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Upper Bounds on Return Predictability

Abstract

This paper investigates whether the degree of predictability can be explained by existing

asset pricing models, and provides two theoretical upper bounds on the R-square of the

regression of stock returns on predictors for given classes of models of interest. Empirically,

we find that the predictive R-square is significantly larger than the upper bounds permitted

by well known asset pricing models. Our findings suggest new asset pricing models are

needed to have state variables highly correlated with stock returns.

JEL Classification: C22, C53, C58, G10, G12, G14, G17

Keywords: Return predictability, asset pricing, stochastic discount factor, habit formation,

long-run risks, rare disaster



1 Introduction

In the past four decades, financial economists and investors have found hundreds of economic

variables that can predict stock returns. Examples include the short-term interest rate

(Fama and Schwert, 1977; Breen, Glosten, and Jagannathan, 1989; Ang and Bekaert, 2007),

the dividend yield (Fama and French, 1988; Campbell and Yogo, 2006; Ang and Bekaert,

2007), the earnings-price ratio (Campbell and Shiller, 1988), term spreads (Campbell, 1987;

Fama and French, 1988), the book-to-market ratio (Kothari and Shanken, 1997), inflation

(Campbell and Vuolteenaho, 2004), corporate issuing activity (Baker and Wurgler, 2000), the

consumption-wealth ratio (Lettau and Ludvigson, 2001), stock volatility (French, Schwert,

and Stambaugh, 1987; Guo, 2006). The evidence on return predictability has led to the

development of new asset pricing models, such as the habit formation model (Campbell and

Cochrane 1999), the long-run risks model (Bansal and Yaron, 2004), and the rare disaster

model (Barro, 2006; Gabaix, 2012; Gourio, 2012; Wachter, 2013). While these models

allow for time-varying expected returns, it is unclear whether they can explain the degree of

predictability found in the data.

This paper provides two upper bounds on predictability given that a set of asset pricing

models are true, of which the above three models are special cases. Empirically, we find that

the bounds are violated, implying that the above three models plus asset pricing models of

the same state variables cannot explain the degree of predictability found in the data.

Our bounds are related to a few studies. Kirby (1998) is the first who relates the stochastic

discount factor (SDF) to the R2 of predictive regressions. However, to test whether a given

asset pricing model can explain the degree of predictability, he needs the full specification

of the SDF. In contrast, our bounds are non-parametric. They depend on only the state

variables of the model and the absence of arbitrage, the necessary condition for rational asset

pricing. Therefore, the bounds hold for all asset pricing models of the same state variables

and under the same no arbitrage conditions.

Ross (2005, 2014) is the pioneer of providing bounds on predictability. His bound is for

all asset pricing models under no arbitrage conditions. For example, Ross’s bound is about

5% for the monthly data we have. If a variable predicts the market with an R2 of 6%, then

the predictability cannot be explained by any rational asset pricing model according to Ross

(2005, 2014). In practice, however, no predictor with R2 greater than 5% has been uncovered
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yet. In fact, the best predictor to-date does not generate an R2 exceeding 2% with monthly

data (see, e.g., Rapach and Zhou (2013) for a recent survey of stock return predictability).

In this paper, we investigate Ross’s bound by restricting it to a smaller set of asset pricing

models, all of which are using the same state variables x, say the consumption growth. With

this restriction, we can improve the bound substantially. In other words, for the smaller set

of models, the bound can be much smaller than 5% for the monthly data, say it is 1%. Then,

if we find empirically that one predictor has an R2 of 2%, we can claim that all asset pricing

models with the same state variables x cannot explain the predictability. Interestingly, the

rejection of the models based on our bounds is constructive: it suggests that an asset pricing

model that uses state variables y ̸= x may explain the predictability as long as y have greater

correlation with the asset returns. This is because it is the correlation that drives the bounds.

The greater the correlation, the greater the bounds, and so the easier to be satisfied by the

data.

While the above bounds are developed in a frictionless market as typically done with

standard asset pricing models and other bounds such as the variance bounds of Hansen and

Jagannathan (1991) and Bakshi and Chabi-Yo (2012). Our paper also explores the role of

market frictions on the bounds. Following Nagel (2013), we augment the SDF with a factor

that captures different notions of transaction costs, such as the trading costs of Acharya

and Pedersen (2005), the funding liquidity of Brunnermeier and Petersen (2009), or the

leverage constraint of Adrian, Etula and Muir (2013). When the liquidity factor of Pátor

and Stambaugh (2003) and the leverage factor of Adrian, Etula and Muir (2013) are used as

proxies for transaction costs, the proposed bounds implied by some of the well known asset

models become larger as they should, but they are still less than the predictive R2s found

in the data. Hence, accounting for transaction cost or market friction still cannot help the

aforementioned three major models to explain return predictability.

The rest of the paper is organized as follows. Section 2 provides two upper bounds on

the predictive R2 based the maximum risk aversion or the market Sharpe ratio. Section

3 presents the data and econometric method. Section 4 reports the empirical results for

common predictors and some of the well known asset pricing models. Section 5 concludes.
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2 Bounds

In this section, we show that the stochastic discount factor (SDF) of a rational asset pric-

ing model imposes a constraint on the predictive regression, suggesting that the predictive

R2 cannot be arbitrarily large. An asset pricing model can potentially explain return pre-

dictability if it can pass this necessary bound condition.

2.1 Return predictability

Predictive regression is widely used in the study of return predictability,

rt+1 = α+ βzt + εt+1, (1)

where zt is a predictive variable known at the end of period t. The degree of predictability

is measured by the regression R2,

R2 =
Var(α + βzt)

Var(rt+1)
. (2)

When R2 > 0, rt+1 can be forecasted by zt. Otherwise, zt is not a predictor of rt+1. Harvey,

Liu and Zhu (2013) provide the references of hundreds of predictors.

2.2 Bound on R2

An important question is what an asset pricing theory tells us about degree of predictability

is possible. Intuitively, the degree of predictability cannot be close to 1. If so, the risky asset

is too predictable and one can easily arbitrage between this asset and the riskfree asset.

Indeed, the R2 allowed by asset pricing models is much smaller than 1 for monthly data.

An asset pricing model typically implies, as shown in Cochrane (2005), that the price of

any asset is uniquely determined by a Euler equation, and hence its return must satisfy

E[m(xt+1)rt+1|It] = 0, (3)

where m(xt+1) is the stochastic discount factor (SDF) with state variables xt+1, rt+1 is the
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return on the asset in excess of the riskfree rate.

While Kirby (1998) is the first to link R2 to a given SDF m(xt+1), Ross (2005, 2014)

is the first to provide an upper bound on R2. Our result below improves Ross’s bound

substantially.

Proposition 1 Let γ be the maximum risk aversion of the investors. If the K-dimensional

state variables xt+1 satisfy certain distributional assumptions, such as normal distribution,

then,

R2 ≤ R̄2
RA = ϕ2

x,rzγ
2σ2(rmkt). (4)

where rmkt is the return of market portfolio, µz is the unconditional mean of zt,

ϕ2
x,rz = ρ2x,rz

Var[rt+1(zt − µz)]

Var(rt+1)Var(zt)
, (5)

and

ρ2x,rz =
Cov[xt+1, rt+1(zt − µz)]

′Var−1(xt+1)Cov[xt+1, rt+1(zt − µz)]

Var[rt+1(zt − µz)]
. (6)

Proof. See Appendix A.1.

Proposition 1 provides a benchmark to evaluate whether an asset pricing model can

explain the degree of predictability found in the data. If an asset pricing model generates an

upper bound of 5%, larger than an R2 = 3% from the data, then the model can potentially

explain the degree of predictability. However, if the data yield an R2 of 6%, it will be

impossible for the model to explain the predictability. As the bound is free of the functional

form of m(·), so all asset pricing models with the same state variables x cannot explain the

predictability. A research needs to search new state variables to build a model to explain

the time-varying expected returns of the asset.

There are three terms in the bound (4). The first term can be broken down further

into two terms as (5). The first term is the key as the second term of (5) is a standardized

variance. Since zt is in the time t information set, rt+1(zt − µz) can be interpreted as a

position of zt −µz units of investment in rt+1. Therefore, (6), the first term of (5), measures

4



the correlation between the asset return and the state variables.1 If the state variables have

zero multiple correlation with the asset return, the SDF m(xt+1) will be uncorrelated with

the asset return, so it will not price the asset properly and cannot explain the predictability

either.

The second term of the bound is the variance of the market portfolio which is easily

estimated and computed in practice. The last term of the bound, γ, is known to be below

10, as argued by Mehra and Prescott (1985). Ross (2005) uses the insurance premium to

explain that a value of 5 is large enough. Barro and Ursúa (2012) suggest that “a γ [risk

aversion] of 6 seems implausibly high.” Empirically, Guiso, Sapienza and Zingales (2011)

find that the average risk aversion increases from 2.85 before the 2008 crisis to 3.27 after the

collapse of the financial market. Paravisini, Rappoport and Ravina (2012) estimate the risk

aversion from investors’ financial decisions and find that the average risk aversion is 2.85

with a median of 1.62. We follow Ross (2005) in our empirical applications later by setting

the maximum risk aversion to be 5.

It is worth emphasizing that (4) depends on only the state variables of the model and the

absence of arbitrage. It is hence a non-parametric bound, depending neither on parameters

of the model nor functional form of m(·). What matters only is the state variables. For ex-

ample, although Basan and Yaron (2004) and Basal, Kiku and Yaron (2012) assume different

persistence in the consumption volatility, Proposition 1 treats them as the same one since

the two models share the same state variables. As a consequence of being non-parametric or

independent of m(·), we no longer worry about how to estimate some complex parameters

of a model to apply the bound test. For example, the SDF with the habit formation model

is

mt+1 = δ

(
St+1

St

Ct+1

Ct

)−A

, (7)

where St is the surplus consumption ratio. Even if we do not know A, we can apply the

bound test as long as we know the state variables x = (log(St+1

St
), log(Ct+1

Ct
))′. The functional

form of (7) is unnecessary either.

1zt may be replaced by any function f(zt). It is an open and technically complex question whether the
function f(zt) that maximizes the predictability will also optimize the bound.
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Our bound (4) is a substantial improvement over the bound of Ross (2005),

R2 ≤ R̄2
Ross = γ2σ2(rmkt). (8)

This improvement is made possible because we have exploited the information of xt+1 in

mt+1. Comparing (4) with (8), we have improved the bound by introducing the term ϕ2
x,rz,

which measures the squared correlation between x and the asset return. In applications,

ϕ2
x,rz is often less than 10%. This implies that we improve the bound 10 times or more.

Zhou (2010), based on Kan and Zhou (2007), provides the following upper bound

R2 ≤ ρ2x,m0
γ2σ2(rmkt), (9)

where m0 is the minimum variance SDF in Hansen and Jagannation (1991) and ρx,m0 is

the multiple correlation between the state variable x and m0. While there is no analytical

relation between ϕ2
x,rz and ρ2x,m0

, our empirical applications later reveal that ϕ2
x,rz is almost

always smaller than ρ2x,m0
, and often much smaller. Hence, our bound here is generally much

tighter.

Instead of using maximum risk aversion, the predictive R2 can alternatively be bounded

above by the market Sharpe ratio. Ross (1976) shows that the market Sharpe ratio is closely

related to the volatility of SDF, which implies that extremely high Sharpe ratios are unlikely

to persist. With this insights, Cochrane and Saá-Requejo (2000) use the market Sharpe ratio

to bound option prices when there are either market frictions or non-market risks. In short,

if there is no arbitrage, the volatility of any SDF must satisfy the following constraint,

Std(mt+1) ≤ h · SR(rmkt), (10)

where h is a parameter chosen by the marginal investor and SR(rmkt) is the market Sharpe

ratio. Cochrane and Saá-Requejo (2000) suggest the choice of h = 2 to rule out “good deals”

(arbitrage opportunities), which is also the choice in our applications later.

In terms of the market Sharpe ratio, SR2(rmkt), we have

Proposition 2 Under the same distributional assumption of Proposition 1 and (10), the
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predictive R2 is bounded above,

R2 ≤ R̄2
SR = ϕ2

x,rz · h2 · SR2(rmkt). (11)

Proof. See Appendix A.2.

The bound (11) is very similar to the earlier one. It is also non-parametric and easy

to compute. From an economic perspective, a given maximum risk aversion γ should have

close relation to h that ensures the absence of arbitrage. As a result, the bounds with the

choice of γ = 5 and h = 2 are numerically close in applications. One may apply one or both

depending on one’s preference on choosing γ or h or both.

It is worth noting that the bounds have an interesting implication on cross-sectional

return predictability. In the finance literature, a large number of studies find that return

predictability exists and varies over portfolios sorted by market capitalization (Ferson and

Harvey, 1991; Kirby, 1998), book-to-market ratio (Ferson and Harvey, 1991), industry (Fer-

son and Harvey, 1991), and volatility (Han, Yang and Zhou, 2013). Propositions 1 and 2

suggest that the maximum predictability of the portfolios is likely determined by their cor-

relations with the state variables in the SDF. An asset is allowed to be more predictable if it

has a greater correlation with the state variables, regardless of the specification of the func-

tional form of m(·). This suggests a direction of developing new models to identify suitable

state variables in order to explain cross-section return predictability or anomaly.

In summary, our bounds, (4) and (11), provide a simple test of whether a class of asset

pricing models can explain the degree of predictability, R2, found in the data. They highlight

the fact that the state variables in SDF are the key factor in explaining return predictability.

Therefore, if an asset pricing model with state variables x fails to explain the predictability,

new state variables y ̸= x may explain the predictability as long as y have greater correlation

with the asset return. This insight may help explain why Savov (2011) finds garbage, as

a measure of consumption, can explain well asset prices as it is more volatile and more

correlated with stocks than standard consumption measures.
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2.3 Bounds with market frictions

Our bounds are derived, like many other bounds in the literature such as Hansen and Ja-

gannathan (1991) and Bakshi and Chabi-Yo (2012), under the assumption that the market

is frictionless and investors can trade freely without constraints. In practice, however, there

are various market frictions that can make some profitable opportunities hard to arbitrage,

and hence lead to return predictability. This implies that the R2 upper bound may have to

be re-set higher if market frictions are incorporated.

Market frictions can be the transaction costs in Acharya and Pedersen (2005), the funding

liquidity of Brunnermeier and Pedersen (2009), or the leverage constraint of Adrian, Etula,

and Muir (2013). Nagel (2013) reviews these models and shows that the SDF in a frictionless

market can be augmented with a factor Λt that captures the state of transaction costs,

mF
t+1 = mt+1

Λt

Λt+1

. (12)

Let △ωt+1 = log(Λt+1/Λt). Then, we can rewrite mF
t+1 as

mF
t+1 = mF (xt+1,△ωt+1). (13)

In this way, a higher △ωt+1 means a higher transaction cost, and an asset paying well in

the state of higher △ωt+1 earns a low expected return. The bounds in (4) and (11) can

be adjusted easily by including △ωt+1 into the state variables. In Section 4, we will show

that △ωt+1 will raise the upper bounds as expected, but the raises are quantitatively small.

This implies that accounting for market frictions in the three major asset pricing models still

cannot explain the return predictability of the data.

3 Data and Econometric Estimation

In this section, we introduce the predictors and state variables used in this paper. We also

provide the econometric framework for testing whether the predictive R2 is less than the

upper bounds.
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3.1 Data

The data used in this paper are from Welch and Goyal (2008), the Ken French data library

and Bureau of Economic Analysis (BEA), where the sources are described in detail. Due to

their availability, the monthly data span only over 1959:01–2012:12 and the quarterly data

are over 1947Q1–2012Q4. The excess return of the market portfolio is the gross return on

the S&P 500 (including dividends) minus the gross return on a risk-free treasury bill. As

discussed by Ferson and Korajczyk (1995), it is more appropriate to use the simple return

instead of the continuously compounded returns in the context of this paper. This is because

the pricing equation says that the expected returns are equal to the conditional covariances

of returns with the marginal utility for wealth, which depends on the simple arithmetic

return of the optimal portfolio. However, if continuously compounded returns are used,

there results will have little changes and the conclusions are exactly the same.

Ten economic predictors are:

1. Dividend-price ratio (dp): log of a twelve-month moving sum of dividends paid on the

S&P 500 index minus the log of stock prices (S&P 500 index;

2. Treasury bill rate (tbl): three-month Treasury bill rate (secondary market);

3. Long-term yield (lty): long-term government bond yield;

4. Long-term return (ltr): return on long-term government bonds;

5. Term spread (tms): difference between the long-term yield on government bonds and

the Treasury bill rate;

6. Default yield spread (dfy): difference between Moody’s BAA- and AAA-rated corporate

bond yields;

7. Default return spread (dfr): long-term corporate bond return minus the long-term

government bond return;

8. Stock variance (svar): monthly sum of squared daily returns on the S&P 500 index;

9. Investment-capital ratio (ik): ratio of aggregate (private nonresidential fixed) invest-

ment to aggregate capital for the whole economy;

10. Consumption-wealth ratio (cay): cointegration residual between log consumption, broadly-

defined financial wealth, and labor income.2

2Since ik and cay are available at a quarterly frequency, we convert them into monthly frequency when
we explore monthly predictability by assigning the most recent quarterly value to each month. For example,
the observations of ik and cay in the first quarter of 2014 are assigned to March, April and May 2014,
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To calculate the R2 upper bounds, we need the consumption growth rate which is one

of the state variables in the consumption-based asset pricing models. Following common

practice, we compute it as the percentage change in the seasonally adjusted, aggregate,

real per capita consumption expenditures on nondurable goods and services. We use the

annual and quarterly seasonally adjusted aggregate nominal consumption expenditures on

nondurables and services from National Income and Product Accounts (NIPA) Table 2.3.5,

and the monthly nominal consumption expenditures from NIPA Table 2.8.5. Population

numbers from NIPA Tables 2.1 and 2.6 and price deflator series from NIPA Tables 2.3.4 and

2.8.4 are used to construct the time series of per capita real consumption figures. Finally,

data on the cross-sectional portfolio returns sorted by size, book-to-market ratio, momentum,

and industry are taken from Kenneth French’s web site.

3.2 State variables in SDF

Since Mehra and Prescott (1985), there are various consumption-based models that have been

developed to explain the equity risk premium puzzle and other features of the data. Among

them, the habit formation model, the long-run risks model, and the rare disaster model are

three especially noteworthy. Also, all these three models can generate time-varying expected

returns and therefore can explain predictability. For this reason, we focus on these three

models and investigate whether they can allow for the degree of predictability of the data.

3.2.1 Habit formation

The habit formation model assumes that the risk aversion is time-varying over business

cycles. The risk aversion is high in economic recessions when investors require a high pre-

mium for taking risk, and the risk aversion is low in economic expansions when investors

require a low premium. The countercyclical risk aversion suggests that the risk premium is

countercyclical, and hence the stock returns are predictable.

The SDF of the habit formation model is

mt+1 = δ

(
St+1

St

Ct+1

Ct

)−A

. (14)

respectively.
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Campbell and Cochrane (1999) assume that the ratios in mt+1 are conditionally lognormal,

suggesting that we can take

xt+1 = (△ct+1,△st+1)

as the two state variables of the model, where△ct+1 = log(Ct+1/Ct) and△st+1 = log(St+1/St).

However, the surplus consumption ratio St = (Ct − Xt)/Ct is unobservable since the habit

level Xt is latent. Campbell and Cochrane (1999) assume the log surplus consumption ratio

St+1 follows

st+1 = (1− ϕ)s̄+ ϕst + λ(st)(△ct+1 − µc),

where ϕ, µc and s̄ are parameters. The sensitivity function λ(st) is given by

λ(st) =

 1
S̄

√
1− 2(st − s̄)− 1, st < s̄+ 1

2
(1− S̄2),

0, st ≥ s̄+ 1
2
(1− S̄2),

where S̄ = σc
√
γ/(1− ϕ) is the steady-state surplus consumption ratio, s̄ = log(S̄), and µc

and σc are the mean and standard deviation of the log consumption growth and hence can

be easily estimated from the data. We follow Campbell and Cochrane (1999) by extracting

st+1 from the model and calculate the multiple correlation between the state variables xt+1 =

(△ct+1,△st+1) and the excess return with zt−µz units of investment in the market portfolio.

3.2.2 Long-run risks

The long-run risks model makes use of the low-frequency time series properties of the div-

idends and aggregate consumption, and thus it can explain simultaneously the equity risk

premium puzzle, the risk-free rate puzzle, and the high level of market volatility. The key

assumptions of the model are that the consumption growth rate and the dividend growth

rate follow the following joint dynamics:

△ct+1 = µc + µc,t + σtϵc,t+1,

µc,t+1 = ρµµc,t + ψcσtϵµ,t+1,

σ2
t+1 = (1− ν)σ̄2 + νσ2

t + σwϵσ,t+1,

△dt+1 = µd + ϕµc,t + ϕσtϵd,t+1,

11



where ct+1 is the log aggregate consumption and dt+1 is the log dividends. The shocks ϵc,t+1,

ϵµ,t+1, ϵσ,t+1, and ϵd,t+1 are assumed to be i.i.d. normally distributed.

With log-affine approximation, the SDF is

logmt+1 = A0 + A1µc,t + A2σ
2
t + A3△ct+1 + A4µc,t+1 + A5σ

2
t+1, (15)

where A0, · · · , A5 are parameters to be estimated. There are two latent state variables in the

SDF, the conditional mean of the consumption growth rate yt and the conditional variance

of its innovation σ2
t , which are unobserved latent data. Based on Dai and Singleton (2000),

Constantinides and Ghosh (2011) find that these two latent variables can be projected on

the log risk-free rate rf,t and the log dividend-price ratio dpt:

µc,t = α0 + α1rf,t + α2dpt,

σ2
t = β0 + β1rf,t + β2dpt.

In this way, the log SDF is an affine function of the log risk-free rate, the log dividend-price

ratio, and the consumption growth rate:

logmt+1 = B0 +B1rf,t +B2dpt +B3rf,t+1 +B4dpt+1 +B5△ct+1.

As a result, the state variables in SDF for the long-run risks model are

xt+1 = (△ct+1, rf,t+1, dpt+1)
′. (16)

3.2.3 Rare disaster

The rare disaster model revived by Barro (2006) is intended to solve the equity risk premium

puzzle and does not accommodate time-varying expected returns. Gourio (2008), Gabaix

(2012), andWachter (2013) allow for time-varying probability of disasters, thereby generating

return predictability.

The basic assumption for the rare disaster model is that the consumption growth rate
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follows the stochastic process:

△ct+1 =

 µc + σϵt+1, with probability 1− pt;

µc + σϵt+1 + log(1− b), with probability pt.
(17)

where ϵt+1 is i.i.d. N(0, 1), and 0 < b < 1 is the size of the disaster. The crucial question is to

find a variable to proxy the unobservable probability of disasters. Wachter (2013) considers

the rare disaster model in a continuous-time setting, and finds that the dividend-price ratio

is a strictly increasing function of the disaster probability, which implies that one can invert

this function to find the disaster probability given the observations of the dividend-price

ratio. Hence, in addition to the consumption growth rate, the dividend-price ratio can be

used as an observable state variable for the rare disaster model. That is,

xt+1 = (△ct+1, dpt+1)
′

are the state variables we need.

3.3 Wald test

The parameters needed to calculate the predictive R2 and its upper bounds involve only the

mean and covariance of yt+1 = (rt+1, zt, rt+1zt, x
′
t+1)

′, where xt+1 can be multi-dimensional.

The moment conditions are

h(yt+1, θ) =

 yt+1 − µy

yt+1y
′
t+1 − (Σy + µyµ

′
y)

 , (18)

where µy = E(yt+1) and Σy = Cov(yt+1). Since the econometric specification in (18) is ex-

actly identified, the GMM estimator of θ = (µ′
y,Σy) is the value that sets 1/T

∑T
t=1 h(yt+1, θ)

equal to zero.

The distribution of θ̂ takes the form

√
T (θ̂ − θ)

d−→ N(0, S), (19)

where S =
∑∞

j=−∞E[h(yt+1, θ)h(yt+1−j, θ)
′].
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We use a Wald test to evaluate whether R2 ≤ R̄2
RA or R̄2

SR, which is equivalent to a

one-sided test for g(θRA) = 0 or g(θSR) = 0, where θRA and θSh are the moment parameters

used in g(θRA) = R2− R̄2
RA and g(θSR) = R2− R̄2

SR. Let ΣRA and ΣSR be the corresponding

covariances of θRA and θSR. The Wald statistic is

WRA = Tg(θ̂RA)

[
dg

dθRA

Σ̂RA
dg

dθRA

]−1

g(θ̂RA)
d−→ χ2(1) (20)

for the bound with the maximum risk aversion, and

WSR = Tg(θ̂SR)

[
dg

dθSR
Σ̂SR

dg

dθSR

]−1

g(θ̂SR)
d−→ χ2(1) (21)

for the bound with the market Sharpe ratio.

4 Empirical Results

In this section, we compute the bounds for the common predictors, and examine whether

or not the three major asset pricing models can explain the degree of predictability found

in the data. We investigate both the market predictability and cross-sectional portfolio

predictability.

4.1 Market predictability

Consider the predictive market regression,

rt+1 = α + βzt + εt+1,

where rt+1 is the excess return on the market portfolio, and zt is a predictor of interest. Table

1 reports the predictive R2s, the upper bound of Ross (2005), R̄2
Ross, ϕx,rz, the coefficient

that determines the improvement of our bounds over Ross’s, and our two bounds. All the

values are presented in percentage points, and statistical significance is assessed by the Wald

statistic for testing the hypothesis that the predictive R2 is less than the upper bound.

The first column of 1 indicates the predictors used. The associated predictive R2s are

reported in the second column, which range from 0.02% for the long-term yield (lty) to
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1.62% for consumption-wealth ratio (cay). Positive R2s suggest that the excess return of the

market portfolio is predictable and the degree of predictability varies across the predictors.

The upper bound of Ross (2005), R̄2
Ross, is reported in the third column, which has a

constant value of 5.09% regardless of what the predictor is used and what asset pricing

model is of consideration. Since the maximum R2 is only 1.62%, the bound is satisfied for

all predictors and all models. To the best of our knowledge, there is no single predictor that

can generate an R2 as large as 5.09% or close to it at the monthly frequency. Therefore,

R̄2
Ross is unable to reject any of the models for explaining the R2s.

Column 4 reports the coefficient ϕx,rz, which captures the multiple correlation between

the state variables and the stock return. Compared with Ross’s bound, the proposed bounds

improve it by a factor of 1/ϕ2
x,rz. The results shows that, with several exceptions, ϕx,rz is less

than 10%. This implies that the bounds improve Ross’s (2005) over 100 times in almost all

cases. Among the three sets of state variables, the values of ϕx,rz are all small and similar.

In other words, all the state variables used by the three asset models have low correlations

of about the same magnitude. As a result, our new bounds should be much smaller than

Ross’s (2005) bound, and are in the same range across the state variables.

Columns 5 and 6 report the numerical values of the two bounds, R̄2
RA and R̄2

SR. As

expected, the low value ϕx,rz drives the R2 upper bound close to zero for all the three

sets of state variables of the habit formation model, the long-run risks model and the rare

disaster model. Of the 10 predictors, nine display larger R2s than the two bounds. The only

exception is the long-term yield (lty) with a predictive R2 of 0.02. This value implies very

small predictability and so it satisfies the bounds. In other words, from the perspective of

the bounds, it is possible for models based on the three sets of state variables to explain

the small predictability. Overall, except lty, we can conclude that asset pricing models with

the same state variables of the habit formation, of the long-run risks or of the rare disaster

models cannot explain the magnitude of return predictability.

While our paper focuses on the most frequent used monthly frequency of the data, it

is of interest to see how the results of Table 1 will change if the predictability is examined

quarterly. Table 2 reports the results with the quarterly data over 1952Q1–2012Q4. In

comparison with Table 1, the predictive R2s increase significantly, and seven of them are

larger than 1%. Again, cay stands out as the most pronounced predictor with an R2 of
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4.77%. This is consistent with the predictability literature that it is generally true that the

longer the horizon, the greater the degree of predictability. Theoretically, this appears true

too as the Ross’s (2005) bound increases to 16.7%, which is much larger than any of the

R2s of the data. Our proposed bounds are greater than before as well. Note that coefficient

ϕx,rz is now generally larger, implying smaller improvement over the Ross’s bound than the

earlier monthly frequency. However, ϕx,rz is still less than 0.3 for almost all the predictors.

This implies that our new bounds can improve Ross’s bound 11 times or more. For the state

variables of the rare disaster model, the associated bounds are all below the R2, and so we

reject asset pricing models based on these state variables for explaining the predictability.

For the state variables of the habit model, we reject the model for nine of the predictors.

Finally, for the state variables of the long-run risk model, we see models based on them have

difficulties for eight of the predictors. Overall, models based on each of the three sets of

state variables cannot explain the predictability of the data.

Now we examine the effects of market frictions on the upper bounds. Consider first the

liquidity factor constructed by Pástor and Stambaugh (2003) as the proxy of transaction

costs. The monthly data span from August 1962 to December 2012. Table 3 reports the

results. Ross’s (2005) bound increases from the earlier 5.09% of the frictionless case to 5.19%.

The change is small and it makes no differences in the inference. However, the percentage

changes for our new bounds are relatively large. For example, for the state variables of the

habit formation model, the bounds increase about three time from 0.02% percent to 0.06%

and 0.05%, respectively. However, the bounds are still small compared with the R2 values.

Indeed, like Table 1, the bounds are binding in almost all cases. Hence, the conclusions are

the almost identical to the earlier ones.

Consider next the leverage constraint of Adrian, Etula and Muir (2013) as the proxy of

market frictions. In this case, following Nagel (2013), their broker-dealer leverage is a proxy

state variable for the friction. The rationale is that de-leveraging indicates deteriorating

funding conditions. The data are quarterly and over 1968Q1–2009Q4.3 Table 4 reports the

results. In contrast with the Pástor and Stambaugh liquidity factor, the bounds are generally

greater, and the number of non-rejections increases slightly. However, most of the R2s still

violate the bounds. Summarizing Tables 3 and 4, market friction may be a factor to weaken

the upper bounds, but the bounds are still binding in most cases. This indicates that, even

3We are grateful to Tyler Muir for making the data available on his web page.
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after accounting for market frictions, asset pricing models based on one of the three sets of

state variables still have difficulties in explaining the magnitude of predictability in the data.

4.2 Portfolio predictability

In this subsection, we examine whether the proposed bounds are also binding for cross-

sectional portfolio predictability. Theoretically, our proposed bounds, (4) and (11), should

have different values for different portfolios since they have different correlations with the

state variables. Hence, it is an empirical question how the bounds vary at the portfolio level.

Tables 5, 6, 7 and 8 report the R2s and their upper bounds on portfolios sorted by

size, value (book-to-market ratio) and momentum. There are a few interesting observations.

First, the macroeconomic predictors not only predict the market as shown in Table 1, but

also predict all of the cross sectional portfolios with positive R2s. However, the predictability

is generally smaller than that of the market. Second, the upper bounds are smaller too in

almost all cases. Third, as a result, it is not surprising that, despite of lower R2, the bounds

are still violated in most cases.

Table 8 reports further results on portfolios sorted by industry. For brevity, we consider

only three of the most promising predictors, the dividend-price ratio (dp), the term spread

(tms) and the consumption-wealth ratio (cay). Consistent with Ferson and Harvey (1991)

and Ferson and Korajczky (1995), the industry portfolios are significantly predictable. How-

ever, the predictability varies substantially across industries. The most predictable industry

has an R2 of 1.68%, greater than the market, and the least predictable ones have R2s vir-

tually zeros across the predictors. The bounds are still of the same magnitude as for other

portfolio sorts.

Overall, results on the cross-section portfolios are similar to those on the market pre-

dictability, and imply that the three sets of state variables have difficulties in explaining the

magnitude of predictability in the portfolio returns.
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5 Conclusion

This paper investigates whether or not a given degree of return predictability found in the

data is consistent with asset pricing models. To answer this question, we develop two upper

bounds on the predictive R2. Our bounds improve substantially over the non-binding bound

of Ross (2005, 2014), and provide likely reasons as to why a given asset pricing model cannot

explain the predictability. In forecasting the market return or returns sorted by size, value,

momentum and industry, we find that the high predictive R2s almost always exceed the

proposed upper bounds, implying that return predictability cannot be fully explained by

asset pricing models based on three sets of well known state variables. The reason is that

the correlations between the return(s) and the state variables are low. This conclusion is

unaltered even if market frictions are accounted for.

While our study is focused on the stock market, it seems useful to study other asset

classes, such as options, bonds and foreign exchanges, to examine whether predictability of

the data is consistent with rational models. Technically, it appears a challenging problem

to extend our bounds to allow for parameter instability and structural breaks. While these

issues are of interest, we leave them for future research.
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Appendix

In this appendix, we provide detailed proofs of Propositions 1 and 2.

A.1 Bound with Maximum Risk Aversion

Proposition 1 Let γ be the maximum risk aversion of the investors. If the state variables

xt+1 satisfy certain distributional assumptions (detailed below), such as normal distribution,

then,

R2 ≤ R̄2
RA = ϕ2

x,rzγ
2σ2(rmkt). (22)

where rmkt is the return of market portfolio, µz is the unconditional mean of zt,

ϕ2
x,rz = ρ2x,rz

Var[rt+1(zt − µz)]

Var(rt+1)Var(zt)
, (23)

and

ρ2x,rz =
Cov[xt+1, rt+1(zt − µz)]

′Var−1(xt+1)Cov[xt+1, rt+1(zt − µz)]

Var[rt+1(zt − µz)]
. (24)

Proof. We prove this proposition in two steps. In the first step, we show that, with mild

assumptions, the R2 from the pedictive regression rt+1 = α+ βzt+ εt+1 is bounded above as

R2 ≤ ϕ2
x,rzVar(m(xt+1)), where m(xt+1) is a specific SDF. In the second step, we show that

the variance of any SDF can be bounded above by the variance of a constant relative risk

aversion (CRRA) utility’s SDF with risk aversion γ.

Step 1 For ease of exposition, we follow Balduzzi and Kallai (1997) and normalize the

SDF as

m̃t+1 =
mt+1

E(mt+1)
(25)

so that E(m̃t+1) = 1. With this normalized SDF, the Euler equation (3) still holds as

E[m̃(xt+1)rt+1|It] = 0. (26)

Let µz denote the mean of predictor z. Since zt − µz is in the information set It, we
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multiply (26) by zt − µz in both sides and apply the law of iterated expectations to obtain

E[m̃t+1rt+1(zt − µz)] = 0, (27)

which can be rewritten as

Cov(rt+1, zt) = −Cov[m̃t+1, rt+1(zt − µz)]. (28)

Since Cov(rt+1, zt) = Cov(rt+1, zt−µz) = E[rt+1(zt−µz)], equality (28) says that the expected

excess return with zt − µz units of investment in the asset rt+1 is equal to the negative

covariance between the normalized SDF and the realized excess return of the investment,

which implies that any dynamic trading strategy that exploits the predictability of rt+1 must

be priced by the normalized SDF.

In the predictive regression (1), β = Cov(rt+1,zt)
Var(zt)

. Combining (2) and (28) gives

R2 =
Var(α + βzt)

Var(rt+1)
=
β2Var(zt)

Var(rt+1)
=

Cov2(rt+1, zt)

Var(rt+1)Var(zt)
=

Cov2[m̃t+1, rt+1(zt − µz)]

Var(rt+1)Var(zt)
. (29)

This equality is derived first by Kirby (1998) whose test depends only on specific functional

form of m(·), but we derive non-parametric bounds here which is independent of m(·).

Consider the first case when xt+1 and rt+1(zt − µz) are jointly normally distributed con-

ditional on time t. From (29), we have

R2 =
Cov2(m̃t+1, rt+1(zt − µz))

Var(rt+1)Var(zt)

=

[
Cov(xt+1, rt+1(zt − µz))

′Var−1(xt+1)Cov(m̃t+1, xt+1)
]2

Var(rt+1)Var(zt)
(30)

≤
[
Cov(xt+1, rt+1(zt − µz))

′Var−1(xt+1)Cov(xt+1, rt+1(zt − µz))
]

×
(
Cov(m̃t+1, xt+1)

′Var−1(xt+1)Cov(m̃t+1, xt+1)
)

Var(rt+1)Var(zt)
(31)

=
ρ2x,rzVar(rt+1(zt − µz))Cov(m̃t+1, xt+1)

′Var−1(x)Cov(m̃t+1, xt+1)

Var(rt+1)Var(zt)
(32)

≤ ρ2x,rz
Var(rt+1(zt − µz))

Var(rt+1)Var(zt)
Var(m̃t+1) = ϕ2

x,rzVar(m̃t+1), (33)

where (30) uses Stein’s Lemma, which separates the underlying stochastic structure between

rt+1 and xt+1 from the distortion of m̃(·) (Furman and Zitikis, 2008). Inequalities (31) and
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(33) use the Cauchy-Schwarz inequality.

Consider the case when rt+1 and xt+1(zt −µz) follow a general distribution, but with the

additional assumption that Et(εt+1|xt+1) = 0, where εt+1 is the residual in the orthogonal

decomposition rt+1(zt − µz) = a + bxt+1 + εt+1. A similar assumption is also used by Kan

and Zhou (2007). As discussed there, a sufficient condition for this assumption is that the

state variables are elliptically distributed (normal is a special case), which seems to fit state

variables well. In fact, though technically very complex, one may expand the density function

into Taylor series and plug in them into the bounds. The contributions of higher moments

are likely smaller than the first two moments. Since doubling the bounds will not affect

much our empirical results, we conjecture that our bounds can be extended by relaxing the

assumption. However, we make that assumption here.

Under the assumption Et(εt+1|xt+1) = 0, we have

Cov(εt+1, m̃(xt+1) = E[E(εt+1|xt+1)m̃(xt+1)] = 0.

In this case,

Cov(rt+1(zt − µz), m̃(xt+1)) = Cov[b′xt+1, m̃(xt+1)] = b′Σxm̃. (34)

The Cauchy-Schwarz inequality generates

[Cov(rt+1(zt − µz), m̃(xt+1))]
2 = (b′Σ1/2

xx Σ
−1/2
xx Σxm̃)

2 ≤ (b′Σxxb)(Σ
′
xm̃Σ

−1
xxΣxm̃). (35)

With (35), (29) can be bounded as

R2 =
Cov2(m̃t+1, rt+1(zt − µz))

Var(rt+1)Var(zt)

≤ b′Σxxb

Var(rt+1(zt − µz))

Var(rt+1(zt − µ))(Σ′
xm̃Σ

−1
xxΣxm̃)

Var(rt+1)Var(zt)
(36)

≤ ρ2x,rz
Var(rt+1(zt − µz))

Var(rt+1)Var(zt)
Var(m̃t+1) (37)

= ϕ2
x,rzVar(m̃t+1). (38)

From (33) and (38), we can conclude that, given that an asset pricing model can explain

predictability, the predictive R2 cannot be arbitrarily large, but is bounded above by the

variance of the SDF that is derived from the asset pricing model.
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Step 2 We show that the variance of SDF Var(m̃t+1) in (33) and (38) can be bounded

further, so that the final R2 bound will not depend on the full sepecification of SDF.

Ross (2005) show that if a utility function, U(w), is bounded above in the relative risk

aversion by a utility function V (w), i.e., the risk aversion of U(w) is less than that of V (w),

then

Var(m̃U) ≤ Var(m̃V ),

where m̃U and m̃V are the corresponding SDFs. Moreover, if V (w) is a constant relative

risk aversion utility function with risk aversion γ (γ ̸= 1), the optimal wealth is the market

portfolio and lognormally distributed such as logw ∼ N [µ(rmkt), σ
2(rmkt)], then

Var(m̃U) ≤ γ2σ2(rmkt). (39)

This inequality says that the variance of any SDF can be bounded above by a maximum risk

aversion.

Combining (33), (38) and (39), if investors are bounded above by the maximum risk

aversion γ, we have the R2 bound as

R2 ≤ R̄2
RA = ϕ2

x,rzγ
2σ2(rmkt).

This completes Proposition 1.

A.2 Bound with Market Sharpe Ratio

Proposition 2 Under the same distributional assumption of Proposition 1 and (10), the

predictive R2 is bounded above,

R2 ≤ R̄2
SR = ϕ2

x,rz · h2 · SR2(rmkt). (40)

Proof. The proof of this proposition consists of two steps too. The first step is the same

as that in the proof of Proposition 1, which shows that R2 ≤ ρ2x,rzVar(m̃t+1). In the second

step, to make the absence of arbitrage true, we assume the constraint (10), i.e.,

Std(mt+1) ≤ h · SR(rmkt).

Since m̃t+1 = mt+1/E(mt+1), we have

Var(m̃t+1) =
Var(mt+1)

[E(mt+1)]2
≤ h

[E(mt+1)]2
SR2(rmkt).
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According to (3), in the presence of riskfree asset, 1
[E(mt+1)]2

is equal to the riskfree rate. With

monthly horizon, the riskfree rate is approximately 1, so we have

R2 ≤ R̄2
SR = ϕ2

x,rz · h2 · SR2(rmkt).

Now if the risk free rate is not equal to 1, we can re-define h
[E(mt+1)]2

as an alternative

parameter h̃. The proof is complete.
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Table 1 Bounds on Market Predictability

This table reports the R2 from the market predictive regression rt+1 = α + βzt + εt+1, where
zt is the predictor and the time period is from January 1959 to December 2012. R̄2

Ross is Ross’s
(2005) bound on the R2, while R̄2

RA and R̄2
SR are the proposed bounds. ϕx,rz is the key coefficient

that determines the improvement of our bounds over Ross’s. Statistical significance is assessed by
the Wald statistic for testing that the predictive R2 is less than the theoretical upper bound. ∗∗

and ∗ indicate significance at the 5% and 10% levels, respectively.

z R2(%) R̄2
Ross(%) ϕx,rz R̄2

RA(%) R̄2
SR(%)

Panel A: Habit formation

dp 0.23 5.09 0.02 0.00∗∗ 0.00∗∗

tbl 0.23 5.09 0.06 0.02∗∗ 0.01∗∗

lty 0.02 5.09 0.07 0.02 0.02

ltr 0.90 5.09 0.06 0.02∗∗ 0.02∗∗

tms 0.50 5.09 0.08 0.03∗∗ 0.03∗∗

dfy 0.26 5.09 0.06 0.02∗∗ 0.02∗∗

dfr 0.36 5.09 0.01 0.00∗∗ 0.00∗∗

svar 1.09 5.09 0.12 0.08∗∗ 0.07∗∗

ik 0.65 5.09 0.15 0.11∗∗ 0.09∗∗

cay 1.62 5.09 0.07 0.02∗∗ 0.02∗∗

Panel B: Long-run risks

dp 0.23 5.09 0.10 0.05∗∗ 0.04∗∗

tbl 0.23 5.09 0.08 0.03∗∗ 0.03∗∗

lty 0.02 5.09 0.06 0.02 0.02

ltr 0.90 5.09 0.10 0.05∗∗ 0.05∗∗

tms 0.50 5.09 0.10 0.05∗∗ 0.04∗∗

dfy 0.26 5.09 0.09 0.05∗∗ 0.04∗∗

dfr 0.36 5.09 0.01 0.00∗∗ 0.00∗∗

svar 1.09 5.09 0.20 0.20∗∗ 0.17∗∗

ik 0.65 5.09 0.16 0.13∗∗ 0.11∗∗

cay 1.62 5.09 0.08 0.03∗∗ 0.02∗∗

Panel C: Rare disaster

dp 0.23 5.09 0.08 0.03∗∗ 0.03∗∗

tbl 0.23 5.09 0.06 0.02∗∗ 0.01∗∗

lty 0.02 5.09 0.06 0.02 0.02

ltr 0.90 5.09 0.10 0.05∗∗ 0.05∗∗

tms 0.50 5.09 0.07 0.02∗∗ 0.02∗∗

dfy 0.26 5.09 0.09 0.04∗∗ 0.04∗∗

dfr 0.36 5.09 0.01 0.00∗∗ 0.00∗∗

svar 1.09 5.09 0.12 0.07∗∗ 0.06∗∗

ik 0.65 5.09 0.15 0.11∗∗ 0.09∗∗

cay 1.62 5.09 0.04 0.01∗∗ 0.01∗∗
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Table 2 Bounds on Market Predictability with Quarterly Data

This table reports the R2 from the market predictive regression rt+1 = α+ βzt + εt+1, where zt
is the predictor and the time period is over 1952Q1–2012Q4. R̄2

Ross is Ross’s (2005) bound on the
R2, while R̄2

RA and R̄2
SR are the proposed bounds. ϕx,rz is the key coefficient that determines the

improvement of our bounds over Ross’s. Statistical significance is assessed by the Wald statistic for
testing that the predictive R2 is less than the theoretical upper bound. ∗∗ and ∗ indicate significance
at the 5% and 10% levels, respectively.

z R2(%) R̄2
Ross(%) ϕx,rz R̄2

RA(%) R̄2
SR(%)

Panel A: Habit formation

dp 1.45 16.7 0.04 0.03∗∗ 0.03∗∗

tbl 1.00 16.7 0.02 0.01∗∗ 0.01∗∗

lty 0.28 16.7 0.06 0.05∗∗ 0.06∗∗

ltr 1.18 16.7 0.30 1.47 1.59

tms 0.29 16.7 0.09 0.15∗∗ 0.16∗∗

dfy 0.31 16.7 0.14 0.33 0.36

dfr 1.66 16.7 0.25 1.06∗∗ 1.15∗∗

svar 1.76 16.7 0.07 0.09∗∗ 0.09∗∗

ik 2.78 16.7 0.08 0.11∗∗ 0.12∗∗

cay 4.77 16.7 0.13 0.29∗∗ 0.31∗∗

Panel B: Long-run risks

dp 1.45 16.7 0.24 0.93∗∗ 1.01∗∗

tbl 1.00 16.7 0.04 0.03∗∗ 0.03∗∗

lty 0.28 16.7 0.12 0.24 0.26

ltr 1.18 16.7 0.17 0.50∗∗ 0.54∗∗

tms 0.29 16.7 0.14 0.32 0.35

dfy 0.31 16.7 0.10 0.18∗∗ 0.20∗∗

dfr 1.66 16.7 0.17 0.51∗∗ 0.55∗∗

svar 1.76 16.7 0.09 0.14∗∗ 0.16∗∗

ik 2.78 16.7 0.17 0.51∗∗ 0.55∗∗

cay 4.77 16.7 0.14 0.35∗∗ 0.38∗∗

Panel C: Rare disaster

dp 1.45 16.7 0.18 0.54∗∗ 0.58∗∗

tbl 1.00 16.7 0.02 0.01∗∗ 0.01∗∗

lty 0.28 16.7 0.02 0.01∗∗ 0.01∗∗

ltr 1.18 16.7 0.16 0.42∗∗ 0.46∗∗

tms 0.29 16.7 0.09 0.13∗∗ 0.14∗∗

dfy 0.31 16.7 0.10 0.18∗∗ 0.20∗∗

dfr 1.66 16.7 0.15 0.40∗∗ 0.43∗∗

svar 1.76 16.7 0.08 0.11∗∗ 0.12∗∗

ik 2.78 16.7 0.11 0.19∗∗ 0.20∗∗

cay 4.77 16.7 0.12 0.22∗∗ 0.24∗∗

29



Table 3 Bounds on Market Predictability with Liquidity Cost

This table reports the R2 from the market predictive regression rt+1 = α+βzt+εt+1, where zt is
the predictor and the time period is from August 1962 to December 2012. Pastor and Stambaugh
(2003) liquidity factor is used as the proxy of liquidity cost. R̄2

Ross is Ross’s (2005) bound on the
R2, while R̄2

RA and R̄2
SR are the proposed bounds. ϕx,rz is the key coefficient that determines the

improvement of our bounds over Ross’s. Statistical significance is assessed by the Wald statistic for
testing that the predictive R2 is less than the theoretical upper bound. ∗∗ and ∗ indicate significance
at the 5% and 10% levels, respectively.

z R2(%) R̄2
Ross(%) ϕx,rz R̄2

RA(%) R̄2
SR(%)

Panel A: Habit formation

dp 0.23 5.19 0.06 0.02∗∗ 0.01∗∗

tbl 0.25 5.19 0.07 0.03∗∗ 0.02∗∗

lty 0.03 5.19 0.07 0.03 0.02

ltr 0.95 5.19 0.11 0.06∗∗ 0.06∗∗

tms 0.47 5.19 0.08 0.04∗∗ 0.03∗∗

dfy 0.25 5.19 0.06 0.02 0.02

dfr 0.42 5.19 0.07 0.02∗∗ 0.02∗∗

svar 1.09 5.19 0.12 0.07∗∗ 0.06∗∗

ik 0.79 5.19 0.18 0.17∗∗ 0.15∗∗

cay 1.64 5.19 0.10 0.06∗∗ 0.05∗∗

Panel B: Long-run risks

dp 0.23 5.19 0.11 0.07∗∗ 0.06∗∗

tbl 0.25 5.19 0.09 0.04∗∗ 0.04∗∗

lty 0.03 5.19 0.08 0.03 0.03

ltr 0.95 5.19 0.14 0.10∗∗ 0.08∗∗

tms 0.47 5.19 0.11 0.06∗∗ 0.05∗∗

dfy 0.25 5.19 0.10 0.05∗∗ 0.05∗∗

dfr 0.42 5.19 0.07 0.02∗∗ 0.02∗∗

svar 1.09 5.19 0.20 0.21∗∗ 0.19∗∗

ik 0.79 5.19 0.20 0.20∗∗ 0.17∗∗

cay 1.64 5.19 0.10 0.06∗∗ 0.05∗∗

Panel C: Rare disaster

dp 0.23 5.19 0.09 0.04∗∗ 0.04∗∗

tbl 0.25 5.19 0.07 0.03∗∗ 0.02∗∗

lty 0.03 5.19 0.08 0.03 0.03

ltr 0.95 5.19 0.14 0.10∗∗ 0.08∗∗

tms 0.47 5.19 0.08 0.03∗∗ 0.03∗∗

dfy 0.25 5.19 0.09 0.05∗∗ 0.04∗∗

dfr 0.42 5.19 0.07 0.02∗∗ 0.02∗∗

svar 1.09 5.19 0.11 0.06∗∗ 0.06∗∗

ik 0.79 5.19 0.18 0.17∗∗ 0.15∗∗

cay 1.64 5.19 0.08 0.04∗∗ 0.03∗∗
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Table 4 Bounds on Market Predictability with Leverage Constraint

This table reports the R2 from the market predictive regression rt+1 = α + βzt + εt+1, where
zt is the predictor and the time period is over 1968Q1–2009Q4. Adrian, Etula and Muir (2013)
leverage factor is used as the proxy of leverage constraint. R̄2

Ross is Ross’s (2005) bound on the
R2, while R̄2

RA and R̄2
SR are the proposed bounds. ϕx,rz is the key coefficient that determines the

improvement of our bounds over Ross’s. Statistical significance is assessed by the Wald statistic for
testing that the predictive R2 is less than the theoretical upper bound. ∗∗ and ∗ indicate significance
at the 5% and 10% levels, respectively.

z R2(%) R̄2
Ross(%) ϕx,rz R̄2

RA(%) R̄2
SR(%)

Panel A: Habit formation

dp 0.93 18.5 0.15 0.40∗∗ 0.19∗∗

tbl 0.16 18.5 0.08 0.13 0.06∗

lty 0.11 18.5 0.13 0.29 0.14

ltr 0.77 18.5 0.43 3.44 1.60

tms 0.47 18.5 0.16 0.45 0.21∗∗

dfy 0.57 18.5 0.20 0.72 0.33∗∗

dfr 3.50 18.5 0.36 2.35∗∗ 1.09∗∗

svar 1.23 18.5 0.14 0.37∗∗ 0.17∗∗

ik 1.82 18.5 0.19 0.65∗∗ 0.30∗∗

cay 5.10 18.5 0.19 0.66∗∗ 0.31∗∗

Panel B: Long-run risks

dp 0.93 18.5 0.26 1.21 0.56∗∗

tbl 0.16 18.5 0.20 0.76 0.35

lty 0.11 18.5 0.21 0.82 0.38

ltr 0.77 18.5 0.29 1.51 0.70

tms 0.47 18.5 0.15 0.43 0.20∗∗

dfy 0.57 18.5 0.29 1.51 0.70

dfr 3.50 18.5 0.35 2.27∗∗ 1.05∗∗

svar 1.23 18.5 0.12 0.27∗∗ 0.13∗∗

ik 1.82 18.5 0.18 0.62∗∗ 0.29∗∗

cay 5.10 18.5 0.20 0.71∗∗ 0.33∗∗

Panel C: Rare disaster

dp 0.93 18.5 0.19 0.64∗∗ 0.30∗∗

tbl 0.16 18.5 0.08 0.12 0.06∗

lty 0.11 18.5 0.16 0.46 0.21

ltr 0.77 18.5 0.27 1.36 0.63

tms 0.47 18.5 0.11 0.21∗∗ 0.10∗∗

dfy 0.57 18.5 0.23 1.01 0.47∗

dfr 3.50 18.5 0.25 1.17∗∗ 0.54∗∗

svar 1.23 18.5 0.11 0.21∗∗ 0.10∗∗

ik 1.82 18.5 0.16 0.45∗∗ 0.21∗∗

cay 5.10 18.5 0.18 0.62∗∗ 0.29∗∗
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Table 5 Bounds on Size Portfolio Predictability

This table reports the R2 from the size portfolio predictive regression rt+1 = α+βzt+εt+1, where
zt is the predictor and the time period is from January 1959 to December 2012. R̄2

Ross is Ross’s
(2005) bound on the R2, while R̄2

RA and R̄2
SR are the proposed bounds. Statistical significance is

assessed by the Wald statistic for testing that the predictive R2 is less than the theoretical upper
bound. ∗∗ and ∗ indicate significance at the 5% and 10% levels, respectively.

Small size portfolio Median size portfolio Large size portfolio

z R2 R̄2
RA R̄2

SR R2 R̄2
RA R̄2

SR R2 R̄2
RA R̄2

SR

Panel A: Habit formation

dp 0.12 0.01∗∗ 0.01∗∗ 0.26 0.00∗∗ 0.00∗∗ 0.22 0.00∗∗ 0.00∗∗

tbl 0.46 0.03∗∗ 0.02∗∗ 0.33 0.02∗∗ 0.02∗∗ 0.23 0.01∗∗ 0.01∗∗

lty 0.14 0.03∗∗ 0.03∗∗ 0.05 0.04 0.03 0.02 0.02 0.02

ltr 0.95 0.02∗∗ 0.02∗∗ 1.40 0.03∗∗ 0.03∗∗ 0.86 0.02∗∗ 0.02∗∗

tms 0.52 0.07∗∗ 0.06∗∗ 0.61 0.06∗∗ 0.05∗∗ 0.51 0.03∗∗ 0.03∗∗

dfy 0.50 0.02∗∗ 0.02∗∗ 0.68 0.02∗∗ 0.02∗∗ 0.24 0.02∗∗ 0.02∗∗

dfr 0.33 0.01∗∗ 0.01∗∗ 0.25 0.00∗∗ 0.00∗∗ 0.37 0.00∗∗ 0.00∗∗

svar 0.60 0.05∗∗ 0.04∗∗ 0.48 0.03∗∗ 0.03∗∗ 1.03 0.07∗∗ 0.06∗∗

ik 0.29 0.10∗∗ 0.08∗∗ 0.59 0.13∗∗ 0.11∗∗ 0.64 0.12∗∗ 0.10∗∗

cay 0.61 0.02∗∗ 0.02∗∗ 0.94 0.02∗∗ 0.02∗∗ 1.67 0.03∗∗ 0.02∗∗

Panel B: Long-run risks

dp 0.12 0.16 0.13 0.26 0.11∗∗ 0.09 0.22 0.05∗∗ 0.04∗∗

tbl 0.46 0.04∗∗ 0.04∗∗ 0.33 0.04∗∗ 0.03∗∗ 0.23 0.03∗∗ 0.03∗∗

lty 0.14 0.04∗∗ 0.03∗∗ 0.05 0.04 0.03 0.02 0.02 0.02

ltr 0.95 0.08∗∗ 0.07∗∗ 1.40 0.09∗∗ 0.08∗∗ 0.86 0.05∗∗ 0.04∗∗

tms 0.52 0.02∗∗ 0.02∗∗ 0.61 0.01∗∗ 0.01∗∗ 0.51 0.05∗∗ 0.04∗∗

dfy 0.50 0.04∗∗ 0.04∗∗ 0.68 0.06∗∗ 0.05∗∗ 0.24 0.04∗∗ 0.04∗∗

dfr 0.33 0.01∗∗ 0.00∗∗ 0.25 0.00∗∗ 0.00∗∗ 0.37 0.00∗∗ 0.00∗∗

svar 0.60 0.16∗∗ 0.13∗∗ 0.48 0.13∗∗ 0.11∗∗ 1.03 0.19∗∗ 0.16∗∗

ik 0.29 0.11∗∗ 0.09∗∗ 0.59 0.15∗∗ 0.12∗∗ 0.64 0.14∗∗ 0.12∗∗

cay 0.61 0.01∗∗ 0.00∗∗ 0.94 0.01∗∗ 0.01∗∗ 1.67 0.03∗∗ 0.03∗∗

Panel C: Rare disaster

dp 0.12 0.13 0.11 0.26 0.09∗∗ 0.08∗∗ 0.22 0.03∗∗ 0.02∗∗

tbl 0.46 0.04∗∗ 0.03∗∗ 0.33 0.04∗∗ 0.03∗∗ 0.23 0.01∗∗ 0.01∗∗

lty 0.14 0.03∗∗ 0.03∗∗ 0.05 0.04 0.03 0.02 0.02 0.01

ltr 0.95 0.08∗∗ 0.07∗∗ 1.40 0.09∗∗ 0.08∗∗ 0.86 0.05∗∗ 0.04∗∗

tms 0.52 0.01∗∗ 0.01∗∗ 0.61 0.01∗∗ 0.01∗∗ 0.51 0.03∗∗ 0.02∗∗

dfy 0.50 0.04∗∗ 0.04∗∗ 0.68 0.06∗∗ 0.05∗∗ 0.24 0.04∗∗ 0.03∗∗

dfr 0.33 0.01∗∗ 0.00∗∗ 0.25 0.00∗∗ 0.00∗∗ 0.37 0.00∗∗ 0.00∗∗

svar 0.60 0.03∗∗ 0.03∗∗ 0.48 0.02∗∗ 0.02∗∗ 1.03 0.07∗∗ 0.06∗∗

ik 0.29 0.08∗∗ 0.07∗∗ 0.59 0.12∗∗ 0.10∗∗ 0.64 0.12∗∗ 0.10∗∗

cay 0.61 0.00∗∗ 0.00∗∗ 0.94 0.00∗∗ 0.00∗∗ 1.67 0.01∗∗ 0.01∗∗
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Table 6 Bounds on Value Portfolio Predictability

This table reports the R2 from the value portfolio predictive regression rt+1 = α + βzt + εt+1,
where zt is the predictor and the time period is from January 1959 to December 2012. R̄2

Ross is Ross’s
(2005) bound on the R2, while R̄2

RA and R̄2
SR are the proposed bounds. Statistical significance is

assessed by the Wald statistic for testing that the predictive R2 is less than the theoretical upper
bound. ∗∗ and ∗ indicate significance at the 5% and 10% levels, respectively.

Low bm portfolio Median bm portfolio High bm portfolio

z R2 R̄2
RA R̄2

SR R2 R̄2
RA R̄2

SR R2 R̄2
RA R̄2

SR

Panel A: Habit formation

dp 0.19 0.00∗∗ 0.00∗∗ 0.15 0.00∗∗ 0.00∗∗ 0.26 0.00∗∗ 0.00∗∗

tbl 0.36 0.02∗∗ 0.02∗∗ 0.20 0.02∗∗ 0.01∗∗ 0.06 0.01 0.01

lty 0.07 0.03 0.02 0.02 0.02 0.02 0.00 0.03 0.02

ltr 0.74 0.02∗∗ 0.02∗∗ 1.46 0.02∗∗ 0.02∗∗ 1.13 0.04∗∗ 0.04∗∗

tms 0.58 0.03∗∗ 0.03∗∗ 0.48 0.04∗∗ 0.03∗∗ 0.17 0.04∗∗ 0.03∗∗

dfy 0.41 0.01∗∗ 0.01∗∗ 0.26 0.03∗∗ 0.03∗∗ 0.17 0.03∗∗ 0.02∗∗

dfr 0.43 0.01∗∗ 0.01∗∗ 0.27 0.00∗∗ 0.00∗∗ 0.20 0.01∗∗ 0.01∗∗

svar 0.61 0.04∗∗ 0.04∗∗ 1.06 0.06∗∗ 0.05∗∗ 1.84 0.17∗∗ 0.15∗∗

ik 0.57 0.12∗∗ 0.11∗∗ 0.62 0.08∗∗ 0.07∗∗ 0.39 0.06∗∗ 0.05∗∗

cay 1.41 0.03∗∗ 0.02∗∗ 1.46 0.02∗∗ 0.02∗∗ 0.68 0.02∗∗ 0.02∗∗

Panel B: Long-run risks

dp 0.19 0.04∗∗ 0.03∗∗ 0.15 0.15 0.13 0.26 0.15∗∗ 0.13∗∗

tbl 0.36 0.04∗∗ 0.04∗∗ 0.20 0.03∗∗ 0.03∗∗ 0.06 0.03 0.03

lty 0.07 0.02 0.02 0.02 0.04 0.03 0.00 0.04 0.03

ltr 0.74 0.06∗∗ 0.05∗∗ 1.46 0.06∗∗ 0.05∗∗ 1.13 0.06∗∗ 0.05∗∗

tms 0.58 0.06∗∗ 0.05∗∗ 0.48 0.02∗∗ 0.02∗∗ 0.17 0.02∗∗ 0.02∗∗

dfy 0.41 0.06∗∗ 0.05∗∗ 0.26 0.05∗∗ 0.04∗∗ 0.17 0.05∗∗ 0.04∗∗

dfr 0.43 0.01∗∗ 0.01∗∗ 0.27 0.01∗∗ 0.01∗∗ 0.20 0.01∗∗ 0.01∗∗

svar 0.61 0.12∗∗ 0.10∗∗ 1.06 0.19∗∗ 0.16∗∗ 1.84 0.19∗∗ 0.16∗∗

ik 0.57 0.14∗∗ 0.12∗∗ 0.62 0.13∗∗ 0.11∗∗ 0.39 0.13∗∗ 0.11∗∗

cay 1.41 0.03∗∗ 0.03∗∗ 1.46 0.01∗∗ 0.01∗∗ 0.68 0.01∗∗ 0.01∗∗

Panel C: Rare disaster

dp 0.19 0.02∗∗ 0.02∗∗ 0.15 0.02∗∗ 0.02∗∗ 0.26 0.02∗∗ 0.02∗∗

tbl 0.36 0.02∗∗ 0.02∗∗ 0.20 0.02∗∗ 0.02∗∗ 0.06 0.02 0.02

lty 0.07 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01

ltr 0.74 0.06∗∗ 0.05∗∗ 1.46 0.06∗∗ 0.05∗∗ 1.13 0.06∗∗ 0.05∗∗

tms 0.58 0.03∗∗ 0.03∗∗ 0.48 0.03∗∗ 0.03∗∗ 0.17 0.03∗∗ 0.03∗∗

dfy 0.41 0.04∗∗ 0.04∗∗ 0.26 0.04∗∗ 0.04∗∗ 0.17 0.04∗∗ 0.04∗∗

dfr 0.43 0.00∗∗ 0.00∗∗ 0.27 0.00∗∗ 0.00∗∗ 0.20 0.00∗∗ 0.00∗∗

svar 0.61 0.05∗∗ 0.04∗∗ 1.06 0.05∗∗ 0.04∗∗ 1.84 0.05∗∗ 0.04∗∗

ik 0.57 0.13∗∗ 0.11∗∗ 0.62 0.13∗∗ 0.11∗∗ 0.39 0.13∗∗ 0.11∗∗

cay 1.41 0.01∗∗ 0.01∗∗ 1.46 0.01∗∗ 0.01∗∗ 0.68 0.01∗∗ 0.01∗∗
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Table 7 Bounds on Momentum Portfolio Predictability

This table reports the R2 from the momentum portfolio predictive regression rt+1 = α+βzt+εt+1,
where zt is the predictor and the time period is from January 1959 to December 2012. R̄2

Ross is Ross’s
(2005) bound on the R2, while R̄2

RA and R̄2
SR are the proposed bounds. Statistical significance is

assessed by the Wald statistic for testing that the predictive R2 is less than the theoretical upper
bound. ∗∗ and ∗ indicate significance at the 5% and 10% levels, respectively.

Loser portfolio Mediocre portfolio Winner portfolio

z R2 R̄2
RA R̄2

SR R2 R̄2
RA R̄2

SR R2 R̄2
RA R̄2

SR

Panel A: Habit formation

dp 0.26 0.00∗∗ 0.00∗∗ 0.21 0.01∗∗ 0.01∗∗ 0.32 0.00∗∗ 0.00∗∗

tbl 0.39 0.03∗∗ 0.03∗∗ 0.40 0.04∗∗ 0.04∗∗ 0.17 0.01∗∗ 0.00∗∗

lty 0.12 0.04∗ 0.03∗ 0.06 0.05 0.04 0.02 0.01 0.01

ltr 1.29 0.06∗∗ 0.05∗∗ 1.80 0.04∗∗ 0.03∗∗ 0.38 0.00∗∗ 0.00∗∗

tms 0.44 0.03∗∗ 0.02∗∗ 0.75 0.04∗∗ 0.03∗∗ 0.35 0.07∗∗ 0.06∗∗

dfy 1.20 0.02∗∗ 0.02∗∗ 0.73 0.00∗∗ 0.00∗∗ 0.03 0.09 0.08∗∗

dfr 0.09 0.04 0.03 0.14 0.01∗∗ 0.01∗∗ 0.51 0.02∗∗ 0.01∗∗

svar 0.11 0.02∗∗ 0.02∗∗ 0.56 0.02∗∗ 0.02∗∗ 1.42 0.10∗∗ 0.09∗∗

ik 1.05 0.08∗∗ 0.07∗∗ 1.00 0.09∗∗ 0.08∗∗ 0.21 0.13∗ 0.11∗

cay 1.14 0.03∗∗ 0.02∗∗ 1.30 0.04∗∗ 0.03∗∗ 1.00 0.01∗∗ 0.01∗∗

Panel B: Long-run risks

dp 0.26 0.02∗∗ 0.01∗∗ 0.21 0.06∗∗ 0.05∗∗ 0.32 0.16∗∗ 0.14∗∗

tbl 0.39 0.03∗∗ 0.03∗∗ 0.40 0.04∗∗ 0.03∗∗ 0.17 0.04∗∗ 0.03∗∗

lty 0.12 0.02∗ 0.02∗ 0.06 0.03 0.03 0.02 0.04 0.04

ltr 1.29 0.07∗∗ 0.06∗∗ 1.80 0.08∗∗ 0.07∗∗ 0.38 0.02∗∗ 0.02∗∗

tms 0.44 0.02∗∗ 0.02∗∗ 0.75 0.04∗∗ 0.04∗∗ 0.35 0.04∗∗ 0.03∗∗

dfy 1.20 0.09∗∗ 0.08∗∗ 0.73 0.07∗∗ 0.06∗∗ 0.03 0.06 0.05

dfr 0.09 0.01∗ 0.01∗ 0.14 0.00∗ 0.00∗ 0.51 0.01∗∗ 0.01∗∗

svar 0.11 0.09 0.08 0.56 0.10∗∗ 0.08∗∗ 1.42 0.20∗∗ 0.17∗∗

ik 1.05 0.08∗∗ 0.07∗∗ 1.00 0.12∗∗ 0.10∗∗ 0.21 0.16 0.13∗

cay 1.14 0.02∗∗ 0.01∗∗ 1.30 0.03∗∗ 0.03∗∗ 1.00 0.01∗∗ 0.01∗∗

Panel C: Rare disaster

dp 0.26 0.00∗∗ 0.00∗∗ 0.21 0.04∗∗ 0.03∗∗ 0.32 0.15∗∗ 0.13∗∗

tbl 0.39 0.03∗∗ 0.03∗∗ 0.40 0.04∗∗ 0.03∗∗ 0.17 0.03∗ 0.02∗

lty 0.12 0.02∗ 0.01∗ 0.06 0.03 0.03 0.02 0.04 0.04

ltr 1.29 0.07∗∗ 0.06∗∗ 1.80 0.08∗∗ 0.07∗∗ 0.38 0.02∗∗ 0.02∗∗

tms 0.44 0.02∗∗ 0.02∗∗ 0.75 0.04∗∗ 0.03∗∗ 0.35 0.01∗∗ 0.01∗∗

dfy 1.20 0.02∗∗ 0.02∗∗ 0.73 0.04∗∗ 0.04∗∗ 0.03 0.05 0.05

dfr 0.09 0.01 0.01 0.14 0.00∗ 0.00∗ 0.51 0.01∗∗ 0.01∗∗

svar 0.11 0.03 0.03 0.56 0.04∗∗ 0.03∗∗ 1.42 0.04∗∗ 0.04∗∗

ik 1.05 0.07∗∗ 0.06∗∗ 1.00 0.09∗∗ 0.08∗∗ 0.21 0.12∗ 0.10∗

cay 1.14 0.01∗∗ 0.01∗∗ 1.30 0.01∗∗ 0.01∗∗ 1.00 0.00∗∗ 0.00∗∗

34



Table 8 Bounds on Industry Portfolio Predictability

This table reports the R2 from the industry portfolio predictive regression rt+1 = α+βzt+ εt+1,
where zt is the predictor and the time period is from January 1959 to December 2012. R̄2

Ross is Ross’s
(2005) bound on the R2, while R̄2

RA and R̄2
SR are the proposed bounds. Statistical significance is

assessed by the Wald statistic for testing that the predictive R2 is less than the theoretical upper
bound. ∗∗ and ∗ indicate significance at the 5% and 10% levels, respectively.

Habit formation Long-run risks Rare disaster

Portfolio R2 R̄2
RA R̄2

SR R̄2
RA R̄2

SR R̄2
RA R̄2

SR

Panel A: zt is the dividend-price ratio (dp)

NoDur 0.40 0.03∗∗ 0.03∗∗ 0.15∗∗ 0.12∗∗ 0.14∗∗ 0.12∗∗

Durbl 0.19 0.01∗∗ 0.01∗∗ 0.04∗∗ 0.04∗∗ 0.02∗∗ 0.02∗∗

Manuf 0.01 0.00 0.00 0.08 0.07 0.04 0.04

Enrgy 0.00 0.00 0.00 0.13 0.11 0.10 0.09

HiTec 0.10 0.01∗ 0.01∗ 0.06 0.05 0.03 0.02∗

Telcm 0.49 0.01∗∗ 0.00∗∗ 0.01∗∗ 0.01∗∗ 0.01∗∗ 0.01∗∗

Shops 0.28 0.00∗∗ 0.00∗∗ 0.08∗∗ 0.07∗∗ 0.08∗∗ 0.06∗∗

Hlth 0.15 0.02∗ 0.02∗ 0.09 0.08 0.08 0.07

Utils 0.03 0.00 0.00 0.16 0.13 0.12 0.10

Other 0.31 0.01∗∗ 0.01∗∗ 0.08∗∗ 0.07∗∗ 0.05∗∗ 0.05∗∗

Panel B: zt is the term spread (tms)

NoDur 0.38 0.04∗∗ 0.03∗∗ 0.02∗∗ 0.02∗∗ 0.02∗∗ 0.02∗∗

Durbl 1.04 0.02∗∗ 0.01∗∗ 0.02∗∗ 0.02∗∗ 0.02∗∗ 0.02∗∗

Manuf 0.69 0.03∗∗ 0.03∗∗ 0.02∗∗ 0.02∗∗ 0.01∗∗ 0.01∗∗

Enrgy 0.12 0.03 0.03 0.01 0.01 0.00 0.00

HiTec 0.55 0.03∗∗ 0.02∗∗ 0.07∗∗ 0.06∗∗ 0.02∗∗ 0.02∗∗

Telcm 0.21 0.01∗∗ 0.01∗∗ 0.01∗∗ 0.01∗∗ 0.00∗∗ 0.00∗∗

Shops 0.44 0.03∗∗ 0.03∗∗ 0.02∗∗ 0.02∗∗ 0.02∗∗ 0.02∗∗

Hlth 0.00 0.05 0.04 0.06 0.05 0.06 0.05

Utils 0.23 0.04∗∗ 0.03∗∗ 0.02∗∗ 0.02∗∗ 0.02∗∗ 0.02∗∗

Other 0.30 0.05∗∗ 0.05∗∗ 0.04∗∗ 0.03∗∗ 0.03∗∗ 0.03∗∗

Panel C: zt is the consumption-wealth ratio (cay)

NoDur 1.67 0.04∗∗ 0.04∗∗ 0.05∗∗ 0.04∗∗ 0.03∗∗ 0.02∗∗

Durbl 0.89 0.00∗∗ 0.00∗∗ 0.00∗∗ 0.00∗∗ 0.00∗∗ 0.00∗∗

Manuf 0.89 0.01∗∗ 0.01∗∗ 0.02∗∗ 0.02∗∗ 0.01∗∗ 0.01∗∗

Enrgy 0.09 0.00 0.00 0.03 0.02 0.02 0.02

HiTec 0.91 0.01∗∗ 0.01∗∗ 0.01∗∗ 0.01∗∗ 0.00∗∗ 0.00∗∗

Telcm 1.17 0.02∗∗ 0.02∗∗ 0.02∗∗ 0.02∗∗ 0.01∗∗ 0.01∗∗

Shops 0.94 0.04∗∗ 0.03∗∗ 0.03∗∗ 0.03∗∗ 0.01∗∗ 0.01∗∗

Hlth 1.01 0.05∗∗ 0.04∗∗ 0.03∗∗ 0.03∗∗ 0.02∗∗ 0.02∗∗

Utils 0.64 0.03∗∗ 0.03∗∗ 0.07∗∗ 0.06∗∗ 0.06∗∗ 0.05∗∗

Other 1.68 0.03∗∗ 0.02∗∗ 0.01∗∗ 0.01∗∗ 0.01∗∗ 0.01∗∗
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