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Incorporating Economic Objectives into Bayesian Priors:

Portfolio Choice under Parameter Uncertainty

Economic objectives are often ignored when estimating parameters, though the loss of

doing so can be substantial. This paper proposes a way to allow Bayesian priors to reflect

the objectives. Using monthly returns on the Fama-French 25 size and book-to-market port-

folios and their three factors from January 1965 to December 2004, we find that investment

performances under the objective-based priors can be significantly different from those un-

der alternative priors, with differences in terms of annual certainty-equivalent returns greater

than 10% in many cases. In terms of an out-of-sample loss function measure, portfolio strate-

gies based on the objective-based priors can substantially outperform both strategies under

alternative priors and some of the best strategies developed in the classical framework.



I. Introduction

Many finance problems have well-defined economic objectives, but parameter estimation

usually makes no connection to such objectives. In portfolio choice problems, Zellner and

Chetty (1965), Brown (1976, 1978), Klein and Bawa (1976), and Jorion (1986) are earlier

Bayesian studies under parameter uncertainty that rely on diffuse and data-based priors.1

Shanken (1987), Harvey and Zhou (1990), and Kandel, McCulloch, and Stambaugh (1995)

use similar priors for asset pricing tests. While Pástor (2000) proposes a new class of priors

that incorporates an investor’s varying beliefs on an asset pricing model, his study does not

address the linkage between priors and the economic objectives at hand, nor do other studies

in the economics literature, despite increasing applications of Bayesian decision theory to

finance, e.g., Kandel and Stambaugh (1996), Barberis (2000), Brennan and Xia (2001),

Avramov (2004), Cremers (2002, 2006), Cohen, Coval, and Pástor (2005), Tu and Zhou

(2004), Wang (2005), Tu (2008), and Pástor and Veronesi (2009).

In this paper, we explore a general approach to form priors based on economic objectives.

To see intuitively how an economic objective function may matter, consider how one may

allocate funds between a riskless asset and a risky one. The optimal portfolio weight w is

known to be proportional to µ/σ2 for a mean-variance investor, where µ and σ2 are the

expected excess mean and the variance of the risky asset, respectively. Even before the

investor observes any data, it is likely that he might have some idea about the range for w,

say within 0 and 1 with high probability. This implies that µ and σ2 cannot be arbitrarily

assigned, but should be related in such a way that the ratio µ/σ2 falls mostly into a certain

range. This prior on µ and σ2 is different from other priors since it links the prior to

the economic objective at hand. As it turns out, our applications below show that such

objective-based priors can make a substantial difference in portfolio decisions as compared

with other priors. For example, using monthly returns on the Fama-French 25 size and book-

to-market portfolios and their three factors from January 1965 to December 2004, we find

that investment performances under the objective-based priors can be significantly different

1In the classical framework, different loss functions might be proposed to account for different objectives
(see, e.g., Lehmann and Casella (1998)), but the associated parameter estimates are difficult to obtain. Some
of these issues are addressed by Kan and Zhou (2007) and references therein.
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from those under alternative priors, with differences in terms of annual “certainty-equivalent”

returns greater than 10% in many cases.

The “certainty-equivalent” return (CER) measures the difference in Bayesian utilities

had one switched from one prior to another, but is unable to decide which of the priors is

better. In general, it is difficult to argue one prior is better than another, because what is

good or bad has to be defined and the definition may not be agreeable among all investors.

Nevertheless, following the literature on statistical decision (see, e.g., Lehmann and Casella

(1998)), we use a loss function approach to distinguish the outcomes of using various priors.

The prior that generates the minimum loss is viewed as the best prior. In the portfolio

choice problem below, the loss function is well defined. In terms of this loss function, we

find that the portfolio strategies based on the objective-based priors significantly outperform

the strategies based on other priors. It is in this sense that the objective-based priors are

better than others, and are valuable in the context of making portfolio decisions. Intuitively,

the objective-based priors incorporate the economic objective at hand into the prior design,

and hence they are likely to be useful since they place greater emphasis on those parameter

values whose implied portfolio weights are more likely to maximize the objective function.

Portfolio weights are the parameters of primary interest in the use of the objective-based

priors. The importance of focusing on portfolio weights was recognized at least as early as

studies by Brandt (1999) and Britten-Jones (1999). Okhrin and Schmid (2006) provide the

distributional properties of portfolio weights. In contrast to these studies in the classical

framework (which solve the weights and derive their distribution), we impose priors on the

portfolio weights, use the first-order condition (the Euler equation) to infer priors on the

primitive parameters, and then optimize the utility under the predictive density of the data

accounting for parameter estimation errors. Bayesian priors on the portfolio weights have

received more attention recently. DeMiguel, Garlappi, Nogales, and Uppal (2008) propose a

constrained norm approach for portfolio choice, and interpret it as a result of using a suitable

prior belief on the portfolio weights. Based on a Markov Chain Monte Carlo approach,

Chevrier and McCulloch (2008) provide a feasible Bayesian portfolio selection framework

that directly translates priors on the portfolio weights into portfolio decisions.

The Bayesian approach under the objective-based priors is well-suited to address ques-

2



tions related to portfolio weights. In particular, it can be applied to assess the economic

importance of asset pricing anomalies2 (see Schwert (2003) for an excellent survey on anoma-

lies). Following Pástor (2000), we assess the importance of asset pricing anomalies by ex-

amining the significance of the CERs when an investor avoids investing in assets associated

with anomalies. The investor’s degree of belief on the usefulness of anomalies can naturally

be represented by the investor’s prior weights on assets associated with the anomalies. For

instance, if the investor is highly skeptical about the anomalies, he can set his prior weights

as zeros on the anomaly assets. This prior can then be updated by data via the Bayesian

approach. We find that the CERs can be of significant importance even for an investor with

a strong skeptical belief about the profitability of anomalies.

The remainder of the paper is organized as follows. Section II provides the objective-

based priors and the associated Bayesian framework. Section III extends the analysis to the

case in which asset returns are predictable. Section IV compares various Bayesian portfolio

rules based on a Bayesian criterion, and Section V compares these Bayesian rules among

themselves and with some classical rules based on an out-of-sample criterion. Section VI

analyzes asset pricing anomalies in a Bayesian framework. Section VII concludes.

II. The Bayesian Framework

A. The Portfolio Choice Problem

Consider the standard portfolio choice problem in which an investor chooses his optimal

portfolio among N risky assets and a riskless asset. Let rft and rt be the rates of returns on

the riskless asset and the N risky assets at time t, respectively. We define Rt ≡ rt − rft1N

as the excess returns, i.e., the returns in excess of the riskless asset, where 1N is an N -vector

of ones, and make the standard assumption on the probability distribution of Rt that Rt is

independent and identically distributed over time, and has a multivariate normal distribution

with mean µ and covariance matrix V .

2It can shed light on whether investing in a subset of assets is equivalent to investing in all of them,
which is related to the “home bias” puzzle in international finance that investors invest mainly in their own
countries. This line of study goes beyond the scope of this paper.
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To have analytical solutions, we focus our analysis on the standard mean-variance frame-

work since it is one of the most important models, and is widely used in practice.3 However,

our approach can be applied to non-quadratic utilities. This will be discussed briefly below.

In the mean-variance framework, the investor at time T chooses his portfolio weights w

so as to maximize the quadratic objective function

(1) U(w) = E[Rp]− γ

2
Var[Rp] = w′µ− γ

2
w′V w,

where Rp = w′RT+1 is the future uncertain portfolio return and γ is the coefficient of relative

risk aversion. It is well-known that, when both µ and V are assumed known, the portfolio

weights are

(2) w∗ =
1

γ
V −1µ,

and the maximized expected utility is

(3) U(w∗) =
1

2γ
µ′V −1µ =

θ2

2γ
,

where θ2 = µ′V −1µ is the squared Sharpe ratio of the ex ante tangency portfolio of the risky

assets.

However, w∗ is not computable in practice because µ and V are unknown. To implement

the above mean-variance theory of Markowitz (1952), the optimal portfolio weights are usu-

ally estimated by using a two-step procedure. First, the mean and covariance matrix of the

asset returns are estimated based on the observed data. Second, these sample estimates are

then treated as if they were the true parameters, and are simply plugged into (2) to compute

the optimal portfolio weights. This gives rise to a parameter uncertainty problem because

the utility associated with the plug-in portfolio weights can be substantially different from

U(w∗) due to using the estimated parameters that can be substantially different from the

true ones.

Like all those studies cited in the introduction, this paper is to provide a partial equi-

librium analysis of the parameter uncertainty problem. The solutions are derived from the

3See Grinold and Kahn (1999), Litterman (2003) and Meucci (2005) for practical applications of the
mean-variance framework; and see Brandt (2004) for an excellent survey of the academic literature.
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investment perspective of an investor whose trading has no impact on the asset prices. An

equilibrium analysis, such as the study of the risk premium on parameter uncertainty, in an

economy with all Bayesian investors, is an important problem, but is beyond the scope of

this paper.

B. The Standard Bayesian Solution

The Bayesian approach provides a natural solution to the parameter uncertainty problem.

Following Zellner and Chetty (1965), the Bayesian optimal portfolio is obtained by maxi-

mizing the expected utility under the predictive distribution, i.e.,

ŵBayes = argmaxw

∫

RT+1

Ũ(w)p(RT+1|ΦT ) dRT+1

= argmaxw

∫

RT+1

∫

µ

∫

V

Ũ(w)p(RT+1, µ, V |ΦT ) dµdV dRT+1,(4)

where Ũ(w) is the utility of holding a portfolio w at time T +1, p(RT+1|ΦT ) is the predictive

density, ΦT is the data available at time T , and

(5) p(RT+1, µ, V |ΦT ) = p(RT+1|µ, V,ΦT )p(µ, V |ΦT ),

where p(µ, V |ΦT ) is the posterior density of µ and V . In comparison equation (4) with equa-

tion (1), the expected utility is maximized in the Bayesian and classical framework under

the predictive and true distributions, respectively. However, the evaluation of equation (1)

requires treating the two-step estimates as the true parameters and is hence subject to esti-

mation error, while the Bayesian approach accounts for the estimation error automatically.

Brown (1976), Klein and Bawa (1976, 1978), and Stambaugh (1997), among others, using

the standard diffuse prior on µ and V ,

(6) p0(µ, V ) ∝ |V |−N+1
2 ,

show that the resulting optimal portfolio weights,

(7) ŵBayes =
1

γ

(
T −N − 2

T + 1

)
Σ̂−1µ̂,

are always better than the classical plug-in approach in terms of out-of-sample performance.

Kan and Zhou (2007) verify this analytically.
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However, neither the classical method nor the diffuse prior approach utilizes any prior

information about the parameters. Kan and Zhou (2007) show that the Bayesian solution

under a diffuse prior can be dominated by alternative estimators, which indicates clearly

that the diffuse prior is not optimal in solving the optimal portfolio problem in the presence

of parameter uncertainty. In fact, as shown in Section IV, the diffuse prior implies a strong

and unreasonable prior on the cross-sectional variation in the portfolio weights. This seems

to be the key reason why the diffuse prior fails to do well. The question is then how to

construct useful priors that can improve the investor’s expected utility.

C. Priors Based on Asset Pricing Theory

Pástor (2000) and Pástor and Stambaugh (2000) introduce interesting priors that reflect an

investor’s degree of belief in an asset pricing model. To see how this class of priors is formed,

assume Rt = (yt, xt), where yt contains the excess returns of m non-benchmark positions

and xt contains the excess returns of K (= N −m) benchmark positions. Consider a factor

model multivariate regression

(8) yt = α + Bxt + ut,

where ut is an m×1 vector of residuals with zero means and a non-singular covariance matrix

Σ = V11 −BV22B
′, and α and B are related to µ and V through

(9) α = µ1 −Bµ2, B = V12V
−1
22 ,

where µi and Vij (i, j = 1, 2) are the corresponding partition of µ and V ,

(10) µ =

(
µ1

µ2

)
, V =

(
V11 V12

V21 V22

)
.

For a factor-based asset pricing model, such as the three-factor model of Fama and French

(1993), the restriction is α = 0.

To allow for mispricing uncertainty, Pástor (2000) and Pástor and Stambaugh (2000)

specify the prior distribution of α as a normal distribution conditional on Σ,

(11) α|Σ ∼ N

[
0, σ2

α

(
1

s2
Σ

Σ

)]
,

6



where s2
Σ is a suitable prior estimate for the average diagonal elements of Σ. The above alpha-

Sigma link is also explored by MacKinlay and Pástor (2000) in the classical framework. The

magnitude of σα represents an investor’s level of uncertainty about the pricing ability of a

given model. When σα = 0, the investor believes dogmatically in the model and there is

no mispricing uncertainty. On the other hand, when σα = ∞, the investor believes that

the pricing model is entirely useless. Although they provide useful insight, the asset pricing

theory based priors are not necessarily connected with the investor’s objective function. This

is the issue addressed below.

D. Priors Incorporating Objectives

Consider now how we construct the objective-based priors formally, the innovation of this

paper. The idea is to form an informative prior on model parameters such that the implied

optimal portfolio is distributed around some reasonable value. Theoretically, because of

certain one-to-one mapping, this can also be interpreted as we start from a prior on the

optimal portfolio weights first, and then we backout the prior on model parameters.

The idea is analogous to those used by Kandel, McCulloch, and Stambaugh (1995) and

Lamoureux and Zhou (1996), among others. In the context of testing portfolio efficiency,

Kandel, McCulloch, and Stambaugh (1995) find that the diffuse prior in fact implies a strong

prior on inefficiency of a given portfolio.4 In the context of market return decomposition,

Lamoureux and Zhou (1996) find that the diffuse prior implies a concentration on extreme

values about predictability. These are examples in which supposedly innocuous diffuse priors

on some basic model parameters can actually imply rather strong prior convictions about

particular economic dimensions of the problem. That is, diffuse priors can be unreasonable

in an economic sense in some applications. As a result, both of the cited studies suggest to

use informative priors on the model parameters that can imply reasonable priors on functions

of interest.

The optimal portfolio weights w are the functions of our interest here, which are also

the solution to the utility maximization problem. Assume for the moment that there are no

4Klein and Brown (1984) provide a generic way to obtain an uninformative prior on nonprimitive param-
eters, which can potentially be applied to derive an uninformative prior on efficiency.
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data available and V is a known matrix. Suppose we have a normal prior on µ,

(12) µ ∼ N(γV w0, V0),

where V0 is the prior covariance matrix of µ. Both w0 and V0 are prior constants to be

determined later. Based on the objective function (the quadratic utility here), we know,

from the first-order condition (FOC) or the Euler equation, that w and µ are related by

(13) µ = γV w,

which implies w must have the following prior distribution,

(14) w ∼ N(w0, V0V
−1/γ).

This says that w has a prior mean of w0. The magnitude of V0 determines how close the

distribution of the implied portfolio is around w0. Hence, conditional on V and starting from

w0, we can construct a normal prior on µ such that the implied prior on w is concentrated

around w0. If w0 is chosen as a desired value, the implied prior distribution on w should be

more reasonable than otherwise, as shown in our applications later.

Mathematically, we can also interpret that we start from a prior density on w, equation

(14), and then we, based on the objective function which provides equation (13), backout the

prior on the primitive parameter µ, equation (12). The mapping is clearly one-to-one, and is

unique. When V is treated as unknown, as is the case in general, we can set V as a standard

Wishart random variable. Then (14) implies some sort of mixture normal (unconditional)

distribution for w, but µ is still normal conditional on V . Moreover, (w, V ) and (µ, V ) still

have an one-to-one mapping, and a prior on the former uniquely determines a prior on the

latter, or vice versa. We make two remarks. First, we use a normal prior on µ conditional

on V so that it is conjugate. Then, the prior can be easily combined with the likelihood

function. The second remark is that the above procedure works for any utility function.

This is because equation (13) is the solution to the Euler equation in the special case of the

quadratic utility. For non-quadratic utilities, we can numerically solve µ for any given w and

V . In this case, if we start from a prior on w, we can always determine the prior on µ. A

simple approach for doing so is via simulation. A draw of w determines a draw of µ based

8



on the Euler equation, and this prior in turn can be combined with the likelihood function

of the data.

Deferring the choice of V0, we consider first how to determine a sensible value for w0. In

choosing w0, without observing any data and without knowing the differences between the

risky assets, it is reasonable to treat all the risky assets equally. A diversification consid-

eration would suggest that we assign an equal prior weight across all the risky assets, that

is, w0 is proportional to 1N , a vector of ones. In other words, w0 is proportional to the

well-known naive 1/N rule that invests equally across all the risky assets, which is the focus

of DeMiguel, Garlappi, and Uppal (2007) in their comparison with other rules. The sum of

the weights across all the risky assets is the total dollar amount invested in risky assets. To

reflect a wide range of this allocation to risky assets, we will consider two alternative values,

50% and 100%, respectively, in later applications.

Another sensible value of w0 is to take it as the value-weighted market portfolio weights,

wm. So doing leads to an interesting relation to Black and Litterman’s (1992) asset allocation

method which has received considerable attention from many practitioners (see, e.g., Litter-

man (2003) and Meucci (2005)). They argue that, once taking w0 as the market portfolio

weights,

(15) µm = γmV w0

are the equilibrium expected returns as investors hold the market in equilibrium (with γm

as the risk aversion parameter of the representative investor). It is these expected returns

that are used in their asset allocation model that yields more balanced portfolios than the

standard solution of the mean-variance framework. Like their model, our approach here

can also use the equilibrium expected returns as the prior means. However, there are three

major differences between their approach and ours. First, their prior is formed with a view

on the equilibrium returns, and is updated by investors’ proprietary views. In the absence of

the proprietary views, their portfolio decision is based on the equilibrium expected returns,

and there is no Bayesian updating. In our case, even if we use the market portfolio weights

to determine the equilibrium expected returns, these values will be updated by the data.

Second, their procedure ignores uncertainty about the covariance matrix. Thirdly, their
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procedure does not make use of the predictive distribution.5

For the prior specification of V0, a simple way is to use a value proportional to the identity

matrix that implies

(16) µ ∼ N(γV w0, σ
2
ρIN),

where σ2
ρ reflects the degree of uncertainty about µ. A zero value of σ2

ρ implies a dogmatic

belief in µ0 = γV w0 as the true mean conditional on a given w0. A value of σ2
ρ = ∞ suggests

that µ0 is not informative at all about the true mean. Other than these two extremes, σ2
ρ

places some modest informative belief on the degree of uncertainty as to how µ is close to

µ0.

However, the identity matrix specification has an undesired property. It measures the

difference between µd, an alternative value of µ, and µ0,

(17) µd − µ0 6= 0,

by placing equal importance on the deviation of each element of µd from that of µ0. While

this weighting may be plausible in some applications, it does not measure adequately the

investor’s assessment of the deviations given his utility function. To see this, let wd and w0

be the portfolio weights associated with µd and µ0 based on the objective function. It is easy

to show that (see Appendix)

U(wd)− U(w0) ≈ −1

2
[µd − µ0]

′Ω−1[µd − µ0],(18)

where

(19) Ω = −
{{

∂2U

∂w∂µ′
[w0]

}′ {
∂2U

∂w∂w′ [w0]

}−1 {
∂2U

∂w∂µ′
[w0]

}}−1

.

Hence, from the perspective of utility evaluation, the investor weighs the importance of the

deviations by Ω−1 rather than by the identity matrix. This suggests that a potentially better

prior on µ is

(20) µ ∼ N

[
γV w0, σ

2
ρ

(
1

s2
Ω

Ω

)]
,

5A formal treatment of their model is beyond the scope of this paper. Zhou (2009) provides a framework
for combining their model with the data.
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where s2
Ω is the average of the diagonal elements of Ω. In this way, the investor’s objective

function, the utility function here, also plays a role in the specification of the prior covariance

matrix for µ, in addition to its role in the mean specification based on the FOC. Note that

the prior given by (20) is invariant to any positive monotonic transformations of the utility

function. In the case of the mean-variance utility here, it is easy to verify that Ω = γV .

Hence, the above prior can be simply written as

(21) µ ∼ N

[
γV w0, σ

2
ρ

(
1

s2
V

)]
,

where V is the covariance matrix of the asset returns, and s2 is the average of the diagonal

elements of V . As mentioned earlier, we will use a standard Wishart prior for V . Then, we

will have a complete prior specification on all the primitive parameters µ and V .

Consider now the case in which part or all of the data are available for forming priors

on the parameters.6 For simplicity, we assume that there are ten years of monthly data

available. Let µ̂10 and V̂10 be the sample mean and covariance matrix, respectively. Then,

the standard Bayesian informative prior on µ based on the ten years data may be written as

(22) µ ∼ N

[
µ̂10, σ

2
µ

(
1

ŝ2
10

V̂10

)]
,

where ŝ2
10 is the average of the diagonal elements of V̂10, and σ2

µ is a scale parameter that

indicates the degree of uncertainty.

Given the data, a Bayesian who uses the objective-based priors can start from the non-

data prior (21), update it based on the ten years data, and then use this updated prior for

his future decision making. The approach is analogous to the way of updating the diffuse

prior to get (22). The updated prior on µ is given by

(23) µ ∼ N

[
µ̂∗10, σ

2
ρ

(
1

s2
V

)]
,

where µ̂∗10 = γV ŵ10, and ŵ10 is the objective-based Bayesian optimal portfolio weights based

on the ten years data. It is interesting that the conjugate prior, equation (22), provides a

similar covariance structure to that of the objective-based prior. However, their means are

6Empirical Bayesian analysis allows for such flexible use of data to form priors. See Berger (1985) and
references therein. Jorion (1986) seems to be one of the first studies using a Bayesian empirical prior.
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entirely different, and they can imply significant differences in portfolio decisions as shown

later.

So far we have assumed the quadratic utility for simplicity because the first-order condi-

tion can be solved analytically in this case. For a more general utility function, however, a

numerical approach has to be used to solve it. In this case, one can place a truncated prior

around the first-order condition, rather than a simple normal prior as we did here. Due to

its technical nature, we will study these issues elsewhere. In a nutshell, our idea of the paper

is to use the FOC for the problem at hand to generate a prior on the primitive parameters.

It is these economics motivated restrictions that are found helpful in our later applications.

E. Performance Measure

It will be of interest to see what the possible performance differences are when one switches

from one prior to another. As other cases follow straightforwardly, we illustrate only how to

measure the differences in the case when an investor switches from the diffuse prior to the

objective-based one. Following Kandel and Stambaugh (1996) and Pástor and Stambaugh

(2000), a plausible measure is the difference in the expected utilities of the two priors under

the predictive distribution of the latter. Let E∗ and V ∗ be the predictive mean and covariance

matrix of the asset returns under the objective-based prior, and let wO be the associated

optimal portfolio allocation. Then the expected utility of using wO is given by

(24) EUO = w
′
OE∗ − γ

2
w
′
OV ∗wO,

where γ is the degree of the investor’s relative risk aversion. The allocation, wD, which is

optimal under the diffuse prior, should have an expected utility of

(25) EUD = w
′
DE∗ − γ

2
w
′
DV ∗wD.

Notice that this expected utility is evaluated based on the same E∗ and V ∗ of the objective-

based prior. Because of this, the difference

(26) CER = EUO − EUD

is interpreted as the “perceived” certainty-equivalent return (CER) loss to an investor who is

forced to accept the optimal portfolio selection based on the diffuse prior, or the “perceived”
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CER gain of using the objective-based prior instead of the diffuse one. Since wO is optimal

under the objective-based prior, the CER is always positive or zero by construction. The

issue is how big this value can be. Generally speaking, values over a couple of percentage

points per year are deemed as economically significant.7

It should be acknowledged that the CER measure tells us only the utility differences

from switching one prior into another. It does not say that the prior to be switched from

is the better, nor the one to be switched to is the better. As a result, we will also examine

performance differences in terms of an out-of-sample loss function measure in Section V,

from the perspective of a frequentist.

III. Objective-based Priors under Predictability

Kandel and Stambaugh (1996) and Barberis (2000) show that incorporating return pre-

dictability plays an important role in portfolio decisions. Avramov (2004) extends this in a

multivariate setting. The questions we address here are how the objective-based prior can

be constructed and whether it can still make significant differences in portfolio decisions in

the presence of predictability.

Following aforementioned studies, we assume that excess returns are related to M pre-

dictive variables by a linear regression8

(27) Rt = µ0 + µ1zt−1 + vt,

where zt−1 is a vector of M predictive variables, vt ∼ N(0, ΣRR), and the predictive variables

follow a VAR(1) process

(28) zt = ψ0 + ψ1zt−1 + ut,

with ut ∼ N(0, ΣZZ).

In a more compact matrix form, we can write the equations as

(29) R = XΓ + UR,

7Fleming, Kirby and Ostdiek (2001) provide a similar measure in the classical framework.
8Pástor and Stambaugh (2009), Wachter and Warusawitharana (2009), and Rapach, Strauss, and Zhou

(2009) are recent studies on predictability.
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(30) Z = XAZ + UZ ,

where R = [R1, R2, · · · , RT ]′ is a T ×N matrix formed from the returns, X = [1T , Z−1] is a

T×(M +1) matrix formed from a T -vector of ones and Z−1 = [z0, z1, · · · , zT−1]
′, Γ = [µ0, µ1]

′

is a (M + 1) × N matrix of the regression coefficients, Z = [z1, z2, · · · , zT ]′, AZ = [ψ0, ψ1]
′

is a (M + 1)×M matrix of the coefficients in the VAR(1) process, and UR and UZ are the

corresponding residuals with vec(UR) ∼ N(0, ΣRR ⊗ IT ) and vec(UZ) ∼ N(0, ΣZZ ⊗ IT ).

To highlight the intuition, consider the case of one predictive variable with M = 1.

Assume further that the dividend yield, denoted as DY, is used in the predictive regression

such that

(31) Rt = µ0 + µ1DYt−1 + vt.

To reflect a certain degree of uncertainty about predictability, we use a simple normal prior

for µ1,

(32) p0(µ1) ∝ N

[
µp

1, σ
2
P

(
1

s2
RR

ΣRR

)]
,

where µp
1 is the prior mean on µ1, σ2

P measures the uncertainty about predictability, and

s2
RR is the average of the diagonal elements of ΣRR. Assuming a diffuse prior on all other

parameters, we have a complete prior

(33) p0(Γ, AZ , ΣRR, ΣZZ) ∝ p0(µ1)× |ΣRR|−N+1
2 × |ΣZZ |−M+1

2 .

This joint prior is informative on predictability, but diffuse otherwise. We henceforth refer

to it as the predictability-diffuse prior.

To achieve the goal of utility maximization, the first-order condition imposes the following

informative prior on µ0 + µ1DYT or

(34) p0(µ0|µ1) ∝ N

[
γΣRRw0 − µ1DYT , σ2

ρ

(
1

s2
RR

ΣRR

)]
,

where w0 is the prior portfolio weight, DYT is the observed DY at time T that is available

for portfolio selection at time T , and σ2
ρ is the prior scalar of the variance that measures the

degree of reliance on the first-order condition. Hence, we define the objective-based prior as
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the one constructed by adding this additional conditional density into the right hand side

of equation (33). In contrast with the predictability-diffuse prior, the objective-based one

reflects not only predictability, but also the economic objective. The marginal prior density

of Γ = [µ0, µ1]
′ can be written succinctly as

(35) p(Γ|ΣRR) ∝ |ΣRR|− 1
2 exp

{
−1

2
tr[Σ−1

RR(Γ− Γ0(µ
p
1))

′Υ(Γ− Γ0(µ
p
1))]

}
,

where Γ′0(µ
p
1) = [γw0ΣRR − µp

1DYT , µp
1] is an N × 2 matrix, and Υ = s2∆Ψ−1∆′ is a 2 × 2

matrix with

∆ =

(
1 0

DYT 1

)
, Ψ =

(
σ2

ρ 0
0 σ2

P

)
.

With this simplification, we can combine the objective-prior for all of the parameters with

the likelihood function of the data, and obtain the posterior densities for Γ and ΣRR:

(36) vec(Γ)|ΣRR,DT ∼ N [vec(Γ̃), ΣRR ⊗ (X ′X + Υ)−1],

(37) ΣRR|DT ∼ IW [SR, T − 1],

where

(38) Γ̃ = (X ′X + Υ)−1(X ′R + ΥΓ0(µ
p
1)], SR = R′R− Γ̃′X ′XΓ̃,

DT denotes the data available at time T , and IW [·] denotes the inverted Wishart distribution.

With these results, it is easy to obtain the predictive distribution of the returns for our

objective-based prior as well as other functions of interest such as optimal portfolio weights.

IV. A Bayesian Comparison

In this section, we compare first the objective-based priors with their usual alternatives based

on the Bayesian criterion of equation (26) under the standard iid assumption. Then, based

on the same criterion, we examine the performances under the various priors when the asset

returns are assumed predictable.

The data are monthly returns of the well-known Fama-French 25 size and book-to-market

portfolios and their three factors (the market, size and value factors) from January 1965 to

December 2004 plus ten years of earlier data for forming the data-based priors.9

9We are grateful to Ken French for making this data available on his website.
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A. CERs under Various Priors

Panel A of Table 1 reports the CERs of switching from the diffuse prior to the objective-

based one in the case in which the sum of the weights is 100%, i.e., w0 = 1N/N . When

we apply the priors to five years of monthly data (T = 60), the CERs are overwhelmingly

large (the reason behind this is analyzed below in detail). They range from an annual rate

of 22.66% to 125.47%. However, the greater the σρ, the smaller the gains. This is because

a greater value of σρ moves the objective-based prior closer to the diffuse one. In the case

in which the sum of the weights is 50%, the results are quite similar. For example, the first

entry of 125.47 in Table 1 would become 123.93. We omit those results for brevity.

As the sample size grows, the influence of the priors decreases. This is not surprising

because both the posterior and the predictive distributions are completely determined by

the data when the sample size is infinity, regardless of the priors. However, with a sample

size as large as T = 480, Panel A of Table 1 shows that the CERs can still be substantial.

At σρ = 1%, the CER is greater than 8%, although it eventually decreases to an insignificant

amount of 0.04% at σρ = 5%. Overall, it is clear that the objective-based prior, when

compared with the diffuse one, makes a significant difference in portfolio selections.

Now, to understand the large CERs, we want to assess the differences in priors on the

implied optimal portfolio weights. Let w = (w1, . . . , wN)′ be a portfolio weights. We denote

Cstd the cross-section standard deviation,

(39) Cstd =
1

N

N∑
i=1

(wi − w̄)2,

where w̄ is the cross-section mean. It is clear that Cstd measures the relative holdings

across assets. If it is too large, the portfolio weights are obviously unreasonable. Under

the objective-based prior, the prior mean of Cstd is straightforward to compute based on

random draws of µ and V from their prior distributions. Under the diffuse prior, however,

because of its singularity, its properties can only be examined by using an approximation.

We use a normal approximation on µ,

(40) µ ∼ N

[
1

N
1N , λIN

]
,
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where λ is set at 100% to ensure diffuseness. The mean 1N/N is immaterial. Note that one

key feature of the diffuse prior is that µ and V are independent. The diffuse prior on V is

approximated by an inverted Wishart distribution

(41) V −1 ∼ W
[
H−1, ν

]
,

with degrees of freedom ν = 50, so that the prior contains only information in a small

sample of 50 observations. By the properties of the inverted Wishart distribution, the prior

expectation of V equals H/(ν − N − 1). We specify H = (ν − N − 1)V̂50/ŝ
2
50, so that

E(V ) = V̂50/ŝ
2
50. The value of ŝ2

50 is set equal to the average of the diagonal elements of

the sample covariance matrix V̂50. Based on priors (40) and (41), we can make M = 10, 000

draws of µ and V easily, and then use them to determine the prior mean of Cstd.

The first row of Panel B of Table 1 reports the prior means of Cstd. The last entry,

457215.43, is incredibly large, which is the prior mean of the Cstd implied by the diffuse

prior. Clearly that the seemingly diffuse prior on µ and V implies too much cross-section

variation in asset positions. In contrast, the prior means of the Cstd implied by the objective-

based prior with varying σρ are much smaller. For instance, the first entry, 45.46, implied

by the objective-based prior with σρ = 1%, though still large, is much smaller and more

reasonable.

It is of interest to see how the prior means of Cstds are updated by the data as more

and more data are used, similar to Kandel, McCulloch, and Stambaugh (1995), Lamoureux

and Zhou (1996) and Cremers (2006) in analyzing their functions of interest. Since µ and

V can be readily drawn from their posterior distributions, the posterior means of Cstds are

easy to compute. As shown by the rest rows of Panel B, the posterior means are updated

quickly. With a sample size T = 60, the posterior means become much smaller than their

priors. However, the posterior mean based on the diffuse prior is still large compared with

those based on the objective prior with small σρ’s, despite its sharp decrease relative to the

prior mean. As the sample size increases, the posterior means decrease further. In addition,

the relative differences among them decrease as well when the sample size increases as shown

more clearly in Panel C using the Ratios detailed below.

An alternative way of assessing the difference of a pair of prior means or a pair of posterior
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means of Cstds under the two priors, namely, the diffuse prior and the objective prior with

a given σρ, is to examine the ratio between them, denoted as Ratio in Panel C of Table 1.

The first row of Panel C reports the ratio of implied prior means of Cstds. With σρ = 1%,

the prior means of 457215.43 and 45.46 under the two priors implies a Ratio of 10058.39,

incredibly large, indicating the sharp difference between the two priors. With σρ = 5%, the

objective-based prior becomes closer to the diffuse one, and the Ratio decreases to 1978.57,

still a huge value. When updated by some data, such as with a sample size T = 60, as implied

by the earlier comparison in prior and posterior means, the Ratios become much smaller,

indicating smaller differences in their portfolio implications. As the sample size increases, the

updated Ratios become even smaller, confirming the earlier increasingly smaller differences

in the CERs. In the limit, since the implied optimal portfolio weights should converge under

either type of priors, the posterior means of Cstds should become identical and the Ratios

should approach one.

Consider now the case in which some of the data, those ten years prior to the estimation

window, are used to form informative priors. In this case, the data-based prior, equation

(22), plays the role of the earlier diffuse prior, while the corresponding objective-based prior

is given by equation (23), which is updated from the previous (no data) prior, equation (21),

by the same ten years data. For simplicity, we set σµ = σρ in the comparison. Panel A

of Table 2 provides the results. The CERs of switching from the data-based prior to the

objective-based one are substantial when T ≤ 180 or σµ ≤ 2%. As in the diffuse prior

case in Table 1, the CERs in Table 2 are a decreasing function of σρ. However, unlike the

diffuse prior case, they are not necessarily smaller as T increases. For example, quite a few

of the CERs when T = 480 are even greater than those with fewer samples. There are two

explanations for this. First, in a given application, the entire sample is only one path of

all possible realizations of the random asset returns. Since the Bayesian criterion is path

dependent, the associated expected utilities will not necessarily be a monotonic function of

the sample size.10 Second, even if they were, their differences, the CERs, may not necessarily

be so.

10For the loss function criterion to be discussed in Section V, the monotonicity holds because all the sample
paths are integrated out.
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For the same reason as before, the CERs are driven by the prior differences in the optimal

portfolio weights. As reported in Panel B of Table 2, the Ratios are quite large.11 However, in

contrast to the diffuse prior case, they are generally much smaller. This is expected since the

data-based prior already uses part of the data in the prior to reduce its uninformativeness.

Qualitatively, though, the results are similar to the earlier case that they are almost always

larger than one, and become smaller, and are approaching one as the sample size becomes

larger.

Finally, consider the performances of the objective-based prior in comparison to those

based on asset pricing models. With xt as the Fama-French three-factors, the degree of

belief on the validity of the Fama-French three-factor model is represented by the alpha

prior, equation (11). For simplicity, we assume σα = σρ in the comparison. Panel A of

Table 3 provides the results. Similar to the data-based prior case in Table 2, the CERs

are economically significant for T ≤ 240 when σρ ≤ 2%. However, they are small when

T ≥ 360 and σρ ≥ 3%. The Ratios, reported in Panel B of Table 3, explain why there are

substantially large CERs, and they also suggest that the objective-based prior implies smaller

cross-section variation on the optimal portfolio weights than the asset pricing model-based

priors. However, the Ratios do not converge to one even when σρ = 5% and T = 480. An

intuitive explanation is that the validity of asset pricing theory is fundamentally different

from the other priors, and, therefore, it requires much more data to make the Ratios to

converge.

In summary, the economic objective of maximizing a utility function provides useful guid-

ance for choosing priors in Bayesian decision making. Under the Bayesian CER measure,

we find that such objective-based priors can make significant differences in portfolio per-

formances compared with both the standard statistical and the asset-pricing-theory-based

priors. Even with the sample size as large as T = 480, there are still cases where the CERs

are economically significant.

11For brevity, we omit results similar to Panel B of Table 1 because there are now five cases (of the
data-based priors) instead of one case (of the diffuse prior) in Table 1.
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B. CERs under Predictability

Consider now what happens to the performances under the various priors when the returns

are assumed predictable. For interest of comparison, we allow σP , the degree of uncertainty

about predictability, to take two values, infinity and 50%. When σP = ∞, the investor

imposes a no-predictability prior. This is an extreme case, whereas σP = 50% may be

more reasonable. Table 4 provides the results for σP = ∞ and 50%, respectively. In both

cases, the CERs are substantial and more pronounced than in Table 1. For example, with

σρ = 1%, the gains are 198.32% and 74.72% compared with 125.47% and 8.70% of the iid

case, when T = 60 and 480, respectively. Like the iid case, the CERs decrease as either σρ

or T increases. Overall, the presence of predictability does not weaken the earlier results,

but strengthens them.

V. Out-of-sample Performance

The Bayesian evaluation on the performances of the various priors presented thus far is

conditional on the data at hand. The comparison does not speak to the performances of

the implied portfolio rules for all possible data sets, which a classical statistician may prefer

to see. In this section, based on an out-of-sample criterion, we compare the Bayesian rules

among themselves, and also compare them with some of the classical rules studies by Kan

and Zhou (2007).

The new comparison is of interest because the Bayesian CER measure provides only the

“certainty-equivalent” return difference had one switched from one prior to another, and

does not say that one prior is better or worse than another. The measure is always positive

or zero by definition. As long as two priors (good or bad) are significantly different from

each other, the measure will be large and positive. To take a stand, following the statistical

decision literature (see, e.g., Lehmann and Casella (1998)), we use a loss function approach

below to distinguish the outcomes of using various priors. The prior that generates the

minimum loss is viewed as the best prior.

Any estimated portfolio strategy is a function of the data. Let w∗ and w̃ be the true
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and estimated optimal portfolios, respectively. The expected utility loss from using w̃ rather

than w∗ is

(42) ρ(w∗, w̃|µ, Σ) ≡ U(w∗)− E[U(w̃)|µ, Σ],

where the first term on the right hand side is the true expected utility with the use of the

true optimal portfolio. Hence, ρ(w∗, w̃|µ, Σ) is the utility loss if one plays infinite times of

the investment game with the estimated rule, whether estimated by a Bayesian approach

or a non-Bayesian one. According to this criterion, the difference in the expected utilities

between any two estimated rules, w̃1 and w̃2, should be

(43) Gain = E[U(w̃1)|µ, Σ]− E[U(w̃2)|µ, Σ].

This is an objective utility gain (loss) of using portfolio strategy w̃1 versus w̃2 (if using w̃2

instead), which is an out-of-sample measure since its value is independent of any single set

of observation. If it is 2%, it means that the use of w̃1 instead of w̃2 will yield a 2% gain in

the expected utility. In this case, if w̃1 is obtained under prior 1 and w̃2 is obtained under

prior 2, we would say that prior 1 is better than prior 2. This is a criterion widely used in

the classical statistics to evaluate two estimators.12

The expected utilities associated with most of the Bayesian portfolio rules are difficult

to obtain analytically, but can be computed numerically via simulation. To be realistic, we

set the true parameter values of the model as the sample mean and covariance matrix of the

Fama and French data used in Section IV. Then, we can simulate a large number of data

sets from the assumed normal distribution of asset returns. For any one draw of the data

set with a sample size T , we conduct a Bayesian analysis for all the Bayesian rules under

various priors. Each of the rules provides its estimated optimal portfolio weights. Based

on the weights, the expected utility can be computed under the true parameters. Then,

the average over all the draws, 10,000 of them, is the expected utility or the out-of-sample

performance of the rule, i.e., E[U(w̃)|µ, Σ]. Kan and Zhou (2007) and references therein

12The weakness of this criterion is that the gain depends on the true parameters. It is difficult to analyti-
cally prove that one rule is dominated by another for all possible parameter values or for a set of parameter
values of interest. Numerically, we can only claim that one rule is better or worse than another for the
parameter values under consideration.
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solve this analytically for some of the popular classical rules. In our comparison below with

some classical rules, we use the analytical results whenever available.

Table 5 reports the out-of-sample utility gains if an investor switches from the diffuse

prior to the objective-based one. With the sample size varying from 60 to 480, it is seen

that the objective-based prior outperforms consistently. When T = 60, regardless of σρ, the

gains are much greater than other cases when T ≥ 120, suggesting very poor performance of

the diffuse prior with a small sample size. However, as the sample size increases, the gains,

though economically significant, decrease substantially. Nevertheless, even when the sample

size is as large as T = 480, the gains can still be greater than 3.5%, certainly of significant

economic importance. For the same reason as discussed earlier about the large CERs, the

large gains here are also due to the fact that the diffuse prior implies an unreasonable prior

on the optimal portfolio weights.

When ten years of monthly data are used to form the priors, Table 6 provides the utility

gains of switching from the data-based prior to the objective-based one. Qualitatively, we

reach a similar conclusion as for Table 5. When T ≤ 180, the gains range 2.04% to 98.58%.

These values are clearly economically significant, but smaller than the diffuse prior case in

Table 5. This simply states that the data-based prior provides useful information to portfolio

selection, and so it does better than the diffuse prior and has smaller utility differences

with the objective-based prior. Moreover, when T = 480, some of the gains are no longer

economically significant, suggesting that the sample size now becomes large enough to make

the data-based prior to perform as well as the objective-based one.

When the objective-based prior is compared with the asset pricing model-based prior

derived from the Fama-French three-factor model, Table 7 provides the results. This prior,

like others, underperforms the objective-based prior substantially. However, in comparison

with the cases reported earlier in Tables 5 and 6, the asset pricing model-based prior does

better than the diffuse one when σρ is small, but worse than the data-based one. Since the

three-factor model is not the true data-generating process, it provides less useful information

than the data-based one. On the other hand, since the three-factor model is still not a bad

approximation for the data, it is more useful than the diffuse prior. Overall, we find that the

objective-based prior has superior performance, and provides a better decision rule than all

22



other priors as judged by the loss function criterion, a widely used approach in the statistical

decision literature.

Finally, we compare the Bayesian objective-based prior rule with the classical rules stud-

ied by Kan and Zhou (2007). For brevity, we analyze three of them here. The first is the

maximum likelihood (ML) estimator of the optimal portfolio weights, a popular rule in prac-

tice. The other two are the shrinkage rule of Jorion (1986) and the three-fund rule of Kan

and Zhou (2007), which are the better performing rules among those compared in Kan and

Zhou (2007). Table 8 reports the expected utilities for each of the rules. As is well-known,

the ML rule performs poorly when the sample is small, say less than 240. Its performance

becomes comparable with others only when the sample size is as large as 480. The shrinkage

and the three-fund rules are designed to improve upon the ML, and are optimal in certain

metrics, and hence it is no surprise that they do much better than the ML rule. However,

they depend on a set of estimated parameters that makes their performances still worse than

the rule implied by the objective-based prior when T ≤ 120. But, when T ≥ 240, they have

comparable performances with the latter.

The last column of Table 8 reports yet another comparison with the constant 1/N rule.

DeMiguel, Garlappi, and Uppal (2007) show that it is difficult for the investment strategies

developed thus far to outperform the 1/N , and they conclude that “there are still many

‘miles to go’ before the gains promised by optimal portfolio choice can actually be realized

out of sample.” The results in Table 8 show that the Bayesian objective-based prior rule

outperforms not only the three classical rules, but also the 1/N rule consistently across all

sample sizes from T = 60 to T = 480.

Overall, the proposed objective-based prior rule performs impressively against both other

Bayesian rules and the classical rules. The results highlight the importance for investors to

base their priors on the solution to an economic optimization problem. In our study here,

the objective-based prior essentially says that our starting point is a simple approximate

solution that diversifies our investments across assets, which imposes suitable constraints on

model parameters. Then, we let the data update our prior toward the true but unknown

optimal portfolio. Because the prior contains useful information on the whereabouts of the

true solution (relative to other priors), it turns out to be very valuable.
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VI. Assessing the Importance of Anomalies

In this section, we apply our Bayesian framework to study the importance of Fama and

French’s (1993) book-to-market portfolio when treated as an anomaly to the CAPM. Since

our prior starts from portfolio weights, it is well suited for examining the question of whether

or not a given subset of assets is important in the investment decision. In particular, the

framework can be used to analyze international diversification and asset pricing anomalies.

We focus on anomalies in this paper.

Following Pástor (2000), we assume that the anomalies can be transformed into investable

assets, and then examine whether including them offers any significant CERs in an asset

allocation problem. For simplicity, we consider the case of a single anomaly and assume that

the last return, RNt, is the return associated with the anomaly. If an investor is absolutely

skeptical about the anomaly, he could assign a zero weight to RNt. While this view is difficult

to express by using either the diffuse or the asset pricing theory prior, it fits well into our

proposed framework. Let w1, (N − 1)× 1, be his prior portfolio weights on the other assets.

The earlier prior,

(44) µ ∼ N

[
γV wa, σ

2
ρ

(
1

s2
V

)]
,

then represents the prior centered upon the belief wa = (w′
1, 0)′. If the investor is dogmatic

about his belief, he will then choose his optimal portfolio based on the N − 1 assets only,

and not invest in the anomaly asset at all. The associated optimal portfolio weights for the

(N − 1) assets are easily computed based on the predictive moments of those N − 1 assets,

with the weight on RNt being set at zero. In other words, the investor updates only the first

N − 1 component of wa in light of the data, but does not update his prior weight on the

anomaly. Let EUa be the expected utility associated with this optimal portfolio weight.

Consider now an alternative investment strategy, in which the investor updates wa as

usual, based on the predictive moments of all the N risky assets, despite his prior on RNt

being set at zero. Let EUb be the expected utility with this updated portfolio. Then

the difference between EUb and EUa provides the CERs of utilizing the anomaly. This is

because, although both EUa and EUb are computed under the same skeptical prior, EUb

allows investing in RNt, while EUa does not.
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While the skeptical prior is reasonable for someone who casts a strong doubt on the

anomaly, it does not necessarily reflect well the belief of someone else who is open to investing

in the anomaly asset even before looking at the data. This means that one may compute EUb

under a more balanced prior. The obvious candidate is the prior that assigns equal weights

to all the risky assets. We denote the associated expected utility by EUc. Then, another

measure for the impact of utilizing the anomaly is to compare EUa with EUc. Intuitively,

the difference between EUc and EUa should usually be greater than that between EUb and

EUa. This is because EUc and EUb are computed in the same way except that the former is

using a generally better prior than the latter. However, as shown by later applications, the

difference between EUb and EUc are in fact small. Hence, either EUb −EUa or EUc −EUa

will provide a fairly robust measure for the impact of utilizing the anomaly.

Fama and French’s (1993) book-to-market portfolio, HML (high minus low), is a well-

known anomaly relative to the CAPM. Zhang (2005) explores, among others, some of the

theoretical reasons. Here we, following Pástor (2000), examine the economic importance of

the HML portfolio based on the approach outlined in Section II. In this case, we have N = 2

since the market index and HML are the only risky assets.

Table 9 reports the CERs, EUb−EUa, in which EUa is computed by ignoring the anomaly

completely under the skeptical prior. It is seen that, as long as the prior precision is not

too tight, with σρ ≥ 2%, the gains are over 3.72% across sample sizes. The reason that the

CERs are getting greater as σρ increases is that the prior avoids investing in the HML, and

this skeptical prior can be mitigated by a larger value of σρ. As in the previous section, the

risk exposure, either
∑

w0i = 0.5 or 1, has little to do with the CERs and we report only

the results for the latter case. Overall, the results suggest strongly that the HML portfolio

is of great economic significance that makes substantial differences in the asset allocation

problem.

Intuitively, an investor who avoids investing entirely in the anomaly under the skeptical

prior should do even worse than the one who invests in the anomaly under a more balanced

prior that assigns an equal weight to both the market and HML. This is indeed the case,

as shown by Table 10. However, the additional impacts are small. Table 11 makes it more

apparent. The CERs or the utility differences between the skeptical prior and the balanced
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one are less than 1% except in three scenarios, and are less than 0.46% whenever σρ ≥ 3%.

The results say that even when one starts from such a strong prior that one avoids investing

in the HML asset entirely, the impact is less than one would expect. In summary, what

drives the CERs here is not the priors about whether or not to invest in the anomaly, but

rather whether or not to invest in the anomaly asset at all.

VII. Conclusion

This paper explores the link between Bayesian priors and economic objective functions.

Once incorporating the economic objectives into priors to estimate unknown parameters,

we find that the performance impacts are economically substantial in a standard portfolio

allocation problem, whether the stock returns are predictable or not. Moreover, we find

that the objective-based priors offer the superior performance not only when we judge them

by using an in-sample Bayesian criterion, but also by using an out-of-sample loss function

criterion. In addition, while the shrinkage rule of Jorion (1986) and the three-fund rule of

Kan and Zhou (2007) are excellent rules in the classical framework, we find that the Bayesian

rule under the objective-based priors can outperform them substantially, suggesting there

is real value in using a prior based on the economic objective at hand. We also apply the

methodology to examine asset pricing anomalies, and find that Fama and French’s (1993)

BM (book-to-market) and HML (high minus low) portfolio factors can make substantial

differences in an investor’s portfolio decision.

Although our study focuses on a portfolio choice problem, the methodology suggests that

economic objective-based priors can be explored in almost any financial decision-making

problems with parameter uncertainty. In particular, in cases where a Bayesian framework

is deemed as appropriate, it is highly likely that the decision maker will have some ideas

or a broad range about the optimal solution to a given economic objective even without

processing any data for formal Bayesian inference. The point of our paper is that this broad

range can be used to form objective-based priors that provide information on the plausible

values of model parameters so as to help maximize the objective at hand.
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Appendix

Proof of equation (18). Recall that the investor’s objective is to maximize his expected

utility. If µd and µ0 imply weights of wd and w0, respectively, then the utility loss caused by

the deviation of wd from w0 is

U(wd|µ0)− U(w0|µ0)

=
∂U

∂w′ [w0|µ0][wd − w0] +
1

2
[wd − w0]

′ ∂2U

∂w∂w′ [w0|µ0][wd − w0]

+
1

6

N∑
i=1

N∑
j=1

N∑

k=1

∂3U

∂wi∂wj∂wk

[w0|µ0][wdi − w0i][wdj − w0j][wdk − w0k] + · · · .

(A-1)

Ignoring the higher order terms and using the first order condition ∂U
∂w′ [w0|µ0] = 0, we have

U(wd|µ0)− U(w0|µ0) ≈ 1

2
[wd − w0]

′ ∂2U

∂w∂w′ [w0|µ0][wd − w0].(A-2)

Standard calculus implies

[wd − w0] ≈
{

∂2U

∂w∂w′ [w0|µ0]

}−1 {
∂U

∂w
[wd|µ0]− ∂U

∂w
[w0|µ0]

}
,(A-3)

and
{

∂U

∂w
[wd|µ0]− ∂U

∂w
[w0|µ0]

}
≈

{
∂2U

∂w∂µ′
[w0|µ0]

}
[µd − µ0].(A-4)

Therefore, we have (18), which says that the utility loss is approximately equal to the

weighted average of the deviation of µd from µ0, with the weighting matrix determined by

the utility function.

In the case of mean-variance utility, the approximation holds exactly, and it is also easy

to verify that

(A-5)

{
∂2U

∂w∂µ′
[w0|µ0]

}
= IN ,

(A-6)

{
∂2U

∂w∂w′ [w0|µ0]

}
= −γV,

where V is the covariance matrix of the asset returns. Therefore, in the mean-variance case,

Ω = γV . Q.E.D.
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Pástor, L̆., and R. F. Stambaugh. “Predictive Systems: Living with Imperfect Predictors.”

Journal of Finance, forthcoming (2009).

30
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TABLE 1

CERs and Cstds of Switching from Diffuse to Objective-based Priors

Panel A of the table reports the (annualized) “certainty-equivalent” returns (CERs) of switching

from the standard diffuse prior,

p0(µ, V ) ∝ |V |−N+1
2

to the objective-based prior

p0(µ, V ) ∝ N

[
γV/N, σ2

ρ

(
1
s2

V

)]
× |V |−N+1

2 ,

where s2 is the average of the diagonal elements of V , γ is the risk aversion coefficient set to be 3

and σ2
ρ reflects the degree of uncertainty about µ. The data are Fama-French 25 size and book-to-

market portfolios and their three factors from January 1965 to December 2004, and T is the sample

size starting from January 1965. Panel B reports the prior and posterior means of the cross-section

standard deviations (Cstds) of the optimal portfolio weights implied by the two priors. Panel C

reports the Ratios of prior or posterior means of the Cstds implied by the two priors.

T σρ
1% 2% 3% 4% 5% ∞

Panel A: CERs

60 125.47 91.36 59.18 36.68 22.66
120 75.57 31.20 12.33 5.33 2.57
180 52.54 14.39 4.45 1.71 0.77
240 38.00 8.27 2.33 0.84 0.37
360 15.28 2.54 0.65 0.22 0.10
480 8.70 1.24 0.30 0.10 0.04

Panel B: Prior and Posterior Means

Prior 45.46 89.81 137.43 185.74 231.08 457215.43
60 1.19 2.61 4.07 5.43 6.48 10.56
120 0.95 1.85 2.57 3.02 3.31 4.10
180 0.83 1.55 2.05 2.31 2.46 2.86
240 0.82 1.44 1.82 2.00 2.11 2.35
360 0.78 1.25 1.49 1.59 1.64 1.76
480 0.75 1.15 1.32 1.39 1.43 1.51

(To be continued)



TABLE 1 (Continued)

T σρ
1% 2% 3% 4% 5% ∞

Panel C: Ratios
Prior 10058.39 5090.72 3326.79 2461.60 1978.57
60 8.87 4.04 2.59 1.95 1.63
120 4.32 2.22 1.59 1.36 1.24
180 3.43 1.84 1.39 1.24 1.16
240 2.87 1.63 1.29 1.17 1.11
360 2.25 1.40 1.18 1.11 1.07
480 2.00 1.31 1.14 1.08 1.05



TABLE 2

CERs and Cstds of Switching from Data-based to Objective-based Priors

Panel A of the table reports the (annualized) “certainty-equivalent” returns (CERs) of switching

from the data-based prior

p0(µ, V ) ∝ N

[
µ̂10, σ

2
ρ

(
1

ŝ2
10

V̂10

)]
× |V |− νV +N+1

2 exp

{
−1

2
trHV −1

}
,

to the objective-based prior

p0(µ, V ) ∝ N

[
µ̂∗10, σ

2
ρ

(
1
s2

V

)]
× |V |− νV +N+1

2 exp

{
−1

2
trHV −1

}
,

where µ̂10 and V̂10 are the sample mean and covariance matrix of the prior ten years data, ŝ2
10 is

the average of the diagonal elements of V̂10, H = T10V̂10, νV = T10, T10 = 120, µ̂∗10 = γV ŵ10, ŵ10 is

the Bayesian optimal portfolio weights based on the prior ten years data, s2 is the average of the

diagonal elements of V ,the risk aversion coefficient γ is set to be 3, and σ2
ρ is a parameter reflecting

the degree of uncertainty about µ. The data are Fama-French 25 size and book-to-market portfolios

and their three factors from January 1965 to December 2004, and T is the sample size starting from

January 1965. Panel B reports the Ratios of prior or posterior means of the cross-section standard

deviations (Cstds) of the optimal portfolio weights implied by the two priors.

T σρ
1% 2% 3% 4% 5%

Panel A: CERs

60 53.17 29.57 17.89 12.15 8.66
120 42.72 43.70 31.16 19.41 12.19
180 33.88 14.20 7.49 4.12 2.37
240 17.02 4.25 1.60 0.71 0.36
360 6.37 1.92 0.75 0.34 0.17
480 42.85 8.72 2.37 0.95 0.46

Panel B: Ratios
Prior 14.63 6.61 4.32 3.40 2.97
60 5.68 3.34 2.60 2.22 2.01
120 2.79 1.61 1.40 1.35 1.33
180 2.11 1.37 1.29 1.26 1.25
240 1.71 1.25 1.21 1.20 1.20
360 1.48 1.17 1.15 1.14 1.15
480 0.75 0.89 1.00 1.06 1.06



TABLE 3

CERs and Cstds of Switching from Fama-French Three-factor Model-based to
Objective-based Priors

Panel A of the table reports the (annualized) “certainty-equivalent” returns (CERs) of switching

from the Fama-French three-factor model-based prior,

p0(α, V ) ∝ N(0, σ2
ρ

1
s2
Σ

Σ)× |V |−N+1
2 ,

to the objective-based prior

p0(µ, V ) ∝ N

[
γV/N, σ2

ρ

(
1
s2

V

)]
× |V |−N+1

2 ,

where α = µ1 − Bµ2, Σ = V11 − V12V
−1
22 V21, s2

Σ is the average of the diagonal elements of Σ, s2

is the average of the diagonal elements of V , γ is the risk aversion coefficient set to be 3 and σ2
ρ

reflects the degree of uncertainty about α or µ. The data are Fama-French 25 size and book-to-

market portfolios and their three factors from January 1965 to December 2004, and T is the sample

size starting from January 1965. Panel B reports the Ratios of prior and posterior means of the

cross-section standard deviations (Cstds) of the optimal portfolio weights implied by the two priors.

T σρ
1% 2% 3% 4% 5%

Panel A: CERs

60 83.19 118.94 123.68 113.31 101.47
120 40.26 38.64 25.49 17.92 13.82
180 32.65 18.51 9.83 6.41 4.85
240 27.68 11.30 5.43 3.39 2.52
360 13.92 3.83 1.65 0.99 0.74
480 8.16 1.81 0.72 0.41 0.30

Panel B: Ratios
Prior 7.45 8.05 8.71 9.03 9.57
60 4.76 3.57 2.62 2.13 1.80
120 6.19 4.24 3.23 2.84 2.61
180 6.55 4.26 3.32 2.96 2.79
240 6.07 3.89 3.19 2.90 2.78
360 4.73 3.18 2.71 2.54 2.49
480 3.82 2.62 2.28 2.21 2.14



TABLE 4

CERs of Switching from Predictability-diffuse to Objective-based Priors

The table reports the (annualized) “certainty-equivalent” returns (CERs) of switching from the

predictability-diffuse prior,

(A-7) p0(µ1) ∝ N

[
µ̂p

1, σ
2
P

(
1

s2
RR

ΣRR

)]
,

to the objective-based prior

(A-8) p0(µ0, µ1) ∝ p0(µ1)×N

[
γΣRR/N − µ1DYT , σ2

ρ

(
1

s2
RR

ΣRR

)]
,

where µ̂p
1 is the slope of the predictive regression rt = µ0 + µ1DYt−1 + vt, vt ∼ N(0,ΣRR), based

on previous ten years data, s2
RR is the average of the diagonal elements of ΣRR, σ2

P measures the

degree of uncertainty about predictability, DYT is the dividend yield at T , γ is the risk aversion

coefficient set to be 3, and σ2
ρ reflects the degree of uncertainty in the objective-based prior. The

data are Fama-French 25 size and book-to-market portfolios and their three factors from January

1965 to December 2004, and T is the sample size starting from January 1965.

T σρ
1% 2% 3% 4% 5%

σP = ∞
60 198.32 150.32 104.96 71.92 46.82

120 167.51 81.79 37.25 17.73 9.40

180 154.80 63.50 25.73 11.46 5.69

240 140.35 53.62 20.66 9.17 4.57

360 95.36 31.05 10.75 4.50 2.15

480 74.72 22.66 7.48 3.04 1.38

σP = 50%

60 345.84 256.91 174.46 114.55 73.40

120 157.79 76.50 34.60 16.34 8.65

180 122.65 45.33 17.25 7.36 3.55

240 99.50 33.45 11.82 5.08 2.48

360 100.61 31.55 10.74 4.42 2.14

480 59.16 16.59 5.23 2.10 0.93



TABLE 5

Out-of-sample Utility Gains of Switching from Diffuse to Objective-based
Priors

This table reports the out-of-sample utility gains of switching from a diffuse prior to objective-based

priors with data sets simulated from a multivariate normal distribution whose mean and covariance

matrix are calibrated from the monthly returns of the Fama-French 25 assets and the associated

three factors from January 1965 to December 2004. The number of simulated data sets is 1000.

The risk aversion coefficient γ is set to be 3.

T σρ

1% 2% 3% 4% 5%

60 186.06 185.77 168.78 143.39 118.11

120 43.21 45.25 35.28 25.77 18.89

180 19.55 22.07 15.79 10.84 7.65

240 10.54 13.16 8.92 5.97 4.13

360 3.97 6.25 3.99 2.57 1.75

480 1.56 3.55 2.20 1.39 0.96



TABLE 6

Out-of-sample Utility Gains of Switching from Data-based to Objective-based
Priors

This table reports the out-of-sample utility gains of switching from the data-based to the objective-

based priors with data sets simulated from a multivariate normal distribution whose mean and

covariance matrix are calibrated from the monthly returns of the Fama-French 25 assets and the

associated three factors from January 1965 to December 2004. The number of simulated data sets

is 1000. The risk aversion coefficient γ is set to be 3.

T σρ

1% 2% 3% 4% 5%

60 72.32 98.58 87.56 68.28 52.60

120 21.97 20.24 13.67 8.96 6.44

180 16.61 9.41 5.10 3.04 2.04

240 12.97 5.21 2.38 1.34 0.85

360 8.11 1.80 0.69 0.41 0.23

480 4.73 0.67 0.28 0.16 0.12



TABLE 7

Out-of-sample Utility Gains of Switching from Fama-French Three-factor
Model-based to Objective-based Priors

This table reports the out-of-sample utility gains of switching from the Fama-French three-factor

model-based priors to the objective-based priors with data sets simulated from a multivariate

normal distribution whose mean and covariance matrix are calibrated from the monthly returns of

the Fama-French 25 assets and the associated three factors from January 1965 to December 2004.

The number of simulated data sets is 1000. The risk aversion coefficient γ is set to be 3.

T σρ

1% 2% 3% 4% 5%

60 54.39 188.21 237.37 242.78 233.54

120 22.04 55.96 56.07 50.58 45.66

180 10.23 26.14 23.51 19.96 17.44

240 5.68 15.71 13.34 11.10 9.60

360 1.48 6.94 5.43 4.29 3.60

480 0.49 4.28 3.33 2.67 2.30



TABLE 8

Out-of-sample Utilities of Classical Rules and A Bayesian Rule

This table reports the out-of-sample expected utilities of the Bayesian rule under the objective-

based prior, the shrinkage rule of Jorion (1986), the three-fund rule of Kan and Zhou (2007), the

maximum likelihood rule (V̂ −1µ̂/γ), and the 1/N rule, with data sets simulated from a multivariate

normal distribution whose mean and covariance matrix are calibrated from the monthly returns of

the Fama-French 25 assets and the associated three factors from January 1965 to December 2004.

The number of simulated data sets is 1000. The risk aversion coefficient γ is set to be 3.

T Bayesian σρ Classical rules
1% 2% Jorion Kan-Zhou 1

γ V̂ −1µ̂ 1/N

60 9.50 9.21 -57.67 1.78 -932.13 4.19

120 17.46 19.50 7.17 16.03 -92.29 4.19

180 23.02 25.53 20.36 23.58 -19.76 4.19

240 27.20 29.82 27.02 28.58 4.99 4.19

360 32.67 34.95 33.79 34.36 24.06 4.19

480 36.22 38.22 37.63 37.89 32.22 4.19



TABLE 9

CERs of Utilizing Anomaly under A Skeptical Prior

Based on the market (MKT) and the high minus low book-market (HML) portfolios from January

1965 to December 2004, the table reports the (annualized) “certainty-equivalent” returns (CERs)

of switching from investing only in the MKT to investing in both the MKT and the HML asset

under the skeptical prior,

p0(µ, V ) ∝ N

[
γV w0, σ

2
ρ

(
1
s2

V

)]
× |V |−N+1

2 ,

where s2 is the average of the diagonal elements of V , γ is the risk aversion coefficient set to be

3, σ2
ρ reflects the degree of uncertainty about µ and w0 is set to be (1 0)′. T is the sample size

starting from January 1965.

T σρ

1% 2% 3% 4% 5%

60 0.54 3.72 7.72 10.72 12.76

120 1.32 5.18 7.73 9.06 9.88

180 1.97 5.26 6.73 7.35 7.72

240 2.70 6.03 7.27 7.80 8.07

360 4.78 8.60 9.73 10.22 10.47

480 4.55 7.20 8.00 8.27 8.42



TABLE 10

CERs of Utilizing Anomaly under A More Balanced Prior

Based on the market (MKT) and the high minus low book-market (HML) portfolios from January

1965 to December 2004, the table reports the (annualized) “certainty-equivalent” returns (CERs)

of switching from investing only in the MKT but not investing in the HML anomaly asset under

the skeptical prior

p0(µ, V ) ∝ N

[
γV wa, σ

2
ρ

(
1
s2

V

)]
× |V |−N+1

2 ,

to investing in both the MKT and the HML asset under a more balanced prior

p0(µ, V ) ∝ N

[
γV/2, σ2

ρ

(
1
s2

V

)]
× |V |−N+1

2 ,

where s2 is the average of the diagonal elements of V , γ is the risk aversion coefficient set to be 3,

σ2
ρ reflects the degree of uncertainty about µ and wa = (1 0)′. T is the sample size starting from

January 1965.

T σρ

1% 2% 3% 4% 5%

60 3.93 6.76 10.07 12.37 13.80

120 3.65 6.49 8.47 9.55 10.13

180 3.50 5.98 7.13 7.64 7.87

240 4.01 6.60 7.58 8.02 8.23

360 5.88 8.99 10.03 10.33 10.57

480 5.40 7.51 8.15 8.33 8.45



TABLE 11

CERs of Switching from A Skeptical Prior to A More Balanced Prior

Based on the market (MKT) and the high minus low book-market (HML) portfolios from January

1965 to December 2004, the table reports, while allowing to invest in both MKT and HML, the

(annualized) “certainty-equivalent” returns (CERs) of switching from a skeptical prior

p0(µ, V ) ∝ N

[
γV wa, σ

2
ρ

(
1
s2

V

)]
× |V |−N+1

2 ,

to a more balanced prior

p0(µ, V ) ∝ N

[
γV/2, σ2

ρ

(
1
s2

V

)]
× |V |−N+1

2 ,

where s2 is the average of the diagonal elements of V , γ is the risk aversion coefficient set to be 3,

σ2
ρ reflects the degree of uncertainty about µ and wa = (1 0)′. T is the sample size starting from

January 1965.

T σρ

1% 2% 3% 4% 5%

60 2.32 1.07 0.46 0.21 0.09

120 1.22 0.27 0.09 0.03 0.01

180 0.58 0.10 0.02 0.01 0.00

240 0.41 0.06 0.01 0.00 0.00

360 0.22 0.03 0.01 0.00 0.00

480 0.14 0.01 0.00 0.00 0.00
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