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Order Flow Volatility and Equity Costs of Capital

Abstract

We propose that the volatility of order flow is a proxy for costs of information asymmetry, as

order flow volatility varies positively with parameters that also influence adverse selection costs

of trading. Empirically, order flow volatility is significantly higher prior to earnings or merger

announcements when information asymmetry is likely to be elevated. Levels of and shocks to

order flow volatility are positively and significantly correlated with existing illiquidity proxies,

and strongly predict stock returns in the cross section. The impact of order imbalance volatility

shocks on stock prices is reflected within one month in large, visible stocks, but takes up to

three months to be fully reflected in small, “neglected” stocks.



1 Introduction

We examine the relation between returns and both, levels of as well as shocks to the variability of

order flows. Both, levels of and shocks to order flow volatility have an impact on required equity

returns beyond a comprehensive list of return predictors. Our analysis accords with theoretical

arguments that link order flow variability to information asymmetry costs, and also unveils a

novel predictor of stock returns, that is statistically and economically significant. To the best

of our knowledge, this link between required returns (costs of capital) and order flow volatility

has not been previously explored in the literature.

We sign trades as buys and sells to create two measures of order imbalance (OIB), one based

on shares traded and the other based on number of trades. OIB, in terms of shares traded, is

denoted OIB SHR and is constructed as the number of shares bought less the number of shares

sold as a fraction of the sum of shares bought and sold. Similarly, OIB, in terms of the number

of trades is denoted OIB NUM and is constructed as the number of buy trades less the number

of sell trades as a fraction of the sum of the total trades. The OIB volatilities (V OIB SHR

and V OIB NUM) are computed each month as the standard deviation of the daily OIB SHR

and OIB NUM in terms of shares traded and the number of trades, respectively.

We find that both V OIB SHR and V OIB NUM are cross-sectionally correlated with

different measures of liquidity, including turnover, bid-ask spreads and the Amihud measure

of illiquidity. Univariate sorts of V OIB SHR and V OIB NUM into quintile portfolios show

that a portfolio that is long the high OIB volatility stocks and short the low OIB volatility

stocks, yields a monthly return of about 80 basis points as does the long-short portfolio formed

by sorting on the Amihud illiquidity measure. Fama-MacBeth (1973) regressions reveal that

lagged values of V OIB SHR and V OIB NUM positively predict risk-adjusted returns.

Further, shocks to V OIB SHR and V OIB NUM (denoted respectively by SV OIB SHR

and SV OIB NUM) are highly positively correlated with shocks to the bid-ask spread and

shocks to the Amihud measure of illiquidity and negatively correlated with shocks to turnover.

A positive shock reduces the contemporaneous and next month’s returns. Quintile portfolios

with the largest shocks to volatility of OIB underperform those with the smallest shocks by
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2.68% (2.00%) in the current month and by 0.79% (0.95%) for SV OIB SHR (SV OIB NUM)

in the following month. Thus, shocks to the volatility of order flow have contemporaneous as

well as delayed effects on illiquidity and required rates of return, consistent with the notion that

agents’ reaction to liquidity shocks is not instantaneous. This part of the analysis also accords

with Bali, Peng, Shen, and Tang (2014) (BPST), who show that shocks to the Amihud (2002)

measure of illiquidity lead to lower future returns. However, the effect of order flow volatility

shocks survives controls for shocks to the Amihud (2002) measure of illiquidity.

Our motivation for studying order flow volatility stems from the recognition that adverse

selection costs are an important source of premiums in asset prices (Easley and O’Hara, 2004).

There is a large and growing literature that examines the impact of adverse selection on asset

returns. Easley, Hvidkjaer and O’Hara (2002) estimate the probability of informed trading

(PIN) from order imbalances to show that PIN impacts expected returns.1 Easley, Lopez

de Prado and O’Hara (2012) compute a modified measure of PIN denoted V PIN to show

that it can predict stressful events in the market such as the flash crash. Kelly and Ljungqvist

(2012) use exogenous shocks to analyst following of firms to show that prices and uninformed

demand fall as information asymmetry increases and the channel that links asymmetry to prices

is liquidity. Akbas, Armstrong and Petkova (2011) document a positive relation between the

volatility of liquidity and expected returns. Using an information risk measure based on the

price discovery of large trades, Hwang and Qian (2011) find that their measure is priced in

the cross-section of stock returns. Johnson and So (2015) use the option-to-stock volume ratio

as a measure of information asymmetry. Choi, Jin and Yan (2016) find a positive relation

between institutional ownership volatility and expected returns. Yang, Zhang and Zhang (2015)

use abnormal idiosyncratic volatility as a measure of information asymmetry to show that it

is positively related to future returns. Collin-Dufresne and Fos (2015) study how measures of

adverse selection respond to informed trading given the possibility that informed traders with

long-lived, monopolistic private information may submit limit orders.2

Given the many and diverse measures of information asymmetry proposed in the literature,

1Back, Crotty and Li (2016) show that a hybrid measure of informed trading based on PIN and the Kyle
(1985) model explains more cross-sectional variation in price impacts than PIN .

2We discuss this in more detail in Section 9.
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we motivate our measure on the basis of a model (presented in the appendix), which shows that

order flow volatility and adverse selection costs are related positively to the variables capturing

information in financial markets. Therefore, order flow volatility, which can be readily measured

from transactions data, can proxy for the adverse selection costs. We test this by comparing order

flow volatility prior to earnings or merger and acquisition announcements (when information

asymmetry is likely to be higher) to other periods. Order flow volatility is indeed significantly

higher prior to these events.

We find that the predictability of subsequent months’ returns from order flow volatility

and its shocks survives a long list of control variables including those used in the literature

listed above. These variables include firm characteristics such as momentum, monthly reversals,

idiosyncratic volatility, profitability, analyst forecast dispersion, illiquidity, turnover, asset growth,

accruals, new issues, PIN , return volatility, turnover volatility, illiquidity volatility and shocks

to turnover, illiquidity, institutional holdings and return volatility. Importantly, as mentioned

earlier, this return forecastability also survives the measure of illiquidity shocks, i.e., innovations

to the Amihud measure of liquidity, as developed by BPST, suggesting that shocks to order flow

volatility measure something more than shocks to illiquidity and are possibly more closely related

to adverse selection measures.

The effect of lagged shocks to the volatility of OIB is robust to different return definitions

including risk-adjusted returns, raw returns, and open-to-close midquote returns. The finding is

not driven by the recent financial crisis and it is robust to alternative order flow calculation based

on dollars traded. The results also survive across different subperiods. The impact of shocks

to volatility of OIB is stronger for firms with small market capitalization, low institutional

holdings, and high idiosyncratic volatility. We also find that for small stocks it takes over three

months for V OIB shocks to be incorporated into prices, but for large companies, the adjustment

happens in one month. We also find that SV OIB has a negative impact on prices initially, but

the shock’s impact turns positive after three months, consistent with the notion that order flow

volatility positively impacts firms’ required returns.

The rest of the paper is organized as follows. Section 2 presents the motivation in the context
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of a model presented in the appendix. Section 3 describes the sample selection and variable

construction in empirical analysis. Sections 4 and 5 examine the pricing effect of the proposed

volatility of order flow as a measure of illiquidity and the shocks to the volatility of order flow.

Section 6 presents the shocks to the volatility of order flow results in different informational

environments. Section 7 studies the return dynamics of the liquidity shocks. Sections 8 further

validates our measure by considering order flow volatility around corporate events. Section 9

contrasts our measure to one obtained from using the limit order book. Section 10 concludes.

A large number of robustness checks appear in an Internet Appendix, and are referenced within

the paper.

2 Motivation

Adverse selection costs of trading have been recognized as a determinant of equity cost of capital

in Easley and O’Hara (2004). However, these costs are hard to measure. We take the approach

that such costs are linked to other endogenous constructs in equilibrium and measuring these

other constructs might be easier than measuring adverse selection costs directly. Moreover, this

measurement may lead to additional insights on the relation between information asymmetry

and asset prices. Specifically, we note that in the celebrated Kyle (1984, 1985) model, order

flow from traders who submit market orders plays a key role as a signal from which the market

maker attempts to extract information. Indeed, we analytically show in the appendix that from

an ex ante standpoint, the standard deviation of order flow is directly linked to the exogenous

parameters that drive adverse selection costs. Intuitively, high order flow volatility indicates that

informed traders are more active, which is associated with higher adverse selection costs. Since

this standard deviation of order flow can be measured using transactions data, the dynamics of

the second moment of order flow can potentially be linked to the dynamics of the (unobserved)

true adverse selection costs, and, in turn, to required equity returns, even when the exogenous

parameters are not observable.

Previous efforts to link trading costs to equity prices in the cross section mainly focus on the

relation between the level of such costs and future stock returns; see, for example, Amihud and
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Mendelson (1986), Brennan and Subrahmanyam (1996), Jacoby, Fowler, and Gottesman (2000),

Jones (2002), and Amihud (2002). In a recent paper, BPST examine the relation between stock

returns and shocks to illiquidity, where illiquidity is measured by the procedure suggested by

Amihud (2002), and by bid-ask spreads. BPST explore the idea that investor reactions to

illiquidity shocks might not be immediate owing to limitations in information processing, so

that such shocks might have a persistent impact on stock prices.

Motivated by the above papers, we examine the relation between returns and both levels of as

well as shocks to the variability of order flows. We show that levels of and shocks to order flow

volatility have an impact on required returns beyond a comprehensive list of return predictors,

including those documented by BPST. Our analysis unveils a novel predictor of stock returns,

that is statistically and economically significant. To the best of our knowledge, this link between

required returns and order flow volatility, has not been previously explored in the literature.

3 Sample Selection and Hypotheses

Our sample includes common stocks listed on the NYSE, AMEX and Nasdaq in the period from

January 1983 to December 2012. To be included in the monthly analysis, a stock must have

the following data available: (i) its returns in the current month and the past twelve months

from CRSP, (ii) sufficient data to calculate market capitalization and turnover, (iii) data on the

Compustat tapes to calculate the book-to-market ratio as of December of the previous year, and

(iv) data in the NYSE Trade and Quote (TAQ) database or the Institute for Study of Security

Markets (ISSM) dataset to calculate the order imbalance. To avoid extremely illiquid stocks, we

eliminate stock-month observations with month-end stock prices below one dollar. The following

securities are also eliminated from the sample since their trading characteristics can differ from

ordinary equities: ADRs, shares of beneficial interest, units, companies incorporated outside the

U.S., Americus Trust components, closed-end funds, preferred stocks and REITs.

Transactions data are obtained from ISSM (1983-1992) and from TAQ (1993-2012). To

eliminate data errors, we exclude trades with non-positive prices and trades mapped to crossed

(the bid price greater than the ask price) or locked (the bid price equal to the ask price) quotes.
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We also exclude trades in the first fifteen minutes and the last five minutes of trading on each

day to increase the accuracy of the trade signing algorithm.3 We require that all stock-month

observations have at least 14 daily trading records in a month.

TAQ and ISSM data do not contain information on whether a trade is initiated by the buyer

or the seller. We use the Lee and Ready (1991) algorithm to classify transactions as either a buy

or a sell as follows: if a trade is executed at a price above (below) the quote midpoint, we classify

it as a buy (sell); if a trade occurs exactly at the quote midpoint, we sign it using the previous

transaction price according to the tick test (i.e., a buy if the sign of the last nonzero price change

is positive and vice versa). The Lee and Ready algorithm uses the fact that seller-initiated trades

tend to execute at a lower price than buyer-initiated trades. We apply the tick test up to the

past five price changes. If the past five price changes are zero then we do not use it in the

computation of buys or sells. As Lee and Ready (1991) note, the timestamps on quotes are

not always correctly synchronized with those for trades and hence they recommend that the

quotes be matched to trades with a five-second delay. We follow this five-second delay rule until

1998. Since such recording errors are not observed in the more recent data (see, for example,

Madhavan, Porter, and Weaver, 2005 as well as Chordia, Roll, and Subrahmanyam, 2005), we

do not impose any delays after 1998.

One concern with the Lee and Ready (1991) algorithm is that it may misclassify the side

that initiates a particular trade, even if the trade initiator places a market order. Lee and

Radhakrishna (2000) and Odders-White (2000) examine the trade-level accuracy of the Lee and

Ready algorithm for NYSE traded stocks and report accuracy rates of 93% and 85%, respectively.

Both Lee and Radhakrishna and Odders-White use data from the pre-decimalization era, and it

is important to assess the reliability of the Lee and Ready algorithm in the post-decimalization

era as well. The most recent study that examines this issue is Chakrabarty, Moulton, and

Shkilko (2012). They find that the transaction level accuracy of the Lee and Ready algorithm

during the June to December 2005 period is about 68%. The study of Chakrabarty, Moulton,

and Shkilko, however, is not directly comparable to Lee and Radhakrishna and Odders-White

because it examines Nasdaq stocks, and focuses solely on short sales. Ellis, Michaely, and

3The empirical results are largely the same when these trades are included.
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O’Hara (2000) is more directly comparable to Chakrabarty, Moulton, and Shkilko because the

former also examine the pre-decimalization period accuracy of the Lee and Ready algorithm

with Nasdaq stocks. Ellis, Michaely, and O’Hara find an accuracy rate of 81%. Although the

lower accuracy rate in Chakrabarty, Moulton, and Shkilko may be partly due to the fact that

it focuses only on short sales, it is quite likely that decimalization and increasing prevalence

of high frequency trading, with greater limit order activity (O’Hara, 2015) contributed to this

phenomenon as well.4

What is important from the perspective of our study, however, is not the trade-level accuracy,

but the accuracy when trade-level classifications are aggregated. For example, even if a fraction

of seller-initiated trades on a particular day is misclassified as buyer-initiated trades and a

similar fraction of buyer-initiated trades is also misclassified, then daily-level accuracy would be

much greater than trade-level accuracy. In fact, Chakrabarty, Moulton, and Shkilko find that

daily-level error rate is close to zero, and statistically insignificant. Therefore, any trade-level

misclassification is unlikely to meaningfully impact our tests based on aggregated data. Further,

even if trades are signed with error, there is no compelling reason for why the empirical pricing

of order flow volatility should be strengthened by this error,5 so that the signing error does not

bias the results in our favor. Nonetheless, we revisit this issue in Section 5.3.

3.1 Measures of Order Imbalance, Order Imbalance Volatility and
Shocks to Order Imbalance Volatility

We define order imbalance, order imbalance volatility and shocks to order imbalance volatility

as follows:6

OIB (order imbalance): We create two measures of order imbalance (OIB), one based on shares

4Faster execution of limit orders in the recent era might induce order-initiators to submit limit orders due
to a reduction in execution risk, and this would induce errors in the signing rule. Thus, for example, a limit
order to buy at a bid, if it executes quickly, might be a superior alternative to a trader than a market buy order
which executes at the ask. Note that the order initiator is a buyer, but the trade would execute below the quote
mid-point and would be recorded instead as a sell.

5For example, in a bivariate cross-sectional regression of returns on order flow volatility, provided returns are
not cross-sectionally correlated with the signing error variance, the slope coefficient is in fact attenuated because
of cross-sectional variation in the error variance.

6The terms “order imbalance” and “order flow” are used interchangeably.
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traded and the other based on the number of trades. OIB, in terms of shares traded, is denoted

OIB SHR and is constructed as the number of shares bought less the number of shares sold as

a fraction of the sum of shares bought and sold during an observation period. Similarly, OIB,

in terms of the number of trades is denoted OIB NUM and is constructed as the number of

buy trades less the number of sell trades as a fraction of the sum of the total number of trades

during an observation period. Order imbalance is scaled by the total number of trades or the

total number of shares traded so as to eliminate the impact of total trading activity. Actively

traded stocks are likely to have higher order imbalances. The scaling standardizes the order

imbalance measure. We calculate daily OIB to construct the volatility of order imbalance. For

asset pricing tests later, we estimate monthly OIB using all the buy and sell trades in a month.

V OIB (volatility of order imbalance): The OIB volatilities are computed each month as the

standard deviation of the daily OIB SHR and OIB NUM , and are denoted by V OIB SHR

and V OIB NUM , respectively.

SV OIB (shocks to volatility of order imbalance): We compute shocks to V OIB SHR and

V OIB NUM in each month (SV OIB SHR and SV OIB NUM) by subtracting the k-month

moving average of V OIB SHR and V OIB NUM in the previous month. In our main tests,

we use the six-month moving average. Our results are not sensitive to the choice of the moving

average lag as shown in the robustness tests.7

3.2 Summary Statistics

Panel A of Table 1 provides the summary statistics (computed as the time series averages of the

monthly cross-sectional statistics) of the above variables. All variables except realized returns

are cross-sectionally winsorized at the 0.5% and 99.5% levels.

There are 2948 stocks per month on average in our sample. Both OIB SHR and OIB NUM

have negative means and medians indicating that, in general, there is more seller initiated

trades than buyer initiated trades. The mean (median) of V OIB SHR is 0.36 (0.34) and for

7We also use an ARMA(1,1) model for V OIB to extract shocks to order flow volatility and find that our
central results are unchanged. This analysis is available in the internet appendix (Table A3).
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V OIB NUM it is 0.29 (0.25) suggesting that OIB SHR is more volatile. SV OIB SHR and

SV OIB NUM are both close to zero, albeit negative, suggesting that on average, within our

sample, there are more, or larger declines (as opposed to increases), in the volatility of order

imbalance.8

Panel B reports the time-series averages of the cross-sectional correlations between the

volatility of OIB and shocks to these volatilities and the well-known liquidity measures, stock

returns (RET ) and PIN . The liquidity measures include the Amihud (2002) illiquidity measure

(ILLIQ), bid-ask spread (SPRD, obtained using the Holden and Jacobsen (2014) method), and

stock share turnover (TURN , calculated as the logarithm of the monthly average of the daily

ratio of the stock’s trading volume to the total number of shares outstanding).9 PIN is the

probability of informed trade measured by Easley, Kiefer, O’Hara, and Paperman (1996). The

liquidity shocks are computed in a manner similar to shocks to the volatility of order imbalance.

For example, the Amihud illiquidity shock (SILLIQ) is defined as ILLIQ in the current month

minus the average of ILLIQ in the previous six months.

V OIB SHR (V OIB NUM) has a correlation of 0.25 (0.26) with ILLIQ; a correlation of

−0.51 (−0.50) with the turnover ratio and a correlation of 0.50 (0.51) with the bid-ask spread.

This suggests that stocks with a higher volatility of order imbalance have lower share turnover,

larger price impact, and wider bid-ask spreads. The fact that the order imbalance volatilities

behave in a manner similar to the traditional illiquidity measures supports the notion that

the volatility of OIB partially captures liquidity dynamics. V OIB SHR (V OIB NUM) has

a correlation of 0.55 (0.58) with PIN suggesting that order flow volatility may be partially

proxying for adverse selection.

Turning now to V OIB shocks, in Panel B of Table 1 we find that lagged and concurrent values

of SV OIB SHR and SV OIB NUM are positively correlated with SILLIQ and SSPRD, and

negatively correlated with STURN , indicating that positive shocks to the volatility of order

imbalance is associated with liquidity deterioration. However, the correlations are low. For

8We also present the statistics for the subperiods before and after 2001 in an internet appendix (Table A2).
9Given that Nasdaq trading volume could be overstated due to interdealer trades we follow the methodology

of Gao and Ritter (2010) to adjust Nasdaq volume.
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instance, the correlation between SV OIB SHR and SILLIQ is 0.06 while the correlation

between V OIB SHR and ILLIQ is 0.25.

Overall, we find that levels of and shocks to order flow volatility are positively correlated

with illiquidity proxies and innovations to these proxies, respectively. Based on our discussion

in Section 2, these findings accord with the notion that variations in order flow volatility and

its shocks are primarily driven by shocks to informed trading parameters, resulting in a positive

relation between order flow volatility and illiquidity. However, the low correlations between

shocks to volatility of order imbalance and ILLIQ indicate that the time-series variation of

the order imbalance volatility can capture some information not contained in the variation of

ILLIQ. Lagged values of V OIB SHR and V OIB NUM are positively correlated with RET ,

suggesting that more illiquid stocks (as measured by the volatility of OIB) have higher expected

returns in the cross-section. Both SV OIB SHR and SV OIB NUM are significantly negatively

correlated with stock returns.

Panel C reports the times series averages of the cross-sectional correlations between the order

imbalance volatility, the shocks to these volatilities, the return standard deviation (Ret Std),

and the shock to the return standard deviation(SRet Std). Ret Std is the standard deviation

of daily returns in a month. SRet Std is defined as Ret Std in the current month minus the

average of Ret Std in the previous six months. The correlation between the order imbalance

volatility and the return standard deviation is positive but low. For instance, the correlation

between V OIB SHR and Ret Std is 0.06, suggesting that V OIB contains different information

from Ret Std. Although V OIB SHR and Ret Std are positively correlated, it is interesting

that the shocks to these two variables have negative correlations at comparable magnitude,

indicating that the dynamics of the two variables are very different.

Figure 1 plots the equally-weighted and value-weighted V OIB. There is a clear downward

trend for both V OIB SHR and V OIB NUM . In unreported analysis, we regress V OIB on a

linear time trend and the estimated time trend is negative and highly significant in each case.

This is consistent with Chordia, Roll, and Subrahmanyam (2011) who document a significant

increase in liquidity over time. We also plot the equally-weighted and value-weighted SV OIB
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in Figure 2. There is no clear pattern for SV OIB.

3.3 Hypotheses

We describe our testable hypotheses in this subsection. We consider order flow volatility as a

proxy for adverse selection costs, because it exhibits comparative statics similar to those for such

costs, and because empirically, Table 1 demonstrates that V OIB and its shocks are positively

correlated with illiquidity proxies and their shocks, respectively (we provide further evidence

on this issue in Section 8). Therefore, we have the following hypotheses (stated in alternative

form):

Our first hypothesis relates order flow volatility to asset returns:

Hypothesis 1: Higher order flow volatility (V OIB) implies higher expected returns.

The existence of a premium for information asymmetry posits that an asset’s price falls upon a

positive V OIB shock because the asset becomes less attractive to investors:

Hypothesis 2: Positive shocks to order flow volatility (SV OIB) imply lower contemporaneous

prices.

Finally, such shocks should increase the expected asset returns in the future when the premium

is realized:

Hypothesis 3: Positive shocks to order flow volatility (SV OIB) imply higher future returns.

4 Portfolio Sorts

In this section, we provide evidence that both V OIB and SV OIB are priced in the cross section

using portfolio sorts.

4.1 Volatility of OIB and Stock Returns

Panel A of Table 2 studies the distribution of stock characteristics across quintile sorted V OIB

portfolios. Firm size decreases, while the book-to-market ratio and return volatility increase

with the volatility of order imbalance. This is not surprising as smaller firms and more volatile
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firms are likely to be less liquid and subject to more adverse selection.

To test for the pricing of V OIB (Hypothesis 1), we first present univariate portfolio sort

results for the volatility of order imbalance and other liquidity measures. In Panel B of Table 2,

we sort stocks into quintile portfolios based on order imbalance, volatility of order imbalance,

and other liquidity measures, and report the average raw returns of the quintile portfolios in the

next month. Also reported are the raw returns and the alphas (with respect to the Fama and

French (1993) factors along with the momentum factor and the Pastor and Stambaugh (2003)

liquidity factor) for the portfolios that are long in stocks in the highest quintile and short in

stocks in the lowest quintile. The associated Newey-West (1987) t-statistics are in parentheses.

The results show that V OIB SHR and V OIB NUM positively predict stock returns in

the next month. The raw return differential of the top and bottom quintile portfolios is 0.78%

(0.72%) per month for V OIB SHR (V OIB NUM), and both are significant at the 1% level.

For the alphas, the differential is even higher at 0.99% (0.97%) per month for V OIB SHR

(V OIB NUM). For order imbalances themselves, the return differences between the top and

bottom quintiles and the alphas are negative. The high minus low, long-short portfolio alpha

amounts to −0.47% (−0.38%) per month when sorting on OIB SHR (OIB NUM). This

negative relation suggests that the price pressure from order imbalances in the current month

reverses in the next month.

We also examine the pricing effects of the traditional liquidity measures. The monthly raw

return (alpha) differential for quintile portfolios sorted on ILLIQ is 0.86% (1.15%), indicating

that the Amihud illiquidity measure is also significantly and positively related to future returns.

For TURN (SPRD), the alpha differential is -0.46% (1.20%) per month. The results suggest

that illiquid stocks are associated with high future returns, consistent with the consensus in the

literature.

To examine whether the order imbalance volatility contains information in addition to the

traditional liquidity measures, we double sort stocks based first on the traditional liquidity

measures and then on V OIB SHR or V OIB NUM . More specifically, at the end of each

month t, we first sort stocks into high and low groups based on median ILLIQ, TURN , or
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SPRD, and then sort stocks based on V OIB SHR or V OIB NUM into quintile portfolios

within each group separately. Portfolio returns at month t + 1 are reported in Panel C for

V OIB SHR and for V OIB NUM in Panel D. Across all the columns, for V OIB SHR and

V OIB NUM , the return differences between the top and bottom quintiles and the alphas are

larger for stocks with higher ILLIQ, higher turnover and higher spreads. This is not surprising

given the correlation between the different liquidity measures documented in Table 1. Note

that even after controlling for the traditional illiquidity measures, all the return differentials

are generally significant at the 5% level or better. This suggests that the volatility of order

imbalances provides additional information about the illiquidity of a stock that is not captured

by the effect of the traditional liquidity measures, possibly because V OIB is related to adverse

selection. In general, the results in Table 2 support our Hypothesis 1 that order flow volatility

(V OIB) is positively related to the expected returns in the cross section of stocks.

4.2 Shocks to Volatility of OIB and Stock Returns

Having documented the pricing effect of V OIB, we now focus on shocks to this measure. We

predict that an increase in illiquidity due to an increase in adverse selection (proxied by order

flow volatility) will decrease contemporaneous prices (Hypothesis 2) but increase future expected

returns (Hypothesis 3). We first consider the impact of a shock to order imbalance volatility on

contemporaneous and subsequent months’ returns using, in turn, the usual portfolio sort and

Fama-MacBeth approaches, and then consider longer horizon returns in Section 7.

Panel A of Table 3 presents the distribution of stock characteristics across quintile sorted

SV OIB portfolios. Return volatility has a U-shaped pattern across the quintile portfolios. The

highest SV OIB portfolio has lower return volatility than the lowest SV OIB portfolio. The

book-to-market ratio and firm size respectively follow a U-shaped and an inverted U-shaped

pattern across the quintile portfolios. However, there is no material difference in the size or

book-to-market ratio across the highest and lowest SV OIB portfolios.

Panel B of Table 3 presents the average raw returns of the quintile portfolios along with

the return differences and the alphas between the top and bottom quintile portfolios in the
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current month and Panel C reports results in the next month. At the end of each month t, we

sort stocks into quintile portfolios based on SV OIB SHR, SV OIB NUM , SILLIQ, STURN ,

and SSPRD, and then examine the returns across the portfolios. The average raw returns are

generally positive in all of the quintile portfolios, reflecting an average upward trend in the

market during our sample period. The returns change monotonically across all the quintile

portfolios regardless of the sorting variable. Consistent with Hypothesis 2, shocks to volatility

of order imbalance are negatively correlated with contemporaneous returns. The monthly return

difference between the portfolios of stocks with high and low shocks to OIB volatility is quite

large at -2.68% (-2.00%) and the alpha is -2.53% (-1.91%) for SV OIB SHR (SV OIB NUM).

Consistent with BPST, we find that all of the other liquidity shocks measured using traditional

methods also have large and significant impact on the contemporaneous stock prices. The

return differences and the alphas across the other liquidity shocks are even higher than those

for SV OIB. The evidence indicates that shocks to V OIB (our adverse selection proxy) are

negatively correlated with contemporaneous returns.

Panel C of Table 3 shows that all of the liquidity shocks predict the next month’s returns

too. However, at odds with Hypothesis 3, shocks to order imbalance volatility imply lower

returns in the following month. The monthly raw return differential between stocks in the

highest and the lowest SV OIB SHR (SV OIB NUM) quintiles is −0.79% (−0.95%). The raw

return differential between stocks in the highest and the lowest SILLIQ (STURN) [SSPRD]

quintiles is −1.53% (1.31%) [-0.89%] in the following month. The alpha differentials are, in fact,

slightly larger. The return and alpha differentials are all statistically significant at the 1% level.

BPST argue that because of limited attention (Hirshleifer and Teoh, 2003), such an increase in

illiquidity may have a prolonged impact on prices. The notion is that owing to limitations on

information processing, it might take time for market participants to realize that illiquidity has

changed, which results in a delayed impact of illiquidity shocks on prices.

In order to ascertain whether SV OIB SHR and SV OIB NUM have any information over

and above that contained in SILLIQ, STURN , SSPRD, past one month return, RET , and

analyst dispersion in earnings forecasts, DISP , in Table 4 we provide results from bivariate

sorts. The rationale for the variables is as follows: Since SV OIB measures shocks to liquidity
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it is important to test whether it contains information over and above the shocks to the

standard liquidity variables including SILLIQ, STURN and SSPRD. Since shocks to order

imbalance volatility could be driven by dispersion in investor beliefs we control for analyst

forecast dispersion. Finally, low past returns could signal financial distress and thus we control

for it in the bivariate sorts. We first sort stocks into quintile portfolios in month t based

on SILLIQ, STURN , SSPRD, RET and DISP respectively. Then within each group, we

further sort stocks based on SV OIB SHR and SV OIB NUM into quintile portfolios. Returns

in month t+ 1 are reported for SV OIB SHR and SV OIB NUM portfolios.

In general, predictive ability of SV OIB is not captured by shocks to the traditional liquidity

measures. In the case of SILLIQ and SSPRD, all the differential alphas except for those of

quintile 3 are significantly negative. In the case of STURN , all the alphas except for those

of quintiles 3 and 4 are significantly negative for SV OIB SHR. Thus, SV OIB has return

relevant information that is not captured by SILLIQ, STURN or SSPRD. In the case of RET

and DISP , all the return differentials are significantly negative suggesting that the impact of

SV OIB on returns is not being driven by financial distress or differences in investor beliefs.

While the portfolio sorts do provide support for the idea that shocks to order flow volatility

(SV OIB SHR and SV OIB NUM) capture shocks to liquidity over and above those contained

in the traditional measures of liquidity (including the Amihud, 2002, measure used by BPST),

we now explore this idea in more detail in a regression framework.

5 Asset Pricing Regressions

5.1 Methodology

Our cross-sectional asset pricing tests follow Brennan, Chordia, and Subrahmanyam (1998) and

Avramov and Chordia (2006), who test factor models by regressing risk-adjusted returns on

firm-level attributes such as size, book-to-market, turnover and past returns. Under the null of

exact pricing, such attributes should be statistically and economically insignificant in the cross

section. The use of individual stocks as test assets avoids the possibility that tests may be
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sensitive to the portfolio grouping procedure (Lo and MacKinlay, 1990).

We first regress the excess return of stock j, (j = 1, . . . , N) on asset pricing factors, Fkt,

(k = 1, . . . , K), allowing the factor loadings, βjkt, to vary over time as a function of firm size

and book-to-market ratio. The conditional factor loadings of security are modeled as:

βjkt−1 = βjk1 + βjk2Sizejt−1 + βjk3BMjt−1, (1)

where Sizejt−1 and BMjt−1 are the market capitalization and the book-to-market ratio at time

t− 1.10

The dependence of factor loadings on size and book-to-market is motivated by the general

equilibrium model of Gomes, Kogan, and Zhang (2003), who justify separate roles for size and

book-to-market as determinants of beta. In particular, firm size captures the component of a

firm’s systematic risk attributable to growth options, and the book-to-market ratio serves as a

proxy for the risk of existing projects.

Subtracting the component of the excess returns associated with the factor realizations

generates the risk-adjusted returns, R∗
jt:

R∗
jt = Rjt −RFt −

K∑
k=1

βjkt−1Fjk, (2)

where RFt is the risk-free rate, βjkt−1 is the conditional beta estimated by a first-pass time-series

regression over the entire sample period.11

The risk-adjusted returns are then regressed on the equity characteristics:

R∗
jt = c0t +

M∑
m=1

cmtZmjt + ejt, (3)

where Zmjt is the lagged one month value of the characteristic m for security j at time t, and

M is the total number of characteristics. This procedure ensures unbiased estimates of the

10We also check the unconditional specification in which βjk(t) = βjk (constant betas). The results are
unaltered.

11Fama and French (1992) and Avramov and Chordia (2006) show that using the entire time series to compute
the factor loadings generates qualitatively similar results to those obtained from using rolling regressions. The
results are quite similar when we use rolling regressions to estimate the factor betas.
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coefficients, cmt, without the need to form portfolios, because the errors in estimation of the

factor loadings are included in the dependent variable. The standard Fama-MacBeth (1973)

(FM) estimators are the time-series averages of the regression coefficients, ĉt . While we use the

risk-adjusted returns to estimate the regression coefficients for the main part of the paper, the

results are substantially similar when we use alternative return definitions in Section 5.3.

To examine the pricing effect of V OIB and SV OIB, we consider the following control

variables.

1. OIB: Monthly order imbalance, defined as in Section 3.1.

2. POIB: Positive order imbalance, the logistic transform of the ratio of number of days

with positive OIB to the total number of trading days in a month.

3. SIZE: Firm size measured as the natural logarithm of the market value of the firm’s

common equity (Banz, 1981).

4. BM : Book equity for the fiscal year-end in a calendar year divided by market equity at

the end of December of that year, as in Fama and French (1992).

5. R212: The cumulative return on the stock over the eleven months ending at the beginning

of the previous month (Jegadeesh and Titman, 1993).

6. R1: The lagged one month return (Jegadeesh, 1990).

7. ILLIQ: The Amihud illiquidity measure, defined as in Section 3.2.

8. TURN : Turnover ratio, defined as in Section 3.2.

9. StdTURN : Standard deviation of the monthly turnover over the past 36 months (Chordia,

Subrahmanyam, and Anshuman, 2001).

10. IV OL: Idiosyncratic volatility, as in Ang, Hodrick, Xing, and Zhang (2006), computed as

the standard deviation of the regression residual of the Fama and French (1993) three-factor

model using daily data each month.
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11. ACC: Accounting accruals, defined as the change in non-cash current assets, less the

change in current liabilities (exclusive of short-term debt and taxes payable), less depreciation

expense, all divided by average total assets (Sloan, 1996).

12. AG: Asset growth, as in Cooper, Gulen, and Schill (2008), computed as the year-on-year

percentage change in total assets.

13. ISSUE: New issues, as in Pontiff and Woodgate (2008), measured as the change in shares

outstanding from eleven months ago.

14. PROFIT : Profitability, as in Fama and French (2006), calculated as earnings divided by

book equity, where earnings is defined as income before extraordinary items.

15. SUE: Standardized unexpected earnings, computed as the most recent quarterly earnings

less the earnings four quarters ago, divided by its standard deviation estimated over the

prior eight quarters. This is used as a proxy for earnings surprises, in order to analyze

post-earnings-announcement-drift (PEAD) as in Bernard and Thomas (1989, 1990), and

Ball and Brown (1968).

16. MAX: The maximum daily return in the previous month, as in Bali, Cakici, and Whitelaw

(2011). This variable is included to capture the notion that large returns may be associated

with extreme order imbalance.

17. DISP : Analyst earnings forecast dispersion, as in Diether, Malloy, and Scherbina (2002),

computed as the standard deviation of annual earnings-per-share forecasts scaled by the

absolute value of the average outstanding forecast. This variable is included to address

the concern that V OIB could potentially proxy for divergent opinions among investors.

18. DISPD: Dummy variable which equals to one if the stock is covered by at least two

analysts and zero otherwise.12

12If there is no or only one analyst forecast in the I/B/E/S database, then DISP is set to zero. Such low
coverage stocks account for 25% of the observations in the sample. To preserve a reasonable sample size, we
include this dummy variable to indicate minimum analyst coverage instead of excluding all low coverage stocks.
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19. SSTT : defined as the small-trade buyer-initiated turnover minus the small-trade seller-initiated

turnover, measured over the previous six months. Hvidkjaer (2008) suggests that this

measure proxies for trading by individual investors.

20. HiLoSprd: The bid-ask spread estimate from daily high and low prices as in Corwin and

Schultz (2012).

21. PIN : The probability of informed trading as in Easley, Hvidkjaer and O’Hara (2002).

The idea is to check whether our measures of adverse selection survive after including the

measures existing in the literature.

22. ILLIQV : The volatility of idiosyncratic illiquidity as in Akbas, Armstrong and Petkova

(2011) since it impacts expected returns.

23. Std Ret: The standard deviation of daily returns computed each month.

24. INSTV : The average of the eight most recent quarterly absolute institutional ownership

percentage changes.

To control for shocks to other liquidity and order imbalance variables, we also include innovations

in OIB, POIB, ILLIQ, TURN , IV OL, Std Ret and StdTURN calculated in a manner similar

to SV OIB using the current value and its lagged six-month moving average, resulting in seven

additional control variables termed SOIB, SPOIB, SILLIQ, STURN , IV OL, SStd Ret

and SStdTURN , respectively.13 Since SV OIB can potentially capture disagreement among

investors, we also include shocks to the analyst dispersion, SDISP in the regression. All control

variables are cross-sectionally winsorized at the 0.5% and 99.5% levels.

5.2 Regression Results

Table 5 presents the time-series averages of coefficient estimates in the monthly cross-sectional

regressions and the associated Newey-West adjusted t-statistics. The order imbalance is calculated

13We have also added shocks to HiLoSprd, computed in a manner similar to SV OIB; We have also added
O/S, which is the ratio of option trading volume and stock trading volume, measured as in Roll, Schwartz and
Subrahmanyam (2010). The main results are largely unaltered. The analysis is available in the internet appendix
(Table A4).
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using the number of shares traded in Columns 1 to 4 and using the number of trades in Columns

5 to 8. We report the single variable regressions results for V OIB (SV OIB) in Columns 1 and

5 (Columns 2 and 6). The motivation behind studying the single variable FM regressions is

to check whether our earlier portfolio results hold in the linear OLS framework. Multivariate

regression results are presented in Columns 3, 4, 7 and 8. Note that the sample size in regressions

in Columns 1-3 and 5-7 is an average of 2,944 per month. The sample size decreases to an average

of 1,560 firms in full multivariate regressions due to the data requirements for the different

variables in the monthly cross-sectional regressions.

We examine the V OIB results first. In Column 1, V OIB SHR has a coefficient estimate

of 1.09 with a t-statistic of 3.02. The regression using V OIB NUM in Column 5 generates

similar results with a coefficient estimate of 1.08 (t-statistic = 2.94). V OIB remains significant

at the 1% in Columns 3, 4, 7 and 8. In economic terms, a one-standard deviation increase in

V OIB SHR (V OIB NUM) this month leads to an increase of 20 (18) basis points in next

month’s return in the regression of Column 1 (5); an increase of 66 basis points in the regression

in Columns 4 and 8.

The FM results for SV OIB in Columns 2 and 6 are consistent with the portfolio sorts

presented earlier. The coefficient estimate of SV OIB SHR (SV OIB NUM) is negative and

significant at the 1% level. In Columns 4 and 8 the SV OIB coefficient estimates are −4.74

and −5.62 with t-statistics of −5.84 and −7.34, respectively. In economic terms, a one-standard

deviation increase in SV OIB this month leads to a decrease of 34 to 48 basis points in next

month’s return depending on the specification of SV OIB used. The negative coefficients suggest

that a shock that increases order flow volatility is accompanied by negative returns next month

in the cross section. While SILLIQ is insignificant in Columns 3 and 6, both ILLIQ and

SILLIQ are significant in the full multivariate regressions in Columns 4 and 8. Further, shocks

to turnover (STURN) are also significant in Columns 4 and 8.14

14In unreported analyses, we consider whether V OIB and SV OIB remain significant for subsamples separated
by the cross-sectional median of size and institutional holdings. The logic is to ascertain whether V OIB and
SV OIB are priced in the more visible firms, or only in “neglected” firms. We find that both V OIB and SV OIB
remain significant in all of these subsamples, but SILLIQ and STURN lose significance for large firms. This
points to the robustness of order imbalance volatility and its shocks as cross-sectional predictors of returns.
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We now briefly summarize the results for other control variables. In Columns 4 and 8, quite

a few firm-level characteristics have significant coefficients. The negative coefficient of the one

month lagged return is consistent with the reversal effect documented by Jegadeesh (1990).

The negative coefficient of analyst forecast dispersion is consistent with Diether, Malloy, and

Scherbina (2002). The positive coefficient of turnover and shocks to turnover is consistent with

Gervais, Kaniel, and Mingelgrin (2001). The negative coefficients of SIZE, ACC, ISSUE,

and AG are also consistent with prior research as is the positive coefficient of SUE. Consistent

with Corwin and Schultz (2012), we also find that the pricing effect of HiloSprd is positive and

significant. Surprisingly, PIN has a negative impact on returns, possibly due to the presence of

the other variables proxying for adverse selection. The volatility of institutional holdings also

has a negative impact on returns in the cross-section. Return volatility has a negative impact

on the cross-section of returns and subsumes the impact of idiosyncratic volatility. The negative

coefficient on StdTURN is consistent with Chordia, Subrahmanyam and Anshuman (2001). It

is important to include StdTURN in the cross-sectional regressions because it could be related

to the volatility in order imbalance. The cross-sectional correlations between V OIB (measured

using shares as well as number of trades) and StdTURN average around -0.3, which is lower

than the correlation between the two measures of V OIB and turnover and bid-ask spreads (See

Panel B of Table 1). Order imbalance volatility and shocks to order imbalance volatility have a

robust impact on stock returns in the cross-section and this impact survives the inclusion of a

long list of variables that could potentially proxy for illiquidity and /or adverse selection.

5.3 Robustness Checks

In this subsection, we show that the pricing effects of V OIB and SV OIB are robust by

experimenting with different return definitions, order imbalance definitions, and subsample

periods. We present results using the number of shares in Table 6 while the analysis using

number of trades generates largely the same results.15 The control variables are the same as in

Column 4 of Table 5. We include the following robustness checks:

15We report only results of SV OIB SHR for the rest of the paper. The results of SV OIB NUM are similar
and are available in the internet appendix (Table A5).
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• In the first column of Table 6 we use raw returns instead of the risk adjusted returns as

the dependent variable in order to investigate the robustness of our results to risk.

• To address bid-ask bounce, in the second column, we use open-to-close mid-quote returns

as the dependent variable. The open-to-close mid-quote returns are computed using the

opening bid-ask midpoint price on the first trading day of the month and the closing

bid-ask midpoint price on the last trading day of the month, adjusted for dividends and

stock splits.

• In Column 3, we use dollar trading volume to compute the order imbalance variables.

We define OIB as the buyer-initiated minus seller-initiated dollar volume scaled by the

total dollar volume. Then, the volatility of OIB and shocks to the volatility of OIB are

computed as before.

• In order to show that the pricing effect of SV OIB is robust to the choice of benchmark

V OIB, in Column 4 (5), SV OIB is calculated as the difference between the current

month V OIB and its three-month (twelve-month) moving average in the previous month

and all the other shock variables are calculated using three-month (twelve-month) moving

averages accordingly.

• In Column 6, we exclude the financial crisis years of 2008 and 2009 because the accentuated

stock market volatility may generate outliers in the V OIB and SV OIB estimates, leading

to potentially spurious results in the full sample analysis.

• Column 7 uses data after January 2001 only (post-decimalization period) and Column

8 presents results for the period before January 2001 (pre-decimalization period). We

are interested in these two subperiods because Chordia, Roll, and Subrahmanyam (2011)

have suggested that in the post-decimalization period, the stock market has become more

efficient and institutions are trading smaller quantities (suggesting that small trades are

not originating from retail traders alone) and we want to ascertain that our results on

V OIB and SV OIB survive. Also, the Lee and Ready (1991) algorithm to sign orders

23



may be prone to more errors after decimalization. So dividing the sample into pre- and

post-decimalization allows us to check the robustness of the results.

• To address potential liquidity biases in our tests, Column 9 uses a Weighted Least Squares

(WLS) estimation following Asparouhova, Bessembinder, and Kalcheva (2010). Specifically,

in the FM regressions, we use the gross return in the previous month (1 +Retit−1) as the

weight of each stock in WLS. We then report the time-series averages of the estimated

WLS coefficients, with Newey-West corrections for the standard errors.

• Finally, to account for the potential measurement error in OIB that might affect the

interpretation of the coefficients of V OIB and SV OIB, we sort all stocks into decile

portfolios every day based on OIB and then assign the average portfolio OIB, denoted

by ÔIB, to all the stocks in that portfolio. This new order imbalance variable should be

less prone to signing error, as long as the errors are not materially correlated in the cross

section. We calculate V OIB and SV OIB using ÔIB, and replicate the main regression

analysis in Column 10.16

Consistent with Hypothesis 1, in Table 6, the coefficient estimates of V OIB SHR are all

significant at the 1%. The only exception is the pre-2001 sample where the coefficient on

V OIB SHR is significant at the 5% level. The coefficient estimates of SV OIB SHR are all

significant at the 1% level. While the coefficient of ILLIQ is significant, those of SILLIQ are

not significant in Column 5 (where SILLIQ is computed as the current measure of ILLIQ

less its past 12-month moving average) and during the pre-decimalization period as shown in

Column 8 of Table 6. The coefficient estimates of V OIB and of SV OIB are also significantly

lower in the pre-decimalization period than in the post-decimalization period. Possibly, given

the prevalence of smaller trade sizes even by institutional investors (see Chordia, Roll and

Subrahmanyam, 2011) in recent years, the smaller trades may also be informed and thus

16We also perform an alternative test that accounts for measurement error in OIB. In this test, we use 20
randomly formed portfolios as test assets every month, and use the portfolios’ order flows to compute their V OIB
and SV OIB. We then run Fama-MacBeth regressions for the 20 portfolios, using equally-weighted open-close
quote midpoint returns as in the second column of Table 6. We repeat this procedure 100 times, and continue
to find overall evidence that shocks to and levels of order flow volatility are priced in the cross section. These
results are available in the internet appendix (Table A6).
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any order imbalance volatility is likely to be a better measure of adverse selection in the

post-decimalization period. In the pre-decimalization period with larger depths, the larger

trades were more likely to be informed and thus easier to identify leading to the V OIB being

a poorer measure of adverse selection. Note also that the coefficient on PIN is positive and

significant only in the pre-decimalization period. This sample period is similar to the one in

Easley, Hvidkjaer and O’Hara (2002) suggesting that post-decimalization, PIN may be a poor

proxy for adverse selection.

Overall, the impact of V OIB and SV OIB on the cross section of returns is robust to a

number of different specifications.

6 Limits to Arbitrage and the Pricing of Order Imbalance

Volatility Shocks

Thus far we have presented robust evidence of the positive impact of order flow volatility and the

negative impact of shocks to order flow volatility on the cross section of expected returns. The

implicit notion is that agents are slow to react to such shocks, so that the impact of such shocks

spills over to next month’s prices. However, if arbitrageurs are cognizant of such information

processing delays, they could arbitrage this delay. Could it be the case that the impact of these

shocks on prices is stronger for stocks with high trading costs and high barriers to arbitrage such

as small stocks, stocks with low institutional holding (INST ), or stocks with high idiosyncratic

volatility (IV OL)? These stocks are those where investors are likely to face limits of arbitrage.

We obtain institutional holdings from Thomson Reuters. In Table 7, we first sort stocks by

the arbitrage variables (firm size, institutional holding, and idiosyncratic volatility) into high

and low categories by median, each month, and then within each category we sort stocks by

SV OIB SHR into quintiles. Table 7 presents the long-short quintile portfolio return and the

long-short alpha.

Panel A shows that for small firms, the long-short return differential (alpha) between the high

and low SV OIB SHR portfolio is −1.18% (−1.11%) per month, and both are significant at the
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1% level. For large firms, the return differential (alpha) at −0.23% (−0.31%) though smaller

is also statistically significant. The return differential is statistically lower (more negative)

for small firms as compared to large firms (t-statistic = −6.38), and the same is true of the

alpha of the differential (t-statistic = −5.82).17 Panel A also presents the results for sorts on

institutional holdings. The return differential across extreme SV OIB portfolios is far larger

for stocks with low institutional holdings than for those with high holdings although the return

differentials and alphas across the SV OIB quintiles for low and high institutional holdings are

all statistically significant. The return differential is statistically lower (more negative) for firms

with low institutional holdings as compared to firms with high institutional holdings (t-statistic

= −3.93), and the same is true of the alpha of the differential (t-statistic = −3.90). Finally,

Panel A provides the findings for stocks sorted on IV OL. Even though the long-short return

differential and the alpha are significant for both the high and low IV OL stocks, the return

differential and the alpha are more than twice as large for the high IV OL stocks. Further, the

return differential and alpha are statistically higher (less negative) for the low IV OL stocks.18

In Panel B, we repeat the analysis in Panel A using SV OIB NUM and find similar results.

In sum, the results are consistent with the notion that shocks to order flow volatility predict

returns less strongly in larger stocks, stocks with higher institutional holdings, and stocks with

lower IV OL, possibly because these stocks have lower arbitrage costs.

7 Dynamics of Shocks to Order Flow Volatility

The central prediction of the cost of capital hypothesis on asset prices is that investors pay lower

prices for stocks with higher adverse selection costs. Therefore, a shock that increases such costs

(measured here by a positive shock to order flow volatility) should lower the current price of the

asset and thus increase the future expected return. Thus far, we have documented that SV OIB

negatively impacts the contemporaneous and the following month’s return. This is consistent

17The cross-sectional standard deviation of SV OIB is smaller in the large firms (0.123 for SV OIB SHR and
0.097 for SV OIB NUM) than in the small firms (0.180 for SV OIB SHR and 0.160 for SV OIB NUM).

18We find that shocks to order flow volatility significantly reduce the contemporaneous return for large stocks,
stocks with high institutional holdings, and stocks with low idiosyncratic volatility. These results are available
in the internet appendix (Table A7).
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with the economic notion that shocks which decrease liquidity should result in lower concurrent

prices; though the negative impact of the shock persists beyond the current month, possibly

due to the limits to arbitrage as discussed in the previous section or due to delayed responses of

investors to the shock, as suggested by BPST. Note, however, that a liquidity premium in asset

prices should not only result in lower current prices but also eventually lead to higher expected

returns, as stated in our Hypothesis 3. So, a relevant question is how long it takes for the impact

of SV OIB on returns to turn positive. This section examines the dynamic effects of the shocks

to V OIB on returns.

Panel A of Table 8 reports the univariate portfolio results as well as the FM coefficient

estimates over time. For the portfolio results, we sort stocks into quintile portfolios based on

SV OIB SHR and SILLIQ and report the alphas of the long-short portfolios over the next

one month, months 2-3, 4-6, 7-9 and 10-12.19 When sorting on SV OIB SHR, the long-short

alphas are essentially zero over months 2-3 but they are positive and statistically significant over

months 4-6, 7-9 and 10-12. This suggests that it takes about three months for the illiquidity

shock to be absorbed into prices and for investors to start earning the illiquidity premium.

When sorting on SILLIQ the negative impact of the initial shock is strong in month 1. It

is also felt in months 2-3 (alpha=−0.64% per month, t-statistic=−4.47), after which the alphas

are negative but insignificant in months 4-6 and 7-9. The alphas turn positive in months 10-12

but they are insignificantly different from zero. This result for SILLIQ, while consistent with

BPST, suggests that liquidity shocks as measured by SILLIQ do not cause a sufficient drop in

prices such that eventually the illiquidity premium obtains.

Panel A of Table 8 also reports the FM coefficients of SV OIB SHR and SILLIQ as a

measure of liquidity shocks with future returns as the dependent variables. All the control

variables are included in the regressions as in Table 5 but are not reported for brevity. The FM

coefficients of SV OIB SHR are positive and significant for the future returns over months 4-6,

7-9 and 10-12. Therefore, our findings support Hypothesis 3 in that the premium obtains after

three months. Interestingly, after including all the control variables in Table 5, the coefficients

19The alphas for the next one month are presented in Panel C in Table 3; the FM coefficients for the next one
month are obtained from Column 4 in Table 5.
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of SILLIQ are significantly negative for months 2-3 and 4-6. In months 7-9, the coefficient

estimate of SILLIQ is negative but significant only at the 10% level and in months 10-12 the

coefficient estimate while negative is not statistically significant.20

Panel B of Table 8 also presents the FM coefficients when the dependent variable is future

returns and when all the control variables are included as in Table 5, for size-based sorts (where

the sorting is done as in Section 6). Consider first the small stocks. For these stocks there is

some evidence that the liquidity shock is not immediately impounded into prices but persists

through months 2-3. For instance, the coefficient of the regression of future returns in months

2-3 on SV OIB SHR is −0.67 with a t-statistic of −2.62. More importantly, the coefficient

estimates in months 4-6, 7-9 and 10-12 are positive and significant, suggesting that, for these

stocks, shocks to liquidity result in a positive illiquidity premium after three months. Turning

now to large stocks, we see that there is no spillover of the negative impact of the shock to V OIB

beyond the first month. The coefficient on SV OIB is −2 (t-statistic = −1.84) in month 1 but

the impact does not turn significantly positive thereafter.21 This is consistent with the notion

that liquidity shocks are absorbed promptly for large companies. We obtain similar results for

sorts by institutional holdings and IV OL. These results are presented in the internet appendix

(Table A8, Panel B).

Our work raises at least two puzzles. First, it is interesting that it takes three months for the

premium to turn positive; BPST have suggested that the slow incorporation of liquidity shocks

into prices could be due to investor inattention (Hirshleifer and Teoh, 2003). Second, it also is

intriguing that the coefficient of SILLIQ (shocks to Amihud illiquidity) does not turn positive

even after 12 months. This finding suggests that shocks to ILLIQ have an initial negative

impact on future returns, but the effect does not convert to a standard liquidity premium in the

longer term, unlike our SV OIB coefficients. These issues deserve emphasis in future research.

Overall, however, the pricing of order flow volatility shocks (SV OIB) in the cross section is

20For SV OIB NUM , the alphas (FM coefficients) are positive and significant for the future returns over
months 4-6, 7-9 and 10-12 (months 7-9 and 10-12). The results are presented in the internet appendix (Table
A8, Panel A).

21Paired t-tests show that the estimated SV OIB coefficient of small stocks is significantly more negative than
that of large stocks in month 1 and becomes significantly more positive than that of large stocks in months 7-9
and 10-12.
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robust, and exhibits reliable economic and statistical significance.

8 Order Flow Volatility around Corporate Events

Thus far, we have postulated that order flow volatility is a proxy for asymmetric information.

We now conduct tests to empirically validate this assumption. We focus on the period prior to

earnings announcements or merger and acquisition (M&A) announcements when information

asymmetry is likely to be high (see, for example, Baruch, Panayides, and Venkataraman, 2016).

More specifically we compare V OIB in event periods to V OIB in non-event periods. We

collect quarterly earnings announcement data from the I/B/E/S database and the M&A deal

information between 1983 and 2012 from the SDC database, for the period from 1983 to 2012.

For the earnings announcements, the event period is defined as trading days −18 to +2 relative

to the announcement day, and the non-event period is defined as all the other days between days

−31 and +31 relative to the announcement day. We include two days after the announcement in

the event period because both theoretical arguments (Kim and Verrecchia, 1994) and empirical

evidence (Lee, Mucklow and Ready, 1993; Krinsky and Lee, 1996) indicate that earnings

announcements increase information asymmetry before and after the announcement periods.

For M&A announcements, the event (non-event) period is defined as days −30 to −1 (−60 to

−31) relative to the announcement day.

We first investigate earnings announcements in Panel A of Table 9. After merging the

I/B/E/S data with daily order imbalance calculated using ISSM and TAQ data, we have

287,783 announcements in the sample. The mean V OIB SHR is 0.385 (0.306) in the event

(non-event) periods and the mean V OIB NUM is 0.319 (0.256) in the event (non-event) periods.

The difference in order imbalance volatility between the event and non-event periods reaches

0.079 (0.063) for V OIB SHR (V OIB NUM), which amounts to about 20% of the mean order

imbalance volatility and is statistically significant at the 1% level in each case. The fact that

order imbalance volatility is significantly elevated in the period before an earnings announcement

is consistent with its theoretical relation to information asymmetry.

Further, we compare the V OIB difference between earnings and non-earnings periods for
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low and high absolute earnings surprises. The idea here is that the V OIB difference should be

larger when the absolute earnings surprise is higher because a higher absolute earnings surprise

signals more uncertainty and thus greater information asymmetry. We calculate the earnings

surprise as the difference between the actual value and the median analyst forecast in I/B/E/S

scaled by the market price at the end of the month preceding the earnings announcement.

We lose 598 observations because of missing median analyst forecasts. We sort the remaining

287,185 observations into high (N = 143,595) and low (N = 143,590) groups based on the

median absolute earnings surprise. We find that the V OIB SHR difference between event and

non-event periods is 0.075 (0.083) when the absolute earnings surprise is low (high) while the

V OIB NUM difference is 0.058 (0.069). The difference-in-difference is significant at 1% level

for both V OIB SHR and V OIB NUM . In other words, V OIB is more elevated just prior

to an earnings announcement when the subsequent earnings surprise is large than when the

surprise is small.

Table 9, Panel B reports V OIB results for M&A events. Out of 279,895 records we extract

from the SDC database, 27,767 deals involve a target firm being a public company that has

price information available on CRSP and transactions data on either ISSM or TAQ. We focus

on meaningful deals above one million dollars with at least 50% of shares sought by the acquirer.

The final sample contains 5,209 deals. The mean target V OIB SHR is 0.492 (0.480) in M&A

event (non-event) period and the mean V OIB NUM is 0.432 (0.423). The difference in order

imbalance volatility between the event and non-event periods is a statistically significant 0.012

(0.009) for V OIB SHR (V OIB NUM). Conjecturing that high takeover premium deals should

attract more informed traders and have greater increase in V OIB, in Panel B, we also report

the average V OIB difference between M&A event and non-event periods for deals with the

one-day takeover premium below the median (2,366 observations) and above the median (2,364

observations) separately. The V OIB SHR difference between M&A and non-M&A periods is

0.007 (0.016) when the takeover premium is low (high) and the V OIB NUM difference is 0.005

(0.012). The difference-in-difference between the two groups is significant at the 5% (10%) level

for V OIB SHR (V OIB NUM).

In Panel C, we run Fama-MacBeth regressions of the risk-adjusted returns on an earnings
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and M&A announcement dummy, V OIB, SV OIB, and interaction terms between the dummy

and V OIB as well as SV OIB, with the full set of control variables in Column 4 of Table 5.

The event dummy is equal to one if there is an earnings or M&A announcement in the following

month, and zero otherwise. We report the coefficient estimates of the variables of interest only

in Panel C for brevity. We find that both V OIB and the interaction term are positive and

significant at the 1% level. Similarly, both SV OIB and its interaction term are negative, and

significant at the 10% level or better. Therefore, the impact of V OIB and SV OIB on the cross

section of expected returns is stronger for periods when information asymmetry is likely to be

high.

In summary, we find empirical support for the proposition that order flow volatility is a

proxy for information asymmetry in event studies that use two material informational events:

earnings and M&A announcements.

9 Limit Order Book Imbalance Volatility

Collin-Dufresne and Fos (CF) (2015) show that measures of adverse selection that are based

mostly on market orders may not capture the presence of informed trading. They find that

insiders make extensive use of limit orders for exploiting “long-lived” (CF, p. 1563) information

signals, as indicated by 13(d) filings, which require reporting within 10 days of acquiring more

than 5% of outstanding shares in a firm. However, it is worth noting that with quickly-perishable,

short-lived information, agents who are informed may prefer to use market orders, rather than

limit orders. So informed agents may use market orders or limit orders, depending on the nature

of the information signal they possess. In this section, we study an order imbalance volatility

using limit orders (V OIB LOB) calculated similarly to our main measure, V OIB.

We acquire limit order book data from LOBSTER database.22 The data start from the 27th

of June 2007. They contain most stocks listed on NYSE, AMEX and NASDAQ and cover about

95% of stocks during the period July 2007-December 2012. Since the dataset is extremely large,

we parsimoniously take snapshots of the limit order book every five minutes during trading

22See https://lobsterdata.com for detailed information.
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hours. The first three steps of limit buy and sell orders (starting from the best buy or sell

price) are aggregated to the total buy and sell volumes for each snapshot. We then calculate

the average buy and sell shares available to trade for all snapshots taken on a day and the

imbalance between them as the daily limit order imbalance (OIB LOB). V OIB LOB is the

standard deviation of OIB LOB.

We initially compare the order imbalance volatility patterns around earnings announcements

and M&A announcements periods in Table 10, Panel A in this subsample period similarly to

the analysis in Table 9. For earnings announcements, we find that the difference in V OIB SHR

(V OIB NUM) between the event and non-event periods is a statistically significant 0.064

(0.057). However, the difference in V OIB LOB is not significant. For M&A announcements,

the volatility difference between the event and non-event periods is not significant for V OIB or

V OIB LOB.23

We next examine the pricing effect of V OIB LOB and SV OIB LOB. Both V OIB LOB

and SV OIB LOB are computed in a manner analogous to V OIB and SV OIB. In Panel B,

we sort all stocks in each month t into quintile portfolios based on V OIB SHR, SV OIB SHR,

V OIB NUM , SV OIB NUM , V OIB LOB or SV OIB LOB. The equally-weighted portfolio

returns for month t + 1 are reported. Panel B also reports the return differences between the

high and low quintiles and the alphas with respect to the Fama-French (1993) factors along with

the momentum factor and the Pastor and Stambaugh (2003) liquidity factor. For the V OIB

used in earlier sections, the return differences between the top and bottom quintiles and the

alphas are positive and significant. The long-short portfolio alpha amounts to 0.63% (0.66%)

per month when sorting on V OIB SHR (V OIB NUM). For SV OIB SHR (SV OIB NUM),

the monthly return difference is −0.81% (−0.87%) and the alpha is −0.74% (−0.82%). Both

the return differences and the alphas are significant at the 1% level. The last two columns of

Panel B present results for V OIB LOB and SV OIB LOB. We find that the return differences

and alphas for V OIB LOB and SV OIB LOB are not significant. To further ascertain pricing

effects of V OIB LOB and SV OIB LOB, we also run Fama-MacBeth regressions. The results

23The insignificance may be due to the size of the M&A sample. During the sample period from July 2007 to
December 2012, there are 65,796 earnings event observations, but only 611 M&A observations.
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are presented in Panel C. In Columns 1 and 2, the coefficient estimates of V OIB LOB and

SV OIB LOB are not significant in univariate regressions. The regression using V OIB LOB

and SV OIB LOB in Column 3 also generates insignificant results for these variables. In Column

4 (Column 5), we add V OIB SHR (V OIB NUM) and SV OIB SHR (SV OIB NUM), while

including the control variables in Column 4 of Table 5. The results show that while V OIB LOB

and SV OIB LOB are insignificant return predictors, V OIB and SV OIB (using number of

trades or shares traded to measure order imbalances) remain significant.

Importantly, CF’s point that informed agents use limit orders for long-lived information is

not invalidated by our analysis. Instead, our measure of order flow volatility based on executed

trades accords with a proxy for informed trading on short-lived information around corporate

announcements. Further, our proxy is also a robust determinant of equity costs of capital in the

cross section.

10 Conclusion

While it is challenging to measure adverse selection costs in financial markets, other endogenous

parameters that are related to such costs might be easier to measure and thus might shed

additional light on the link between trading costs and asset prices. We consider the notion

that both information asymmetry costs and the volatility of order flow are driven by the same

exogenous parameters in models of informed trading such as that of Kyle (1984, 1985) and its

extension in Subrahmanyam (1991). We document that order flow volatility is higher prior to

earnings announcements or M&A announcements when adverse selection is likely to be higher,

indicating that order flow volatility is indeed related to adverse selection.

Order flow volatility is positively related to illiquidity proxies in the cross section and is

priced in the cross section. Shocks to order flow volatility are strongly and positively related to

illiquidity innovations, and are also strongly negatively related to both current and next month’s

returns even after controlling for various characteristics, including the level of and shocks to the

Amihud (2002) illiquidity measure. These new findings are consistent with the notion that

positive shocks to order flow volatility proxy for an increase in the true (unobserved) adverse
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selection costs which translates to a drop in current prices. We also find that in the longer

run (between 4 and 12 months), a shock to order flow volatility does have a positive impact on

returns, consistent with a premium for information asymmetry.

Our study points to several topics for research. First, why the additional premium induced

by an order flow volatility shock takes a relatively long time to manifest itself in equity prices

needs further exploration. Second, the link between order flow volatility and trading costs could

be explored in other contexts. Since the link primarily emanates via informed trading, markets

with less informed trading, such as those for index ETFs, with minimal firm-specific informed

trading, might exhibit a more modest link between order flow volatility and liquidity. Third, the

dynamics of order flow volatility might serve as a proxy for intertemporal variations in informed

trading, which might, in turn, shed light on when prices are more likely to be predictive of future

fundamentals. These and other related topics are left for future research.
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Appendix

Order Imbalance Volatility: The Theory

In this appendix, we provide a brief theoretical motivation for our study, and provide empirical

evidence to support the analytics. The objective of this simple setting is to demonstrate an

economic link between order flow volatility and adverse selection costs in financial markets.

Consider an asset that is traded in a one-period Kyle (1984, 1985) and Subrahmanyam (1991)

market at date 1, and pays off F = F̄ +
∑N

i δi at date 2, where δi’s are i.i.d. with mean zero

and variance vδ, and F̄ is non-stochastic. Assume that there are N informed traders, and

that each receives a signal δi.
24 The total noise trade is z ∼ N(0, vz), and z, εi, and δ are each

independent of all other random variables. At date 1, the informed traders and the noise traders

submit market orders to a market maker, who sets the price while only observing the combined

(net) order flow from all of the agents. This order flow is denoted by ω.

We consider the standard linear equilibrium in this setting where informed traders use

symmetric strategies. At date 1 the market maker sets the price according to the linear rule

P = F̄ + λω where ω is the net order flow. Let xi (i = 1, . . . , N) denote the order of informed

trader i, so that

ω =
N∑
i=1

xi + z. (4)

Suppose the i’th informed trader conjectures that other informed traders use linear strategies

of the form β̄(δi). The trader chooses xi to maximize E[{xi(F − P )}|δi]. Taking expectations

and differentiating with respect to xi, we obtain

xi =
δi
2λ
, (5)

so that the informed strategy is of the form βδi. In a symmetric Nash equilibrium β̄ = β. From

Eq. (5) we then have

β =
1

2λ
. (6)

24Alternative specifications of information do not change our basic intuition that order flow volatility is higher
when the information asymmetry problem is greater.
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Since all informed strategies are linear functions of the normally distributed signals, and the

noise trade is normally distributed, the order flow ω also follows a normal distribution. Indeed,

from Eq. (4), we have that ω =
∑N

i=1 βδi + z. Thus,

ω =

∑N
i=1 δi
2λ

+ z. (7)

We assume that the market maker is risk averse and has negative exponential utility with

coefficient A.25 As in Subrahmanyam (1991), the market maker earns the autarky utility

(due to Bertrand competition), i.e., the utility he would earn from not making the market.

Given exponential utility and normally distributed order flow, the market maker’s utility can

be represented in mean-variance format. We then have that

E[ω(P − F )|ω]− A

2
var[ω(P − F )|ω] = 0.

This implies that λ is given by

λ = ν + (A/2)var(F |ω) (8)

where ν is the regression coefficient of F on ω. Substituting for ω from Eq. (7) above, we get a

quadratic equation in λ. We choose the positive root, since, from Eq. (5), a positive λ is required

to satisfy the second order condition for the informed trader.26 We thus obtain the following

expression for λ:

λ =
A

2
+

1

2

√
A2 +

Nvδ
vz

. (9)

The ex ante expected losses of the noise traders (i.e., the adverse selection costs of trading),

denoted by L, are given by E[z(P − F )] = λvz, which implies that

L =
Avz

2
+

1

2

√
A2v2z +Nvδvz.

Note that L is increasing in N and vδ, the parameters representing private information, as well

as A and vz.

25Making the informed traders also risk averse, again, does not change our basic intuition.
26Kyle (1984) and Chordia, Huh, and Subrahmanyam (2009) provide further details on the derivation of the

closed-form expression for λ.
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Now, from Eq. (7), we find that the closed-form expression for variance of the order flow,

denoted vω, is:

vω =
vδ
θ

+ vz (10)

where

θ ≡ 2A2

N
+
vδ
vz

+ 2A

√[
A

N

]2
+

vδ
Nvz

While A influences L and vω in opposite directions, it is evident that both L and vω are increasing

in N , vδ, and vz. Since N and vδ represent the extent of information asymmetry, both L and vω

are positively related to the extent of adverse selection in the market. Indeed, holding market

maker risk aversion constant, changes in all the other exogenous parameters affect adverse

selection costs and the volatility of order flow in the same direction. Thus, controlling for A, if

adverse selection costs command a premium in asset returns, so should the variability of order

flow.27 To test these implications, each month, we regress the monthly standard deviation of

daily order imbalance on proxies for A, N , vδ, and vz in the cross section.

A reasonable proxy for A is market capitalization. The reasoning is as follows. We expect

institutions to be active in market making because designated dealers such as specialists participate

in only 10% of transactions during the bulk of our sample period (United States Government

Accountability Office, 2005). Further, as Gompers and Metrick (2001) show, larger firms are held

more heavily by institutions than individuals, and the former are likely to be well-capitalized

(and thus less risk averse) in their de facto market making activities (viz. Cheng et al., 2015).

By controlling for market capitalization in our regressions, we at least partially account for the

cross-sectional variation in A.

The number of informed agents, N , is measured as the number of informed institutional

investors. Following Abarbanell, Bushee and Raedy (2003), we categorize institutional investors

27Inventory costs also affect liquidity and can also be related to order flow. However, increased order flow
volatility, in a dynamic setting, does not necessarily mean increased inventory risk. Thus, for example, an equal
number of buys and sells imply order flow volatility but zero incremental inventory exposure, but a wave of equal
buys in one direction imply zero order flow volatility but considerable inventory exposure. Modeling this issue
requires an intertemporal setting, whereas our modeling, in a static setting, simply establishes the notion that
informed trading-related parameters that make the market more illiquid (N and vδ), also make the order flow
more volatile. Our finding in Section 8, that order flow volatility rises prior to informational events, supports
the link between informed trading and the volatility of order flows.
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as informed and uninformed types, where the informed institutions are defined as investment

companies and independent investment advisors because such institutions are more likely to be

active investors. Other institutions, such as bank trusts, insurance companies, corporate/private

pension funds, public pension funds, university and foundation endowments, have longer investment

horizons and trade less actively.28 Following Chordia, Huh and Subrahmanyam (2009), we

employ earnings volatility as a proxy for vδ, where earnings volatility is the standard deviation

of earnings per share (EPS) from the most recent eight quarters.29 Finally, we employ the average

of daily dollar volume (in million dollars) as a proxy for vz. We recognize that V OIB likely

depends on inputs beyond the ones we consider, but our proxies aim to capture cross-sectional

determinants of V OIB in an intuitive and parsimonious way.

The results are presented in the internet appendix (Table A1). We report the time-series

averages of coefficient estimates from monthly cross-sectional regressions, together with the

associated Newey-West (1987) t-statistics. We find that the average slope coefficients of the

proxies for N , vδ and vz are positive. All of the average slope coefficients are statistically

significant at the 1% level. Also, firm size is negative and significant, suggesting that small

firms have higher levels of order flow variability. Thus, overall, the regression results accord

with our analytical comparative statics.

28The data are obtained from Brian Bushee’s website: http://acct3.wharton.upenn.edu/faculty/bushee/
IIclass.html.

29Order flow variability is measured in standard deviation units, hence our proxy for vδ is also measured as a
standard deviation.
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Table 1: Summary Statistics of Order Imbalance Variables 
 
Panel A presents the time-series averages of the cross-sectional statistics for common stocks listed on NYSE, AMEX and 
NASDAQ from January 1983 to December 2012. The stock-month observation must have valid information to calculate 
the return, market capitalization, book-to-market ratio, and order imbalance, and must have the month-end price above 
one dollar. OIB_SHR is the monthly order imbalance defined as (B-S)/(B+S), where B (S) is the number of shares traded 
initiated by buyers (sellers). VOIB_SHR is the standard deviation of daily order imbalance in a month. SVOIB_SHR is the 
difference between VOIB_SHR in the current month and the six-month moving average of VOIB_SHR in the previous 
month. The variables calculated using the number of trades are termed as OIB_NUM, VOIB_NUM, and SVOIB_NUM. 
Panels B and C present the time-series averages of the monthly cross-sectional correlations. The Amihud illiquidity 
(ILLIQ) is calculated as the monthly average of the daily ratio of the absolute return to the dollar volume. TURN is the 
logarithm of the monthly average of the daily turnover ratio calculated as the number of shares traded divided by shares 
outstanding. SPRD is the spread measure using the cheap alternative solution by Holden and Jacobsen (2014). PIN is the 
probability of informed trade measured by Easley, Kiefer, O’Hara, and Paperman (1996). RET is the monthly stock 
return. Ret_Std is the standard deviation of daily returns in a month. The shocks to the Amihud illiquidity (SILLIQ), 
turnover (STURN), spread (SSPRD), and return standard deviation (SRet_Std) are computed similarly to SVOIB. The 
corresponding z-statistics are reported in parentheses. 
 

Panel A: Descriptive statistics 
Statistics N Mean St. dev. Median Minimum Maximum 
OIB_SHR 2,948 -0.051 0.325 -0.068 -0.782 0.642 
VOIB_SHR 2,948 0.361 0.185 0.337 0.061 0.894 
SVOIB_SHR 2,948 -0.001 0.102 -0.001 -0.463 0.461 
OIB_NUM 2,948 -0.041 0.279 -0.051 -0.678 0.575 
VOIB_NUM 2,948 0.287 0.164 0.253 0.047 0.985 
SVOIB_NUM 2,948 -0.001 0.085 -0.003 -0.400 0.441 
 

 

Panel B: Correlations with other liquidity measures 
 ILLIQ TURN SPRD SILLIQ STURN SSPRD PIN RET 
VOIB_SHR 0.248 -0.514 0.496 0.005 -0.074 -0.005 0.549 -0.004 
 (31.96) (-30.27) (30.72) (0.90) (-13.13) (-0.28) (25.77) (-0.92) 
lag(VOIB_SHR) 0.236 -0.494 0.487 -0.006 -0.019 -0.012 0.545 0.015 
 (32.31) (-30.4) (30.18) (-1.05) (-3.77) (-1.05) (25.62) (3.58) 
SVOIB_SHR 0.060 -0.103 0.061 0.062 -0.235 0.047 0.034 -0.064 
 (16.88) (-17.81) (10.09) (14.68) (-24.48) (6.47) (5.93) (-16.80) 
lag(SVOIB_SHR) 0.041 -0.068 0.059 0.033 -0.110 0.037 0.035 -0.012 
 (14.23) (-15.18) (10.62) (11.9) (-24.33) (5.89) (6.73) (-6.30) 
VOIB_NUM 0.257 -0.497 0.512 0.003 -0.079 -0.014 0.580 0.005 
 (30.12) (-28.74) (31.79) (0.43) (-13.78) (-1.11) (27.86) (1.41) 
lag(VOIB_NUM) 0.243 -0.475 0.504 -0.008 -0.019 -0.017 0.576 0.012 
 (30.9) (-28.85) (31.46) (-1.39) (-3.77) (-1.54) (27.75) (2.92) 
SVOIB_NUM 0.068 -0.110 0.065 0.060 -0.253 0.027 0.038 -0.047 
 (15.34) (-17.1) (9.39) (11.33) (-24.48) (3.05) (5.67) (-12.03) 
lag(SVOIB_NUM) 0.044 -0.066 0.062 0.026 -0.107 0.019 0.039 -0.015 
 (12.38) (-13.1) (9.77) (7.69) (-22.94) (2.52) (6.53) (-7.79) 
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Table 1 (continued) 

Panel C: Correlations with return standard deviation 
 VOIB_SHR SVOIB_SHR VOIB_NUM SVOIB_NUM Ret_Std SRet_Std 
VOIB_SHR 1      
       
SVOIB_SHR 0.443 1     
 (37.95)      
VOIB_NUM 0.911 0.342 1    
 (67.37) (39.45)     
SVOIB_NUM 0.344 0.789 0.446 1   
 (37.06) (160.75) (34.39)    
Ret_Std 0.061 -0.056 0.106 -0.034 1  
 (13.34) (-10.13) (27.38) (-6.21)   
SRet_Std -0.015 -0.084 0.000 -0.053 0.603 1 

 (-4.17) (-20.30) (0.06) (-12.11) (56.95)  
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Table 2: Portfolio Sorts for VOIB 

In Panel A, for each month t from June 1983 to December 2012, we sort all stocks in the sample into quintile portfolios 
based on order imbalance volatility, and report the characteristics of the stocks in each portfolio. SIZE represents market 
capitalization in millions. BM is the book-to-market ratio. RET is the monthly stock return. Ret_Std is the standard 
deviation of daily returns in a month. In Panel B, we sort all stocks into quintile portfolios based on order imbalance, 
order imbalance volatility and other liquidity measures, and report the equally-weighted portfolio returns in month t + 1. 
OIB_SHR is the monthly order imbalance defined as (B-S)/(B+S), where B (S) is the number of shares traded initiated by 
buyers (sellers). VOIB_SHR is the standard deviation of daily order imbalance in a month. Variables calculated using the 
number of trades are termed OIB_NUM and VOIB_NUM. ILLIQ represents the Amihud measure of illiquidity. TURN is 
the logarithm of the monthly average of the daily turnover ratio calculated as the number of shares traded divided by 
shares outstanding. SPRD is the spread measure using the cheap alternative solution by Holden and Jacobsen (2014). 
Also reported are the return differences between the high and low quintiles and the alphas with respect to the Fama-
French (1993) factors along with the momentum factor and the Pastor and Stambaugh (2003) liquidity factor. Newey-
West t-statistics are reported in parentheses. In Panel C, we first sort stocks into high and low groups based on ILLIQ, 
TURN, and SPRD separately, and then sort on VOIB_SHR into quintile portfolios in each group at month t. Portfolio 
returns and return differences in month t + 1 are reported. In Panel D, we perform the double sorting analysis using 
VOIB_NUM. All returns are reported in percent. *,**, and *** denote statistical significance at the 10%, 5%, and 1% 
level, respectively. 
 

Panel A: Quintile portfolio characteristics 
 VOIB_SHR VOIB_NUM 
Quintile SIZE BM lag(RET) lag(Ret_Std) SIZE BM lag(RET) lag(Ret_Std)
Low-1 6907.394 0.553 1.863 0.021 7234.333 0.562 1.509 0.019 
2 1846.671 0.622 1.529 0.023 1639.776 0.624 1.637 0.023 
3 842.499 0.685 1.403 0.025 747.849 0.678 1.463 0.025 
4 407.171 0.781 1.149 0.026 367.079 0.783 1.220 0.028 
High-5 185.406 0.978 0.849 0.028 200.452 0.972 0.966 0.028 
High-Low -6738.390*** 0.426*** -1.014*** 0.006*** -7050.95*** 0.411*** -0.543*** 0.009*** 
 (-30.72) (23.37) (-4.86) (20.65) (-31.65) (22.17) (-3.28) (35.14) 
 

Panel B: Univarite sorts 
Quintile OIB_SHR OIB_NUM VOIB_SHR VOIB_NUM ILLIQ TURN SPRD 
Low-1 1.496 1.506 0.831 0.873 0.96 1.203 0.98 
2 1.318 1.257 1.137 1.12 1.134 1.436 1.134 
3 1.181 1.115 1.204 1.256 1.081 1.348 1.151 
4 1.146 1.155 1.514 1.457 1.308 1.328 1.264 
High-5 1.159 1.267 1.613 1.594 1.817 1.007 1.885 
High-Low -0.336*** -0.238 0.782*** 0.722*** 0.857*** -0.196 0.905*** 
 (-2.81) (-1.51) (4.27) (4.56) (3.60) (-0.79) (3.35) 
Alpha -0.465*** -0.375* 0.992*** 0.972*** 1.146*** -0.458** 1.202*** 
 (-3.12) (-1.93) (5.18) (5.83) (5.57) (-2.24) (5.17) 
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Table 2 (continued) 

 

Panel C: Bivariate sorts on VOIB_SHR 
 ILLIQ TURN SPRD 
Quintile Low High Low High Low High 
Low-1 0.788 1.01 0.955 0.723 0.838 0.976 
2 1.125 1.467 1.23 1.089 1.151 1.482 
3 1.075 1.565 1.371 1.066 1.095 1.624 
4 1.155 1.513 1.474 1.23 1.122 1.577 
High-5 1.186 1.713 1.66 1.847 1.183 1.777 
High-Low 0.398** 0.703** 0.705*** 1.124*** 0.345** 0.801*** 
 (2.17) (2.43) (4.69) (5.76) (2.18) (2.78) 
Alpha 0.405*** 0.823*** 0.924*** 1.158*** 0.354** 0.927*** 
 (2.65) (2.67) (5.27) (6.54) (2.24) (2.89) 
 

 

Panel D: Bivariate sorts on VOIB_NUM 
 ILLIQ TURN SPRD 
Quintile Low High Low High Low High 
Low-1 0.869 1.066 0.978 0.834 0.902 1.054 
2 1.062 1.459 1.22 1.076 1.076 1.487 
3 1.109 1.564 1.404 1.107 1.15 1.605 
4 1.168 1.496 1.406 1.221 1.14 1.542 
High-5 1.123 1.684 1.682 1.717 1.122 1.749 
High-Low 0.254** 0.619** 0.704*** 0.883*** 0.220** 0.695*** 
 (2.21) (2.26) (4.45) (3.83) (1.97) (2.61) 
Alpha 0.310*** 0.729** 0.947*** 0.959*** 0.266** 0.823*** 
 (3.17) (2.41) (5.17) (5.09) (2.57) (2.66) 
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Table 3: Portfolio Sorts for Liquidity Shocks 
 

In Panel A, for each month t from June 1983 to December 2012, we sort all stocks in the sample into quintile portfolios 
based on SVOIB_SHR and SVOIB_NUM, and report the characteristics of the stocks in each portfolio. SIZE represents 
market capitalization in millions. BM is the book-to-market ratio. RET is the monthly stock return. Ret_Std is the 
standard deviation of daily returns in a month. In Panel B, we sort all stocks in the sample into quintile portfolios based 
on SVOIB_SHR, SVOIB_NUM, SILLIQ, STURN, and SSPRD. The equally-weighted portfolio returns for month t are 
reported. Also reported are the return differences between the high and low quintiles and the alphas with respect to the 
Fama-French (1993) factors along with the momentum factor and the Pastor and Stambaugh (2003) liquidity factor. 
Newey-West t-statistics are reported in parentheses. Panel C reports the equally-weighted portfolio returns and alphas for 
month t+1. VOIB_SHR is the standard deviation of daily order imbalance in a month, where the order imbalance is 
defined as (B-S)/(B+S) with B (S) being the number of shares traded initiated by buyers (sellers). SVOIB_SHR is the 
difference between VOIB_SHR in the current month and the six-month moving average of VOIB_SHR in the previous 
month. The shock to order flow volatility calculated using the number of trades is termed SVOIB_NUM. ILLIQ 
represents the Amihud measure of illiquidity. TURN is the logarithm of the monthly average of the daily turnover ratio 
calculated as the number of shares traded divided by shares outstanding. SPRD is the spread measure using the cheap 
alternative solution by Holden and Jacobsen (2014). SILLIQ, STURN, and SSPRD are the shocks to ILLIQ, TURN, and 
SPRD calculated similarly to SVOIB. All returns are reported in percent. *,**, and *** denote statistical significance at 
the 10%, 5%, and 1% level, respectively. 
 
Panel A: Quintile portfolio characteristics 
 SVOIB_SHR SVOIB_NUM 
Quintile SIZE BM lag(RET) lag(Ret_Std) SIZE BM lag(RET) lag(Ret_Std) 
Low-1 888.141 0.797 3.617 0.027 773.247 0.805 3.359 0.027 
2 2514.686 0.678 1.553 0.023 2,404.570 0.674 1.558 0.023 
3 3526.090 0.657 1.031 0.023 3,797.441 0.651 1.054 0.022 
4 2356.707 0.690 0.490 0.024 2,409.267 0.680 0.585 0.023 
High-5 898.332 0.796 0.113 0.026 799.227 0.809 0.249 0.027 
High-Low 10.202 -0.000 -3.504*** -0.001*** 26.023 0.005 -3.109*** -0.001*** 
 (0.29) (-0.017) (-17.42) (-2.72) (0.72) (0.59) (-15.86) (-3.19) 
 
 
Panel B: Contemporaneous returns 
Quintile SVOIB_SHR SVOIB_NUM SILLIQ STURN SSPRD 
Low-1 3.233 2.891 4.734 -1.13 5.238 
2 1.415 1.38 2.685 0.192 2.578 
3 1.037 1.022 1.259 0.907 1.154 
4 0.816 0.862 -0.215 1.778 -0.233 
High-5 0.550 0.896 -1.412 5.375 -1.636 
High-Low -2.684*** -1.995*** -6.146*** 6.505*** -6.874*** 
 (-8.28) (-6.26) (-25.36) (14.51) (-17.37) 
Alpha -2.530*** -1.911*** -5.987*** 6.094*** -6.589*** 
 (-8.70) (-6.65) (-24.01) (15.35) (-16.88) 
 
 
Panel C: Next month’ returns 
Quintile SVOIB_SHR SVOIB_NUM SILLIQ STURN SSPRD 
Low-1 1.829 1.934 2.326 0.724 1.979 
2 1.180 1.159 1.264 1.028 1.183 
3 1.117 1.104 1.097 1.192 1.037 
4 1.139 1.115 0.819 1.374 1.119 
High-5 1.035 0.989 0.795 2.033 1.091 
High-Low -0.793*** -0.945*** -1.530*** 1.308*** -0.888*** 
 (-6.50) (-7.49) (-8.94) (8.13) (-4.87) 
Alpha -0.816*** -0.968*** -1.534*** 1.325*** -1.015*** 
 (-6.45) (-7.84) (-9.08) (8.16) (-5.01) 
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Table 4: Bivariate Portfolio Sorts Based on SVOIB and Other Liquidity Shocks 

In Panel A (B), for each month t from July 1983 to December 2012, we first sort stocks into quintile portfolios based on 
SILLIQ, STURN, SSPRD, RET, DISP separately, and then sort on SVOIB_SHR (SVOIB_NUM) into quintile portfolios in 
each group. The equally-weighted portfolio returns in month t+1 are reported. The return difference between the high and 
low quintiles and the alpha with respect to the Fama-French (1993) factors along with the momentum factor and the 
Pastor and Stambaugh (2003) liquidity factor are also reported with Newey-West t-statistics in parentheses. VOIB_SHR 
is the standard deviation of daily order imbalance in a month, where the order imbalance is defined as (B-S)/(B+S) with B 
(S) being the number of shares traded initiated by buyers (sellers). SVOIB_SHR is the difference between VOIB_SHR in 
the current month and the six-month moving average of VOIB_SHR in the previous month. The shock to order flow 
volatility calculated using the number of trades is termed SVOIB_NUM. ILLIQ represents the Amihud measure of 
illiquidity. TURN is the logarithm of the monthly average of the daily turnover ratio calculated as the number of shares 
traded divided by shares outstanding. SPRD is the spread measure using the cheap alternative solution by Holden and 
Jacobsen (2014). DISP is the analyst dispersion in earnings forecasts. SILLIQ, STURN, and SSPRD are the shocks to 
ILLIQ, TURN, and SPRD calculated similarly to SVOIB. All returns are reported in percent. *,**, and *** denote 
statistical significance at the 10%, 5%, and 1% level, respectively. 
 

Panel A: Bivariate sorts on SVOIB_SHR 
 SILLIQ STURN 

Quintile Low 2 3 4 High Low 2 3 4 High 
Low-1 2.893 1.537 1.135 0.978 1.134 1.020 1.283 1.427 1.699 2.984 
2 2.157 1.329 0.970 0.862 0.773 0.688 0.952 1.208 1.291 1.863 
3 2.344 1.161 1.006 0.880 0.734 0.832 1.020 1.023 1.207 1.682 
4 2.115 1.241 1.208 0.798 0.857 0.650 0.981 1.079 1.287 1.701 
High-5 2.122 1.054 1.165 0.575 0.479 0.432 0.903 1.226 1.388 1.937 
High-Low -0.771*** -0.483*** 0.030 -0.404***-0.655***-0.589***-0.380*** -0.200* -0.311** -1.047***
 (-4.23) (-3.28) (0.31) (-3.32) (-4.06) (-4.11) (-3.33) (-1.66) (-2.49) (-5.64) 
Alpha -0.716*** -0.392*** 0.137 -0.375***-0.660***-0.449*** -0.295** -0.078 -0.198 -0.973***
 (-3.87) (-2.68) (1.40) (-2.75) (-3.79) (-3.20) (-2.49) (-0.70) (-1.57) (-5.54) 
 SSPRD RET 
Quintile Low 2 3 4 High Low 2 3 4 High 
Low-1 2.599 1.462 1.114 1.379 1.800 2.340 1.783 1.601 1.389 1.879 
2 1.719 1.187 0.979 1.032 1.144 1.424 1.296 1.230 1.037 0.975 
3 2.002 1.022 1.067 1.117 1.032 1.419 1.195 1.166 1.035 0.903 
4 1.745 1.199 1.017 1.119 0.921 1.657 1.253 1.125 1.050 0.672 
High-5 1.832 1.047 1.008 0.950 0.563 1.645 0.793 0.997 1.024 0.621 
High-Low -0.768*** -0.415*** -0.106 -0.429***-1.237***-0.696***-0.990*** -0.604*** -0.366*** -1.257***
 (-3.73) (-3.16) (-1.03) (-4.23) (-7.75) (-4.76) (-7.30) (-4.80) (-2.91) (-6.84) 
Alpha -0.707*** -0.309** -0.058 -0.437***-1.244***-0.652***-1.032*** -0.627*** -0.350** -1.356***
 (-3.78) (-2.21) (-0.53) (-4.04) (-7.08) (-4.59) (-7.88) (-5.26) (-2.48) (-7.10) 
   DISP        
Quintile Low 2 3 4 High      
Low-1 2.076 1.564 1.317 1.569 1.264      
2 1.291 1.358 1.080 1.032 0.798      
3 1.172 1.203 0.976 1.043 0.881      
4 1.230 1.221 1.034 1.114 0.752      
High-5 1.049 1.161 1.044 1.008 0.609      
High-Low -1.028*** -0.395** -0.273*** -0.561***-0.655***      
 (-6.75) (-2.26) (-2.90) (-4.78) (-4.48)      
Alpha -0.944*** -0.371** -0.192* -0.482***-0.517***      
 (-6.19) (-2.02) (-1.83) (-3.97) (-3.83)      

 

 

 

 

 



52 
 

Table 4 (continued) 

Panel B: Bivariate sorts on SVOIB_NUM 
 SILLIQ STURN 
Quintile Low 2 3 4 High Low 2 3 4 High 
Low-1 2.912 1.577 1.227 0.992 1.282 1.089 1.311 1.617 1.826 3.061 
2 2.241 1.348 1.006 0.920 0.595 0.715 0.94 1.082 1.277 1.992 
3 2.143 1.206 1.081 0.789 0.704 0.634 1.066 1.018 1.228 1.543 
4 2.214 1.248 1.161 0.833 0.909 0.795 0.941 1.104 1.230 1.651 
High-5 2.120 0.946 1.010 0.560 0.490 0.390 0.883 1.145 1.312 1.922 
High-Low -0.792*** -0.630*** -0.217** -0.432***-0.792***-0.699***-0.428***-0.472*** -0.514*** -1.140***
 (-4.32) (-5.89) (-2.29) (-3.24) (-5.20) (-5.56) (-3.82) (-4.44) (-3.99) (-6.27) 
Alpha -0.788*** -0.595*** -0.164 -0.382** -0.839***-0.572***-0.368***-0.444*** -0.453*** -1.106***
 (-4.27) (-4.74) (-1.54) (-2.31) (-5.37) (-4.32) (-2.71) (-3.78) (-3.11) (-5.86) 
 SSPRD RET 
Quintile Low 2 3 4 High Low 2 3 4 High 
Low-1 2.677 1.605 1.157 1.354 1.903 2.463 1.875 1.693 1.471 1.997 
2 1.826 1.148 0.993 1.158 1.017 1.343 1.231 1.256 1.065 0.900 
3 1.703 1.047 1.061 1.077 0.992 1.409 1.214 1.115 1.024 0.821 
4 1.922 1.085 1.049 1.113 1.078 1.740 1.122 1.113 1.017 0.765 
High-5 1.771 1.032 0.925 0.894 0.469 1.530 0.878 0.943 0.958 0.568 
High-Low -0.906*** -0.573*** -0.232** -0.459***-1.434***-0.932***-0.997***-0.750*** -0.513*** -1.429***
 (-4.88) (-4.46) (-2.08) (-3.92) (-9.11) (-6.40) (-6.56) (-6.02) (-3.61) (-7.44) 
Alpha -0.836*** -0.497*** -0.172 -0.420***-1.463***-0.848***-0.913***-0.705*** -0.429*** -1.310***
 (-4.75) (-3.50) (-1.37) (-3.59) (-9.34) (-5.40) (-6.02) (-5.94) (-2.98) (-7.63) 
 DISP      
Quintile Low 2 3 4 High      
Low-1 2.162 1.551 1.398 1.606 1.371      
2 1.279 1.385 1.015 1.230 0.737      
3 1.162 1.212 0.982 1.058 0.798      
4 1.265 1.359 0.996 1.014 0.944      
High-5 0.951 1.001 1.061 0.857 0.456      
High-Low -1.211*** -0.539*** -0.337*** -0.750***-0.915***      
 (-7.49) (-2.64) (-3.26) (-5.53) (-6.30)      
Alpha -1.211*** -0.514*** -0.269** -0.653***-0.788***      
 (-7.48) (-2.63) (-2.40) (-4.78) (-5.25)      

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 
 

Table 5: Fama-MacBeth Regression Estimates 

This table presents the time-series averages of individual stock cross-sectional OLS regression coefficient estimates 
between July 1983 and December 2012. The dependent variable is the risk-adjusted return calculated using the Fama-
French (1993) factors as well as the momentum factor and the liquidity factor of Pastor and Stambaugh (2003) with 
loadings conditional on the size and book-to market ratio. All independent variables (except R1 and R212) are lagged one 
month. OIB is the monthly order imbalance defined as (B-S)/(B+S), where B (S) is the trades initiated by buyers (sellers). 
VOIB is the standard deviation of daily order imbalance in a month. POIB is the logistic transform of the ratio of number 
of days with positive order imbalance and total number of trading days in the month. SVOIB is the difference between 
VOIB in the current month and the six-month moving average of VOIB in the previous month. The order imbalance is 
calculated using the number of shares traded in Columns 1 to 4 and using the number of trades in Columns 5 to 8. SIZE 
represents the logarithm of market capitalization. BM is the logarithm of the book-to-market ratio. R1 is the lagged one 
month return. R212 is the cumulative returns over the second through the twelfth months prior to the current month. 
TURN is the logarithm of the monthly average turnover ratio calculated as the trading volume divided by shares 
outstanding. StdTURN is the standard deviation of TURN in the past 36 months. ILLIQ represents the Amihud measure of 
illiquidity. ACC represents accruals, measured as in Sloan (1996). AG is the asset growth computed in Cooper, Gulen and 
Shill (2008). ISSUE represents new issues as in Pontiff and Woodgate (2008). IVOL is the idiosyncratic volatility 
computed as in Ang, Hodrick, Xing, and Zhang (2006). PROFIT is the profitability variable as in Fama and French 
(2006). SUE is the standardized unexpected earnings, computed as the most recent quarterly earnings less the earnings 
four quarters ago, standardized by its standard deviation estimated over the prior eight quarters. MAX is the maximum 
daily return in the last month. DISP is the analyst dispersion in earnings forecasts and DISPD is a dummy that equals to 
one if the stock is covered by at least two analysts and zero otherwise. SSTT is the small size trade imbalance as in 
Hvidkjaer (2008). HiloSprd is the high-low spread estimate of Corwin and Schultz (2012). INSTV is the average of the 
eight most recent quarterly absolute institutional ownership percentage changes. ILLIQV is the idiosyncratic volatility of 
liquidity in Akbas, Armstrong and Petkova (2011). PIN is the probability of informed trade measured by Easley, Kiefer, 
O’Hara, and Paperman (1996). Ret_Std is the standard deviation of daily returns in a month. SOIB, SPOIB, STURN, 
SStdTURN, SIVOL, SILLIQ, SDISP, and SRet_Std are defined similarly as SVOIB. All variables are winsorized at the 0.5% 
and 99.5% levels. N is the average number of stocks per month. Newey-West t-statistics are reported in parentheses. *,**, 
and *** denote statistical significance at the 10%, 5%, and 1% level, respectively. 
 

 SHR NUM 
Model 1 2 3 4 5 6 7 8 
Intercept -0.214 0.179*** -0.390** 2.535*** -0.133 0.177*** -0.362*** 2.263*** 
 (-1.62) (2.80) (-2.56) (4.05) (-1.21) (2.79) (-2.90) (3.72) 
VOIB 1.087***  1.193*** 3.548*** 1.076***  1.472*** 4.033*** 
 (3.02)  (2.98) (3.93) (2.94)  (3.59) (4.89) 
SVOIB  -3.372*** -4.027*** -4.739***  -4.171*** -5.118*** -5.619***
  (-8.21) (-10.13) (-5.84)  (-9.21) (-11.94) (-7.34) 
ILLIQ   1.825*** 2.258***   1.826*** 2.235*** 
   (3.81) (4.96)   (3.77) (4.97) 
SILLIQ   -0.531 -0.979**   -0.512 -0.979** 
   (-1.02) (-2.30)   (-0.97) (-2.34) 
OIB    -0.448    -0.482 
    (-1.21)    (-1.00) 
SOIB    0.591    1.055** 
    (1.63)    (2.34) 
POIB    0.075    -0.033 
    (1.13)    (-0.51) 
SPOIB    -0.045    0.031 
    (-0.64)    (0.49) 
SIZE    -0.183***    -0.162***
    (-5.15)    (-4.66) 
BM    -0.013    -0.009 
    (-0.27)    (-0.18) 
R212    -0.032    -0.029 
    (-0.17)    (-0.15) 
R1    -0.049***    -0.049***
    (-10.54)    (-10.51) 
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Table 5 (continued) 
 

 SHR NUM 
Model 1 2 3 4 5 6 7 8 
TURN    0.141*    0.188** 
    (1.70)    (2.22) 
STURN    0.771***    0.695*** 
    (8.65)    (8.31) 
STDTURN    -0.175***    -0.186***
    (-3.81)    (-4.05) 
SSTDTURN    -0.182    -0.159 
    (-1.30)    (-1.15) 
IVOL    24.428    29.207 
    (1.30)    (1.55) 
SIVOL    -22.879    -26.216* 
    (-1.54)    (-1.76) 
ACC    -1.125***    -1.099***
    (-3.41)    (-3.32) 
AG    -0.212***    -0.213***
    (-3.18)    (-3.27) 
ISSUE    -1.203***    -1.233***
    (-4.06)    (-4.15) 
PROFIT    0.068    0.051 
    (1.06)    (0.80) 
SUE    0.030**    0.029** 
    (2.44)    (2.38) 
Max    4.775***    4.884*** 
    (4.20)    (4.30) 
DISP    -0.352***    -0.363***
    (-3.37)    (-3.49) 
SDISP    0.087    0.090 
    (0.74)    (0.78) 
DISPD    -0.098    -0.120 
    (-1.33)    (-1.63) 
SSTT    9.319    0.055 
    (0.81)    (0.00) 
HiLoSprd    25.488***    27.167***
    (3.31)    (3.48) 
INSTV    -0.095*    -0.109** 
    (-1.77)    (-2.04) 
ILLIQV    -0.037    -0.023 
    (-0.65)    (-0.39) 
PIN    -3.870***    -3.886***
    (-2.98)    (-3.15) 
Ret_Std    -51.36***    -56.39***
    (-3.13)    (-3.44) 
SRet_Std    15.715    19.377 
    (1.26)    (1.54) 
Adj. R-sq 0.0023 0.0009 0.0079 0.0552 0.0023 0.0010 0.0079 0.0553 
N 2944 2944 2944 1560 2944 2944 2944 1560 
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Table 6: Fama-MacBeth Regressions for Robustness Checks Using VOIB_SHR 
 

This table presents the time-series averages of individual stock cross-sectional OLS regression coefficient estimates 
between July 1983 and December 2012. Model 1 (Model 2) uses raw return (mid quote return from open to close) as the 
dependent variable. Except for Models 1 and 2, the dependent variable is the risk-adjusted return calculated using the 
Fama-French (1993) factors as well as the momentum factor and the liquidity factor of Pastor and Stambaugh (2003) 
with loadings conditional on the size and book-to market ratio. In Model 3, the order imbalance calculation is based on 
the dollar volume. In Models 4 (Model 5), all shock variables are calculated using the three-month (twelve-month) 
moving averages accordingly. Model 6 excludes the great financial crisis period of 2008 and 2009. Models 7 (8) uses 
data before (after) January 2001 only. Model 9 uses the Weighted Least Squares regressions in cross-sectional estimation 
following Asparouhova, Bessembinder and Kalcheva (ABK, 2010). In Model 10, we form decile portfolios sorted by 
OIB every day, replace each individual firm’s OIB with the average OIB of the decile portfolio to which the firm 
belongs	(OIB)෣ , and construct other order flow variables using OIB෢ . All independent variables (except R1 and R212) are 
lagged one month. OIB is the monthly order imbalance defined as (B-S)/(B+S), where B (S) is the number of shares 
traded initiated by buyers (sellers). VOIB is the standard deviation of daily order imbalance in a month. POIB is the 
logistic transform of the ratio of number of days with positive order imbalance and total number of trading days in the 
month. SVOIB is the difference between VOIB in the current month and the six-month moving average of VOIB in the 
previous month. SIZE represents the logarithm of market capitalization. BM is the logarithm of the book-to-market ratio. 
R1 is the lagged one month return. R212 is the cumulative returns over the second through the twelfth months prior to the 
current month. TURN is the logarithm of the monthly average turnover ratio calculated as the trading volume divided by 
shares outstanding. StdTURN is the standard deviation of TURN in the past 36 months. ILLIQ represents the Amihud 
measure of illiquidity. ACC represents accruals, measured as in Sloan (1996). AG is the asset growth computed in Cooper, 
Gulen and Shill (2008). ISSUE represents new issues as in Pontiff and Woodgate (2008). IVOL is the idiosyncratic 
volatility computed as in Ang, Hodrick, Xing, and Zhang (2006). PROFIT is the profitability variable as in Fama and 
French (2006). SUE is the standardized unexpected earnings, computed as the most recent quarterly earnings less the 
earnings four quarters ago, standardized by its standard deviation estimated over the prior eight quarters. MAX is the 
maximum daily return in the last month. DISP is the analyst dispersion in earnings forecasts and DISPD is a dummy that 
equals to one if the stock is covered by at least two analysts and zero otherwise. SSTT is the small size trade imbalance as 
in Hvidkjaer (2008). HiloSprd is the high-low spread estimate of Corwin and Schultz (2012). INSTV is the average of the 
eight most recent quarterly absolute institutional ownership percentage changes. ILLIQV is the idiosyncratic volatility of 
liquidity in Akbas, Armstrong and Petkova (2011). PIN is the probability of informed trade measured by Easley, Kiefer, 
O’Hara, and Paperman (1996). Ret_Std is the standard deviation of daily returns in a month. SOIB, SPOIB, STURN, 
SStdTURN, SIVOL, SILLIQ, SDISP, and SRet_Std are defined similarly as SVOIB. All variables are winsorized at the 0.5% 
and 99.5% levels. N is the average number of stocks per month. Newey-West t-statistics are reported in parentheses. *,**, 
and *** denote statistical significance at the 10%, 5%, and 1% level, respectively. 

Model 1 2 3 4 5 6 7 8 9 10 
 raw ret o-c ret OIB$ MA=3 MA=12 ex-crisis post2001 pre2001 ABK OIB෢  

Intercept 3.905*** 4.380*** 2.507*** 2.969*** 2.680*** 2.563*** 3.952*** 1.563* 2.540*** 2.739***
 (4.33) (3.42) (3.98) (4.96) (3.98) (3.89) (4.89) (1.85) (4.06) (4.36) 
VOIB 3.809*** 5.426*** 3.481*** 2.957*** 2.984*** 3.113*** 7.306*** 0.969** 3.538*** 2.115***
 (4.06) (3.97) (3.85) (3.74) (3.53) (3.45) (3.80) (2.20) (3.93) (3.96) 
SVOIB -5.158*** -6.326*** -4.642*** -4.225*** -3.439*** -4.118*** -8.850*** -1.918*** -4.734*** -3.130***
 (-6.19) (-5.23) (-5.70) (-5.98) (-4.60) (-5.32) (-5.51) (-4.25) (-5.83) (-7.81) 
ILLIQ 2.632*** 3.621*** 2.323*** 2.299*** 1.968*** 2.250*** 2.564*** 2.048*** 2.256*** 2.288***
 (5.63) (6.13) (5.14) (5.24) (3.83) (4.66) (4.20) (3.19) (4.97) (4.96) 
SILLIQ -1.256*** -2.487*** -1.044** -1.255*** -0.757 -0.854* -2.510*** 0.072 -0.979** -1.067** 
 (-2.99) (-5.97) (-2.50) (-3.34) (-1.50) (-1.91) (-4.03) (0.14) (-2.30) (-2.46) 
OIB -0.442 -0.684 -0.122 -0.258 -1.093** -0.701** -1.091 -0.006 -0.450 -0.152 
 (-1.20) (-1.18) (-0.30) (-1.03) (-2.29) (-2.09) (-1.44) (-0.02) (-1.22) (-1.09) 
SOIB 0.624* 0.791 0.271 0.464** 1.268*** 0.865*** 1.064 0.267 0.592 0.904***
 (1.73) (1.35) (0.70) (1.98) (2.76) (2.70) (1.46) (0.78) (1.64) (3.26) 
POIB 0.076 0.270** 0.001 0.066 0.156 0.125* 0.077 0.074 0.075 0.032 
 (1.11) (2.30) (0.01) (1.26) (1.61) (1.95) (0.63) (0.98) (1.13) (0.83) 
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Table 6 (continued) 
 raw ret o-c ret OIB$ MA=3 MA=12 ex-crisis post2001 pre2001 ABK OIB෢

SPOIB -0.053 -0.128 0.031 -0.033 -0.137 -0.099 -0.058 -0.036 -0.044 -0.329 
 (-0.75) (-1.13) (0.40) (-0.61) (-1.35) (-1.51) (-0.45) (-0.45) (-0.63) (-1.21) 
SIZE -0.205*** -0.238*** -0.179*** -0.214*** -0.195*** -0.186*** -0.240*** -0.144*** -0.184*** -0.192***
 (-3.99) (-3.44) (-4.99) (-6.17) (-5.18) (-5.04) (-4.64) (-3.13) (-5.16) (-5.47) 
BM 0.120* 0.074 -0.011 -0.016 0.005 -0.018 -0.011 -0.013 -0.013 -0.008 
 (1.78) (0.84) (-0.24) (-0.35) (0.10) (-0.37) (-0.17) (-0.20) (-0.27) (-0.17) 
R212 0.131 0.107 -0.033 0.070 -0.198 0.211* -0.654* 0.394*** -0.033 -0.027 
 (0.62) (0.38) (-0.17) (0.37) (-0.96) (1.76) (-1.67) (2.59) (-0.17) (-0.14) 
R1 -0.042*** -0.021*** -0.049*** -0.048*** -0.048*** -0.048*** -0.040*** -0.057*** -0.049*** -0.048***
 (-9.24) (-4.01) (-10.52) (-10.32) (-10.07) (-9.97) (-5.91) (-9.11) (-10.54) (-10.34) 
TURN 0.092 0.106 0.139* 0.245*** 0.052 0.142* -0.046 0.270** 0.142* 0.102 
 (1.08) (0.93) (1.65) (2.90) (0.58) (1.66) (-0.49) (2.24) (1.70) (1.19) 
STURN 0.929*** 0.829*** 0.763*** 0.673*** 0.763*** 0.750*** 0.815*** 0.741*** 0.771*** 0.813***
 (8.68) (6.57) (8.52) (8.20) (7.22) (8.11) (7.08) (5.77) (8.65) (8.98) 
STDTURN -0.152** -0.150 -0.172*** -0.255*** -0.159*** -0.186*** -0.124* -0.211*** -0.176*** -0.177***
 (-2.35) (-1.55) (-3.74) (-5.60) (-3.17) (-4.01) (-1.65) (-3.72) (-3.83) (-3.84) 
SSTDTURN -0.381** -0.448** -0.181 0.081 -0.229** -0.134 -0.230 -0.148 -0.181 -0.161 
 (-2.38) (-2.16) (-1.31) (0.44) (-2.02) (-0.97) (-1.22) (-0.75) (-1.29) (-1.16) 
IVOL 13.299 32.432 25.424 13.607 -3.680 21.671 49.429* 7.277 24.592 26.061 
 (0.62) (1.24) (1.35) (0.90) (-0.16) (1.09) (1.81) (0.29) (1.31) (1.38) 
SIVOL -16.024 -35.698* -23.623 -10.703 2.626 -20.903 -49.320** -4.744 -22.991 -24.437 
 (-0.96) (-1.83) (-1.59) (-1.02) (0.13) (-1.33) (-2.13) (-0.25) (-1.54) (-1.63) 
ACC -1.172*** -0.949** -1.131*** -1.178*** -1.189*** -1.125*** -0.756* -1.379*** -1.125*** -1.115***
 (-3.22) (-2.01) (-3.41) (-3.45) (-3.63) (-3.24) (-1.85) (-2.90) (-3.40) (-3.38) 
AG -0.214*** -0.204*** -0.212*** -0.211*** -0.187*** -0.213*** -0.118* -0.277*** -0.212*** -0.217***
 (-3.52) (-2.80) (-3.20) (-3.16) (-3.14) (-3.02) (-1.69) (-2.76) (-3.18) (-3.28) 
ISSUE -1.227*** -1.725*** -1.196*** -1.198*** -1.212*** -1.263*** -1.35*** -1.100** -1.203*** -1.225***
 (-3.98) (-3.70) (-4.04) (-3.99) (-3.89) (-4.11) (-3.67) (-2.56) (-4.06) (-4.14) 
PROFIT 0.018 0.093 0.062 0.068 0.112 0.094 -0.107 0.188** 0.069 0.069 
 (0.28) (1.06) (0.97) (1.01) (1.55) (1.42) (-1.25) (2.17) (1.06) (1.08) 
SUE 0.030** 0.021 0.030** 0.032*** 0.026** 0.038*** 0.032* 0.029* 0.030** 0.031** 
 (2.20) (1.13) (2.42) (2.59) (2.06) (3.24) (1.68) (1.79) (2.47) (2.49) 
Max 5.343*** 2.920* 4.733*** 4.815*** 5.477*** 5.035*** 3.903** 5.373*** 4.772*** 4.843***
 (4.51) (1.90) (4.13) (4.30) (4.49) (4.38) (2.39) (3.45) (4.18) (4.21) 
DISP -0.334*** -0.143 -0.361*** -0.351*** -0.385*** -0.366*** -0.350*** -0.352** -0.352*** -0.356***
 (-2.80) (-0.80) (-3.46) (-3.75) (-3.17) (-3.31) (-2.90) (-2.26) (-3.38) (-3.43) 
SDISP 0.025 -0.030 0.087 0.125 0.077 0.084 0.303* -0.062 0.086 0.091 
 (0.20) (-0.12) (0.75) (1.10) (0.60) (0.68) (1.89) (-0.39) (0.74) (0.78) 
DISPD -0.224** -0.157 -0.111 -0.060 -0.105 -0.074 -0.133 -0.074 -0.096 -0.063 
 (-2.44) (-1.20) (-1.52) (-0.82) (-1.38) (-1.00) (-1.11) (-0.80) (-1.31) (-0.88) 
SSTT 6.985 -24.900* 9.439 7.435 7.470 10.873 -14.22** 25.467 9.431 8.949 
 (0.63) (-1.77) (0.83) (0.65) (0.65) (0.89) (-2.12) (1.39) (0.82) (0.78) 
HiLoSprd 28.737*** 35.596*** 25.509*** 27.933*** 29.254*** 27.871*** 13.483 33.724*** 25.364*** 24.999***
 (4.01) (3.68) (3.28) (3.38) (4.46) (3.44) (1.56) (2.97) (3.29) (3.20) 
INSTV -0.083 -0.153 -0.100* -0.117** -0.042 -0.094 -0.170*** -0.041 -0.095* -0.094* 
 (-1.36) (-0.96) (-1.84) (-2.14) (-0.55) (-1.64) (-3.16) (-0.50) (-1.78) (-1.72) 
ILLIQV -0.064 -0.011 -0.030 -0.025 -0.025 -0.033 0.108 -0.136** -0.037 -0.014 
 (-1.00) (-0.10) (-0.52) (-0.43) (-0.44) (-0.55) (1.12) (-2.05) (-0.65) (-0.24) 
PIN -4.277*** -7.474*** -3.890*** -3.166*** -3.565*** -2.948** -12.100*** 1.777** -3.864*** -2.930***
 (-2.98) (-3.75) (-3.00) (-2.70) (-2.91) (-2.31) (-5.45) (2.28) (-2.98) (-2.79) 
Ret_Std -42.607** -50.486* -51.440*** -47.130*** -26.527 -52.940*** -58.370** -46.560** -51.380*** -52.170***
 (-2.12) (-1.95) (-3.12) (-3.48) (-1.33) (-3.04) (-2.51) (-2.06) (-3.13) (-3.18) 
SRet_Std 6.476 18.772 15.696 11.754 -10.454 17.039 32.303* 4.337 15.708 16.242 
 (0.42) (1.02) (1.26) (1.29) (-0.62) (1.29) (1.72) (0.26) (1.26) (1.29) 
Adj. R-sq 0.080 0.084 0.055 0.054 0.056 0.055 0.048 0.060 0.055 0.054 
N 1561 1497 1560 1576 1514 1528 2082 1198 1560 1560 
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Table 7: Bivariate Portfolio Sorts Controlling for Limits to Arbitrage Proxies 

In Panel A (B), each month between July 1983 and December 2012, stocks are first sorted into high and low groups 
based on one of the lagged control variables, and then into lagged SVOIB_SHR (SVOIB_NUM) quintile portfolios within 
each control variable group. The quintile portfolio returns, the return differences between high and low quintile SVOIB 
portfolios, and the alphas with respect to the Fama-French (1993) factors along with the momentum factor and the Pastor 
and Stambaugh (2003) liquidity factor, are reported with the Newey-West t-statistics in parentheses. VOIB is the standard 
deviation of daily order imbalance in a month, where order imbalance is defined as (B-S)/(B+S) with B (S) being the 
trades initiated by buyers (sellers). SVOIB is the difference between VOIB in the current month and the six-month 
moving average of VOIB in the previous month. The order imbalance is calculated using the number of shares traded in 
Panel A and using the number of trades in Panel B. SIZE represents the logarithm of market capitalization. INST is the 
percentage of shares held by institutional investors. IVOL is the idiosyncratic stock return volatility. *,**, and *** denote 
statistical significance at the 10%, 5%, and 1% level, respectively. 
 

Panel A: SVOIB_SHR 
 Controlling for SIZE Controlling for INST Controlling for IVOL 
SVOIB Small Large Small-

Large 
Low High Low-High Low High Low-High

Low 2.239 1.192  2.067 1.406  1.423 2.168  
2 1.450 1.004  1.442 1.121  1.204 1.197  
3 1.354 1.006  1.311 1.116  1.149 1.085  
4 1.341 1.000  1.325 1.112  1.173 1.116  
High 1.057 0.959  1.127 1.103  1.076 1.011  
High-Low -1.182*** -0.233*** -0.949*** -0.940*** -0.303*** -0.637*** -0.347*** -1.157*** 0.810*** 
 (-7.34) (-2.59) (-6.38) (-6.15) (-2.93) (-3.93) (-5.02) (-7.42) (5.67) 
Alpha -1.107*** -0.308*** -0.799*** -0.877*** -0.297*** -0.580*** -0.302*** -1.064*** 0.763*** 
 (-7.31) (-2.94) (-5.82) (-5.58) (-2.62) (-3.90) (-4.17) (-7.66) (5.95) 

 

 

Panel B: SVOIB_NUM 
 Controlling for SIZE Controlling for INST Controlling for IVOL 
SVOIB Small Large Small-

Large 
Low High Low-High Low High Low-High

Low 2.338 1.253  2.234 1.452  1.517 2.318  
2 1.423 1.038  1.399 1.134  1.219 1.111  
3 1.234 1.014  1.198 1.08  1.119 1.043  
4 1.453 1.011  1.289 1.142  1.121 1.204  
High 0.993 0.845  1.153 1.05  1.048 0.902  
High-Low -1.346*** -0.408*** -0.938*** -1.081*** -0.402*** -0.679*** -0.469*** -1.416*** 0.947*** 
 (-8.96) (-4.14) (-6.56) (-6.93) (-3.59) (-4.06) (-6.23) (-9.46) (8.02) 
Alpha -1.308*** -0.308*** -1.000*** -1.057*** -0.297*** -0.760*** -0.453*** -1.356*** 0.903*** 
 (-9.77) (-2.94) (-6.82) (-7.01) (-2.62) (-4.61) (-5.64) (-9.91) (8.79) 
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Table 8: Dynamic Effects of Liquidity Shocks 
 

This table examines the effects of SVOIB and SILLIQ on returns in the next 1, 2-3, 4-6, 7-9, and 10-12 months. We 
calculate OIB as the monthly order imbalance defined as (B-S)/(B+S), where B (S) is the number of shares traded 
initiated by buyers (sellers). VOIB is the standard deviation of daily order imbalance in a month. SVOIB is the difference 
between VOIB in the current month and the six-month moving average of VOIB in the previous month. SILLIQ is the 
shock to the Amihud illiquidity measure defined similarly as SVOIB. Panel A reports the average alpha with respect to 
the Fama-French three-factor along with the momentum and liquidity factors of portfolios that buy stocks in the highest 
quintile of illiquidity shocks and sell stocks in the lowest quintile of illiquidity shocks, and the time-series averages of the 
coefficient estimates for the illiquidity shocks from cross-sectional regressions as in Table 5. In Panel B, we divide the 
sample into two groups based on the firm size and report for each group the time-series averages of the coefficient 
estimates of illiquidity shocks from cross-sectional regressions. All cross-sectional regressions control for the same 
variables as those in Column 4 of Table 5. For brevity, coefficient estimates are reported only for the illiquidity shock 
variables. All variables are winsorized at the 0.5% and 99.5% levels. Newey-West t-statistics are reported in parentheses. 
*,**, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively. 
 

Panel A: Price impact in the long run 
 Alpha FM coefficient 
 SVOIB_SHR SILLIQ SVOIB_SHR SILLIQ 
Month1 -0.816*** -1.534*** -4.739*** -0.979** 
 (-6.45) (-9.08) (-5.84) (-2.30) 
Month2-3 0.091 -0.639*** 0.171 -1.232*** 

 (0.92) (-4.47) (0.90) (-3.45) 
Month4-6 0.217** -0.178 0.403** -1.655*** 

 (2.07) (-1.29) (2.36) (-4.84) 
Month7-9 0.251*** -0.094 0.360* -1.496* 

 (2.85) (-0.62) (1.83) (-1.86) 
Month10-12 0.345*** 0.148 0.413** -0.816 

 (3.83) (0.96) (2.31) (-0.94) 
 

 

Panel B: Fama-MacBeth regression coefficient estimates conditioning on SIZE 
 Small Large 
 SVOIB_SHR SILLIQ SVOIB_SHR SILLIQ 
Month1 -4.441*** -1.383*** -2.002** -51.577 
 (-5.02) (-4.33) (-2.26) (-1.13) 
Month2-3 -0.671*** -0.643*** 0.204 -27.094 

 (-2.62) (-3.36) (0.52) (-0.59) 
Month4-6 0.731*** -0.577*** 0.484 -12.268 

 (2.99) (-2.62) (1.46) (-0.39) 
Month7-9 1.117*** -0.170 0.337 -24.137 

 (4.71) (-0.83) (1.23) (-0.86) 
Month10-12 1.267*** -0.080 0.483 -11.864 

 (5.23) (-0.46) (1.60) (-0.35) 
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Table 9: VOIB around Corporate Events 

Panel A presents the average standard deviation of daily order imbalance (VOIB) in the earnings and non-earnings 
announcement periods, as well as the difference of VOIB between the earnings and non-earnings periods. We also report 
the average VOIB differences between earnings and non-earnings periods for the low (high) absolute earnings 
announcements surprise as well as the difference-in-difference results between the high and low surprise groups. The 
earnings period is defined as trading days -18 to 2 relative to the announcement day, and the non-earnings period is 
defined as all the other days between days -31 and 31 relative to the announcement day. Earnings surprise is calculated as 
the difference between the actual value and the median forecast scaled by the market price at the end of the month 
preceding the earnings announcement. Panel B replicates the analysis using VOIB calculated for the event and non-event 
periods before M&A announcements. The M&A (non-M&A) period is defined as days -30 to -1 (-60 to -31) relative to 
the announcement day. We also report the average VOIB difference for deals with the takeover premium below and 
above the median separately as well as the difference-in-difference between the two groups. All standard errors are 
clustered on both time and firm identities and the associated t-statistics are reported in parentheses. Panel C reports the 
Fama-MacBeth regression coefficient estimates similar to Table 5. The dependent variable is the risk-adjusted return 
calculated using the Fama-French (1993) factors as well as the momentum factor and the liquidity factor of Pastor and 
Stambaugh (2003) with loadings conditional on the size and book-to market ratio. Event dummy is one if there is an 
earnings or M&A announcement in the following month, and zero otherwise. The regressions have the full set of control 
variables as in Column 4 of Table 5. Newey-West t-statistics are reported in parentheses. *,**, and *** denote statistical 
significance at the 10%, 5%, and 1% level, respectively. 

 
 

Panel A: VOIB around earning and non-earnings periods 
 Earnings and non-earnings periods Earnings and non-earnings periods VOIB 

differences for low and high absolute earnings 
surprise 

 Earnings 
periods 

Non-earnings 
periods 

Earnings 
minus 

Non-earnings 

Low  
absolute 
earnings 
surprise 

High 
absolute 
earnings 
surprise 

High-Low 
 

VOIB_SHR 0.385 0.306 0.079*** 0.075*** 0.083*** 0.008*** 
   (45.70) (40.87) (44.19) (2.98) 
VOIB_NUM 0.319 0.256 0.063*** 0.058*** 0.069*** 0.010*** 
   (42.85) (39.33) (41.54) (4.60) 

 
 

Panel B: VOIB around M&A and non-M&A periods 
 M&A and non-M&A periods VOIB differences for low and high premium 
 M&A periods Non-M&A 

periods 
M&A minus 
Non-M&A 

Low premium High premium High-Low 

VOIB_SHR 0.492 0.480 0.012*** 0.007** 0.016*** 0.009** 
   (6.13) (2.36) (5.59) (2.19) 
VOIB_NUM 0.432 0.423 0.009*** 0.005* 0.012*** 0.007* 
   (4.93) (1.75) (4.41) (1.79) 

 
 

Panel C: Fama-MacBeth regression coefficient estimates 
 VOIB_SHR VOIB_NUM 
Event dummy 0.999 -0.632 
 (0.70) (-0.40) 
VOIB 2.842*** 3.218*** 
 (3.08) (3.64) 
VOIB*Event dummy 3.600*** 5.029*** 
 (2.66) (3.81) 
SVOIB -4.094*** -4.904*** 
 (-4.81) (-5.94) 
SVOIB*Event dummy -1.833* -1.956** 
 (-1.92) (-2.01) 
Control Yes Yes 
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Table 10: Limit Order Book Imbalance Volatility Results 

This table examines the effect of limit order imbalance volatility using LOBSTER data from July 2007 to December 
2012. For each stock, we take snapshots of the limit order book every five minutes during trading hours. The top three 
steps of limit buy and sell orders are aggregated to the total buy and sell volumes for each snapshot. We then calculate 
the average buy and sell volumes of all snapshots taken on a day and the imbalance between them as the daily limit order 
imbalance. Panel A presents the average standard deviation of daily limit order book imbalance (VOIB_LOB) around 
earnings and M&A periods. The construction of those event and non-event periods is the same as in Table 9. Panel A 
also reports VOIB results in the same sample period. All standard errors are clustered on both time and firm identities and 
the associated t-statistics are reported in parentheses. In Panel B, we sort all stocks in the restricted sample into quintile 
portfolios based on VOIB_SHR, SVOIB_SHR, VOIB_NUM, SVOIB_NUM, VOIB_LOB, SVOIB_LOB,. The equally-
weighted portfolio returns for month t+1 are reported. Also reported are the return differences between the high and low 
quintiles and the alphas with respect to the Fama-French (1993) factors along with the momentum factor and the Pastor 
and Stambaugh (2003) liquidity factor. Panel C reports Fama-MacBeth regression coefficient estimates similar to Table 5. 
Models 4 and 5 include the same control variables in Column 4 of Table 5. For brevity, coefficient estimates are reported 
only for VOIB_LOB, SVOIB_LOB, VOIB and SVOIB. Newey-West t-statistics are reported in parentheses. *,**, and *** 
denote statistical significance at the 10%, 5%, and 1% level, respectively.  
 
Panel A: Corporate events 

 Earnings and non-earnings periods M&A and non-M&A periods 
 Earnings 

periods 
Non-earnings 

periods 
Earnings 

minus 
Non-earnings 

M&A 
periods 

Non-M&A 
periods 

M&A minus 
Non-M&A 

VOIB_SHR 0.246 0.181 0.064*** 0.374 0.373 0.000 
   (50.34)   (0.10) 
VOIB_NUM 0.222 0.165 0.057*** 0.337 0.334 0.003 
   (54.57)   (0.66) 
VOIB_LOB 0.205 0.202 0.002 0.312 0.311 0.001 
   (1.47)   (0.39) 
 
Panel B: Univarite sorts 

 VOIB_SHR SVOIB_SHR VOIB_NUM SVOIB_NUM VOIB_LOB SVOIB_LOB 
Quintile       
Low-1 0.320 1.419 0.346 1.464 0.675 0.903 
2 0.477 0.764 0.483 0.800 0.626 0.924 
3 0.684 0.87 0.625 0.768 0.374 0.831 
4 0.652 0.833 0.599 0.875 0.594 0.767 
High-5 1.041 0.613 1.120 0.592 0.905 1.077 
High-Low 0.721** -0.807*** 0.775*** -0.872*** 0.230 0.174 
 (2.43) (-3.06) (2.68) (-3.35) (0.51) (0.59) 
Alpha 0.626** -0.742*** 0.661** -0.820*** 0.269 0.206 
 (2.15) (-3.52) (2.29) (-3.38) (0.61) (0.72) 

 
 

Panel C: Fama-MacBeth regression coefficient estimates 
 Model 1 Model 2 Model 3 Model 4 Model 5 

VOIB_LOB -0.160  0.014 1.994* 1.660 
 (-0.11)  (0.01) (1.66) (1.51) 
SVOIB_LOB  0.593 1.030 -0.965 -1.518 
  (0.36) (0.43) (-0.74) (-1.14) 
VOIB_SHR    15.313***  
    (3.99)  
SVOIB_SHR    -15.942***  
    (-5.68)  
VOIB_NUM     14.964*** 
     (4.27) 
SVOIB_NUM     -16.253*** 

Control No No No Yes 
(-6.35) 

Yes 
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Figure 1: Order Imbalance Volatility Over Time 
 

This figure plots the equally-weighted (EW) and value-weighted (VW) order imbalance volatility calculated 
using the number of shares shared (VOIB_SHR) and the number of transactions (VOIB_NUM). The time trend 
line is also plotted. The order imbalance is defined as (B-S)/(B+S), where B (S) is the trades initiated by 
buyers (sellers). Order imbalance volatility is measured as the monthly standard deviation of daily order 
imbalance, and the first observation is in January, 1983. 
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Figure 2: Shocks to Order Imbalance Volatility Over Time 
 

This figure plots the equally-weighted (EW) and value-weighted (VW) averages of shocks to order imbalance volatility 
calculated using the number of shares traded (SVOIB_SHR) and the number of transactions (SVOIB_NUM). The order 
imbalance is defined as (B-S)/(B+S), where B (S) is the number of trades initiated by buyers (sellers). Shocks are 
calculated as the current month’s order imbalance volatility less the lagged value of the six month moving average of 
monthly order imbalance volatility. The time trend line is also plotted. The first observation is in July, 1983. 
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Internet Appendix 

 

Table A1: Determinants of VOIB 

Each month, we regress VOIB on firm size and proxies for N, vδ, and vz. OIB_SHR is the monthly order imbalance 
defined as (B−S)/(B+S), where B (S) is the number of shares traded initiated by buyers (sellers). VOIB_SHR is the 
standard deviation of daily order imbalance in a month.  The order imbalance volatility calculated using number of trades 
is termed VOIB_NUM. The number of informed agents, N, is measured as the number of informed institutional investors. 
Following Abarbanell, Bushee and Raedy (2003), we break down institutional investors into informed and uninformed 
types, where the informed institutions are defined as investment companies and independent investment advisors because 
such institutions are more likely to be active investors. Other institutions, such as bank trusts, insurance companies, 
corporate/private pension funds, public pension funds, university and foundation endowments, have longer investment 
horizons and trade less actively. Following Chordia, Huh and Subrahmanyam (2009), we employ earnings volatility as a 
proxy for vδ, where earnings volatility is the standard deviation of earnings per share (EPS) from the most recent eight 
quarters. Finally, we employ the average of daily dollar volume (in million dollars) as a proxy for vz. All independent 
variables are standardized in the cross section. The time-series averages of coefficient estimates from monthly cross-
sectional regressions are presented along with the associated Newey-West (1987) t-statistics. The coefficients are 
multiplied by 1000. 

 

 VOIB_SHR VOIB_NUM 
Intercept 126.408*** 121.566*** 
 (71.76) (92.67) 
N 0.459** 0.526*** 
 (2.46) (3.28) 
vδ 0.178*** 0.216*** 
 (6.17) (8.05) 
vz 0.795*** 1.133*** 
 (6.05) (16.55) 
SIZE -7.123*** -7.203*** 
 (-36.58) (-68.78) 
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Table  A2: Summary Statistics before and after January 2001 
 
Panel A (Panel B) presents the time-series averages of the cross-sectional statistics for common stocks listed on NYSE, 
AMEX and NASDAQ before (after) January 2001. The stock-month observation must have valid information to 
calculate the return, market capitalization, book-to-market ratio, and order imbalance, and must have the month-end price 
above one dollar. OIB_SHR is the monthly order imbalance defined as (B−S)/(B+S), where B (S) is the number of shares 
traded initiated by buyers (sellers). VOIB_SHR is the standard deviation of daily order imbalance in a month. 
SVOIB_SHR is the difference between VOIB_SHR in the current month and the six-month moving average of VOIB_SHR 
in the previous month. The variables calculated using the number of trades are termed as OIB_NUM, VOIB_NUM, and 
SVOIB_NUM. The Amihud illiquidity (ILLIQ) is calculated as the monthly average of the daily ratio of the absolute 
return to the dollar volume. TURN is the logarithm of the monthly average of the daily turnover ratio calculated as the 
number of shares traded divided by shares outstanding. SPRD is the spread measure using the cheap alternative solution 
by Holden and Jacobsen (2014). The shocks to the Amihud illiquidity (SILLIQ), turnover (STURN), spread (SSPRD), and 
return standard deviation (SRet_Std) are computed similarly to SVOIB.  
 
Panel A: Descriptive statistics pre-2001 
Statistics N Mean St. dev. Median Minimum Maximum 
OIB_SHR 2,444 -0.079 0.442 -0.119 -0.864 0.760 
VOIB_SHR 2,444 0.414 0.180 0.419 0.064 0.831 
SVOIB_SHR 2,444 0.001 0.125 0.001 -0.483 0.552 
OIB_NUM 2,444 -0.071 0.384 -0.095 -0.790 0.695 
VOIB_NUM 2,444 0.312 0.151 0.298 0.048 0.743 
SVOIB_NUM 2,444 0.001 0.099 -0.003 -0.389 0.513 
ILLIQ 2,444 0.070 0.335 0.003 0.000 7.823 
SILLIQ 2,444 -0.006 0.375 0.000 -8.391 5.999 
TURN 2,436 0.786 0.673 0.581 0.164 5.333 
STURN 2,411 -0.025 0.481 -0.046 -2.297 2.466 
SPRD 2,180 1.979 1.878 1.360 0.224 15.210 
SSPRD 2,160 -0.001 0.007 0.000 -0.102 0.034 
 

 
Panel B: Descriptive statistics post-2001 
Statistics N Mean St. dev. Median Minimum Maximum 
OIB_SHR 3,687 -0.011 0.153 0.007 -0.662 0.469 
VOIB_SHR 3,687 0.284 0.193 0.217 0.057 0.875 
SVOIB_SHR 3,687 -0.004 0.069 -0.004 -0.434 0.327 
OIB_NUM 3,687 0.003 0.125 0.014 -0.515 0.399 
VOIB_NUM 3,687 0.251 0.182 0.187 0.045 0.847 
SVOIB_NUM 3,687 -0.003 0.065 -0.003 -0.417 0.335 
ILLIQ 3,687 0.072 0.445 0.001 0.000 9.135 
SILLIQ 3,687 -0.004 0.453 0.000 -5.668 8.283 
TURN 3,675 1.171 1.348 0.764 0.022 9.458 
STURN 3,645 0.006 0.512 -0.026 -2.224 3.499 
SPRD 3,667 1.178 1.765 0.446 0.038 12.483 
SSPRD 3,666 0.000 0.000 0.000 -0.011 0.001 
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Table A3: Fama-MacBeth Regression Estimates Using an ARMA(1,1) Model for VOIB to Extract Shocks 

This table presents the time-series averages of individual stock cross-sectional OLS regression coefficient estimates 
between July 1983 and December 2012. The order imbalance is calculated using the number of shares traded in Column 
1 and using the number of trades in Column 2. We use an ARMA(1,1) model for VOIB to extract shocks. The dependent 
variable is the risk-adjusted return calculated using the Fama-French (1993) factors as well as the momentum factor and 
the liquidity factor of Pastor and Stambaugh (2003) with loadings conditional on the size and book-to market ratio. All 
independent variables (except R1 and R212) are lagged one month. OIB is the monthly order imbalance defined as (B-
S)/(B+S), where B (S) is the trades initiated by buyers (sellers). VOIB is the standard deviation of daily order imbalance 
in a month. POIB is the logistic transform of the ratio of number of days with positive order imbalance and total number 
of trading days in the month. SVOIB is the difference between VOIB in the current month and the six-month moving 
average of VOIB in the previous month. SIZE represents the logarithm of market capitalization. BM is the logarithm of 
the book-to-market ratio. R1 is the lagged one month return. R212 is the cumulative returns over the second through the 
twelfth months prior to the current month. TURN is the logarithm of the monthly average turnover ratio calculated as the 
trading volume divided by shares outstanding. StdTURN is the standard deviation of TURN in the past 36 months. ILLIQ 
represents the Amihud measure of illiquidity. ACC represents accruals, measured as in Sloan (1996). AG is the asset 
growth computed in Cooper, Gulen and Shill (2008). ISSUE represents new issues as in Pontiff and Woodgate (2008). 
IVOL is the idiosyncratic volatility computed as in Ang, Hodrick, Xing, and Zhang (2006). PROFIT is the profitability 
variable as in Fama and French (2006). SUE is the standardized unexpected earnings, computed as the most recent 
quarterly earnings less the earnings four quarters ago, standardized by its standard deviation estimated over the prior 
eight quarters. MAX is the maximum daily return in the last month. DISP is the analyst dispersion in earnings forecasts 
and DISPD is a dummy that equals to one if the stock is covered by at least two analysts and zero otherwise. SSTT is the 
small size trade imbalance as in Hvidkjaer (2008). HiloSprd is the high-low spread estimate of Corwin and Schultz 
(2012). INSTV is the average of the eight most recent quarterly absolute institutional ownership percentage changes. 
ILLIQV is the idiosyncratic volatility of liquidity in Akbas, Armstrong and Petkova (2011). PIN is the probability of 
informed trade measured by Easley, Kiefer, O’Hara, and Paperman (1996). Ret_Std is the standard deviation of daily 
returns in a month. SOIB, SPOIB, STURN, SStdTURN, SIVOL, SILLIQ, SDISP, and SRet_Std are defined similarly as 
SVOIB. All variables are winsorized at the 0.5% and 99.5% levels. N is the average number of stocks per month. Newey-
West t-statistics are reported in parentheses. *,**, and *** denote statistical significance at the 10%, 5%, and 1% level, 
respectively. 

 

 SHR NUM 
Model 1 2 
Intercept 3.354*** 3.178*** 
 (5.28) (5.10) 
VOIB 1.601*** 1.783*** 
 (2.86) (3.15) 
SVOIB -2.155*** -2.316*** 
 (-5.42) (-5.55) 
ILLIQ 2.292*** 2.271*** 
 (4.95) (4.96) 
SILLIQ -1.052** -1.060** 
 (-2.37) (-2.41) 
OIB -0.527 -0.215 
 (-1.42) (-0.45) 
SOIB 0.694* 0.824* 
 (1.94) (1.82) 
POIB 0.102 -0.077 
 (1.55) (-1.19) 
SPOIB -0.064 0.079 
 (-0.92) (1.28) 
SIZE -0.225*** -0.208*** 
 (-6.32) (-5.89) 
BM -0.010 -0.008 
 (-0.21) (-0.17) 
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Table A3 (continued) 
 

R212 0.012 0.025 
 (0.06) (0.13) 
R1 -0.048*** -0.048*** 
 (-10.37) (-10.36) 
TURN 0.068 0.114 
 (0.80) (1.34) 
STURN 0.909*** 0.851*** 
 (10.29) (9.91) 
STDTURN -0.180*** -0.192*** 
 (-3.90) (-4.15) 
SSTDTURN -0.111 -0.094 
 (-0.81) (-0.69) 
IVOL 28.281 30.114 
 (1.50) (1.60) 
SIVOL -26.758* -27.691* 
 (-1.79) (-1.85) 
ACC -1.132*** -1.111*** 
 (-3.42) (-3.37) 
AG -0.212*** -0.211*** 
 (-3.19) (-3.25) 
ISSUE -1.179*** -1.198*** 
 (-3.98) (-4.03) 
PROFIT 0.067 0.055 
 (1.05) (0.87) 
SUE 0.031** 0.030** 
 (2.54) (2.46) 
Max 4.710*** 4.725*** 
 (4.14) (4.13) 
DISP -0.365*** -0.373*** 
 (-3.49) (-3.58) 
SDISP 0.102 0.100 
 (0.87) (0.87) 
DISPD -0.074 -0.094 
 (-1.02) (-1.29) 
SSTT 9.781 1.055 
 (0.86) (0.08) 
HiLoSprd 25.442*** 25.850*** 
 (3.26) (3.29) 
INSTV -0.088* -0.099* 
 (-1.68) (-1.90) 
ILLIQV -0.026 -0.016 
 (-0.45) (-0.26) 
PIN -2.908*** -3.019*** 
 (-2.74) (-2.84) 
Ret_Std -54.655*** -56.535*** 
 (-3.32) (-3.46) 
SRet_Std 18.378 19.435 
 (1.46) (1.53) 
Adj. R-sq 0.055 0.055 
N 1379 1379 
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Table  A4: Fama-MacBeth Regression Estimates with Other Control Variables 

This table presents the time-series averages of individual stock cross-sectional OLS regression coefficient estimates 
between July 1983 and December 2012. In this table, we add two more control variables: SHiloSprd and O/S. SHiloSprd  
is HiloSprd shock, where HiloSprd is the high-low spread estimate of Corwin and Schultz (2012). O/S is the ratio of 
option trading volume and stock trading volume, measured as in Roll, Schwartz and Subrahmanyam (2010). The order 
imbalance is calculated using the number of shares traded in Columns 1 to 3 and using the number of trades in Columns 
4 to 6. The dependent variable is the risk-adjusted return calculated using the Fama-French (1993) factors as well as the 
momentum factor and the liquidity factor of Pastor and Stambaugh (2003) with loadings conditional on the size and 
book-to market ratio. All independent variables (except R1 and R212) are lagged one month. OIB is the monthly order 
imbalance defined as (B-S)/(B+S), where B (S) is the trades initiated by buyers (sellers). VOIB is the standard deviation 
of daily order imbalance in a month. POIB is the logistic transform of the ratio of number of days with positive order 
imbalance and total number of trading days in the month. SVOIB is the difference between VOIB in the current month 
and the six-month moving average of VOIB in the previous month. SIZE represents the logarithm of market capitalization. 
BM is the logarithm of the book-to-market ratio. R1 is the lagged one month return. R212 is the cumulative returns over 
the second through the twelfth months prior to the current month. TURN is the logarithm of the monthly average turnover 
ratio calculated as the trading volume divided by shares outstanding. StdTURN is the standard deviation of TURN in the 
past 36 months. ILLIQ represents the Amihud measure of illiquidity. ACC represents accruals, measured as in Sloan 
(1996). AG is the asset growth computed in Cooper, Gulen and Shill (2008). ISSUE represents new issues as in Pontiff 
and Woodgate (2008). IVOL is the idiosyncratic volatility computed as in Ang, Hodrick, Xing, and Zhang (2006). 
PROFIT is the profitability variable as in Fama and French (2006). SUE is the standardized unexpected earnings, 
computed as the most recent quarterly earnings less the earnings four quarters ago, standardized by its standard deviation 
estimated over the prior eight quarters. MAX is the maximum daily return in the last month. DISP is the analyst 
dispersion in earnings forecasts and DISPD is a dummy that equals to one if the stock is covered by at least two analysts 
and zero otherwise. SSTT is the small size trade imbalance as in Hvidkjaer (2008). INSTV is the average of the eight most 
recent quarterly absolute institutional ownership percentage changes. ILLIQV is the idiosyncratic volatility of liquidity in 
Akbas, Armstrong and Petkova (2011). PIN is the probability of informed trade measured by Easley, Kiefer, O’Hara, and 
Paperman (1996). Ret_Std is the standard deviation of daily returns in a month. SOIB, SPOIB, STURN, SStdTURN, 
SIVOL, SILLIQ, SDISP, SRet_Std and SHiloSprd are defined similarly as SVOIB. All variables are winsorized at the 0.5% 
and 99.5% levels. N is the average number of stocks per month. Newey-West t-statistics are reported in parentheses. *,**, 
and *** denote statistical significance at the 10%, 5%, and 1% level, respectively. 
 

 
 SHR NUM 

Model 1 2 3 4 5 6 
Intercept 2.332*** 1.683 1.513 2.099*** 0.658 0.540 
 (3.84) (1.56) (1.40) (3.55) (0.56) (0.46) 
VOIB 3.781*** 9.000*** 9.299*** 4.262*** 11.200*** 11.537*** 
 (4.18) (3.65) (3.79) (5.14) (4.04) (4.17) 
SVOIB -4.916*** -6.780*** -7.065*** -5.801*** -9.138*** -9.441*** 
 (-6.05) (-3.07) (-3.21) (-7.53) (-3.69) (-3.80) 
ILLIQ 2.265*** 71.651* 70.904* 2.236*** 65.402* 65.302* 
 (4.94) (1.79) (1.77) (4.92) (1.78) (1.77) 
SILLIQ -0.988** -70.687* -69.403* -0.987** -60.830* -59.513* 
 (-2.33) (-1.85) (-1.88) (-2.37) (-1.69) (-1.70) 
OIB -0.424 -1.893* -1.963* -0.468 -2.728 -2.794 
 (-1.15) (-1.73) (-1.79) (-0.97) (-1.53) (-1.56) 
SOIB 0.566 2.142* 2.183* 1.044** 4.362** 4.441** 
 (1.57) (1.73) (1.76) (2.29) (2.36) (2.40) 
POIB 0.067 0.001 0.013 -0.038 0.093 0.105 
 (1.03) (0.01) (0.10) (-0.59) (0.81) (0.92) 
SPOIB -0.038 -0.060 -0.068 0.035 -0.142 -0.155 
 (-0.54) (-0.47) (-0.53) (0.55) (-1.19) (-1.31) 
SIZE -0.172*** -0.058 -0.051 -0.152*** -0.008 -0.002 
 (-4.95) (-1.04) (-0.91) (-4.48) (-0.12) (-0.04) 
BM -0.016 -0.119** -0.120** -0.011 -0.129** -0.129** 
 (-0.33) (-2.00) (-2.04) (-0.22) (-2.17) (-2.19) 
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Table A4 (continued) 
       
R212 -0.029 -0.559* -0.549 -0.027 -0.584* -0.575* 
 (-0.15) (-1.65) (-1.62) (-0.14) (-1.78) (-1.76) 
R1 -0.049*** -0.039*** -0.040*** -0.049*** -0.042*** -0.042*** 
 (-10.62) (-5.81) (-5.86) (-10.59) (-6.03) (-6.07) 
TURN 0.161* 0.059 0.085 0.206** 0.157 0.183 
 (1.95) (0.41) (0.59) (2.46) (1.03) (1.19) 
STURN 0.750*** 0.405*** 0.387** 0.675*** 0.284* 0.268* 
 (8.60) (2.69) (2.54) (8.22) (1.92) (1.78) 
STDTURN -0.176*** 0.090 0.085 -0.187*** 0.049 0.043 
 (-3.83) (0.87) (0.82) (-4.08) (0.46) (0.41) 
SSTDTURN -0.171 0.237 0.253 -0.145 0.345 0.361 
 (-1.24) (0.89) (0.96) (-1.06) (1.30) (1.38) 
IVOL 22.517 -8.279 -6.122 27.368 -2.172 0.165 
 (1.20) (-0.24) (-0.18) (1.46) (-0.06) (0.00) 
SIVOL -20.612 5.009 4.121 -23.852 -1.045 -2.139 
 (-1.40) (0.18) (0.15) (-1.62) (-0.04) (-0.08) 
ACC -1.119*** -0.727 -0.688 -1.094*** -0.655 -0.622 
 (-3.40) (-1.46) (-1.37) (-3.32) (-1.32) (-1.24) 
AG -0.216*** -0.173*** -0.174*** -0.217*** -0.166*** -0.167*** 
 (-3.21) (-2.77) (-2.80) (-3.30) (-2.73) (-2.75) 
ISSUE -1.210*** -0.993** -0.999** -1.240*** -1.094*** -1.100*** 
 (-4.07) (-2.53) (-2.53) (-4.16) (-2.80) (-2.80) 
PROFIT 0.068 -0.048 -0.049 0.050 -0.053 -0.054 
 (1.05) (-0.55) (-0.56) (0.79) (-0.62) (-0.63) 
SUE 0.030** -0.020 -0.020 0.030** -0.025 -0.025 
 (2.44) (-0.96) (-0.93) (2.40) (-1.23) (-1.19) 
Max 4.856*** 6.045*** 6.113*** 4.973*** 6.468*** 6.544*** 
 (4.28) (3.68) (3.75) (4.39) (3.81) (3.87) 
DISP -0.355*** -0.155 -0.148 -0.368*** -0.158 -0.152 
 (-3.40) (-0.93) (-0.89) (-3.54) (-0.97) (-0.93) 
SDISP 0.089 0.228 0.233 0.094 0.218 0.224 
 (0.76) (1.19) (1.23) (0.81) (1.16) (1.21) 
DISPD -0.102 -0.151 -0.142 -0.125* -0.146 -0.138 
 (-1.39) (-0.89) (-0.83) (-1.70) (-0.85) (-0.80) 
SSTT 8.644 -11.359 -10.384 -0.775 -24.751** -23.653** 
 (0.76) (-1.28) (-1.19) (-0.06) (-2.45) (-2.40) 
HiLoSprd 31.431*** 17.356* 29.528** 34.376*** 17.122 28.864** 
 (3.42) (1.65) (2.24) (3.72) (1.58) (2.15) 
INSTV -0.093* -0.184 -0.187 -0.107** -0.193 -0.196 
 (-1.74) (-1.55) (-1.57) (-2.03) (-1.53) (-1.54) 
ILLIQV -0.040 0.044 0.040 -0.024 0.086 0.084 
 (-0.69) (0.25) (0.23) (-0.40) (0.51) (0.50) 
PIN -3.969*** -13.300*** -13.442*** -4.011*** -12.747*** -12.950*** 
 (-3.05) (-4.36) (-4.39) (-3.25) (-4.50) (-4.56) 
Ret_Std -51.637*** -26.074 -32.129 -57.176*** -33.926 -40.365 
 (-3.09) (-0.86) (-1.07) (-3.41) (-1.11) (-1.33) 
SRet_Std 15.399 -3.570 0.682 19.359 1.980 6.654 
 (1.20) (-0.15) (0.03) (1.51) (0.08) (0.27) 
SHiLoSprd -7.768  -17.980 -9.871  -18.021 
 (-1.07)  (-1.50) (-1.37)  (-1.50) 
O/S  -0.015*** -0.015***  -0.015*** -0.015*** 
  (-2.94) (-2.89)  (-2.93) (-2.86) 
Adj. R-sq 0.056 0.062 0.063 0.056 0.063 0.063 
N 1560 1159 1159 1560 1159 1159 
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Table A5: Fama-MacBeth Regressions for Robustness Checks Using VOIB_NUM 
 

This table presents the time-series averages of individual stock cross-sectional OLS regression coefficient estimates 
between July 1983 and December 2012. Model 1 (Model 2) uses raw return (mid quote return from open to close) as the 
dependent variable. In Models 3 (Model 4), all shock variables are calculated using the three-month (twelve-month) 
moving averages accordingly. Model 5 excludes the great financial crisis period of 2008 and 2009. Models 6 and 7 use 
data before and after January 2001 only. Model 8 uses the Weighted Least Squares regressions in cross-sectional 
estimation following Asparouhova, Bessembinder and Kalcheva (ABK, 2010). In Model 9, we form decile portfolios 
sorted by ܱܤܫ every day, replace each individual firm’s ܱܤܫ with the average ܱܤܫ of the decile portfolio to which the 
firm belongs	(OIB)෣ , and construct other order flow variables using OIB෢ . All independent variables (except R1 and R212) 
are lagged one month. OIB is the monthly order imbalance defined as (B-S)/(B+S), where B (S) is the number of trades 
initiated by buyers (sellers). VOIB is the standard deviation of daily order imbalance in a month. POIB is the logistic 
transform of the ratio of number of days with positive order imbalance and total number of trading days in the month. 
SVOIB is the difference between VOIB in the current month and the six-month moving average of VOIB in the previous 
month. SIZE represents the logarithm of market capitalization. BM is the logarithm of the book-to-market ratio. R1 is the 
lagged one month return. R212 is the cumulative returns over the second through the twelfth months prior to the current 
month. TURN is the logarithm of the monthly average turnover ratio calculated as the trading volume divided by shares 
outstanding. StdTURN is the standard deviation of TURN in the past 36 months. ILLIQ represents the Amihud measure of 
illiquidity. ACC represents accruals, measured as in Sloan (1996). AG is the asset growth computed in Cooper, Gulen and 
Shill (2008). ISSUE represents new issues as in Pontiff and Woodgate (2008). IVOL is the idiosyncratic volatility 
computed as in Ang, Hodrick, Xing, and Zhang (2006). PROFIT is the profitability variable as in Fama and French 
(2006). SUE is the standardized unexpected earnings, computed as the most recent quarterly earnings less the earnings 
four quarters ago, standardized by its standard deviation estimated over the prior eight quarters. MAX is the maximum 
daily return in the last month. DISP is the analyst dispersion in earnings forecasts and DISPD is a dummy that equals to 
one if the stock is covered by at least two analysts and zero otherwise. SSTT is the small size trade imbalance as in 
Hvidkjaer (2008). HiloSprd is the high-low spread estimate of Corwin and Schultz (2012). INSTV is the average of the 
eight most recent quarterly absolute institutional ownership percentage changes. ILLIQV is the idiosyncratic volatility of 
liquidity in Akbas, Armstrong and Petkova (2011). PIN is the probability of informed trade measured by Easley, Kiefer, 
O’Hara, and Paperman (1996). Ret_Std is the standard deviation of daily returns in a month. SOIB, SPOIB, STURN, 
SStdTURN, SIVOL, SILLIQ, SDISP, and SRet_Std are defined similarly as SVOIB. All variables are winsorized at the 0.5% 
and 99.5% levels. N is the average number of stocks per month. Newey-West t-statistics are reported in parentheses. *,**, 
and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.  

 
Model 1 2 3 4 5 6 7 8 9 

 raw ret o-c ret MA=3 MA=12 ex-crisis post2001 pre2001 ABK OIB෢
Intercept 3.625*** 4.248*** 2.719*** 2.194*** 2.252*** 4.472*** 0.748 2.271*** 2.492***
 (4.07) (3.50) (4.83) (3.48) (3.51) (6.01) (0.94) (3.73) (4.15) 
VOIB 4.434*** 5.490*** 3.294*** 3.514*** 3.612*** 7.054*** 1.961*** 4.020*** 2.695***
 (4.94) (4.55) (4.45) (4.68) (4.45) (4.02) (3.86) (4.88) (4.30) 
SVOIB -6.246*** -7.081*** -4.850*** -4.427*** -5.061*** -9.316*** -3.084*** -5.609*** -4.724***
 (-7.62) (-6.28) (-7.04) (-6.28) (-6.86) (-6.35) (-5.61) (-7.33) (-7.81) 
ILLIQ 2.615*** 3.489*** 2.258*** 1.981*** 2.232*** 2.494*** 2.057*** 2.233*** -0.249 
 (5.66) (5.64) (5.15) (3.88) (4.68) (4.15) (3.23) (4.97) (-1.64) 
SILLIQ -1.254*** -2.506*** -1.243*** -0.764 -0.861* -2.461*** 0.037 -0.980** 1.002***
 (-3.04) (-6.02) (-3.35) (-1.51) (-1.96) (-4.02) (0.07) (-2.35) (3.02) 
OIB -0.308 -1.165* 0.028 -0.877 -0.613 -2.278*** 0.750 -0.486 0.005 
 (-0.66) (-1.76) (0.08) (-1.40) (-1.26) (-2.64) (1.61) (-1.01) (0.16) 
SOIB 0.882** 1.843** 0.555 1.550*** 1.078** 2.616*** -0.016 1.055** 0.001 
 (2.04) (2.57) (1.64) (2.72) (2.43) (3.15) (-0.04) (2.34) (0.02) 
POIB -0.033 0.164 -0.068 -0.057 -0.015 0.055 -0.094 -0.033 2.293***
 (-0.49) (1.60) (-1.28) (-0.67) (-0.23) (0.50) (-1.19) (-0.51) (4.96) 
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Table A5 (Continued) 
 

 raw ret o-c ret MA=3 MA=12 ex-crisis post2001 pre2001 ABK OIB෢
SPOIB 0.033 -0.085 0.079 0.033 0.021 -0.139 0.148* 0.032 -1.016** 
 (0.46) (-0.81) (1.54) (0.38) (0.32) (-1.36) (1.95) (0.50) (-2.36) 
SIZE -0.183*** -0.218*** -0.193*** -0.159*** -0.163*** -0.261*** -0.094** -0.163*** -0.178***
 (-3.63) (-3.31) (-5.80) (-4.48) (-4.50) (-5.76) (-2.05) (-4.68) (-5.26) 
BM 0.126* 0.086 -0.013 0.010 -0.013 -0.013 -0.006 -0.009 -0.011 
 (1.84) (0.96) (-0.27) (0.18) (-0.27) (-0.20) (-0.08) (-0.18) (-0.24) 
R212 0.125 0.131 0.069 -0.205 0.210* -0.627 0.381** -0.030 -0.028 
 (0.60) (0.48) (0.37) (-1.02) (1.76) (-1.64) (2.51) (-0.16) (-0.15) 
R1 -0.042*** -0.021*** -0.048*** -0.048*** -0.048*** -0.037*** -0.057*** -0.049*** -0.049***
 (-9.31) (-4.10) (-10.22) (-10.08) (-9.95) (-5.84) (-9.14) (-10.51) (-10.52) 
TURN 0.139 0.142 0.288*** 0.120 0.193** -0.044 0.347*** 0.188** 0.129 
 (1.56) (1.18) (3.33) (1.28) (2.23) (-0.44) (2.95) (2.22) (1.51) 
STURN 0.849*** 0.728*** 0.593*** 0.674*** 0.669*** 0.782*** 0.634*** 0.695*** 0.725***
 (8.39) (6.06) (7.22) (6.69) (7.78) (7.30) (5.29) (8.30) (8.06) 
STDTURN -0.160** -0.159* -0.263*** -0.164*** -0.198*** -0.149* -0.212*** -0.187*** -0.180***
 (-2.46) (-1.66) (-5.80) (-3.29) (-4.31) (-1.95) (-3.77) (-4.06) (-3.91) 
SSTDTURN -0.359** -0.393* 0.118 -0.210* -0.109 -0.199 -0.131 -0.158 -0.153 
 (-2.27) (-1.91) (0.65) (-1.86) (-0.79) (-1.06) (-0.67) (-1.14) (-1.10) 
IVOL 18.331 35.611 16.049 -0.005 26.321 56.337** 10.596 29.356 26.367 
 (0.86) (1.37) (1.07) (0.00) (1.33) (2.04) (0.42) (1.56) (1.40) 
SIVOL -19.828 -36.941* -11.480 -0.755 -24.221 -53.769** -7.314 -26.318* -24.728* 
 (-1.19) (-1.90) (-1.09) (-0.04) (-1.55) (-2.33) (-0.39) (-1.77) (-1.66) 
ACC -1.148*** -1.070** -1.162*** -1.160*** -1.094*** -0.757* -1.334*** -1.098*** -1.117***
 (-3.14) (-2.26) (-3.42) (-3.52) (-3.14) (-1.85) (-2.80) (-3.32) (-3.37) 
AG -0.218*** -0.205*** -0.211*** -0.191*** -0.216*** -0.115* -0.280*** -0.213*** -0.214***
 (-3.63) (-2.81) (-3.19) (-3.30) (-3.13) (-1.67) (-2.87) (-3.27) (-3.24) 
ISSUE -1.249*** -1.744*** -1.234*** -1.248*** -1.275*** -1.371*** -1.139*** -1.233*** -1.245***
 (-4.05) (-3.72) (-4.11) (-4.02) (-4.14) (-3.81) (-2.62) (-4.15) (-4.19) 
PROFIT 0.002 0.086 0.055 0.095 0.077 -0.114 0.164* 0.052 0.064 
 (0.02) (0.98) (0.83) (1.33) (1.18) (-1.31) (1.92) (0.81) (1.00) 
SUE 0.029** 0.021 0.031** 0.024* 0.037*** 0.033* 0.027* 0.030** 0.030** 
 (2.11) (1.17) (2.49) (1.90) (3.15) (1.74) (1.66) (2.41) (2.47) 
Max 5.430*** 3.048** 4.913*** 5.467*** 5.145*** 3.942** 5.530*** 4.880*** 4.818***
 (4.61) (1.98) (4.43) (4.55) (4.48) (2.41) (3.57) (4.28) (4.21) 
DISP -0.345*** -0.156 -0.365*** -0.395*** -0.376*** -0.370*** -0.358** -0.363*** -0.356***
 (-2.92) (-0.88) (-3.91) (-3.24) (-3.41) (-3.02) (-2.32) (-3.50) (-3.44) 
SDISP 0.025 0.020 0.128 0.082 0.088 0.324** -0.070 0.090 0.093 
 (0.20) (0.09) (1.13) (0.64) (0.71) (1.99) (-0.45) (0.77) (0.80) 
DISPD -0.251*** -0.165 -0.079 -0.121 -0.098 -0.119 -0.120 -0.118 -0.079 
 (-2.74) (-1.30) (-1.09) (-1.60) (-1.32) (-0.99) (-1.31) (-1.60) (-1.11) 
SSTT -2.585 -32.408* -2.384 -2.509 1.061 -6.857 4.797 0.215 4.495 
 (-0.20) (-1.92) (-0.18) (-0.19) (0.08) (-0.88) (0.23) (0.02) (0.38) 
HiLoSprd 29.964*** 36.377*** 30.024*** 30.186*** 29.648*** 13.565 36.498*** 27.039*** 24.017***
 (4.08) (3.56) (3.65) (4.55) (3.61) (1.52) (3.20) (3.46) (3.09) 
INSTV -0.093 -0.173 -0.125** -0.058 -0.108* -0.183*** -0.058 -0.109** -0.097* 
 (-1.52) (-0.96) (-2.31) (-0.78) (-1.91) (-3.19) (-0.72) (-2.05) (-1.78) 
ILLIQV -0.047 0.030 -0.006 -0.017 -0.018 0.132 -0.130* -0.024 -0.021 
 (-0.72) (0.29) (-0.11) (-0.29) (-0.30) (1.34) (-1.87) (-0.40) (-0.35) 
PIN -4.362*** -7.153*** -3.166*** -3.572*** -2.972** -11.840*** 1.571* -3.881*** -3.233***
 (-3.13) (-3.94) (-2.83) (-3.05) (-2.49) (-5.83) (1.96) (-3.15) (-2.87) 
Ret_Std -47.724** -55.036** -50.033*** -29.748 -57.849***-67.172*** -48.985** -56.40*** -51.814***
 (-2.39) (-2.14) (-3.73) (-1.49) (-3.32) (-2.85) (-2.18) (-3.44) (-3.15) 
SRet_Std 10.716 21.395 13.285 -7.352 20.679 38.670** 6.143 19.369 16.768 
 (0.70) (1.17) (1.45) (-0.43) (1.56) (2.04) (0.37) (1.55) (1.34) 
Adj. R-sq 0.081 0.084 0.055 0.056 0.055 0.048 0.081 0.055 0.055 
N 1561 1497 1576 1514 1528 2082 1198 1560 1560 

  



9 
 

Table A6: Fama-MacBeth Regressions Using Randomly Formed Portfolios 
 
We perform an alternative test that accounts for measurement error in OIB. In this test, we use 20 randomly formed 
portfolios as test assets every month, and use the portfolios’ average order flows to compute their VOIB and SVOIB. We 
then run Fama-MacBeth regressions for the 20 portfolios, using equally-weighted open-close quote midpoint returns to 
account for non-synchronous trading. We repeat this procedure 100 times. This table presents the time-series averages of 
individual stock cross-sectional OLS regression coefficient estimates between July 1983 and December 2012. 
 

 
 
 
 

SHR NUM 

Intercept 0.210 0.354 

(0.57) (1.05) 

VOIB 2.684*** 2.894*** 

(6.82) (7.30) 

SVOIB -5.988*** -7.026*** 

(-9.39) (-10.57) 
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Table A7: Bivariate Portfolio Sorts Controlling for Limits to Arbitrage Proxies (Contemporaneous Relationship) 

Each month between July 1983 and December 2012, stocks are first sorted into high and low groups based on one of the 
control variables, and then into SVOIB_SHR or SVOIB_NUM quintile portfolios within each control variable group. Then 
the quintile portfolio returns, the return differences between high and low quintile SVOIB portfolios, and the alphas using 
the Fama and French (1993) model along with the momentum factor and the Pastor and Stambaugh (2003) liquidity 
factor are reported with the Newey-West t-statistics in parentheses. VOIB is the standard deviation of daily order 
imbalance in a month, where order imbalance is defined as (B−S)/(B+S) with B (S) being the trades initiated by buyers 
(sellers). SVOIB is the difference between VOIB in the current month and the six-month moving average of VOIB in the 
previous month. The order imbalance is calculated using the number of shares traded in Panel A and using the number of 
trades in Panel B. SIZE represents the logarithm of market capitalization. INST is the percentage of shares held by 
institutional investors. IVOL is the idiosyncratic stock return volatility. *,**, and *** denote statistical significance at the 
10%, 5%, and 1% level, respectively. 
 

Panel A: SVOIB_SHR 
 Controlling for SIZE Controlling for INST Controlling for IVOL 

SVOIB Small Large 
Small-
Large Low High Low-High Low High Low-High

Low 3.652 2.776  3.887 1.967  1.027 4.906  
2 1.043 1.704  1.694 1.292  0.869 2.209  
3 0.423 1.423  1.163 1.066  0.778 1.427  
4 0.146 1.378  0.763 0.929  0.647 1.067  
High 0.157 1.402  0.604 0.797  0.389 0.782  
High-Low -3.495*** -1.374*** -2.121*** -3.283*** -1.170*** -2.112*** -0.638*** -4.124*** 3.486*** 
 (-8.24) (-6.75) (-8.02) (-8.12) (-9.25) (-6.41) (-6.31) (-8.70) (8.24) 
Alpha -3.369*** -1.359*** -2.010*** -3.163*** -1.199*** -1.964*** -0.651*** -3.980*** 3.329*** 
 (-8.45) (-7.38) (-7.23) (-8.25) (-9.69) (-6.01) (-6.55) (-9.11) (8.60) 

 

 

Panel B: SVOIB_NUM 
 Controlling for SIZE Controlling for INST Controlling for IVOL 

SVOIB Small Large 
Small-
Large Low High Low-High Low High Low-High

Low 3.204 2.655  3.498 1.756  0.943 4.363  
2 1.035 1.596  1.749 1.215  0.848 2.099  
3 0.341 1.407  1.030 1.106  0.838 1.387  
4 0.173 1.422  0.829 1.010  0.677 1.153  
High 0.668 1.603  1.005 0.965  0.404 1.390  
High-Low -2.535*** -1.052*** -1.484*** -2.493*** -0.791*** -1.702*** -0.540*** -2.973*** 2.433*** 
 (-5.83) (-5.62) (-4.93) (-6.08) (-5.55) (-4.91) (-5.35) (-6.36) (5.80) 
Alpha -2.449*** -1.062*** -1.387*** -2.432*** -0.815*** -1.617*** -0.539*** -2.861*** 2.322*** 
 (-5.89) (-6.00) (-4.58) (-6.20) (-5.38) (-4.67) (-5.11) (-6.51) (5.88) 
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Table A8: Dynamic Effects of Liquidity Shocks: Robustness Checks 
 

This table presents robustness checks for the effects of SVOIB on returns in the next 1, 2-3, 4-6, 7-9, and 10-12 months. 
We calculate OIB as the monthly order imbalance defined as (B-S)/(B+S), where B (S) is the number of shares traded 
initiated by buyers (sellers). VOIB is the standard deviation of daily order imbalance in a month. SVOIB is the difference 
between VOIB in the current month and the six-month moving average of VOIB in the previous month. SILLIQ is the 
shock to the Amihud illiquidity measure defined similarly as SVOIB. Panel A presents the results for the effects of 
SVOIB_NUM. We report the average Fama-French three-factor along with the momentum and liquidity factors adjusted 
returns of portfolios that buy stocks in the highest quintile of illiquidity shocks and sell stocks in the lowest quintile of 
illiquidity shocks, and the time-series averages of the coefficient estimates for the illiquidity shocks from cross-sectional 
regressions. In Panel B, we divide the sample into two groups based on the institutional holding (INST) or idiosyncratic 
volatility (IVOL), and report for each group the time-series averages of the coefficient estimates of SVOIB_SHR and 
SILLIQ from cross-sectional regressions. In Panel C, we divide the sample into two groups based on SIZE, the 
institutional holding or idiosyncratic volatility, and report the results for SVOIB_NUM All cross-sectional regressions 
control for the same variables as those in Column 3 of Table 5. For brevity, coefficient estimates are reported only for the 
illiquidity shock variables. All variables are winsorized at the 0.5% and 99.5% levels. Newey-West t-statistics are 
reported in parentheses. *,**, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively. 
 

Panel A: Price impact in the long run 
 Alpha FM coefficient 
 SVOIB_NUM SILLIQ SVOIB_NUM SILLIQ 
Month1 -0.945*** -1.534*** -5.619*** -0.979** 
 (-7.49) (-9.08) (-7.34) (-2.30) 
Month2-3 0.058 -0.639*** 0.286 -1.232*** 

 (0.50) (-4.47) (1.22) (-3.45) 
Month4-6 0.234** -0.178 0.163 -1.655*** 

 (2.20) (-1.29) (0.89) (-4.84) 
Month7-9 0.241*** -0.094 0.465** -1.496* 

 (2.69) (-0.62) (2.05) (-1.86) 
Month10-12 0.339*** 0.148 0.557*** -0.816 

 (4.22) (0.96) (3.24) (-0.94) 
 

Panel B: Fama-MacBeth regression coefficient estimates conditioning on INST and IVOL 
 INST IVOL 
 Low High Low High 
 SVOIB_SHR SILLIQ SVOIB_SHR SILLIQ SVOIB_SHR SILLIQ SVOIB_SHR SILLIQ 
Month1 -4.401*** -0.465* -3.110*** -25.156 -1.655*** -0.893 -3.941*** -0.331 
 (-4.89) (-1.87) (-4.57) (-1.41) (-6.55) (-0.50) (-8.83) (-1.53) 
Month2-3 -1.289*** -0.528*** 0.887* -11.310*** 0.483** -0.121 -1.286*** -0.612***

(-2.94) (-2.71) (1.79) (-3.35) (2.41) (-0.10) (-3.84) (-3.43) 
Month4-6 0.912*** -0.456* 1.053** -1.186 0.469** -0.726 0.920*** -0.145 

(3.51) (-1.83) (1.97) (-0.59) (2.52) (-0.72) (3.31) (-0.70) 
Month7-9 1.344*** -0.158 0.836** -3.583 0.442** -0.251 1.294*** -0.041 

(4.89) (-0.73) (2.18) (-1.13) (2.50) (-0.17) (4.49) (-0.23) 
Month10-12 1.321*** 0.317 0.694** -6.289** 0.494*** 0.213 1.861*** 0.611 

(4.92) (1.31) (2.04) (-2.05) (2.77) (0.16) (6.51) (1.47) 
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A8 (continued) 

 

Panel C: Fama-MacBeth regression coefficient estimates for SVOIB_NUM 
conditioning on SIZE, INST and IVOL 
 SIZE INST IVOL 
 Small Large Low High Low High 
Month1 -4.826*** -2.993*** -5.170*** -3.415*** -1.249*** -4.826*** 
 (-5.60) (-2.79) (-5.89) (-4.33) (-3.63) (-9.90) 
Month2-3 -0.665** 0.137 -0.473 -1.056 -0.334 -2.279*** 

 (-2.13) (0.27) (-1.48) (-1.47) (-1.61) (-4.80) 
Month4-6 0.735*** 0.653 0.846*** 1.192* 0.344* 1.120*** 

 (2.77) (1.55) (2.99) (1.69) (1.86) (3.63) 
Month7-9 1.211*** 0.695** 1.446*** 1.109** 0.733*** 1.374*** 

 (4.86) (2.00) (4.78) (2.52) (3.77) (4.41) 
Month10-12 1.177*** 0.729** 1.176*** 0.571 0.540*** 1.861*** 

 (4.80) (2.10) (4.41) (1.29) (2.74) (6.25) 
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