of

utilizing asymmetric characteristics in investment decisions. The results are also similar for the 20
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industry portfolios as reported in the third panel of table 14.

For interest of comparison, we also compute the economic gains if the benchmark model is the

standard CAPM, rather than the Fama-French model. In this case, the gain is still substantial,

though smaller. For example, as reported in table 15, the largest gain under a dogmatic belief is

2.73%, 2.5%, and 1.7% for the three alternative investment universes, respectively. Although these

values are smaller than the earlier ones, they are clearly of significant economic importance.

Now consider the case where the regime-switching model is used to capture the asymmetry

of the data. The results are provided in table 16. Under a dogmatic belief, the largest gain is

0.47%, 3.38%, and 2.79% for the three alternative investment universes, respectively. These gains

are smaller than those by using the factor approach. Notice that, under dogmatic beliefs, the

investor invest only in the factors and the regime-switching model just provides different weights

than the normality case. Empirically as we just found out, this performs less well than adding a

fourth asymmetry factor. However, when the model mispricing error is large, the utility gain from

using the regime-switching model is actually much greater than using the factor approach. The

reason is that the pricing ability is more concerned with the non-factor assets. When the mispricing

error is large, investors invest in all assets rather than just three factors. When the joint dynamics

of all of the assets is better modelled by the regime-switching data-generating process, the net

impact becomes greater. As a result, the gain is still substantial even when there is a large model

mispricing uncertainty. In contrast, the gain in the factor approach shrinks as the model mispricing

uncertainty increases. Similar results also follow, as reported in table 17, if the factors are replaced

by the market factor alone, i.e., if the CAPM is used to gauge the economic gain rather than the

Fama-French 3-factor model.

5 Conclusion

There are a great number of studies on asymmetric characteristics of asset returns in both domestic

and international markets. Of particular interest are the asymmetric correlations where returns tend

to have higher correlations with the market when it goes down than when it goes up. Ang and Chen

(2002) seem the first to provide a novel test for the null hypothesis of symmetric correlations, but

the test, unfortunately, has a few important weaknesses. For example, their test depends on a pre-

specified model for the data and the test is a joint test of the null and the specified model. A rejection
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of the symmetry hypothesis does not preclude the possibility that there is another symmetric model

that fits the data perfectly. To overcome this problem, we propose a new symmetry test that is

completely model-free. A rejection of the symmetry hypothesis by our test tells us exactly that

any symmetric model (subject to of course some standard regularity conditions) cannot model

the data. In addition, our test is easier to justify rigorously on the econometric ground and has a

simple asymptotic chi-square distribution. Moreover, we also provide model-free tests for beta and

covariance symmetries.

Complementing existing studies in the asymmetry literature, our paper seems the first to pro-

vide a way formally assessing the economic value of asymmetries. We find that, while sample

estimates indicate asymmetric correlations in the US stock market, asymmetric correlations are

primarily in existence in small stocks, significant only for the CRSP smallest size portfolio at

monthly frequency, and for the 4 smallest sizes at daily frequency. The results on asymmetric

betas are similar. However, asymmetric covariances are pervasive, statistically significant for size,

Fama and French’s (1993) and industry portfolios at both daily and weekly frequency. In spite

of insignificant correlation and beta asymmetry, we find that the economic value of utilizing the

asymmetric characteristics is substantial. Our method seems to apply not only in asymmetric cor-

relations, betas and covariances, but also in many types of other asymmetries and other markets,

leaving ample room for future research.

26



References

Andrews, D., 1991, Heteroskedasticity and autocorrelation consistent covariance estimation, Econo-

metrica 59, 817–858.

Ang, A., Bekaert, G., 2000, International asset allocation with time-varying correlations, Review

of Financial studies 15, 1137–1187.

Ang, A., Chen, J., 2002, Asymmetric correlations of equity portfolios, Journal of Financial Eco-

nomics 63, 443–494.

Ang, A., Chen, J., Xing, Y., 2002, Downside correlation and expected stock returns, working

paper, Columbia Business School.

Bae, K.H., Karolyi, G.A., Stulz, R.M., 2001, A new approach to measuring financial contagion,

Unpublished working paper, National Bureau of Economic Research, Cambridge, MA.

Ball, R., Kothari, S.P., 1989, Nonstationary expected returns: implications for tests of market

efficiency and serial correlation in returns, Journal of Financial Economics 25, 51–74.

Banz, R.W., Breen, J.W., 1986, ‘Sample-dependent results using accounting and market data:

Some evidence, Journal of Finance 41, 779–793.

Bekaert, G., Wu, G., 2000, Asymmetric volatility and risk in equity markets, Review of Financial

Studies 13, 1–42.

Bollerslev, T., 2001, Financial econometrics: past developments and future challenges, Journal of

Econometrics 100, 41–51.

Boyer, B.H., Gibson, M.S., Loretan, M., 1999, Pitfalls in tests for changes in correlations. Inter-

national Finance Discussion Paper 597, Board of Governors of the Federal Reserve System,

Washington, DC.

Cho, Y.H., Engle, R.F., 2000, Time-varying betas and asymmetric effects of news: empirical anal-

ysis of blue chip stocks, working paper, National Bureau of Economic Research, Cambridge,

MA.

Conrad, J., Gultekin, M., Kaul, G., 1991, Asymmetric predictability of conditional variances,

Review of Financial Studies 4, 597–622.

27



Fama E.F., French, K.R., 1993, Common risk factors in the returns on stocks and bonds, Journal

of Financial Economics 33, 3–56.

Fleming, J., Kirby, C., Ostdiek, B., 2001, The economic value of volatility timing, Journal of

Finance 56, 329–352.

Forbes, K., Rigobon, R., 2002, No contagion, only interdependence: measuring stock market

co-movements, Journal of Finance 57, 2223–2261.

Gibbons, M.R., Ross, S.A., Shanken J., 1989, A test of the efficiency of a given portfolio, Econo-

metrica 57, 1121–1152.

Hamilton, J. D., 1989, A new approach to the economic analysis of nonstationary time series and

the business cycle, Econometrica 57, 357–384.

Hannan, E., 1970, Multiple Time Series, John Wiley: New York.

Hansen, L.P., 1982, Large sample properties of the generalized method of moments estimators,

Econometrica 50, 1029–1054.

Harvey, C.R., Zhou, G., 1990, Bayesian inference in asset pricing tests, Journal of Financial

Economics 26,221–254.

Karolyi, A., Stulz, R., 1996, Why do markets move together? an investigation of US-Japan stock

return comovements, Journal of Finance 51, 951–986.

Kandel, S., Stambaugh, R.F., 1996, On the predictability of stock returns: An asset-allocation

perspective, Journal of Finance 51, 385–424.

King, B., 1966, Market and industry factors in stock price behavior, Journal of Business 39,

139–190.

Longin, F., Solnik, B., 2001, Extreme correlation of international equity markets. Journal of

Finance 56, 649-676.
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A Appendix

A.1 Proof of Theorem 1

To derive the asymptotic distribution of our test statistic Jρ, we first spell out clearly what the

regularity conditions are. Throughout the appendix, we use C to denote a generic bounded constant

that may differ from place to place.

Assumption A.1: (i) The return series of the two portfolio returns, {R1t, R2t}, is a bivariate

fourth order stationary process with E(|R1t|4ν + E|R2t|4ν) ≤ C for some ν > 1; (ii) {R1t, R2t} is a

α-mixing process with α-mixing coefficient satisfying
∑∞

j=−∞ j2α(j)
ν

ν−1 < ∞.

Assumption A.2: For j = 1, 2, put X+
jt(c) = [R1t − E(R1t|R1t > c)]/[var(R1t|R1t > c)]1/2 and

X−
jt(c) = [R1t − E(R1t|R1t < −c)]/[var(R1t|R1t < −c)]1/2. Define

ξt(c) =
[X+

1t(c)X
+
2t(c)− ρ+(c)]

Pr(R1t > c,R2t > c)
− [X−

1t(c)X
−
2t(c)− ρ−(c)]

Pr(R1t < −c,R2t < −c)
.

Let Ω be an m × m matrix with (i, j)-th element Ωij ≡
∑∞

l=−∞cov[ξt(ci), ξt−l(cj)]. Then for the

prespecified vector c = (c1, c2, ..., cm)′ ∈ Rm, the variance-covariance matrix Ω is finite and nonsin-

gular.

Assumption A.3: The kernel function k : R→ [−1, 1] is symmetric about zero and is continuous

at all points expect a finite number of them on R, with k(0) = 1 and
∫∞
−∞ |k(z)|dz < ∞.

Assumption A.4: The bandwidth p = p(T ) →∞, p/T → 0 as the sample size T →∞.

Assumption A.5: (i) For some b > 1, |k(z)| ≤ C|z|−b as z →∞; (ii) |k(z1)−k(z2)| ≤ C|z1−z2|
for any z1, z2 in R, where C is a bounded constant.

Assumption A.6: p̂ is a data-dependent bandwidth such that p̂/p = 1 + OP (p1+b/T κ(1+b)) for

any 0 < κ < 1
2 and some nonstochastic bandwidth p satisfying p = p(T ) →∞, p/T κ → 0.

Assumption A.1 allows for the existence of volatility clustering, which is a well-known stylized

fact for most financial time series. The mixing condition is commonly used for nonlinear time

series analysis, as is the case with our test because we only consider the cross-correlation in the tail

distributions of the returns {R1t, R2t}. This condition characterizes temporal dependence in return

series, and rules out long memory processes. However, it is well-known that returns of portfolios
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have weak serial correlation. Therefore, the mixing condition is quite reasonable in the present

context.

Assumption A.2 is assumed to prevent degeneracy of our test statistic. A necessary but not

sufficient condition is that threshold levels c′is should be distinct. Also, for all c, Pr(R1t > c, R2t > c)

and Pr(R1t < −c,R2t < −c) are bounded away from below from zero. This condition is easily

satisfied in practice, given the fact that financial returns usually have heavy tails.

Assumptions A.3 and A.4 are standard conditions on the kernel function k(·) and bandwidth

p. These conditions are sufficient when we use nonstochastic bandwidths. Assumptions A.5 im-

poses some extra conditions on the kernel function, which is needed when we use data-dependent

bandwidth p̂. Many commonly used kernels, such as the Bartlett, Parzen, and quadratic-spectral

kernels are included. However, Assumption A.5 rules out the truncated and Daniell kernels. For

various kernels, see, e.g., Priestely (1981, p.442). Assumption A.6 imposes a rate condition on the

data-driven bandwidth p̂, which ensures that using p̂ rather than p has no impact on the limit

distribution of our test statistic. Commonly used data-driven bandwidths are Andrews’s (1991)

parametric plug-in method or Newey and West’s (1994) nonparametric plug-in method. Note that

the condition on p in Assumption A.7 is more restrictive than Assumption A.4, but it still allows

for optimal bandwidths for most commonly used kernels. All of these ensures that our test is

completely model-free. Right prior to the proof, we re-state Theorem 1 in the following technically

more clear way,

Theorem 1: Suppose Assumptions A.1–A.4 hold. Then, under H0, we have (i)

Jρ = (ρ̂+ − ρ̂−)′Ω̂−1(ρ̂+ − ρ̂−) →d χ2
m

as T →∞; and (ii), if in addition Assumptions A.5 and A.6 hold, Ĵρ − Jρ →p 0, and

Ĵρ →d χ2
m.

Proof of Theorem 1: (i) We first use the Cramer-Wold device to show
√

T (ρ̂+ − ρ̂−) →d

N(0,Ω). Put ξ̂t = Σm
j=1λj ξ̂t(cj) and ξt = Σm

j=1λjξt(cj), where ξ̂t(c) and ξt(c) are defined in (12) and

Assumption A.2 respectively, and λ = (λ1, ..., λm)′ is a m×1 vector such that λ′λ = 1. We then have

λ′(ρ̂+ − ρ̂−) = Σm
j=1λj [ρ̂+(cj) − ρ̂−(cj)] = T−1ΣT

t=1ξ̂t, and by tedious but straightforward algebra,

λ′(ρ̂+ − ρ̂−) = T−1ΣT
t=1ξt +oP (T−1/2). In other words, the replacement of the sample means,

sample variances, and sample proportions with their population counterparts have no impact on

the asymptotic distribution of
√

Tλ′(ρ̂+ − ρ̂−).
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Given Assumption A.1, {R1t, R2t} is an α-mixing process, so is ξt, which is an instantaneous

function of (R1t, R2t). Under H0 : ρ+(c) = ρ−(c) for all c, we have E(ξt) = 0 because E[ξt(cj)] = 0.

In addition, given Assumptions A.1 and A.2, we have

V = lim
T→∞

var

[
T−1/2

T∑

t=1

ξt

]
=

∞∑

j=−∞
cov(ξt, ξt−j)

=
m∑

i=1

m∑

j=1

λiλj

∞∑

l=−∞
cov[ξt(ci), ξt−l(cj)]

=
m∑

i=1

m∑

j=1

λiλjΩij

= λ′Ωλ.

Note that 0 < V < ∞ for all λ such that λ′λ = 1, because Ω is positive definite. Thus, using the

central limit theorem for mixing processes (e.g., White 1984, Theorem 5.19), we have

√
T (ρ̂+ − ρ̂−)/

√
V →d N(0, 1),

It follows from Cramer-Wold device that
√

T (ρ̂+ − ρ̂−) →d N(0, Ω). It follows that

T (ρ̂+ − ρ̂−)′Ω−1(ρ̂+ − ρ̂−) →d χ2
m.

Next, we show Ω̂ →p Ω. Write Ω̂ − Ω = [Ω̂ − EΩ̂] + [EΩ̂ − Ω]. By Andrews (1991, Lemma

1), Assumption A.1 implies that Assumption A of Andrews (1991) hold. It follows from Andrews

(1991, Proposition 1(a)) that var(Ω̂) = E[(Ω̂ − EΩ̂)(Ω̂ − EΩ̂)′] = O(p/T ). Therefore we have

Ω̂−Ω = OP (p1/2/T 1/2) by Chebyshev’s inequality. In addition, because Assumption A.1(ii) implies

Σ∞j=−∞Ω(j) ≤ C, we have

EΩ̂− Ω = ΣT−1
j=1−T [(1− |j|/T )k(j/p)− 1]Ω(j) + Σ|j|>T Ω(j) → 0

as T → ∞ by Assumption A.4, p → ∞, and dominated convergence. Consequently, we have

Ω̂ →p Ω. By Slutsky theorem and (A2), we then obtain

J = T (ρ̂+ − ρ̂−)′Ω̂−1(ρ̂+ − ρ̂−) →d χ2
m.

(ii) Let Ω̂∗ and Ω̂ be the kernel estimators for Ω using the bandwidth p̂ and p respectively. It

suffices to show Ω̂∗ − Ω̂ →p 0 and then apply Slutsky theorem. By the definition of Ω̂, we have for
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the (i, j)-th element,

Ω̂∗ij − Ω̂ij =
T−1∑

l=1−T

[k(l/p̂)− k(l/p)] γ̂l(ci, cj)

=
∑

|l|≤q

[k(l/p̂)− k(l/p)] γ̂l(ci, cj) +
∑

q<|l|<T

[k(l/p̂)− k(l/p)] γ̂l(ci, cj)

= Â1(i, j) + Â2(i, j), say, (A1)

where q = T κ for κ as in Assumption A.6.

We now consider the first term Â1. Using Assumption A.5(ii) and the triangle inequality, we

have

|Â1(i, j)| ≤
∑

|l|≤q

C|(l/p̂)− (l/p)| · |γ̂l(ci, cj)|

≤ C|p̂−1 − p−1|q
∑

|l|≤q

|γ̂l(ci, cj)− γl(ci, cj)|+ C|p̂−1 − p−1|q
∑

|l|≤q

|γl(ci, cj)|

= |p̂−1 − p−1|OP (q/T 1/2 + q)

= O(q|p̂−1 − p−1|), (A2)

where we have made use of the facts that Σ∞l=−∞|γl(ci, cj)| ≤ C and sup0<l<T E[γ̂l(ci, cj) −
γl(ci, cj)]2 = O(T−1), which follows by Hanan (1970, equation (3.3), p. 209) and Assumption

A.1 (recall that Assumption A.1 ensures that the fourth order cumulant condition holds).

For the second term Â2(i, j), using Assumption A.5(i), we have

|Â2(i, j)| ≤
∑

q<|l|<T

C(|l/p̂|−b + |l/p|−b)|γ̂l(ci, cj)|

≤ C(p̂b + pb)q1−bq−1
∑

q<|l|<T

(l/q)−b|γ̂l(ci, cj)− γl(ci, cj)|

+C(p̂b + pb)q−b
∑

q<|l|<T

|γl(ci, cj)|

= C(p̂b + pb)q−b[OP (q/T 1/2) + oP (1)], (A3)

where again we have used the facts that Σ∞l=−∞|γl(ci, cj)| ≤ C and sup0<l<T E[γ̂l(ci, cj)−γl(ci, cj)]2 =

O(T−1).

Combining (A1)–(A3), q = o(T 1/2) and p̂/p = 1 + OP (p1+b/q1+b) as implied by Assumption

A.6, we have Ω̂∗ − Ω̂ = oP (1). This completes the proof. Q.E.D.

33



T
ab

le
1:

S
y
m

m
et

ry
te

st
fo

r
si

ze
p
or

tf
ol

io
s

T
he

ta
bl

e
re

po
rt

s
sy

m
m

et
ri

c
co

rr
el

at
io

n
te

st
be

tw
ee

n
th

e
m

ar
ke

t
ex

ce
ss

re
tu

rn
an

d
th

e
ex

ce
ss

re
tu

rn
on

on
e

of
th

e
C

R
SP

10
si

ze
po

rt
fo

lio
s

w
it

h
m

on
th

ly
da

ta
fr

om
Ja

n,
19

65
th

ro
ug

h
D

ec
,
19

99
.

J
ρ

is
th

e
te

st
st

at
is

ti
c

fo
r

th
e

sy
m

m
et

ry
hy

po
th

es
is

H
0

:
ρ
+
(c

)
=

ρ
−
(c

)
fo

r
al

l

c
>

0,
w

he
re

ρ
+
(c

)
=

co
rr

(R
1
t,

R
2
t|R

1
t
>

c,
R

2
t
>

c)
,a

nd
ρ
−
(c

)
=

co
rr

(R
1
t,

R
2
t|R

1
t
<
−c

,R
2
t
<
−c

)
ar

e
th

e
co

nd
it

io
na

lc
or

re
la

ti
on

s,
R

1
t

is
th

e
re

tu
rn

on
th

e
C

R
SP

va
lu

e-
w

ei
gh

te
d

m
ar

ke
t

po
rt

fo
lio

an
d

R
2
t
is

th
e

re
tu

rn
on

on
e

of
th

e
10

si
ze

po
rt

fo
lio

s.
P

is
th

e
P

-v
al

ue
of

th
e

te
st

in
pe

rc
en

ta
ge

po
in

ts
.

J
ρ

ha
s

an
as

ym
pt

ot
ic

ch
i-
sq

ua
re

di
st

ri
bu

ti
on

w
it

h
de

gr
ee

s
of

fr
ee

do
m

m
=

4.
T

he
st

at
is

ti
c

is
co

m
pu

te
d

by

us
in

g
B

ar
tl

et
t

ke
rn

el
.

T
he

ex
ce

ed
an

ce
le

ve
ls

ar
e

c 1
=

0,
c 2

=
0.

5,
c 3

=
1.

0
an

d
c 4

=
1.

5,
an

d
th

e
la

g
of

th
e

te
st

is
ch

os
en

as
p

=
3

(f
or

th
e

m
on

th
ly

da
ta

).

si
m

p
le

ex
ce

ss
re

tu
rn

co
n
ti

n
u
o
u
s

ex
ce

ss
re

tu
rn

p
o
rt

fo
li
o

J
ρ

P
(%

)
ρ̂
+

(c
i
)
−

ρ̂
−

(c
i
)

su
m

m
a
ry

st
a
ti

st
ic

s
J

ρ
P

(%
)

ρ̂
+

(c
i
)
−

ρ̂
−

(c
i
)

su
m

m
a
ry

st
a
ti

st
ic

s

c 1
=

0
c 2

=
0
.5

c 3
=

1
.0

c 4
=

1
.5

sk
ew

k
u
rt

m
ea

n
st

d
c 1

=
0

c 2
=

0
.5

c 3
=

1
.0

c 4
=

1
.5

sk
ew

k
u
rt

m
ea

n
st

d

S
iz

e1
1
0
.0

0
4
.0

5
-0

.5
2
2
6

-0
.3

8
7
3

-0
.2

9
8
4

-0
.4

2
6
3

0
.8

7
7
.1

2
1
.3

7
3

7
.7

5
1
0
.0

7
3
.9

3
-0

.5
6
3
3

-0
.3

9
9
7

-0
.3

1
6
2

-0
.4

2
8
6

0
.3

0
6
.2

2
1
.0

7
8

7
.4

8

S
iz

e2
5
.6

7
2
2
.5

6
-0

.4
3
9
6

-0
.3

4
8
5

-0
.3

2
6
7

-0
.1

4
6
8

0
.2

5
5
.8

9
0
.9

0
9

6
.9

7
3
.5

3
4
7
.3

3
-0

.4
6
7
8

-0
.4

8
4
4

-0
.3

7
0
0

-0
.1

5
1
4

-0
.2

6
6
.2

7
0
.6

6
6

6
.8

9

S
iz

e3
5
.8

9
2
0
.7

4
-0

.4
2
4
6

-0
.4

0
2
2

-0
.2

2
3
3

-0
.4

2
4
2

0
.0

1
5
.9

9
0
.7

9
1

6
.6

5
5
.4

0
2
4
.8

9
-0

.4
5
5
0

-0
.4

1
1
1

-0
.2

4
1
5

-0
.2

9
4
8

-0
.5

1
6
.6

9
0
.5

6
8

6
.6

4

S
iz

e4
7
.1

4
1
2
.8

4
-0

.4
0
9
1

-0
.3

3
4
6

-0
.1

8
2
0

-0
.3

8
9
2

-0
.0

3
6
.6

0
0
.6

9
2

6
.3

4
7
.5

0
1
1
.1

6
-0

.4
3
0
4

-0
.3

4
0
5

-0
.1

9
0
4

-0
.4

0
7
8

-0
.5

7
7
.1

9
0
.4

9
0

6
.3

4

S
iz

e5
1
.6

9
7
9
.2

4
-0

.3
3
6
9

-0
.3

7
2
5

-0
.4

4
5
3

-0
.4

1
9
9

-0
.3

1
6
.4

3
0
.6

8
0

6
.1

8
2
.2

5
6
9
.0

6
-0

.3
6
8
9

-0
.3

6
4
7

-0
.4

5
5
5

-0
.4

3
5
6

-0
.8

2
7
.5

5
0
.4

8
6

6
.2

3

S
iz

e6
1
.0

0
9
1
.0

0
-0

.2
7
9
5

-0
.3

6
4
5

-0
.3

7
3
2

-0
.3

6
7
8

-0
.3

5
6
.1

8
0
.6

4
7

5
.9

8
0
.8

9
9
2
.6

2
-0

.2
8
2
6

-0
.3

6
6
5

-0
.3

7
1
0

-0
.3

9
0
4

-0
.8

3
7
.3

0
0
.4

6
4

6
.0

3

S
iz

e7
0
.5

4
9
6
.9

4
-0

.2
0
9
2

-0
.2

8
5
2

-0
.3

1
1
5

-0
.2

5
7
8

-0
.5

3
6
.4

2
0
.6

4
8

5
.7

6
0
.5

3
9
7
.0

8
-0

.2
0
8
6

-0
.2

9
6
5

-0
.2

9
9
2

-0
.2

7
2
1

-1
.0

1
7
.9

0
0
.4

7
7

5
.8

3

S
iz

e8
0
.5

7
9
6
.6

4
-0

.1
4
5
0

-0
.1

9
8
4

-0
.3

3
2
7

-0
.7

1
1
4

-0
.5

8
6
.1

3
0
.6

6
9

5
.5

0
0
.5

3
9
7
.0

8
-0

.1
3
9
5

-0
.2

0
2
7

-0
.3

3
5
8

-0
.7

2
6
3

-1
.0

1
7
.6

9
0
.5

1
2

5
.5

7

S
iz

e9
0
.5

9
9
6
.3

6
-0

.0
8
2
8

-0
.1

5
7
8

-0
.1

9
9
5

-0
.4

9
1
2

-0
.5

9
6
.2

8
0
.6

2
7

5
.1

4
0
.4

9
9
7
.4

2
-0

.0
8
2
4

-0
.1

5
8
3

-0
.2

0
1
6

-0
.4

9
0
3

-1
.0

1
8
.0

4
0
.4

9
0

5
.2

0

S
iz

e1
0

0
.0

1
1
0
0
.0

0
-0

.0
0
6
3

-0
.0

1
4
1

-0
.0

1
8
2

-0
.0

5
0
8

-0
.3

7
5
.2

2
0
.5

0
8

4
.3

3
0
.0

1
1
0
0
.0

0
-0

.0
0
6
7

-0
.0

1
5
1

-0
.0

2
1
1

-0
.0

6
1
2

-0
.6

5
6
.0

4
0
.4

1
2

4
.3

4



T
ab

le
2:

S
y
m

m
et

ry
te

st
fo

r
F
am

a-
F
re

n
ch

25
p
or

tf
ol

io
s

T
h
e

ta
b
le

re
p
o
rt

s
sy

m
m

et
ri

c
co

rr
el

a
ti

o
n

te
st

b
et

w
ee

n
th

e
m

a
rk

et
ex

ce
ss

re
tu

rn
a
n
d

th
e

ex
ce

ss
re

tu
rn

o
n

o
n
e

o
f
th

e
F
a
m

a
-F

re
n
ch

2
5

p
o
rt

fo
li
o
s

w
it

h
m

o
n
th

ly
d
a
ta

fr
o
m

J
a
n
,
1
9
6
5

th
ro

u
g
h

D
ec

,
1
9
9
9
.

si
m

p
le

ex
ce

ss
re

tu
rn

co
n
ti

n
u
o
u
s

ex
ce

ss
re

tu
rn

p
o
rt

fo
li
o

J
ρ

P
(%

)
ρ̂
+

(c
i
)
−

ρ̂
−

(c
i
)

su
m

m
a
ry

st
a
ti

st
ic

s
J

ρ
P

(%
)

ρ̂
+

(c
i
)
−

ρ̂
−

(c
i
)

su
m

m
a
ry

st
a
ti

st
ic

s

c 1
=

0
c 2

=
0
.5

c 3
=

1
.0

c 4
=

1
.5

sk
ew

k
u
rt

m
ea

n
st

d
c 1

=
0

c 2
=

0
.5

c 3
=

1
.0

c 4
=

1
.5

sk
ew

k
u
rt

m
ea

n
st

d

S
1
B

1
2
.0

2
7
3
.2

9
-0

.3
3
4
9

-0
.3

9
7
1

-0
.4

7
4
8

-0
.9

1
2
6

-0
.3

3
4
.9

0
0
.3

0
2

7
.7

0
1
.9

7
7
4
.1

9
-0

.3
5
7
6

-0
.4

0
1
9

-0
.4

1
5
9

-0
.9

2
4
6

-0
.8

2
6
.2

8
0
.0

0
2

7
.8

4

S
1
B

2
2
.0

6
7
2
.4

2
-0

.3
3
2
1

-0
.3

6
2
7

-0
.3

8
0
4

-0
.5

4
6
2

-0
.2

9
5
.6

2
0
.7

7
9

6
.7

3
2
.2

8
6
8
.3

7
-0

.3
5
4
8

-0
.3

7
9
5

-0
.3

4
9
5

-0
.5

7
9
6

-0
.7

8
6
.7

6
0
.5

4
8

6
.7

9

S
1
B

3
3
.3

1
5
0
.7

6
-0

.3
4
3
2

-0
.4

2
3
8

-0
.2

0
9
0

-0
.4

3
8
5

-0
.3

2
5
.8

9
0
.7

8
1

6
.0

7
2
.9

3
5
6
.9

9
-0

.3
5
3
5

-0
.4

2
4
5

-0
.1

9
8
4

-0
.4

5
2
2

-0
.7

8
7
.0

1
0
.5

9
3

6
.1

1

S
1
B

4
1
.6

2
8
0
.4

7
-0

.3
1
8
4

-0
.3

5
9
7

-0
.4

3
6
2

-0
.5

4
5
2

-0
.2

5
6
.6

6
0
.9

8
1

5
.7

1
1
.3

4
8
5
.3

9
-0

.3
3
2
1

-0
.3

7
6
2

-0
.4

1
7
9

-0
.2

8
4
7

-0
.7

6
7
.8

5
0
.8

1
1

5
.7

2

S
1
B

5
2
.5

9
6
2
.7

8
-0

.3
1
1
6

-0
.2

9
3
2

-0
.4

0
2
9

-0
.1

3
4
4

-0
.1

0
7
.2

1
1
.0

8
6

6
.0

1
2
.3

6
6
6
.9

2
-0

.3
3
0
7

-0
.3

1
7
1

-0
.4

0
6
7

-0
.1

5
6
8

-0
.6

6
8
.0

4
0
.8

9
9

6
.0

0

S
2
B

1
0
.7

0
9
5
.0

9
-0

.1
8
6
8

-0
.2

6
9
9

-0
.3

9
4
6

-0
.7

7
0
3

-0
.4

6
4
.6

5
0
.4

9
8

7
.2

8
0
.9

5
9
1
.7

6
-0

.1
9
0
3

-0
.2

8
5
0

-0
.2

6
9
7

-0
.7

7
9
8

-0
.8

9
6
.0

8
0
.2

2
8

7
.4

0

S
2
B

2
1
.2

0
8
7
.8

9
-0

.1
8
4
6

-0
.3

4
4
0

-0
.3

9
6
5

-0
.3

7
6
2

-0
.5

5
5
.9

1
0
.6

5
7

6
.1

3
0
.9

7
9
1
.4

8
-0

.1
8
6
4

-0
.3

3
2
5

-0
.3

6
8
3

-0
.3

8
4
9

-1
.0

3
7
.7

5
0
.4

6
3

6
.2

2

S
2
B

3
0
.7

8
9
4
.0

7
-0

.2
2
6
9

-0
.3

1
6
2

-0
.3

8
4
4

-0
.6

2
7
2

-0
.5

0
6
.6

7
0
.8

6
1

5
.5

0
1
.7

1
7
8
.9

6
-0

.2
2
2
5

-0
.3

2
3
0

-0
.2

0
1
7

-0
.5

9
5
7

-0
.9

7
7
.9

3
0
.7

0
3

5
.5

4

S
2
B

4
1
.0

7
8
9
.9

6
-0

.2
0
3
2

-0
.2

3
2
3

-0
.3

4
9
5

-0
.3

6
1
8

-0
.3

8
6
.7

9
0
.9

2
1

5
.2

4
1
.1

2
8
9
.1

3
-0

.2
1
1
2

-0
.2

3
6
5

-0
.3

7
1
8

-0
.4

6
7
9

-0
.8

4
7
.8

0
0
.7

7
7

5
.2

6

S
2
B

5
1
.8

7
7
5
.9

0
-0

.2
4
9
5

-0
.2

5
9
8

-0
.2

8
5
0

-0
.4

5
3
2

-0
.2

1
7
.2

7
0
.9

5
9

5
.7

3
1
.0

0
9
0
.9

5
-0

.2
4
9
9

-0
.2

6
9
4

-0
.3

0
9
8

-0
.2

4
8
0

-0
.7

6
8
.3

3
0
.7

8
9

5
.7

4

S
3
B

1
0
.6

3
9
5
.9

7
-0

.1
5
5
9

-0
.2

1
6
8

-0
.3

6
9
7

-0
.4

1
2
4

-0
.4

1
4
.5

4
0
.5

4
6

6
.6

5
0
.4

7
9
7
.6

3
-0

.1
6
5
1

-0
.2

2
8
3

-0
.2

4
2
6

-0
.4

0
2
2

-0
.7

8
5
.7

1
0
.3

2
1

6
.7

3

S
3
B

2
1
.0

4
9
0
.3

7
-0

.1
2
8
0

-0
.1

5
4
8

-0
.2

3
7
4

-0
.6

0
1
5

-0
.6

8
6
.1

9
0
.7

1
2

5
.5

7
0
.7

3
9
4
.8

0
-0

.1
2
8
5

-0
.1

6
3
2

-0
.2

3
1
3

-0
.6

0
5
9

-1
.1

3
7
.9

9
0
.5

5
0

5
.6

5

S
3
B

3
0
.6

7
9
5
.4

5
-0

.1
4
0
5

-0
.1

8
6
5

-0
.3

5
0
6

-0
.2

2
9
3

-0
.6

5
5
.9

1
0
.6

6
6

5
.0

6
0
.5

0
9
7
.3

2
-0

.1
4
0
8

-0
.2

0
5
2

-0
.3

6
9
1

-0
.2

7
8
3

-1
.0

1
7
.1

0
0
.5

3
3

5
.1

2

S
3
B

4
0
.2

0
9
9
.5

3
-0

.1
2
0
6

-0
.1

5
6
3

-0
.2

1
4
1

-0
.2

9
4
2

-0
.3

6
5
.8

9
0
.8

1
4

4
.7

6
0
.1

6
9
9
.6

9
-0

.1
1
8
6

-0
.1

6
0
8

-0
.2

2
0
9

-0
.3

0
3
0

-0
.7

0
6
.5

7
0
.6

9
6

4
.7

7

S
3
B

5
0
.4

5
9
7
.8

0
-0

.1
7
9
7

-0
.2

2
9
4

-0
.2

8
7
7

-0
.4

6
1
7

-0
.3

5
7
.0

7
0
.9

2
7

5
.3

5
0
.8

5
9
3
.1

6
-0

.2
0
9
8

-0
.2

3
5
0

-0
.3

2
5
1

-0
.4

8
4
3

-0
.8

5
8
.2

9
0
.7

7
7

5
.3

7

S
4
B

1
0
.1

8
9
9
.6

4
-0

.0
7
6
6

-0
.1

2
9
0

-0
.1

9
7
8

-0
.4

1
9
0

-0
.2

9
4
.4

9
0
.6

1
5

5
.9

0
0
.4

2
9
8
.0

6
-0

.0
8
0
2

-0
.1

3
8
8

-0
.1

3
5
1

-0
.4

7
4
6

-0
.6

2
5
.3

2
0
.4

3
8

5
.9

2

S
4
B

2
0
.6

3
9
5
.9

1
-0

.0
6
4
8

-0
.1

2
5
5

-0
.1

7
6
3

-0
.5

0
7
0

-0
.5

8
6
.1

4
0
.4

2
3

5
.2

9
0
.6

2
9
6
.1

1
-0

.0
6
5
6

-0
.1

3
0
8

-0
.1

7
6
2

-0
.5

0
8
7

-1
.0

2
8
.1

3
0
.2

8
0

5
.3

6

S
4
B

3
0
.7

3
9
4
.7

6
-0

.1
0
6
7

-0
.1

4
5
1

-0
.2

1
2
8

-0
.5

5
6
6

-0
.5

0
6
.3

3
0
.6

4
8

4
.9

0
0
.8

5
9
3
.2

3
-0

.1
2
2
5

-0
.1

5
2
4

-0
.2

1
8
7

-0
.5

5
3
2

-0
.9

0
7
.6

6
0
.5

2
4

4
.9

3

S
4
B

4
0
.7

5
9
4
.4

7
-0

.0
9
4
2

-0
.1

6
5
9

-0
.1

9
0
5

-0
.5

9
1
1

0
.0

6
5
.4

1
0
.7

5
6

4
.6

3
0
.8

1
9
3
.7

2
-0

.0
9
4
5

-0
.1

6
5
7

-0
.1

8
6
1

-0
.6

0
2
1

-0
.2

3
5
.2

4
0
.6

4
5

4
.5

9

S
4
B

5
0
.1

5
9
9
.7

4
-0

.1
0
6
9

-0
.1

3
4
7

-0
.1

5
5
3

-0
.1

7
9
5

-0
.1

4
5
.7

8
0
.9

0
2

5
.3

7
0
.1

4
9
9
.7

6
-0

.1
1
0
9

-0
.1

4
4
3

-0
.1

6
7
4

-0
.2

0
2
7

-0
.5

2
6
.2

0
0
.7

5
3

5
.3

5

S
5
B

1
0
.1

4
9
9
.7

6
0
.0

0
7
1

-0
.0

4
3
2

-0
.0

9
9
7

-0
.1

9
8
2

-0
.1

6
4
.8

2
0
.5

3
2

4
.8

3
0
.1

1
9
9
.8

6
-0

.0
0
2
0

-0
.0

4
9
9

-0
.1

1
3
6

-0
.2

1
9
4

-0
.4

4
5
.2

8
0
.4

1
4

4
.8

2

S
5
B

2
0
.5

1
9
7
.2

8
-0

.0
8
0
4

-0
.0

7
3
3

-0
.1

1
9
8

-0
.3

5
0
5

-0
.3

8
4
.9

4
0
.5

0
4

4
.6

4
0
.6

3
9
5
.9

1
-0

.0
8
3
2

-0
.0

8
3
4

-0
.1

3
2
7

-0
.4

4
1
1

-0
.6

7
5
.9

3
0
.3

9
4

4
.6

5

S
5
B

3
0
.5

3
9
7
.0

9
-0

.0
7
8
4

-0
.1

2
7
5

-0
.1

4
2
4

-0
.7

3
8
8

-0
.2

5
5
.7

4
0
.5

1
2

4
.3

6
0
.6

5
9
5
.7

8
-0

.1
1
3
0

-0
.1

4
4
1

-0
.1

3
7
0

-0
.7

3
2
1

-0
.5

8
6
.7

6
0
.4

1
5

4
.3

6

S
5
B

4
0
.2

9
9
9
.0

4
-0

.0
6
6
0

-0
.1

0
2
6

-0
.1

1
7
1

-0
.3

1
9
3

0
.0

3
4
.6

2
0
.5

7
4

4
.2

4
0
.7

6
9
4
.4

3
-0

.0
6
8
1

-0
.1

1
3
4

-0
.1

2
2
8

-0
.4

9
5
6

-0
.2

0
4
.6

2
0
.4

8
3

4
.2

0

S
5
B

5
1
.6

3
8
0
.2

7
-0

.1
6
1
9

-0
.1

3
3
3

-0
.0

3
0
2

-0
.3

5
2
2

-0
.0

8
4
.0

0
0
.6

1
9

4
.6

6
1
.8

9
7
5
.5

1
-0

.1
8
8
5

-0
.1

5
9
7

-0
.0

3
9
8

-0
.3

8
2
1

-0
.2

9
4
.2

8
0
.5

0
9

4
.6

3



T
ab

le
3:

S
y
m

m
et

ry
te

st
fo

r
in

d
u
st

ry
p
or

tf
ol

io
s

T
he

ta
bl

e
re

po
rt

s
sy

m
m

et
ri

c
co

rr
el

at
io

n
te

st
be

tw
ee

n
th

e
m

ar
ke

t
ex

ce
ss

re
tu

rn
an

d
th

e
ex

ce
ss

re
tu

rn
on

on
e

of
th

e
20

in
du

st
ry

po
rt

fo
lio

s

w
it

h
m

on
th

ly
da

ta
fr

om
Ja

n,
19

65
th

ro
ug

h
D

ec
,
19

99
.

si
m

p
le

ex
ce

ss
re

tu
rn

co
n
ti

n
u
o
u
s

ex
ce

ss
re

tu
rn

p
o
rt

fo
li
o

J
ρ

P
(%

)
ρ̂
+

(c
i
)
−

ρ̂
−

(c
i
)

su
m

m
a
ry

st
a
ti

st
ic

s
J

ρ
P

(%
)

ρ̂
+

(c
i
)
−

ρ̂
−

(c
i
)

su
m

m
a
ry

st
a
ti

st
ic

s

c 1
=

0
c 2

=
0
.5

c 3
=

1
.0

c 4
=

1
.5

sk
ew

k
u
rt

m
ea

n
st

d
c 1

=
0

c 2
=

0
.5

c 3
=

1
.0

c 4
=

1
.5

sk
ew

k
u
rt

m
ea

n
st

d

M
is

c.
0
.2

9
9
9
.0

5
-0

.0
9
5
8

-0
.1

7
5
3

-0
.2

1
3
5

-0
.4

3
3
2

-0
.4

0
4
.8

9
0
.7

5
2

4
.8

1
0
.2

1
9
9
.4

8
-0

.1
0
3
4

-0
.1

7
8
1

-0
.2

4
0
3

-0
.4

3
8
9

-0
.7

0
5
.8

3
0
.6

3
2

4
.8

2

M
in

in
g

1
.8

7
7
6
.0

4
-0

.1
8
8
6

-0
.1

6
2
3

-0
.4

1
1
2

-0
.1

6
1
5

-0
.2

0
5
.2

9
0
.4

1
8

6
.4

9
2
.4

3
6
5
.7

7
-0

.2
1
3
3

-0
.1

6
6
2

-0
.4

3
5
2

-0
.0

8
6
7

-0
.6

3
6
.0

4
0
.2

0
6

6
.5

3

F
o
o
d

0
.7

4
9
4
.6

4
-0

.1
5
0
8

-0
.1

8
7
7

-0
.2

9
1
3

0
.0

1
0
1

-0
.0

9
5
.3

1
0
.6

9
7

4
.7

4
0
.5

4
9
6
.9

2
-0

.1
5
8
5

-0
.1

9
2
7

-0
.2

4
9
7

-0
.0

0
8
4

-0
.3

9
5
.4

8
0
.5

8
1

4
.7

1

A
p
p
a
re

l
1
.0

7
8
9
.8

5
-0

.2
1
5
1

-0
.3

0
5
3

-0
.2

4
0
4

-0
.0

9
1
0

-0
.2

8
5
.5

2
0
.3

7
4

6
.3

9
0
.8

5
9
3
.1

4
-0

.2
2
0
1

-0
.3

1
7
8

-0
.2

7
2
3

-0
.1

0
6
7

-0
.7

6
7
.0

2
0
.1

6
7

6
.4

6

P
a
p
er

4
.0

8
3
9
.5

6
-0

.1
2
3
1

-0
.2

3
6
7

-0
.0

6
4
2

-0
.3

5
2
9

0
.0

5
5
.3

8
0
.5

3
9

5
.4

2
3
.8

5
4
2
.6

5
-0

.1
5
8
3

-0
.2

5
5
6

-0
.0

6
4
0

-0
.3

6
3
7

-0
.3

3
6
.1

0
0
.3

9
1

5
.3

9

C
h
em

ic
a
l

2
.1

5
7
0
.8

4
-0

.0
0
4
4

-0
.1

3
7
6

-0
.0

6
3
5

0
.0

1
5
9

0
.0

5
5
.5

3
0
.5

9
8

4
.7

5
2
.3

6
6
6
.9

0
-0

.0
1
1
8

-0
.1

5
8
0

-0
.0

7
3
0

-0
.0

0
2
1

-0
.2

6
5
.6

2
0
.4

8
3

4
.7

2

P
et

ro
le

u
m

0
.4

8
9
7
.5

2
-0

.1
3
4
0

-0
.1

7
6
8

-0
.2

0
0
4

-0
.3

8
6
2

0
.1

8
4
.5

9
0
.5

9
8

5
.1

9
0
.5

8
9
6
.5

4
-0

.1
5
2
3

-0
.1

8
3
1

-0
.1

8
9
7

-0
.3

9
5
2

-0
.0

8
4
.4

7
0
.4

6
3

5
.1

3

C
o
n
st

ru
ct

io
n

1
.5

1
8
2
.4

5
-0

.1
3
6
2

-0
.3

1
5
4

-0
.3

6
8
4

-0
.3

5
6
2

-0
.2

7
5
.7

1
0
.5

5
6

5
.8

7
0
.9

8
9
1
.3

3
-0

.1
7
5
1

-0
.3

3
4
6

-0
.3

9
1
8

-0
.2

3
1
6

-0
.7

3
7
.4

4
0
.3

8
1

5
.9

1

P
ri

m
.

M
et

a
ls

3
.3

8
4
9
.7

0
-0

.2
6
5
5

-0
.4

9
3
9

-0
.4

1
8
3

-0
.4

0
1
2

0
.0

5
5
.3

9
0
.2

8
4

6
.4

2
2
.9

2
5
7
.1

6
-0

.2
8
3
6

-0
.5

1
1
9

-0
.4

1
9
8

-0
.3

8
5
1

-0
.4

2
6
.5

3
0
.0

8
0

6
.4

2

F
a
b
.

M
et

a
ls

0
.6

2
9
6
.0

8
-0

.1
0
5
0

-0
.0

8
5
6

-0
.1

5
6
9

-0
.3

1
5
8

-0
.5

2
5
.7

2
0
.5

7
7

5
.3

5
0
.3

7
9
8
.4

9
-0

.1
0
5
4

-0
.1

0
3
2

-0
.1

6
1
0

-0
.3

1
2
0

-0
.9

3
7
.3

6
0
.4

3
0

5
.4

0

M
a
ch

in
er

y
0
.3

2
9
8
.8

5
-0

.1
3
8
8

-0
.1

7
0
8

-0
.2

3
7
9

-0
.2

8
3
1

-0
.0

3
3
.9

4
0
.6

1
4

5
.7

2
0
.3

5
9
8
.6

5
-0

.1
7
2
8

-0
.2

2
2
5

-0
.2

7
3
6

-0
.2

9
8
9

-0
.3

0
4
.6

2
0
.4

5
0

5
.6

9

E
le

ct
ri

ca
l
E

q
.

0
.2

4
9
9
.3

4
-0

.0
5
0
3

-0
.1

0
6
7

-0
.2

1
7
8

-0
.5

6
5
2

-0
.1

2
4
.2

0
0
.7

7
2

6
.0

4
0
.2

9
9
9
.0

7
-0

.0
5
8
0

-0
.1

1
1
4

-0
.2

1
6
6

-0
.5

5
5
1

-0
.4

4
5
.0

5
0
.5

8
7

6
.0

2

T
ra

n
sp

o
rt

E
q
.

1
.4

2
8
4
.0

3
-0

.1
9
3
8

-0
.2

8
3
4

-0
.1

7
6
2

-0
.2

6
9
9

-0
.2

8
5
.7

8
0
.3

9
8

5
.6

0
1
.1

3
8
8
.8

8
-0

.2
1
6
6

-0
.2

9
6
7

-0
.2

0
5
8

-0
.2

8
4
9

-0
.7

3
7
.4

8
0
.2

4
0

5
.6

4

M
a
n
u
fa

ct
u
ri

n
g

1
.4

3
8
3
.9

4
-0

.1
3
5
8

-0
.1

1
7
1

-0
.2

7
9
3

-0
.4

2
4
7

-0
.3

1
4
.1

3
0
.5

1
3

5
.5

7
1
.7

0
7
9
.0

6
-0

.1
4
3
4

-0
.1

3
2
6

-0
.3

0
6
2

-0
.5

3
8
7

-0
.5

9
4
.9

2
0
.3

5
6

5
.5

9

R
a
il
ro

a
d
s

1
.4

2
8
3
.9

9
-0

.0
9
9
5

-0
.0

1
8
5

0
.0

1
3
2

-0
.2

2
1
1

-0
.0

0
4
.1

5
0
.7

9
4

6
.5

3
0
.9

9
9
1
.1

3
-0

.1
1
3
9

-0
.0

7
4
9

-0
.0

1
2
5

-0
.2

2
9
9

-0
.3

2
4
.5

1
0
.5

7
9

6
.4

9

O
th

er
T
ra

n
sp

o
rt

.
4
.2

2
3
7
.7

6
-0

.2
8
8
6

-0
.4

5
1
1

-0
.2

6
9
5

-0
.2

3
9
3

-0
.2

3
4
.0

1
0
.3

2
6

6
.9

8
3
.8

2
4
3
.1

0
-0

.2
8
1
3

-0
.4

3
5
9

-0
.2

5
8
7

-0
.2

4
5
3

-0
.5

6
4
.6

6
0
.0

8
2

7
.0

3

U
ti

li
ti

es
0
.1

5
9
9
.7

4
-0

.0
0
1
6

-0
.0

2
5
1

0
.0

4
8
0

0
.2

7
4
5

0
.3

2
4
.3

1
0
.2

3
6

4
.0

1
0
.4

0
9
8
.2

6
0
.0

0
8
3

-0
.0

2
5
3

0
.1

0
1
7

0
.2

3
5
1

0
.1

4
4
.0

6
0
.1

5
6

3
.9

6

D
ep

t.
S
to

re
s

2
.7

1
6
0
.7

4
-0

.1
1
4
4

-0
.3

2
1
8

-0
.2

9
6
2

0
.0

8
8
5

-0
.0

6
4
.3

6
0
.6

6
9

6
.2

8
2
.7

4
6
0
.2

3
-0

.1
2
4
6

-0
.3

4
0
1

-0
.3

1
1
5

0
.0

6
4
9

-0
.4

1
5
.3

9
0
.4

7
0

6
.2

6

R
et

a
il

0
.5

4
9
6
.9

3
-0

.1
2
7
3

-0
.2

1
5
3

-0
.2

6
8
4

-0
.4

1
1
0

-0
.4

3
5
.2

7
0
.6

7
2

5
.7

5
1
.3

8
8
4
.8

2
-0

.1
2
8
0

-0
.2

1
7
7

-0
.2

0
0
7

-0
.4

0
3
3

-0
.8

3
6
.7

0
0
.5

0
2

5
.8

0

F
in

a
n
ci

a
l

0
.1

1
9
9
.8

6
-0

.0
6
4
1

-0
.0

8
1
1

-0
.0

5
0
8

0
.0

4
3
0

-0
.1

9
4
.3

1
0
.6

0
6

5
.4

4
0
.3

4
9
8
.7

1
-0

.0
8
1
7

-0
.0

9
6
1

-0
.0

1
9
4

0
.0

1
2
2

-0
.4

6
4
.5

9
0
.4

5
5

5
.4

4



T
ab

le
4:

S
y
m

m
et

ry
te

st
fo

r
w

ee
k
ly

an
d

d
ai

ly
si

ze
p
or

tf
ol

io
s

T
h
e

ta
b
le

re
p
o
rt

s
sy

m
m

et
ri

c
co

rr
el

a
ti

o
n

te
st

b
et

w
ee

n
th

e
m

a
rk

et
ex

ce
ss

re
tu

rn
a
n
d

th
e

ex
ce

ss
re

tu
rn

o
n

o
n
e

o
f

th
e

C
R

S
P

1
0

si
ze

p
o
rt

fo
li
o
s

w
it

h
w

ee
k
ly

(J
a
n

7
th

,
1
9
6
5

th
ro

u
g
h

D
ec

2
9
th

,
1
9
9
9
;

sa
m

p
le

si
ze

1
8
2
5
)

a
n
d

d
a
il
y

(J
a
n

4
th

,
1
9
6
5

th
ro

u
g
h

D
ec

3
1
th

,
1
9
9
9
;

sa
m

p
le

si
ze

8
8
1
3
)

d
a
ta

.
J

ρ
is

th
e

te
st

st
a
ti

st
ic

fo
r

th
e

sy
m

m
et

ry
h
y
p
o
th

es
is

H
0

:
ρ
+
(c

)
=

ρ
−

(c
)

fo
r

a
ll

c
>

0
,
w

h
er

e
ρ
+
(c

)
=

co
rr

(R
1
t
,R

2
t
|R

1
t

>
c,

R
2
t

>
c)

,
a
n
d

ρ
−

(c
)

=
co

rr
(R

1
t
,R

2
t
|R

1
t

<
−c

,R
2
t

<
−c

)
a
re

th
e

co
n
d
it

io
n
a
l
co

rr
el

a
ti

o
n
s,

R
1
t

is
th

e
re

tu
rn

o
n

th
e

C
R

S
P

va
lu

e-
w

ei
g
h
te

d
m

a
rk

et
p
o
rt

fo
li
o

a
n
d

R
2
t

is
th

e
re

tu
rn

o
n

o
n
e

o
f
th

e
1
0

si
ze

p
o
rt

fo
li
o
s.

P
is

th
e

P
-v

a
lu

e

o
f
th

e
te

st
in

p
er

ce
n
ta

g
e

p
o
in

ts
.

J
ρ

h
a
s

a
n

a
sy

m
p
to

ti
c

ch
i-
sq

u
a
re

d
is

tr
ib

u
ti

o
n

w
it

h
d
eg

re
es

o
f
fr

ee
d
o
m

m
=

4
.

T
h
e

st
a
ti

st
ic

is
co

m
p
u
te

d
b
y

u
si

n
g

B
a
rt

le
tt

k
er

n
el

.

T
h
e

ex
ce

ed
a
n
ce

le
v
el

s
a
re

c 1
=

0
,

c 2
=

0
.5

,
c 3

=
1
.0

a
n
d

c 4
=

1
.5

,
a
n
d

th
e

la
g

o
f

th
e

te
st

is
a
u
to

m
a
ti

ca
ll
y

se
le

ct
ed

b
a
se

d
o
n

th
e

d
a
ta

b
y

fo
ll
ow

in
g

N
ew

ey
a
n
d

W
es

t’
s

(1
9
9
4
)

p
ro

ce
d
u
re

(f
o
r

th
e

w
ee

k
ly

a
n
d

d
a
il
y

d
a
ta

).

d
a
il
y

ex
ce

ss
re

tu
rn

w
ee

k
ly

ex
ce

ss
re

tu
rn

p
o
rt

fo
li
o

J
ρ

P
(%

)
ρ̂
+

(c
i
)
−

ρ̂
−

(c
i
)

su
m

m
a
ry

st
a
ti

st
ic

s
J

ρ
P

(%
)

ρ̂
+

(c
i
)
−

ρ̂
−

(c
i
)

su
m

m
a
ry

st
a
ti

st
ic

s

c 1
=

0
c 2

=
0
.5

c 3
=

1
.0

c 4
=

1
.5

sk
ew

k
u
rt

m
ea

n
st

d
c 1

=
0

c 2
=

0
.5

c 3
=

1
.0

c 4
=

1
.5

sk
ew

k
u
rt

m
ea

n
st

d

S
iz

e1
2
9
.1

2
0
.0

0
-0

.3
4
3
1

-0
.2

8
0
5

-0
.2

0
6
4

-0
.2

0
4
7

-0
.1

7
1
1
.4

9
0
.0

5
3

0
.7

5
1
9
.4

8
0
.0

6
-0

.3
5
4
7

-0
.2

4
2
0

-0
.3

7
9
2

-0
.2

8
4
1

0
.3

2
8
.6

4
0
.2

6
6

2
.3

8

S
iz

e2
1
5
.3

8
0
.4

0
-0

.2
6
7
7

-0
.2

4
6
9

-0
.2

1
8
7

-0
.1

0
3
7

-0
.8

6
1
4
.5

3
0
.0

3
5

0
.7

4
1
7
.4

4
0
.1

6
-0

.3
1
4
6

-0
.2

1
1
0

-0
.3

2
3
2

-0
.2

5
5
6

-0
.1

9
8
.5

6
0
.1

7
7

2
.2

8

S
iz

e3
1
8
.2

0
0
.1

1
-0

.2
8
6
4

-0
.2

4
4
7

-0
.2

2
4
2

-0
.1

0
8
7

-0
.9

9
1
7
.9

6
0
.0

3
0

0
.7

7
2
3
.0

2
0
.0

1
-0

.2
8
9
8

-0
.1

6
9
3

-0
.3

3
7
6

-0
.4

0
7
0

-0
.4

3
8
.8

1
0
.1

5
1

2
.2

8

S
iz

e4
1
4
.4

2
0
.6

1
-0

.2
1
2
0

-0
.1

8
7
7

-0
.1

8
1
3

-0
.1

2
0
1

-1
.3

7
1
9
.4

4
0
.0

2
7

0
.7

5
7
.4

1
1
1
.5

7
-0

.2
3
6
1

-0
.1

8
6
2

-0
.2

5
4
2

-0
.2

1
8
0

-0
.5

4
9
.6

5
0
.1

3
7

2
.2

3

S
iz

e5
4
.8

8
2
9
.9

9
-0

.1
5
5
6

-0
.1

4
8
5

-0
.1

4
4
4

-0
.0

8
2
2

-1
.2

8
1
9
.8

4
0
.0

2
6

0
.7

7
1
0
.0

4
3
.9

8
-0

.1
9
8
7

-0
.1

2
1
8

-0
.2

1
6
2

-0
.1

7
0
3

-0
.7

0
9
.4

6
0
.1

3
4

2
.2

4

S
iz

e6
2
.9

0
5
7
.4

1
-0

.1
2
2
2

-0
.1

1
8
0

-0
.1

0
7
6

-0
.1

1
0
5

-1
.2

5
1
8
.4

9
0
.0

2
5

0
.7

8
8
.4

1
7
.7

8
-0

.1
6
5
1

-0
.1

0
0
4

-0
.2

1
7
6

-0
.1

2
4
5

-0
.7

5
9
.0

4
0
.1

3
2

2
.2

4

S
iz

e7
1
.0

6
9
0
.1

2
-0

.0
9
3
2

-0
.1

0
2
0

-0
.0

8
3
3

-0
.0

6
7
2

-1
.1

8
1
8
.7

9
0
.0

2
6

0
.7

9
2
.0

0
7
3
.5

6
-0

.1
1
3
2

-0
.0

8
7
0

-0
.1

0
7
5

-0
.0

7
4
8

-0
.8

1
9
.2

8
0
.1

3
6

2
.2

4

S
iz

e8
0
.7

5
9
4
.4

4
-0

.0
7
4
1

-0
.0

7
9
7

-0
.0

7
5
0

-0
.0

6
9
8

-1
.1

1
1
8
.4

3
0
.0

2
8

0
.7

8
1
.1

5
8
8
.6

3
-0

.0
9
2
7

-0
.0

8
2
1

-0
.1

1
1
1

-0
.0

6
7
4

-0
.7

5
8
.8

7
0
.1

4
1

2
.2

0

S
iz

e9
0
.4

4
9
7
.8

9
-0

.0
4
9
4

-0
.0

6
2
1

-0
.0

6
2
2

-0
.0

7
9
9

-1
.0

7
2
0
.0

4
0
.0

2
7

0
.7

9
0
.2

2
9
9
.4

2
-0

.0
6
6
7

-0
.0

7
4
7

-0
.0

9
2
0

-0
.0

6
5
2

-0
.7

3
8
.9

6
0
.1

3
7

2
.1

6

S
iz

e1
0

0
.0

3
9
9
.9

9
-0

.0
0
1
7

-0
.0

0
3
8

-0
.0

0
2
1

-0
.0

0
8
0

-1
.0

9
2
9
.7

9
0
.0

2
4

0
.8

8
0
.0

0
1
0
0
.0

0
-0

.0
0
0
4

-0
.0

0
2
5

-0
.0

0
6
4

-0
.0

1
2
6

-0
.3

8
5
.8

7
0
.1

1
6

2
.0

4



Table 5: Symmetry test for Fama-French 6 portfolios

The table reports symmetric correlation test between the market excess return and the excess return
on one of the Fama-French 6 portfolios formed on 2 size × 3 book-to-market with monthly (Jan
1965 through Dec 1999; sample size 420), weekly (Jan 7th, 1965 through Dec 29th, 1999; sample
size 1825) and daily (Jan 4th, 1965 through Dec 31th, 1999; sample size 8813) data.

portfolio Jρ P (%) ρ̂+(ci)− ρ̂−(ci) summary statistics
c1 = 0 c2 = 0.5 c3 = 1.0 c4 = 1.5 skew kurt mean std

Fama-French 6 portfolios: 2 size × 3 book-to-market monthly excess return

S1B1 0.84 93.35 -0.2053 -0.2891 -0.3718 -0.7967 -0.52 5.07 0.545 6.83
S1B2 0.80 93.90 -0.1940 -0.2781 -0.3975 -0.3200 -0.55 6.63 0.831 5.45
S1B3 1.68 79.41 -0.2555 -0.2783 -0.4133 -0.1507 -0.29 7.56 0.980 5.47
S2B1 0.07 99.94 -0.0229 -0.0470 -0.0824 -0.2207 -0.29 5.08 0.537 4.80
S2B2 0.24 99.31 -0.0760 -0.0831 -0.1313 -0.3061 -0.29 5.40 0.511 4.31
S2B3 0.53 97.05 -0.1442 -0.1559 -0.2382 -0.3055 -0.10 5.25 0.708 4.39

Fama-French 6 portfolios: 2 size × 3 book-to-market weekly excess return

S1B1 1.47 83.28 -0.1103 -0.0887 -0.0730 -0.0174 -0.64 7.77 0.101 2.69
S1B2 2.70 60.85 -0.1222 -0.0944 -0.1271 -0.0414 -0.81 9.36 0.168 2.05
S1B3 7.13 12.94 -0.1715 -0.1193 -0.2058 -0.2928 -0.70 9.35 0.200 2.01
S2B1 0.05 99.97 -0.0152 -0.0223 -0.0218 -0.0504 -0.32 5.43 0.121 2.28
S2B2 0.47 97.60 -0.0532 -0.0540 -0.0956 -0.0674 -0.38 6.62 0.111 1.93
S2B3 1.49 82.76 -0.1027 -0.1069 -0.2001 -0.2583 -0.24 5.23 0.157 1.94

Fama-French 6 portfolios: 2 size × 3 book-to-market daily excess return

S1B1 2.18 70.30 -0.0815 -0.0943 -0.0677 -0.0932 -0.97 15.20 0.019 0.96
S1B2 1.09 89.53 -0.1060 -0.1197 -0.1250 -0.1278 -1.23 18.47 0.033 0.70
S1B3 1.76 78.07 -0.1409 -0.1644 -0.1649 -0.1718 -1.14 19.65 0.040 0.69
S2B1 0.03 99.99 -0.0080 -0.0128 -0.0246 -0.0371 -0.74 21.57 0.024 0.97
S2B2 0.12 99.83 -0.0316 -0.0516 -0.0615 -0.0728 -1.50 40.20 0.023 0.81
S2B3 0.56 96.79 -0.0693 -0.0981 -0.1037 -0.1220 -1.21 32.23 0.032 0.81
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Table 7: Bootstrap of the symmetry test

The table reports the bootstrap results of the symmetry test on the first asset of the Fama-French 25 portfolios 25,

the first asset of Fama-French 6 portfolios to examine the small sample properties of the proposed symmetry test.

The bootstrap makes an identical and independent distribution assumption on the data. The results are based on

10,000 repetitions with replacement. The first row reports the sample value computed from the raw data. The rest of

each panels report the empirical P-value, mean, standard deviation of the empirical distribution of 10,000 repetitions

and the 10%, 5% and 1% percentiles.

portfolio Jρ P (%) ρ̂+(ci)− ρ̂−(ci) summary statistics

c1 = 0 c2 = 0.5 c3 = 1.0 c4 = 1.5 skew kurt mean std

FF 25 portfolios: 5 size × 5 book-to-market monthly excess return

sample 2.02 73.29 -0.3349 -0.3971 -0.4748 -0.9126 -0.33 4.90 0.302 7.70

empirical 85.25

mean 3.82 -0.3393 -0.4067 -0.4406 -0.8717 -0.32 4.82 0.301 7.67

std 1.98 0.0797 0.1250 0.1885 0.4071 0.25 0.62 0.375 0.37

10 6.34 -0.4424 -0.5711 -0.6875 -1.3917 -0.00 5.62 0.780 8.15

5 7.56 -0.4701 -0.6180 -0.7581 -1.5030 0.08 5.87 0.920 8.28

1 10.34 -0.5260 -0.7121 -0.8943 -1.7262 0.25 6.33 1.189 8.55

Fama-French 6 portfolios: 2 size × 3 book-to-market monthly excess return

Sample 0.84 93.35 -0.2053 -0.2891 -0.3718 -0.7967 -0.52 5.07 0.545 6.83

empirical 90.52

mean 1.98 -0.2031 -0.2918 -0.3394 -0.8058 -0.50 4.95 0.550 6.81

std 1.13 0.0586 0.0964 0.1504 0.3634 0.26 0.85 0.330 0.33

10 3.36 -0.2779 -0.4176 -0.5373 -1.3213 -0.16 6.07 0.973 7.25

5 4.10 -0.2987 -0.4565 -0.6023 -1.4400 -0.07 6.40 1.092 7.38

1 5.97 -0.3407 -0.5338 -0.7344 -1.6450 0.08 7.04 1.319 7.62

Fama-French 6 portfolios: 2 size × 3 book-to-market weekly excess return

Sample 1.47 83.28 -0.1103 -0.0887 -0.0730 -0.0174 -0.64 7.77 0.101 2.69

empirical 83.27

mean 2.88 -0.1117 -0.0854 -0.0688 -0.0037 -0.63 7.60 0.100 2.69

std 1.54 0.0355 0.0598 0.1024 0.1587 0.30 1.79 0.062 0.08

10 4.94 -0.1575 -0.1615 -0.1960 -0.1735 -0.25 9.98 0.180 2.79

5 5.79 -0.1707 -0.1832 -0.2319 -0.2288 -0.16 10.62 0.202 2.83

1 7.72 -0.1941 -0.2220 -0.3060 -0.3470 -0.01 11.87 0.242 2.89

Fama-French 6 portfolios: 2 size × 3 book-to-market daily excess return

sample 2.18 70.30 -0.0815 -0.0943 -0.0677 -0.0932 -0.97 15.20 0.019 0.96

empirical 87.64

mean 4.33 -0.0814 -0.0944 -0.0682 -0.0923 -0.96 15.05 0.019 0.96

std 1.97 0.0219 0.0386 0.0634 0.1046 0.34 3.55 0.010 0.02

10 6.93 -0.1091 -0.1435 -0.1499 -0.2269 -0.54 19.78 0.032 0.99

5 7.95 -0.1169 -0.1581 -0.1726 -0.2673 -0.43 21.29 0.035 0.99

1 10.07 -0.1311 -0.1823 -0.2144 -0.3437 -0.25 23.85 0.042 1.01
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Table 12: Covariance symmetry test for Fama-French 6 portfolios

The table reports symmetric covariance test between the market excess return and the excess return
on one of the Fama-French 6 portfolios formed on 2 size × 3 book-to-market with monthly (Jan
1965 through Dec 1999; sample size 420), weekly (Jan 7th, 1965 through Dec 29th, 1999; sample
size 1825) and daily (Jan 4th, 1965 through Dec 31th, 1999; sample size 8813) data.

portfolio Jσ12 P (%) σ̂+
12(ci)− σ̂−12(ci) summary statistics

c1 = 0 c2 = 0.5 c3 = 1.0 c4 = 1.5 skew kurt mean std

Fama-French 6 portfolios: 2 size × 3 book-to-market monthly excess return

S1B1 3.88 42.25 -0.2482 -0.3167 -0.4395 -0.8281 -0.52 5.07 0.545 6.83
S1B2 3.58 46.55 -0.2612 -0.3356 -0.4534 -0.5924 -0.55 6.63 0.831 5.45
S1B3 4.45 34.82 -0.2569 -0.2910 -0.3871 -0.4006 -0.29 7.56 0.980 5.47
S2B1 1.84 76.57 -0.1472 -0.2149 -0.2685 -0.4070 -0.29 5.08 0.537 4.80
S2B2 1.73 78.53 -0.1547 -0.1911 -0.2854 -0.5257 -0.29 5.40 0.511 4.31
S2B3 3.49 47.86 -0.1625 -0.1674 -0.2320 -0.4617 -0.10 5.25 0.708 4.39

Fama-French 6 portfolios: 2 size × 3 book-to-market weekly excess return

S1B1 19.46 0.06 -0.2182 -0.2023 -0.2040 -0.2734 -0.64 7.77 0.101 2.69
S1B2 21.29 0.03 -0.2447 -0.2201 -0.2557 -0.3211 -0.81 9.36 0.168 2.05
S1B3 36.66 0.00 -0.2411 -0.2083 -0.2625 -0.5252 -0.70 9.35 0.200 2.01
S2B1 7.55 10.94 -0.1375 -0.1469 -0.1950 -0.3592 -0.32 5.43 0.121 2.28
S2B2 12.92 1.17 -0.1550 -0.1547 -0.2008 -0.3279 -0.38 6.62 0.111 1.93
S2B3 14.61 0.56 -0.1505 -0.1391 -0.2051 -0.4098 -0.24 5.23 0.157 1.94

Fama-French 6 portfolios: 2 size × 3 book-to-market daily excess return

S1B1 36.34 0.00 -0.2510 -0.3178 -0.3529 -0.5875 -0.97 15.20 0.019 0.96
S1B2 30.06 0.00 -0.2777 -0.3565 -0.4577 -0.7230 -1.23 18.47 0.033 0.70
S1B3 21.76 0.02 -0.2726 -0.3525 -0.4624 -0.7326 -1.14 19.65 0.040 0.69
S2B1 5.95 20.26 -0.1194 -0.1877 -0.3619 -0.7726 -0.74 21.57 0.024 0.97
S2B2 6.63 15.71 -0.1667 -0.2735 -0.5291 -1.1190 -1.50 40.20 0.023 0.81
S2B3 9.38 5.22 -0.1699 -0.2759 -0.4947 -1.1003 -1.21 32.23 0.032 0.81



T
ab

le
13

:
C

ov
ar

ia
n
ce

sy
m

m
et

ry
te

st
fo

r
w

ee
k
ly

an
d

d
ai

ly
in

d
u
st

ry
p
or

tf
ol

io
s

T
h
e

ta
b
le

re
p
o
rt

s
sy

m
m

et
ri

c
co

va
ri

a
n
ce

te
st

b
et

w
ee

n
th

e
m

a
rk

et
ex

ce
ss

re
tu

rn
a
n
d

th
e

ex
ce

ss
re

tu
rn

o
n

o
n
e

o
f
th

e
2
0

in
d
u
st

ry
p
o
rt

fo
li
o
s

w
it

h
w

ee
k
ly

(J
a
n

7
th

,

1
9
6
5

th
ro

u
g
h

D
ec

2
9
th

,
1
9
9
9
;
sa

m
p
le

si
ze

1
8
2
5
)

a
n
d

d
a
il
y

(J
a
n

4
th

,
1
9
6
5

th
ro

u
g
h

D
ec

3
1
th

,
1
9
9
9
;
sa

m
p
le

si
ze

8
8
1
3
)

d
a
ta

.

d
a
il
y

ex
ce

ss
re

tu
rn

w
ee

k
ly

ex
ce

ss
re

tu
rn

p
o
rt

fo
li
o

J
σ
1
2

P
(%

)
σ̂

+ 1
2
(c

i
)
−

σ̂
− 1
2
(c

i
)

su
m

m
a
ry

st
a
ti

st
ic

s
J

σ
1
2

P
(%

)
σ̂

+ 1
2
(c

i
)
−

σ̂
− 1
2
(c

i
)

su
m

m
a
ry

st
a
ti

st
ic

s

c 1
=

0
c 2

=
0
.5

c 3
=

1
.0

c 4
=

1
.5

sk
ew

k
u
rt

m
ea

n
st

d
c 1

=
0

c 2
=

0
.5

c 3
=

1
.0

c 4
=

1
.5

sk
ew

k
u
rt

m
ea

n
st

d

M
is

c.
1
1
.0

8
2
.5

7
-0

.1
9
6
9

-0
.3

2
0
8

-0
.5

7
5
8

-1
.1

7
4
5

-1
.4

6
3
5
.0

3
0
.0

2
9

0
.8

8
1
0
.9

2
2
.7

5
-0

.1
8
1
7

-0
.1

9
9
9

-0
.2

6
5
2

-0
.4

3
1
6

-0
.4

7
6
.3

6
0
.1

6
0

2
.1

3

M
in

in
g

1
3
.8

1
0
.7

9
-0

.2
0
1
8

-0
.3

1
6
2

-0
.5

6
2
4

-1
.0

9
3
8

-0
.5

9
1
5
.9

9
0
.0

1
7

1
.1

0
1
3
.3

4
0
.9

7
-0

.1
2
3
1

-0
.1

1
6
2

-0
.0

8
2
9

-0
.2

1
7
6

-0
.0

0
6
.5

7
0
.1

1
9

2
.7

5

F
o
o
d

7
.3

2
1
1
.9

8
-0

.1
8
4
2

-0
.3

2
0
7

-0
.5

8
0
5

-1
.3

4
8
4

-1
.0

5
2
9
.8

7
0
.0

2
9

0
.8

8
1
1
.1

1
2
.5

4
-0

.1
6
4
5

-0
.1

7
3
6

-0
.2

1
3
3

-0
.3

9
7
7

-0
.2

5
4
.9

0
0
.1

6
3

2
.0

5

A
p
p
a
re

l
2
7
.9

2
0
.0

0
-0

.2
5
9
9

-0
.4

1
1
1

-0
.6

0
5
2

-1
.1

4
7
6

-1
.5

5
5
0
.5

7
0
.0

1
3

0
.9

5
2
4
.5

5
0
.0

1
-0

.1
7
8
3

-0
.1

4
5
2

-0
.1

0
7
0

-0
.4

6
8
2

-0
.3

9
8
.2

7
0
.0

9
3

2
.5

3

P
a
p
er

6
.2

7
1
8
.0

2
-0

.1
8
9
2

-0
.3

3
8
3

-0
.6

7
8
4

-1
.5

5
9
9

-1
.6

1
4
4
.0

9
0
.0

2
1

1
.0

0
3
.3

0
5
0
.8

4
-0

.1
1
7
1

-0
.1

4
8
5

-0
.2

3
0
7

-0
.5

3
1
9

-0
.1

9
6
.3

5
0
.1

3
1

2
.4

5

C
h
em

ic
a
l

4
.9

7
2
9
.0

6
-0

.1
6
1
5

-0
.2

7
7
9

-0
.5

2
6
7

-1
.1

3
3
1

-1
.2

2
3
3
.2

7
0
.0

2
6

0
.9

8
8
.4

6
7
.6

0
-0

.1
4
5
9

-0
.1

5
9
3

-0
.2

4
9
6

-0
.4

7
3
4

-0
.3

1
5
.6

3
0
.1

5
2

2
.2

7

P
et

ro
le

u
m

1
.6

8
7
9
.4

4
-0

.1
4
7
9

-0
.3

1
0
3

-0
.7

1
9
6

-1
.7

3
6
8

-0
.7

0
2
4
.0

0
0
.0

2
6

1
.1

2
6
.5

6
1
6
.1

0
-0

.0
9
6
3

-0
.0

9
8
4

-0
.0

5
6
6

-0
.0

2
0
9

0
.1

2
4
.4

4
0
.1

5
6

2
.4

7

C
o
n
st

ru
ct

io
n

1
1
.7

8
1
.9

1
-0

.2
1
7
4

-0
.3

7
9
1

-0
.7

3
8
6

-1
.3

6
6
2

-1
.6

4
5
0
.0

8
0
.0

2
2

0
.9

8
1
1
.9

0
1
.8

1
-0

.1
5
4
8

-0
.1

7
3
6

-0
.1

9
4
9

-0
.4

5
6
1

-0
.3

0
9
.5

6
0
.1

3
7

2
.5

4

P
ri

m
.

M
et

a
ls

8
.0

1
9
.1

3
-0

.2
0
3
3

-0
.3

6
1
6

-0
.7

8
4
0

-1
.7

9
3
8

-1
.8

2
5
6
.9

0
0
.0

0
8

1
.0

8
8
.6

5
7
.0

6
-0

.1
5
4
9

-0
.1

7
6
9

-0
.2

2
8
4

-0
.6

2
1
0

-0
.3

0
7
.6

2
0
.0

7
3

2
.7

3

F
a
b
.

M
et

a
ls

1
5
.8

7
0
.3

2
-0

.2
0
7
4

-0
.3

3
1
2

-0
.6

0
1
4

-1
.2

2
6
9

-1
.3

0
2
9
.8

8
0
.0

2
4

0
.9

2
2
4
.8

4
0
.0

1
-0

.1
6
3
0

-0
.1

3
4
3

-0
.1

7
3
2

-0
.3

6
3
6

-0
.4

9
8
.4

4
0
.1

4
5

2
.3

5

M
a
ch

in
er

y
3
.6

1
4
6
.1

8
-0

.1
3
9
3

-0
.2

4
1
8

-0
.5

0
2
0

-1
.1

8
3
6

-0
.9

7
2
4
.2

0
0
.0

2
2

1
.1

8
2
.2

0
6
9
.9

4
-0

.1
0
0
0

-0
.1

2
9
6

-0
.2

5
1
6

-0
.4

7
3
8

-0
.1

5
5
.3

5
0
.1

4
5

2
.7

4

E
le

ct
ri

ca
l
E

q
.

4
.7

3
3
1
.6

2
-0

.1
3
4
5

-0
.2

1
8
9

-0
.4

1
6
9

-0
.8

8
4
5

-0
.6

5
1
6
.5

3
0
.0

3
2

1
.1

5
3
.9

8
4
0
.9

0
-0

.1
1
6
3

-0
.1

3
3
4

-0
.2

1
5
7

-0
.5

2
1
9

-0
.1

7
4
.9

6
0
.1

9
0

2
.7

3

T
ra

n
sp

o
rt

E
q
.

3
.8

6
4
2
.5

9
-0

.1
4
6
7

-0
.2

7
0
2

-0
.5

3
4
5

-1
.2

0
8
7

-0
.7

4
1
9
.0

4
0
.0

1
7

1
.0

9
5
.8

0
2
1
.4

7
-0

.1
2
8
2

-0
.1

4
0
0

-0
.2

0
7
7

-0
.3

9
8
7

-0
.1

2
5
.1

0
0
.1

1
3

2
.5

8

M
a
n
u
fa

ct
u
ri

n
g

1
1
.7

8
1
.9

1
-0

.1
5
9
1

-0
.2

4
0
8

-0
.5

0
2
9

-1
.0

3
5
8

-0
.9

5
2
3
.2

7
0
.0

2
3

1
.1

5
6
.3

9
1
7
.1

7
-0

.1
4
4
9

-0
.1

6
3
4

-0
.2

4
0
7

-0
.3

8
4
6

-0
.3

2
4
.9

2
0
.1

4
4

2
.6

4

R
a
il
ro

a
d
s

8
.2

4
8
.3

3
-0

.1
6
4
6

-0
.2

8
1
8

-0
.6

2
0
3

-1
.4

4
9
7

-0
.8

3
2
5
.0

9
0
.0

2
3

1
.1

1
9
.4

5
5
.0

8
-0

.1
5
8
9

-0
.1

7
4
6

-0
.2

9
1
5

-0
.7

0
4
2

-0
.3

0
7
.6

3
0
.1

4
8

2
.6

8

O
th

er
T
ra

n
sp

o
rt

.
8
.3

9
7
.8

2
-0

.1
3
9
5

-0
.2

1
3
1

-0
.4

0
5
5

-0
.8

3
4
7

-0
.2

7
1
0
.9

6
0
.0

1
2

1
.2

9
1
2
.3

0
1
.5

3
-0

.1
3
5
6

-0
.1

1
4
2

-0
.1

7
9
0

-0
.4

0
6
2

-0
.0

6
5
.0

7
0
.1

0
9

3
.2

5

U
ti

li
ti

es
5
.2

0
2
6
.7

2
-0

.1
7
0
6

-0
.3

1
8
4

-0
.6

3
7
0

-1
.4

3
6
6

-1
.0

5
3
8
.3

5
0
.0

1
1

0
.6

2
5
.6

3
2
2
.8

7
-0

.1
1
0
2

-0
.1

0
6
6

-0
.1

6
3
2

-0
.2

9
0
0

0
.1

8
5
.4

9
0
.0

6
7

1
.6

4

D
ep

t.
S
to

re
s

1
.3

5
8
5
.3

7
-0

.1
0
5
0

-0
.2

1
7
8

-0
.5

2
1
7

-1
.2

5
8
8

-0
.5

3
1
7
.3

9
0
.0

2
6

1
.2

0
3
.3

0
5
0
.8

7
-0

.1
0
3
7

-0
.1

2
9
1

-0
.2

5
4
8

-0
.6

1
5
2

-0
.0

3
5
.5

6
0
.1

6
7

2
.9

1

R
et

a
il

2
5
.2

7
0
.0

0
-0

.1
9
9
7

-0
.2

8
4
1

-0
.4

4
3
6

-0
.8

7
7
7

-1
.0

0
2
1
.7

9
0
.0

2
9

0
.9

2
1
5
.3

4
0
.4

0
-0

.1
7
4
4

-0
.1

7
6
0

-0
.1

7
8
1

-0
.2

6
5
1

-0
.4

1
6
.3

2
0
.1

6
8

2
.4

2

F
in

a
n
ci

a
l

1
4
.2

0
0
.6

7
-0

.1
6
9
6

-0
.2

4
9
3

-0
.4

4
0
8

-0
.9

2
9
6

-0
.9

3
2
2
.7

8
0
.0

2
7

0
.8

7
1
6
.0

9
0
.2

9
-0

.1
5
1
4

-0
.1

2
5
7

-0
.1

5
1
1

-0
.2

6
7
8

-0
.2

4
5
.0

1
0
.1

5
6

2
.2

5



Table 14: Utility gain in the Fama-French model

The table reports the annualized certainty-equivalence gain of expected utility of a mean-variance-optimizing

investor with relative risk aversion equal to 3 who switches from believing the Fama-French 3-factor model to

believing a factor model with an additional asymmetric factor, for varying degrees of pricing errors σα. The

investment universe is the Fama-French three factors and the asymmetry factor plus 10 CRSP size portfolios

(in the first panel), or plus the Fama-French 25 portfolios (in the second panel), or plus 20 industrial portfolios

(in the third panel).

Asy Factor σα = 0 σα = 0.5% σα = 1% σα = 2% σα = 3% σα = 6% σα = ∞

10 CRSP size portfolios

Dcov10 0.02 0.05 0.11 0.07 0.03 0.00 0.01

Dcov 0.10 0.07 0.04 0.02 0.02 0.04 0.02

CC3 2.54 1.86 0.94 0.21 0.06 0.01 0.01

Dcorr10 3.45 2.54 1.24 0.22 0.05 0.02 0.02

CMC 9.64 6.91 3.10 0.49 0.12 0.03 0.03

Fama-French 25 portfolios

Dcov10 0.01 0.07 0.25 0.14 0.06 0.02 0.02

Dcov 0.07 0.05 0.05 0.03 0.04 0.06 0.05

CC3 3.04 2.11 0.83 0.16 0.07 0.03 0.04

Dcorr10 4.44 2.91 1.16 0.19 0.05 0.03 0.04

CMC 13.54 8.32 3.24 0.55 0.12 0.06 0.05

20 industrial portfolios

Dcov10 0.04 0.03 0.03 0.02 0.02 0.02 0.03

Dcov 0.05 0.05 0.03 0.03 0.02 0.03 0.03

CC3 2.30 2.02 1.51 0.60 0.23 0.06 0.03

Dcorr10 4.08 3.57 2.51 1.01 0.38 0.07 0.03

CMC 11.68 10.43 7.70 3.25 1.33 0.16 0.04



Table 15: Utility gain in the CAPM

The table reports the annualized certainty-equivalence gain of expected utility of a mean-variance-optimizing

investor with relative risk aversion equal to 3 who switches from believing in the CAPM to believing in a

model of CAPM plus an asymmetric factor, for varying degrees of pricing errors σα. The investment universe

is the market factor and the asymmetry factor plus 10 CRSP size portfolios (in the first panel), or plus the

Fama-French 25 portfolios (in the second panel), or plus 20 industrial portfolios (in the third panel).

Asy Factor σα = 0 σα = 0.5% σα = 1% σα = 2% σα = 3% σα = 6% σα = ∞

10 CRSP size portfolios

Dcov10 0.49 0.44 0.35 0.13 0.09 0.08 0.12

Dcov 0.15 0.12 0.10 0.05 0.09 0.14 0.17

CC3 0.19 0.15 0.11 0.05 0.03 0.02 0.06

Dcorr10 0.39 0.33 0.27 0.15 0.07 0.01 0.01

CMC 2.73 2.49 1.80 0.82 0.42 0.09 0.04

Fama-French 25 portfolios

Dcov10 1.27 1.01 0.68 0.25 0.10 0.03 0.07

Dcov 0.23 0.19 0.12 0.04 0.03 0.05 0.09

CC3 0.05 0.05 0.08 0.11 0.04 0.04 0.07

Dcorr10 0.21 0.21 0.22 0.26 0.12 0.02 0.03

CMC 2.50 2.13 1.63 0.97 0.51 0.07 0.03

20 industrial portfolios

Dcov10 1.46 1.34 0.96 0.41 0.15 0.02 0.02

Dcov 0.16 0.11 0.09 0.07 0.03 0.02 0.03

CC3 0.00 0.01 0.01 0.01 0.01 0.01 0.02

Dcorr10 0.09 0.07 0.05 0.02 0.02 0.02 0.02

CMC 1.70 1.53 1.07 0.49 0.18 0.04 0.03



Table 16: Utility gain in a regime-switching model

The table reports the annualized certainty-equivalence gain of expected utility of a power utility investor

with relative risk aversion equal to 3, 6 and 9 who switches from believing in the one-regime Fama-French

3-factor model to believing in a two-regime Fama-French model capturing asymmetry, for varying degrees of

pricing errors σα. The investment universe is the Fama-French three factors plus 10 CRSP size portfolios (in

the first panel), or plus the Fama-French 25 portfolios (in the second panel), or plus 20 industrial portfolios

(in the third panel).

σα = 0 σα = 0.5% σα = 1% σα = 2% σα = 3% σα = 6% σα = ∞

10 CRSP size portfolios

γ = 3 0.47 1.18 1.63 0.48 1.55 0.91 1.43

γ = 6 0.22 0.48 0.68 0.72 1.37 0.40 0.42

γ = 9 0.15 0.31 0.45 0.48 0.85 0.26 0.29

Fama-French 25 portfolios

γ = 3 3.38 1.92 3.58 3.87 4.75 2.90 4.64

γ = 6 1.67 0.88 1.70 1.71 1.78 1.21 1.79

γ = 9 1.11 0.58 1.12 1.10 1.21 0.77 1.04

20 industrial portfolios

γ = 3 2.79 1.24 0.90 2.67 2.54 3.07 1.54

γ = 6 1.41 0.65 0.62 0.63 1.10 0.91 1.74

γ = 9 0.94 0.42 0.40 0.42 0.71 0.54 0.49



Table 17: Utility gain in a regime-switching model

The table reports the annualized certainty-equivalence gain of expected utility of a power utility investor with

relative risk aversion equal to 3, 6 and 9 who switches from believing in the one-regime CAPM to believing in

a two-regime CAPM capturing asymmetry, for varying degrees of pricing errors σα. The investment universe

is the market portfolio plus 10 CRSP size portfolios (in the first panel), or plus the Fama-French 25 portfolios

(in the second panel), or plus 20 industrial portfolios (in the third panel).

σα = 0 σα = 0.5% σα = 1% σα = 2% σα = 3% σα = 6% σα = ∞

10 CRSP size portfolios

γ = 3 0.93 0.60 0.53 0.37 1.01 0.59 1.49

γ = 6 0.46 0.30 0.26 0.18 0.81 1.07 0.93

γ = 9 0.31 0.20 0.17 0.12 0.53 0.70 0.57

Fama-French 25 portfolios

γ = 3 1.46 1.55 0.94 1.98 2.39 2.60 3.77

γ = 6 0.73 0.77 0.47 0.93 1.07 1.36 1.22

γ = 9 0.49 0.51 0.31 0.61 0.69 0.86 0.75

20 industrial portfolios

γ = 3 1.15 2.00 1.03 0.83 2.91 1.43 1.02

γ = 6 0.58 0.99 0.52 0.41 3.06 1.70 0.30

γ = 9 0.39 0.65 0.35 0.27 1.24 0.60 0.19
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