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Least Squares Approximation to Stochastic Optimization

Problems

Zhichao Zheng∗ Karthik Natarajan† Chung-Piaw Teo‡

July 14, 2013

Abstract

This paper is motivated by the following question: How to construct good approximation

for the distribution of the solution value to linear optimization problem when the objective

function is random? More generally, we consider any mixed zero-one linear optimization

problem, and develop an approach to approximate the distribution of its optimal value when

the random objective coefficients follow a multivariate normal distribution. Linking our

model to the classical Stein’s Identity, we show that the least squares normal approximation

of the random optimal value can be computed by solving the persistency problem, first

introduced by Bertsimas et al. (2006). We further extend our method to construct a least

squares quadratic estimator to improve the accuracy of the approximation, in particular, to

capture the skewness of the objective. We use this approach to construct good estimators for

(a) the fill rate of an inventory system in a finite horizon; (b) the waiting time distribution

of the nth customer in a G/G/1 system when the arrival rate equals the service rate; and

(c) the project completion time distribution.

Key words: distribution approximation; persistency; Stein’s Identity; project management;

fill rate; G/G/1 queue; transient solution

1 Introduction

Many problems in the emerging area of predictive analytics can be cast as a likelihood infer-

encing problem for a stochastic system, where the focus is on finding a way to predict the
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outcome/behaviour of a related stochastic optimization problem, given additional side infor-

mation on a set of predictor variables. Take for instance the customer choice model prevalent

in many revenue optimization problem: for given product attributes and choice bundle, the

consumer optimizes a utility function to obtain the choice decision, and the challenge in this

predictive analytical task is to estimate the choice probability of a random customer. Another

well-known example is the queue inference engine (QIE) problem (cf. Larson (1990)): given the

service durations of customers in a busy period (e.g., captured in the ATM machine transaction

data), one would like to predict the queueing behaviour in the system during this busy period.

These problems have received a considerable amount of attention in literature.

The project completion time prediction is an early example of predictive analytics in the

OR literature. Given a set of activities, precedence relationship and (random) duration of

each activity, we would like to estimate the time it takes to complete all the activities in the

project. This problem is often represented by a directed acyclic graph (DAG). In this paper,

we adopt the conventional activity-on-arc representation of the project network, where arcs

represent activities and nodes represent the milestones that indicate the starting or ending of

the activities. The length of an arc is the duration of the activity represented by that arc.

The project completion time is simply the longest path in this network. If all the activities

have deterministic durations, finding the project completion time is as easy as solving a linear

programming (LP) problem1. However, when the activity durations are stochastic, the analysis

of the random project completion time becomes nontrivial.

It has long been the interest of both researchers and practitioners to estimate the distribution

of the project completion time. Over the past few decades, various methods have been proposed

to approximate this distribution (cf. Dodin (1985), Cox (1995), etc.). Unfortunately, to the

best of our knowledge, most of the existing approaches are derived using ad hoc heuristics or

work on specific problem instances. In this paper, we partially address this issue under the

assumption that the activity durations follow a multivariate normal distribution, and construct

a normal distribution approximation for the random project completion time that is optimal

under the L2-norm. In fact, our method applies to any general random mixed 0-1 LP problem

under objective uncertainty:

Z (c̃) := max
x∈P

n∑
j=1

c̃jxj , (1)

where c̃ = (c̃1, . . . , c̃n)
T is the random coefficient vector following a multivariate normal distri-

bution with mean vector µ and covariance matrix Σ, denoted as c̃ ∼ N(µ,Σ), and P is the

1In fact, for the deterministic case, this problem can be solved in a more efficient way, which is dynamic
programming, in effort proportional to the number of arcs in the DAG.
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domain of the feasible solutions (assumed to be bounded) defined by

P := {x ∈ Rn : aT
i x = bi, ∀i = 1, . . . ,m, xj ∈ {0, 1} , ∀j ∈ B ⊆ {1, . . . , n} , x ≥ 0}.

In the project management problem, P characterizes the incidence vector of paths in the project

network, and c̃j is the random duration of activity j. We assume that P is nonempty and

bounded so that E [Z (c̃)] is finite. Throughout this paper, we use bold face letters to denote

column vectors. We use σj,k, j, k = 1, . . . , n, to denote the covariance between c̃j and c̃k, i.e.,

(j, k)−term of the covariance matrix Σ. We also use σ2
j , j = 1, . . . , n, to denote the variance of

c̃j , i.e., the jth diagonal term of Σ.

There is by now a huge literature on finding the distribution of Z (c̃) for various combi-

natorial optimization problems, including minimum assignment, spanning tree, and traveling

salesman problem (cf. Aldous & Steele (2003)). These problems are notoriously hard, and

often only partial results (e.g., asymptotic results with independent and identically distributed

(i.i.d.) random variables) are known. Finding the exact distribution for the general mixed 0-1

LP problem appears to be almost impossible.

In this paper, we develop a generic approach to construct good approximation to the dis-

tribution of Z (c̃). Our approach has interesting applications in various other domains:

• In classical inventory theory, the fill rate of an order-up-to inventory system in K periods

is given by

min
{
D̃1, Q

}
+ . . .+min

{
D̃K , Q

}
D̃1 + . . .+ D̃K

.

where Q is the order-up-to level, and D̃i is the random demand in period i. Suppose that

D̃i’s are i.i.d. Finding the distribution, or even the expectation of the fill rate performance,

is a challenging problem. The fill rate is often approximated by E[min{D̃1, Q}]/E[D̃1],

but it is well-known that this is a weak lower bound, especially if the number of periods,

K, is small. We construct a new estimator for the fill rate in this paper, using our least

squares linear estimator for the random function min{D̃i, Q}.

• In a single server queue when the arrival rate equals the service rate, it is well-known that

the system is not stable. However, in many service system such as a clinic, the number

of customers served is usually moderate in each day. In these systems, the waiting time

of the nth customer may be an important performance measure in the system. In this

paper, we develop an approach to approximate such waiting time distribution, utilizing

classical results in random walks and results from Spitzer (1956) and the arcsine law.
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• For the project management problem, under the Critical Path Method (CPM), which is

commonly used in practice, the random project completion time is estimated by replacing

c̃j with its expected value µj , i.e., Z (µ) is used to approximate the project completion

time. In the classical Program Evaluation and Review Technique (PERT), this is taken

one step further where the distribution of the project completion time is approximated

by
∑n

j=1 βj c̃j =
∑n

j=1 βj(c̃j − µj) + Z(µ), with

βj =

{
1, if arc j is on the longest path when solving Z(µ),
0, otherwise.

To simplify the exposition, here we impose the conventional assumption that there is a

unique optimal solution when we compute Z(µ). Due to the simplicity of the approach,

PERT has gained a lot of popularity, and the random project networks are sometimes

also called PERT networks. However, simply using the distribution of one critical path to

approximate the distribution of the project completion time suffers from severe estimation

errors. In particular, PERT has been widely criticized for significant underestimation of

the mean project completion time and overestimation of the variability of the project

completion time. We improve on these deficiencies of the PERT method in this paper.

The above leads us to a natural estimation problem:

(P) min
α∈R,β∈Rn

E

Z(c̃)− α−
n∑

j=1

βj(c̃j − µj)

2 ,

where the challenge is to solve for the least squares normal approximation (or the best normal

approximation in L2-norm) to the random optimal objective value, as an affine function of the

individual normally distributed random coefficients. We also refer to this as the least squares

linear estimator. In this paper, we use these two terms interchangeably. We explicitly obtain

the solution to this optimization problem, and link it to the persistency problem.

Bertsimas et al. (2006) introduced the notion of the persistency of a binary decision variable

in Problem (1) as the probability that the variable is active (i.e., takes value of 1) in an optimal

solution to Problem (1). We generalize this concept to include continuous variables as follows:

Definition 1 The persistency of the decision variable xj in Problem (1) is defined as E[xj (c̃)],

where xj (c̃) denotes an optimal value of xj as a function of the random vector c̃. If xj is a

binary variable, E[xj (c̃)] = P(xj (c̃) = 1).
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Remark 1 When c̃ is continuous and spans the whole space of Rn, the support of c̃ over which

Problem (1) has multiple optimal solutions has measure zero and x (c̃) is unique almost surely2.

In other situations, if there exist multiple optimal solutions over a support of strictly positive

measure, x (c̃) is defined to be an optimal solution randomly selected from the set of optimal

solutions at c̃.

In this paper, we assume that c̃ is non-degenerate, i.e., the covariance matrix Σ is symmetric

positive definite (denoted as Σ ≻ 0). Together with the normality assumption, we are sure

that x (c̃) is unique almost surely. The notion of persistency generalizes “criticality index” in

project networks and “choice probability” in discrete choice models (cf. Bertsimas et al. (2006),

Natarajan et al. (2009), Mishra et al. (2012)). By persistency problem, we refer to the problem

of estimating the persistency values.

One critical drawback of the estimated distribution from solving Problem (P) is that it is

restricted to be normal, which is symmetric about the mean. However, in most circumstances,

Z(c̃) is skewed. PERT also suffers from a similar issue. To strengthen the approximation, we

propose to extend the estimator to include higher order terms on c̃. In particular, we also find

a quadratic estimator, Q(c̃), to the distribution of Z(c̃) of the following form:

Q(c̃) = α+
n∑

j=1

βj(c̃j − µj) +
n∑

j1=1

n∑
j2=j1

γj1,j2(c̃j1 − µj1)(c̃j2 − µj2),

where α, βj and γj1,j2 are adjustable parameters. Interestingly, the least squares quadratic esti-

mator is also closely related to the persistency problem, and shares some common components

with the least squares linear estimator.

Through this paper, we use the project management problem as the main example to

illustrate the our results and related concepts with extensive numerical analysis. Applications

in other areas are presented separately with relatively less numerical analysis.

Outline of this paper: In the next section, we review the related literature. In Section

3, we build our least squares linear approximation with applications in fill rate and queue

performance estimation. The extension to least squares quadratic estimation is developed in

Section 4 with an illustration using project management problems. In Section 5, we briefly

review some ways for persistency estimation, and present the results from our computational

studies. Finally, we provide some concluding remarks and future research directions in Section

6.
2Note that the feasible region of Problem (1) is a bounded polytope, so it has multiple optimal solutions only

when c̃ realized to be a normal vector of a facet of the polytope. Since the number of facets is finite for a give
polytope, the probability measure over all the normal vectors is zero. For example, consider a polytope in R2,
for any polytope, its normal vectors are just lines in R2. If c̃ is continuous and spans the whole space of R2, the
probability measure over all these lines is zero, since the number of these lines is finite.
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2 Literature Review

Our problem of interest has a long history, and it is related to the classical “distribution problem

of stochastic linear programming” literature (cf. Ewbank et al. (1974), Prekopa (1966) and the

references therein). The distribution of the optimal value is often approximated by numerical

methods such as the Cartesian integration method (cf. Bereanu (1963)). These methods have

been studied under the general framework when the uncertain parameters may appear in the

objective, constraint matrix, or the right hand side of the LP problem. However, the total

number of random variables are very limited due to the numerical methods employed. In the

case of project management, finding the distribution of completion time in a PERT network is

still an active area of research with a rich literature (cf. Yao & Chu (2007) and the references

therein). Most of the work in this area has been focused on using some graphical approaches

to reduce the size of the graph and to reduce the complexity of estimating the distribution

of the project completion time (e.g., Dodin (1985)). Another line of research tries to find a

good normal approximation to the project completion time distribution using Central Limit

Theorem and moment estimation methods (e.g., Cox (1995)). We solve this problem and show

that the best normal approximation to the completion time distribution, under L2-norm, can

be obtained by solving the related persistency problem introduced by Bertsimas et al. (2006),

and further studied in Natarajan et al. (2009).

Brown et al. (1997) brought up the issue of persistence and persistent modeling in opti-

mization through a series of case studies. Although the idea of persistence conveyed in that

paper is very broad and different from the persistency defined above, these two concepts are

closely related through the issue of data uncertainty and robust optimization. The authors

point out that from the perspective of persistence, robust optimization seeks a baseline solution

that will persist as best as possible with a number of alternate forecast revisions. On the other

hand, persistency describes the degree of persistence of each individual decision variable in an

optimization problem with data uncertainty. Indeed, we can further generalize Definition 1 to

the persistency of a feasible solution, i.e., the probability that this feasible solution is optimal.

However, this is beyond the scope of the current paper.

Over the past few years, a substream of research in the field of persistency estimation has

yielded a series of semidefinite programming (SDP) models based on the connection between

the moment cone and the semidefinite cone. A common feature of these models is that they

only assume the knowledge of moment information of the uncertainty rather than the exact

form of the distribution. Hence, they are also referred as distributionally robust stochastic

programming (DRSP) models.

Bertsimas et al. (2006) introduced arguably the first computational approach to approxi-
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mate the persistency by solving a class of SDPs called Marginal Moment Model (MMM) under

the assumption that the random vector c̃ is described only through the marginal moments of

each c̃j and all the decision variables in Problem (1) are binary. Natarajan et al. (2009) extend-

ed MMM to general mixed-integer LP problems, but their model formulation is based on the

characterization of the convex hull of the binary reformulation which is typically difficult to de-

rive. Lasserre (2010) studied the class of parametric polynomial optimization problems, which

includes the mixed 0-1 linear programming problem as a special case. The author described the

uncertainty using a combination of joint probability measure on the parameters and optimal

solutions and marginal probability measures on the parameters. A hierarchy of semidefinite

relaxations was proposed to solve the problem. However, the size of the semidefinite relaxation

grows rapidly which makes solving the higher order semidefinite relaxations numerically chal-

lenging. Mishra et al. (2012) presented a SDP model named Cross Moment Model (CMM) for

c̃ described by both the marginal and cross moments. The formulation of CMM is based on the

extreme point enumeration of Problem (1). Hence, the size of CMM becomes exponential for

general LP problems. Inspired by a recent application of conic optimization on mixed 0-1 LP

problems due to Burer (2009), Natarajan et al. (2011) developed a parsimonious but NP-hard

conic optimization model to estimate the persistency of a general mixed 0-1 LP problem when

c̃ is described by both the marginal and cross moments. They referred to their model as Com-

pletely Positive Cross Moment Model (CPCMM). In this paper, we mainly exploit this model

to estimate the persistency values. We will review it in more details in Section 5.

A recent paper by Agrawal et al. (2012) investigated the loss incurred by ignoring correla-

tions in a DRSP model and proposed a new concept called price of correlations (POC). They

showed that POC is bounded from above for a certain class of cost functions, suggesting that

the intuitive approach of assuming independent distributions may actually work well for these

problems. However, independence conditions can be extremely difficult to capture as well. One

of the negative results is given by Hagstrom (1988), who showed that computing the expected

value of the longest path in a directed acyclic graph is #P-complete when the arc lengths are

restricted to taking two possible values and independent of each other. Perhaps a DRSP model

with correlation conditions is more tractable. On the other hand, Agrawal et al. (2012) also

show that for some cost functions, POC can be particularly large, indicating the need of DRSP

models to capture correlations. Fortunately, CPCMM partially fills this gap, which in turns

further strengthens our approximation method.

In the literature of project management, there is only limited sensitivity analysis with corre-

lated activity times. For example, Banerjee & Paul (2008) showed that in the case of a project

network with multivariate normal activity completion times and a covariance matrix character-

ized by only nonnegative terms, the completion times of activities are positively correlated. To
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the best of our knowledge, none of the previous studies address the issues of correlated activities

for the project management problem when approximating the distributions of the project com-

pletion times. Our research contributes to fill this gap by assuming a general non-degenerate

multivariate normal distribution for the activity times when constructing the approximating

distributions.

The key contributions of this paper are summarized next:

• We systematically study the distribution approximation problem under the least squares

framework and take into account correlations among the random coefficients.

• Linking our problems to Stein’s Identity, we explicitly derive the expressions of both the

least squares linear and quadratic approximations.

• We provide a new perspective to the distribution approximation problem by transform-

ing it into the related persistency estimation problem, for which there exist many well-

established results to provide good estimates.

• In the context of project management problem, we show that knowing the criticality

indices of arcs is the key to estimate the variability in the project completion time.

• By comparing against existing methods through extensive numerical studies, we demon-

strate the superiority of bringing persistency into the distribution approximation problem.

3 Least Squares Linear Estimator for the Distribution

As discussed in the introduction, our main idea is to approximate the distribution of Z (c̃) by

a normal distribution, W (c̃), with the following form:

W (c̃) = α+

n∑
j=1

βj (c̃j − µj) , (2)

where α and βj ’s are adjustable parameters. Note that the linear estimator in Equation (2)

is also a normal distribution. The objective is to choose α and βj ’s such that the expected

squared deviation between W (c̃) and Z (c̃) is minimized. In particular, we aim to solve:

(P) min
α∈R,β∈Rn

E

Z (c̃)− α−
n∑

j=1

βj (c̃j − µj)

2 ,

i.e., we want to find the least squares normal approximation to the distribution of Z(c̃). It

turns out that the solution to Problem (P) under the normality assumption of c̃ is related to
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the concept of persistency in a straightforward manner as shown in the following theorem.

Theorem 1 When c̃ ∼ N(µ,Σ) and Σ ≻ 0, the unique solution to Problem (P) is

α∗ = E [Z(c̃)] , β∗
k = E [xk(c̃)] , k = 1, . . . , n.

The proof of Theorem 1 utilizes the following classical covariance identity due to Stein, and

its proof is enclosed in Appendix A for completeness.

Lemma 1 [Stein’s Identity] Let the random vector c̃ = (c̃1, . . . , c̃n)
T be multivariate normally

distributed with mean vector µ and covariance matrix Σ. For any function h(c1, . . . , cn) : Rn →
R such that ∂h(c1, . . . , cn)/∂cj exists almost everywhere and E[|∂h(c̃)/∂cj |] < ∞, ∀j = 1, . . . , n,

denote ∇h(c̃) = (∂h(c̃)/∂c1, . . . , ∂h(c̃)/∂cn)
T . Then Cov(c̃, h(c̃)) = ΣE[∇h(c̃)]. Specifically,

Cov (c̃k, h(c̃1, . . . , c̃n)) =

n∑
j=1

Cov (c̃k, c̃j)E

[
∂

∂cj
h(c̃1, . . . , c̃n)

]
, ∀k = 1, . . . , n.

Proof of Theorem 1. It is obvious that Problem (P) is convex. Then the necessary and

sufficient optimality conditions of Problem (P) are

E

Z (c̃)− α∗ −
n∑

j=1

β∗
j (c̃j − µj)

 = 0, and

E

Z (c̃)− α∗ −
n∑

j=1

β∗
j (c̃j − µj)

 (c̃k − µk)

 = 0, ∀k = 1, . . . , n.

Hence, an optimal solution to (P), (α∗,β∗) should satisfy

α∗ = E [Z (c̃)] , and

E

Z (c̃)−E [Z (c̃)]−
n∑

j=1

β∗
j (c̃j − µj)

 (c̃k − µk)

 = 0, ∀k = 1, . . . , n.

Rearranging the second set of conditions, we get

Cov (c̃k, Z (c̃)) =
n∑

j=1

β∗
j σj,k, ∀k = 1, . . . , n. (3)
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The optimal objective value Z(c̃) satisfies the conditions in Stein’s identity since ∂Z(c̃)/∂ck =

xk(c) almost everywhere. By applying Stein’s Identity on c̃ and Z(c̃), we have

Cov (c̃k, Z(c̃)) =
n∑

j=1

σj,kE

[
∂Z(c̃)

∂cj

]
, ∀k = 1, . . . , n.

Observe that ∀j = 1, . . . , n,

E

[
∂Z(c̃)

∂cj

]
= E

[
∂

∂cj

(
n∑

k=1

c̃kxk(c̃)

)]

= E

[
n∑

k=1

c̃k
∂xk(c̃)

∂cj
+ xj(c̃)

]
= E [xj(c̃)] .

The last equality follows from our assumptions on c̃, i.e., normal and non-degenerate, so that for

all j, k = 1, . . . , n, ∂xk(c)/∂cj exists almost everywhere and equals to zero whenever it exists3.

Thus, we get β∗
j = E [xj(c̃)] , j = 1, . . . , n as one solution to Equation (3), which is also unique

since Σ is positive definite. Thus, the proof is complete.

With Theorem 1, the problem of finding the least squares normal approximation to the

distribution of Z(c̃) is transformed into computing the persistency in Problem (1) as well as

estimating E[Z(c̃)]. From these results, we know that the mean of estimated distribution W (c̃)

is the same as the mean of Z(c̃). However, the variance of W (c̃) is governed by the persistency

values, and it is not necessarily equal to the variance of Z(c̃). Indeed, the variance of W (c̃) is

a lower bound of the variance of Z(c̃), i.e.,

V ar (W (c̃)) = V ar

 n∑
j=1

E [xj (c̃)] c̃j


= (E [x (c̃)])T Σ(E [x (c̃)])

≤ V ar

 n∑
j=1

xj (c̃) c̃j


= V ar (Z (c̃)) .

3Note that ∂xk(c̃)/∂cj is not defined when there are multiple optimal solutions to Problem (1), but in other
situations, xk(c̃) does not change with a small perturbation of cj . Please refer to the footnote in Remark 1 for
the detailed discussion on the probability measure over the set of c̃ that leads to multiple optimal solutions.
Precisely, we should write the derivation process in integral form, i.e., expressing all the expectations in integral
form. Then it will be clear that ∂xk(c̃)/∂cj can only be integrated over the support of c̃ where it is defined, and
hence only zero values remain in the integration expression for E[c̃k∂xk(c̃)/∂cj ].
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The inequality above is due to Cacoullos (1982), where equality holds if and only if E[xj(c̃)] is

constant for every j = 1, . . . , n. Note that although Cacoullos’ inequality,

V ar (g (c̃)) ≥ (E [∇g (c̃)])T Σ(E [∇g (c̃)]) ,

holds for any absolutely continuous real-valued function g (c̃) with finite variance, we still need

those properties of Z (c̃) and E [x (c̃)] as used in the proof of Theorem 1 to derive the above

result. Though a lower bound, the variance of the least squares linear estimator is significant-

ly closer to the true variance than those estimated from existing distribution approximation

methods. We will illustrate this point using examples in Section 5.1.

Remark 2 Empirically, instead of using the observed persistency values to estimate the values

for β, we can also use Cov(c̃j , Z(c̃))/σ2
j to estimate βj when c̃j’s are independent of each other

(cf. Equation (3)). This is exactly the formula used in linear regression. One such example is

estimating the beta coefficient of a risky asset under the capital asset pricing model (CAPM) in

finance. This approach comes in handy when only Z(c̃) is observed but not the optimal choices

made, as is the case in linear regression.

3.1 Application: Fill Rate

Consider a finite horizon order-up-to inventory system, where demand the D̃i’s are i.i.d. with

mean µ and standard deviation σ. Let Q denote the order up to level. We are interested to

approximate the fill rate over K periods, given by

min
{
D̃1, Q

}
+ . . .+min

{
D̃K , Q

}
D̃1 + . . .+ D̃K

.

Chen et al. (2003) established that

E

min
{
D̃1, Q

}
D̃1

 ≥ E

∑K
i=1min

{
D̃i, Q

}
∑K

i=1 D̃i,

 ≥
E
[
min

{
D̃1, Q

}]
E
[
D̃1

] , ∀K = 1, 2, . . . .

Thomas (2005) argued that the distribution of the fill rate measurement affects the stocking

decision, and hence the choice of the planning horizon in the fill rate measurement is an im-

portant consideration in the design of the fill rate target. Define θ(Q) = P(D̃1 < Q). Assume

D̃i’s are normally distributed. Let L(x) = E[max(Z − x, 0)] denote the standardized normal
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loss function, where Z is the standard normal random variable. Then

∑K
i=1min

{
D̃i, Q

}
∑K

i=1 D̃i

≈

∑K
i=1

{
θ (Q) D̃i − θ (Q)µ+Q+E

[
min

{
D̃i −Q, 0

}]}
∑K

i=1 D̃i

=

∑K
i=1

{
θ (Q)Di +Q− θ (Q)µ− σE

[
max

{
Z − µ−Q

σ , 0
}]}

∑K
i=1 D̃i

= θ (Q) +
K
[
Q− θ (Q)µ− σL

(
µ−Q
σ

)]
∑K

i=1 D̃i

.

Example 1 Consider the case when the i.i.d. demand Di is normally distributed with mean

µ = 10 and standard deviation σ = 3.

The mean fill rates obtained from simulation and the linear estimator developed above are

summarized in Table 1.

Q
K = 2 K = 10 K = 20

Simulation Estimation Simulation Estimation Simulation Estimation

6 0.6116 0.6137 0.5918 0.5919 0.5895 0.5895
7 0.6997 0.7025 0.6797 0.6798 0.6773 0.6774
8 0.7780 0.7814 0.7592 0.7593 0.7569 0.7570
9 0.8441 0.8479 0.8278 0.8279 0.8258 0.8258
10 0.8969 0.9006 0.8837 0.8838 0.8820 0.8821
11 0.9360 0.9393 0.9264 0.9264 0.9251 0.9251
12 0.9630 0.9657 0.9565 0.9566 0.9556 0.9556
13 0.9802 0.9821 0.9762 0.9762 0.9756 0.9756
14 0.9902 0.9915 0.9880 0.9880 0.9876 0.9876

Table 1: Comparison between simulated and estimated finite-horizon fill rates

The mean of the estimator obtained using the persistency approach is surprisingly close

to the simulated fill rate performance, for all values of Q. Moreover, the effect of the review

periods is more visible for small Q. For instance, when Q = 6, the mean fill rate is around 61%

when K = 2, but drops to 59% when K is around 10 to 20.

Note that

E

∑K
i=1min

{
D̃i, Q

}
∑K

i=1 D̃i

 ≈ E

θ (Q) +
K
(
Q− θ (Q)µ− σL

(
µ−Q
σ

))
∑K

i=1 D̃i


= θ (Q) +

[
Q− θ (Q)µ− σL

(
µ−Q

σ

)]
E

[
K∑K
i=1 D̃i

]
.
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Hence to meet a target expected fill rate of β, the order up to level Q and the number of review

periods K, approximately satisfy the relationship

θ (Q) +

[
Q− θ (Q)µ− σL

(
µ−Q

σ

)]
E

[
K∑K
i=1 D̃i

]
= β,

i.e.,

KE

[
1∑K

i=1 D̃i

]
=

β − θ (Q)

Q− θ (Q)µ− σL
(
µ−Q
σ

) .
For Example 1, we can numerically integrate the function on both sides of the equation.

Figure 1 shows how the left-hand side (LHS) and right-hand side (RHS) vary as a function of

K, Q and β, respectively. For K = 2 (with corresponding LHS value of 0.1053), and β = 0.7,

the plots indicate that we only need Q to be around 7 to attain the fill rate of 70%. However,

for the target of β = 0.99, we need Q to be around 14.

(a) (b)

Figure 1: LHS as a function of K (a) versus RHS as a function of Q and β (b)

3.2 Application: Maximum Partial Sum and G/G/1 Queue

Here we discuss another application of our result on an important statistical problem: approxi-

mating the distribution of the maximum partial sum of normal random variables. The problem

is critical in many areas of application, including hydrology and testing for a change-point (cf.

Hurst (1951), James et al. (1987), Conniffe & Spencer (2000)). It also arises in the transient

analysis of single server queue. Combining our result with some classical results in probability

theory, we present a closed-form expression for the least squares normal approximation of the
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maximum partial sum of normal random variables, from which many interesting applications

follow.

Suppose that c̃j ’s (j = 1, . . . , n) are i.i.d. normal random variables with zero mean and

finite standard deviation σ. Let S0 = 0 and

S̃k = c̃1 + · · ·+ c̃k, k = 1, . . . , n.

The problem is to estimate the distribution of S̃max := max
k∈{0,...,n}

S̃k, i.e., the maximum partial

sum of c̃j ’s (or the maximum value of the random walk from c̃j ’s). Note that

Smax = max∑n
k=0 yk=1,y≥0

n∑
k=0

Skyk = max∑n
k=0 yk=1,y≥0

n∑
k=1

 k∑
j=1

c̃j

 yk (4)

= max∑n
k=0 yk=1,y≥0

n∑
j=1

 n∑
k=j

yk

 c̃j (5)

Applying Theorem 1, we get the following expression of the least squares normal approximation

to S̃max:

E
[
S̃max

]
+

n∑
j=1

 n∑
k=j

E [yk (c̃)]

 c̃j , (6)

where E[yk(c̃)] is the persistency in Problem (5), i.e., the probability that the partial sum attains

its maximum value at step k. The classical finite arcsine law (cf. Andersen (1953)) states that

this probability does not depend on the distribution of c̃j provided that c̃j is symmetric around

the mean 0:

E [yk(c̃)] =

(
2k

k

)(
2n− 2k

n− k

)
1

22n
, k = 1, . . . , n.

Observe that the variance of our approximation in Equation (6) is solely determined by the

second term through persistency. Hence, we get the following closed-form lower bound to the

variance of the maximum partial sum:

σ2

24n

n∑
j=1

 n∑
k=j

(
2k

k

)(
2n− 2k

n− k

)2

.

The above result expands the current literature by providing a different way to estimate

the variance of the maximum partial sum of i.i.d. normal random variables. Note that there

exists various methods in literature to compute or estimate E[S̃max], with which we get a

complete characterization of the least squares normal approximation as shown in Equation (6).
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For instance, when µ = 0, i.e., c̃i’s are independent normal random variables with zero means,

Spitzer (1956) showed that

E
[
S̃max

]
=

n∑
k=1

1

k
E
[
S̃+
k

]
= E

[
c̃+1
] n∑
k=1

1√
k
,

where S̃+
k = max{0, S̃k}, and c̃+1 = max{0, c̃1}.

We use the results established above to develop an estimator for the waiting time distribution

of the nth customer in a G/G/1 queue, where the arrival rate equals the service rate. Let

c̃n−i+1 = T̃i−1 − Ãi, where T̃i−1 is the service time duration of the (i − 1)th customer, and Ãi

the inter-arrival time between the arrivals of the (i − 1)th and ith customer. In this way, the

waiting time of the nth customer in the G/G/1 queue is known to be given by the maximum

partial sum S̃max. We have shown that

E
[
S̃max

]
+

n∑
j=1

 n∑
k=j

E [yk (c̃)]

 c̃j

is the optimal least squares linear estimator for the waiting time distribution of the nth cus-

tomer. Note that this estimation could return a negative value since c̃j ’s are normally dis-

tributed. It is obvious that such estimate is wrong. Thus, we modify the estimator a bit by

truncating the negative estimates. We look at the numerical performance of our modified linear

estimator using the following example.

Example 2 Suppose that c̃i is normally distributed with mean 0 and standard deviation 2.

Approximate the waiting time distribution of the 12th customer.

For this example, Spitzer’s Identity gives rise to a mean waiting time of 4.4771 units. Figure

2 shows the performance of the linear estimator (denoted by Predict(ALL) since we are using

all the c̃i to predict the waiting time), vis-à-viz the waiting time obtained from simulation,

across 100 sample paths.

Interestingly, the linear estimators Predict(ALL) performs consistently well across all sample

paths. The average square deviation is around 2.7305 squared units.

In practice, we are also interested to evaluate the waiting time given additional information

on the queueing system. For instance, in some applications, we want to evaluate the average

waiting time distribution of all the customers, given the additional information that, say

S := {c̃1 + c̃2 . . .+ c̃n > 0} .
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Figure 2: Estimations (Predict(ALL)) versus simulated (WT) waiting times of the 12th cus-
tomer across 100 sample paths

This is the case in many overloaded systems, or during a busy period. Note that

E

[
c̃i

∣∣∣∣ n∑
i=1

c̃i > 0

]
=

1

n
E

[
n∑

i=1

c̃i

∣∣∣∣ n∑
i=1

c̃i > 0

]
=

σ

n

√
2n

π
.

We use the linear estimator constructed above to approximate the expected waiting time of the

nth customer, which yields

E

E [S̃max

]
+

n∑
j=1

 n∑
k=j

E [yk (c̃)]

 c̃j

∣∣∣∣S
 = E

[
S̃max

]
+

n∑
j=1

 n∑
k=j

E [yk (c̃)]

E

[
c̃j

∣∣∣∣S]

= E
[
S̃max

]
+

n∑
j=1

 n∑
k=j

E [yk (c̃)]

 σ

n

√
2n

π
.

For Example 2, the above approximation gives rise to an estimate of 7.2410 units. This estimate

is surprisingly accurate, as compared to the simulation result, 7.2419 units, from 106 sample

paths.

4 Least Squares Quadratic Estimator for the Distribution

In the previous section, we show how to approximate the distribution of Z(c̃) using a linear

estimatorW (c̃). By “linear”, we mean thatW (c̃) is linear in c̃. As discussed in the introduction,

to address the problem of skewness in Z(c̃), we propose to extend our estimator to incorporate
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higher order terms on c̃. The estimator we consider is denoted as Q(c̃) with the following form:

Q(c̃) = α+

n∑
j=1

βj(c̃j − µj) +

n∑
j1=1

n∑
j2=j1

γj1,j2(c̃j1 − µj1)(c̃j2 − µj2),

where α, βj ’s and γj1,j2 ’s are adjustable parameters. Then the least squares quadratic estimation

problem can be formulated as:

(Q) min
α∈R,β∈Rn,Γ∈Rn×n

E
[(

Z(c̃)− α−
∑n

j=1 βj(c̃j − µj)

−
∑n

j1=1

∑n
j2=j1

γj1,j2(c̃j1 − µj1)(c̃j2 − µj2)
)2]

,

where the matrix Γ is defined in such a way that makes our notation compact, Γj1,j2
.
=

(1/2)γj1,j2 , for 1 ≤ j1 < j2 ≤ n, Γj1,j2
.
= (1/2)γj2,j1 , for 1 ≤ j2 < j1 ≤ n, and Γj1,j2

.
= γj1,j2 , for

j1 = j2 = 1, . . . , n.

Following a similar approach as in Section 3, we can also derive the solution to Problem

(Q). Interestingly, adding the quadratic term does not affect the solution of β, which are still

the persistency values, as presented in the following theorem. Notation-wise, we use “•” to

denote the inner product of two matrices.

Theorem 2 When c̃ ∼ N(µ,Σ), a solution (α∗,β∗,Γ∗) to Problem (Q) can be characterized

as follows:

α∗ = E [Z(c̃)]− Σ • Γ∗, β∗
k = E [xk(c̃)] , k = 1, . . . , n,

and Γ∗ is symmetric and satisfies the following system of (n2 + n)/2 linear equations:

n∑
j1=1

n∑
j2=j1

γ∗j1,j2 (σj1,k1σj2,k2 + σj1,k2σk1,j2)

=
n∑

j=1
(E [c̃k1xj (c̃)]− µk1E [xj (c̃)])σj,k2 , ∀1 ≤ k1 ≤ k2 ≤ n.

The proof of Theorem 2 is similar to that of Theorem 1. Hence, we omit it here but refer

the readers to Appendix B for the details.

From Theorem 2, the problem of finding the least squares quadratic estimator for the

distribution of Z(c̃) is again transformed into a persistency problem, i.e., estimating E[x(c̃)],

E[c̃x(c̃)T ], and E[Z(c̃)]. The additional requirement to estimate E[c̃x(c̃)T ], i.e., the interaction

between random coefficients and the optimal solution, can be interpreted as the increased

difficulty of adding the quadratic terms in the estimation. However, we shall see in Section

5.1 that E[c̃x(c̃)T ] can be obtained as a by-product when we estimate the persistency using

semidefinite programming methods.
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In general, Γ∗ may not be unique due to the correlation structures. However, when c̃j ’s are

uncorrelated and not degenerate, we do have a simple and unique solution.

Corollary 1 When c̃j’s are uncorrelated and each follows a normal distribution with σ2
j > 0,

there is a unique solution to Problem (Q) as follows:

α∗ = E [Z(c̃)]− Σ • Γ∗,

β∗
k = E [xk(c̃)] , k = 1, . . . , n,

γ∗k1,k2 =
E [c̃k1xk2 (c̃)]− µk1E [xk2 (c̃)]

σ2
k1

, ∀1 ≤ k1 < k2 ≤ n,

γ∗k,k =
E [c̃kxk (c̃)]− µkE [xk (c̃)]

2σ2
k

, ∀k = 1, . . . , n.

It would be interesting to know whether the least quadratic estimation is convex in c̃.

Unfortunately, Hertog et al. (2002) observed that the least squares quadratic approximation of

a multivariate convex function in a finite set of points is not necessarily convex even though it

is convex for a univariate convex function. Similarly for our problem, we cannot guarantee that

the least quadratic estimation is convex. It is however possible to enforce convexity through

imposing a semidefinite constraint on Γ, but the resulting problem will not exhibit a nice and

explicit characterization of the solution as the unconstrained version.

4.1 Application: Project Management

We would like to know how accurate the least squares linear approximation can be and how the

least squares quadratic approximation can improve the estimation accuracy. Using the exact

persistency values, we rule out the impact of errors from estimating persistency values, which

might either increase or decrease the accuracy of our least squares estimators and complicate

the analysis. By “exact”, we mean the persistency values are directly computed from simula-

tion (i.e., sample estimates of E[x(c̃)], E[c̃x(c̃)T ] and E[Z(c̃)]) rather than some persistency

estimation models.

The key performance indicator we consider is the expected square deviation (ESD), which

is also the objective function we try to minimize in obtaining our least square approximations.

Unfortunately, almost all the approximating distributions derived using previous methods do

not reside in the same probability space as Z(c̃), which makes it impossible to compute the

squared deviation from Z(c̃). This problem arises since the traditional approaches solely focus

on the distribution (like tail probabilities, etc.) but overlook the approximation error between

the approximated completion time and the true completion time under a specific realization of

the random activity durations. For example, Cox (1995) assumed the project completion time
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to be normally distributed at first, and then tried to estimate the moments of the completion

time. Hence, we have to resort to other measures to compare the performance of different

approximation methods including descriptive statistics, like mean, standard deviation, and

skewness. In addition, we also employ the following measure to quantify the distance between

two distributions:

Square Norm Distance(F,G) = SND(F,G) :=

∫ 1

0

[
F−1 (y)−G−1 (y)

]2
dy

where F and G are the cumulative distribution functions of two distributions.

Example 3 The project network consists of four nodes and five arcs as shown in Figure 3. All

activities are independent and normally distributed with mean and variance both equal to one.

Figure 3: The Project Network Example

The network in Example 3 is the “Wheatstone bridge” network from Lindsey (1972) and

later regarded as the “forbidden graph” by Dodin (1985) since it is the basic evidence of

graph irreducibility. Ord (1991) summarized the results for this graph documented in literature

with normally distributed activity durations, and also provided the results from his discrete

approximation method with a parameter k indicating the number of discrete points used to

approximate the normal distribution. Indeed, the approximated distributions obtained by Ord

(1991) should be a discrete distribution. However, we extend his theory in computing the square

norm distance by assuming the final approximated distribution follows a normal distribution

with the moments derived from his original procedure. All these results are presented in Table

2, where T denotes the project completion time, and σ(T ) denotes its standard deviation, and

sk(T ) denotes its skewness. “Error on σ(T )” is computed as the absolute relative error against

the simulation result. The new result from our method is also presented in Table 2 under

“LSN” and “LSQ”, where “LSN” stands for “Least Squares Normal” and “LSQ” stands for

“Least Squares Quadratic”. We conducted 106 simulation runs to estimate the persistency

values.
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Approximation Method E [T ] σ (T ) Error on σ(T ) sk (T ) ESD SND

106 simulation 3.516 1.39 - 0.28 - -
Numerical integration 3.483 1.47 5.76% 0 - 0.017
Ord (1991) k = 2 3.261 0.70 49.64% 0 - 0.543

k = 3 3.485 1.04 25.18% 0 - 0.128
k = 4 3.525 1.08 22.32% 0 - 0.101
k = 5 3.582 1.15 17.27% 0 - 0.068
k = 6 3.594 1.15 17.27% 0 - 0.069

Cox (1995) 3.639 1.69 21.58% 0 - 0.116
PERT 3.000 1.73 24.46% 0 0.973 0.395
LSN 3.515 1.27 8.63% 0 0.311 0.021
LSQ 3.515 1.36 2.16% 0.47 0.078 0.005

Table 2: Estimation results for Example 3 with simulated parameters for least squares approx-
imating distributions

From Table 2, we can see that except the numerical integration approach and our quadratic

estimator, the least squares linear estimation gives the best estimate for the standard deviation,

in terms of absolute relative error. Regardless of the high accuracy, the integration approach

would be too tedious to be applicable for even medium-size networks. This suggests that using

persistency could be a promising way to estimate the variability in the project completion time.

Recall in our approximation model, the variance is solely determined by the persistency values

(i.e., βj ’s in Equation(2)). Adding the quadratic terms not only helps capture the right direc-

tion of skewness, but more interestingly, it significantly improves the estimation on variance.

The added variability comes from the quadratic components of the estimator, as the linear

term in the least squares quadratic estimation shares the same coefficients as the least squares

linear estimator, i.e., persistency. Overall, the least squares linear approximation is remarkably

effective with extremely low ESD and SND, and the least squares quadratic approximation

even pushes the SND below the numerical integration approach. Figure 4 plots the density and

cumulative distribution functions of PERT and our least squares estimations together with the

simulation results. It is obvious from the plots that both least square estimators fit closely with

simulation results. With the right skewness direction, the cumulative distribution function of

the quadratic estimator almost overlaps with that of simulation.

For the example problems we studied above, the skewness in the optimum distribution is

not very strong. In order to better demonstrate the impact of the quadratic estimator, we study

a simple problem discussed by Zhan et al. (2005) in the next example.

Example 4 Approximate the distribution of the maximum of two normal random variables,

N(0, 0.52) and N(1, 32). In this case, the persistency values can be accurately obtained from

integration.
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Figure 4: Distributions for Example 3

The results are plotted in Figure 5, and the improvement from the quadratic estimator is

obvious. We can conclude that the advantage of adding quadratic terms is larger if the true

distribution is suspect to be very skewed.
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Figure 5: Distributions for Example 4

5 Approximating Persistency Values

In practical applications, if simulation can be easily conducted, we can directly obtain an empir-

ical distribution for the random optimization problem without resorting to other distribution

approximation techniques. However, if the deterministic problem is NP-hard or very com-

plicated, then simulation may require tremendous effort or resources to achieve satisfactory

results. In that case, we might benefit from choosing appropriate ways to approximate the

distribution. Under the least squares approximation framework, our results tell that the task
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is transformed to estimate persistency values and some related parameters. Hence, the success

of our approximation methods hinge on the accuracy of the estimation on these parameters. In

what follows, we will briefly review some estimation methods that we adopt in the numerical

analysis.

Note that we are not bound to use just one model to estimate all the necessary parameters

for the approximating distributions, E[x(c̃)], E[c̃x(c̃)T ], and E[Z(c̃)]. Indeed, we can choose

any methods deemed appropriate for each parameter. From this point of view, there is a huge

literature we can make use of to estimate these parameters, especially for E[Z(c̃)]. What we

show next is only one possible approach. To avoid the criticism of speculation, we only choose

some basic and generic estimation methods without sophisticated modifications to tailor to our

test problems. Hence, we leave plenty of room for users to improve the approximation accuracy

for specific applications and better demonstrate the power of our least squares approximations.

In the literature, the problem of estimating the expected objective value of a stochastic

optimization problems has been studied for a long time. In case of the project managemen-

t problem, the search for the expected project completion time started half century ago (cf.

Fulkerson (1962)) and is still an active research topic (cf. Yao & Chu (2007)). In this section,

two näıve methods are used. For small networks, we use the classical estimation method pro-

posed by Clark (1961), which is the building block of most modern distribution approximation

methods, especially for the project management problem. However, we only use the original

estimation methods from Clark (1961) to estimate E[Z(c̃)] without considering any further

extensions and refinements. For larger networks, implementing Clark’s methods may require

some programming effort, so we simply use PERT to give a rough estimate of E[Z(c̃)], since it

is a popular tool in practice.

On the other hand, although the concept of persistency has only been brought into the

optimization area since Bertsimas et al. (2006), it has long been studied under different guises

such as the criticality index in the project management area. The majority of the research

work on estimating criticality has been focusing on developing heuristics algorithms based on

the topological properties of the project networks, and the uncertainty is usually treated by dis-

cretization and/or stochastic dominance considerations (cf. Dodin (1984), Dodin & Elmaghraby

(1985), etc.). More advanced method combines the strength of different approaches to obtain

some hybrid method. For example, Bowman (1995) utilized the geometric properties of the

networks to reduce the computational requirement of simulation. The common limitation of

these methods is the lack of consideration of correlations among different activity completion

times. Besides these specific estimation methods for the project management method, there

is a series of generic conic programming based models for persistency estimation as reviewed

before (cf. Natarajan et al. (2009), Mishra et al. (2012), Natarajan et al. (2011), Kong et al.
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(2013) etc.). By “generic” we mean that these methods work on any optimization problems

and do not exploit any specific problem structure like the network flow in the project manage-

ment problem. In what follows, we will review in more details the most recent progress on the

persistency estimation, i.e., CPCMM, mainly contributed by Natarajan et al. (2011). We will

make use of this model in the numerical studies.

Natarajan et al. (2011) consider the following stochastic optimization problem:

ZP := sup
c̃∼(µ,Σ)+

E [Z(c̃)] ,

where c̃ ∼ (µ,Σ)+ means that the set of distributions of the random coefficient vector c̃

(assumed to be nonempty) is defined by the nonnegative support Rn
+, finite mean vector µ and

finite covariance matrix Σ, i.e., c̃ ∈ {X̃ : E[X̃] = µ,E[X̃X̃T ] = Σ + µµT ,P(X̃ ≥ 0) = 1}.
They proved that ZP can be solved as the following convex conic optimization problem:

ZC = max
∑n

j=1 Yj,j

s.t. aT
i Xai − 2bia

T
i x+ b2i = 0, ∀i = 1, . . . ,m

Xj,j = xj , ∀j ∈ B 1 µT xT

µ Σ+ µµT Y T

x Y X

 ≽cp 0

(i.e., ZP = ZC) where the decision variables are x ∈ Rn, X ∈ Rn×n, and Y ∈ Rn×n. For a

matrix A ∈ Rn×n, A ≽cp 0 means that A lies in the cone of completely positive matrices of

dimension n defined as

CPn :=
{
A ∈ Rn×n | ∃V ∈ Rn×k

+ , such that A = V V T
}
.

The linear program over the convex cone of the completely positive matrices is called a com-

pletely positive program (CPP), and ZC is a typical CPP. That is why this model is called

Completely Positive Cross Moment Model. Furthermore, they extended CPCMM by relaxing

the nonnegative support assumption on c̃, which makes CPCMM suitable for our case, be-

cause the support of a multivariate normal distribution is the whole Euclidean space. The only

change needed is to modify the conic constraint. For ease of exposition, we still keep the basic

CPCMM formulation for the following illustration. The support extension can be uniformly

applied through modifying the conic constraint. A key reason that we choose this model is its

ability to capture correlations among random coefficients.

In the formulation of ZC , the variables x, Y and X attempt to encode the information

xj = E[xj(c̃)], Yi,j = E[c̃jxi(c̃)] and Xi,j = E[xi(c̃)xj(c̃)] under the worst case distribution.
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Thus, through solving ZC , the optimal objective value gives the value of E[Z(c̃)], and the

optimal value of x is simply the persistency, also under the worst case distribution. In addition,

the “by-product” of solving CPCMM, Y , gives necessary information to construct the quadratic

estimator, which is obtained without any additional effort.

However, a key drawback of CPCMM is that it ignores the distributional information.

Hence, when c̃ is normally distributed, CPCMM only gives an upper bound on E[Z(c̃)] and

an estimate of the persistency and E[c̃jxi(c̃)]. A direct cure to this problem is to add some

ellipsoidal constraints on the probability mass of c̃ that are known for multivariate normal

random variables, so that CPCMM can be gradually refined to incorporate the distributional

information. For an illustration of this technique, please refer to Natarajan et al. (2010). In

this paper, however, we do not implement this method, because the persistency estimates from

CPCMM are good enough for most examples we will discuss later and we want to keep the

focus of this paper on distribution approximation rather than persistency estimation.

Another issue with CPCMM is that it is NP-hard to solve despite the fact that the com-

pletely positive cone is closed, convex and pointed. Fortunately, there are various hierarchies

of tractable approximations for the completely positive cone, e.g., Bomze et al. (2000), Parrilo

(2000) and Klerk et al. (2002) etc. In the following computational study, we use a simple SDP

approximation of the completely positive constraint, i.e., A ≽cp 0 is relaxed to A ≽ 0 and

A ≥ 0, where A ≽ 0 means that A is positive semidefinite. Such relaxation is also called doubly

nonnegative relaxation.

Despite all these numerical inaccuracies, we show that our approximation methods are still

practically attractive due to the use of persistency in the approximation and the flexibility of

our methods.

5.1 Computational Study

Consider Example 3 again, and we will construct our least squares approximating distributions

using estimated persistency values. As discussed above, we implement the estimation scheme

from Clark (1961) to estimate the mean project completion time, i.e., the parameter α in our

models. For persistency estimates, we solve the SDP relaxation of CPCMM reviewed in Section

5. The results are summarized in Table 3, where we add a lower case letter “e” after “LSN”

and “LSQ” to indicate the results from estimated persistency parameters.

From the table, we can see that when estimated parameters are used instead of the exact

ones, the distributions constructed from our least squares method still perform very well. For

the least squares linear approximation, the estimated variance only deteriorates a little bit,

which highlights the accuracy of persistency estimates from CPCMM and the power of using

persistency in distribution approximation. Although the estimation error on E[c̃x(c̃)T ] has
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Approximation Method E [T ] σ (T ) Error on σ(T ) sk (T ) ESD SND

106 simulation 3.516 1.39 - 0.28 - -
Numerical integration 3.483 1.47 5.76% 0 - 0.017
Ord (1991) k = 2 3.261 0.70 49.64% 0 - 0.543

k = 3 3.485 1.04 25.18% 0 - 0.128
k = 4 3.525 1.08 22.32% 0 - 0.101
k = 5 3.582 1.15 17.27% 0 - 0.068
k = 6 3.594 1.15 17.27% 0 - 0.069

Cox (1995) 3.639 1.69 21.58% 0 - 0.116
PERT 3.000 1.73 24.46% 0 0.973 0.395
LSNe 3.518 1.26 8.80% 0 0.311 0.022
LSQe 3.519 1.44 3.76% 0.60 0.124 0.014

Table 3: Estimation results for Example 3 with estimated parameters for least squares approx-
imating distributions

some impact on the least squares quadratic approximation, it still improves the performance

from the least squares linear approximation. In particular, the variability estimate still out-

performs the numerical integration approach, and the SND is below the numerical integration

approach and much better than any other existing methods.

To further justify the performance of our models, we also test our least square estimations on

a series of random project networks of larger sizes, and compare the results with PERT. In this

case, we use PERT to estimate E[Z(c̃)], which will be used in calculating the optimal parameter

α in our least squares quadratic estimator. We drop the comparison on SND in this example,

since all the distributions here allow the computation of ESD from the true distribution of Z(c̃).

Example 5 Approximate the completion time distributions of the random projects generated

by the following algorithm:

Random Project Network Generation Algorithm

Step 1. Randomly set the number of nodes (m′) in the project network.

Step 2. Construct a zero adjacency matrix. Go through every matrix entry in the upper triangle

(above the diagonal), and replace 0 by 1 if an independent realization of a uniform random

variable U(0, 1) is greater than s, where s ∈ [0, 1]. s can be used to control the density of the

graph. More precisely, after this step, the random network will have an expected number of arcs

E[n′] = s ·m′(m′ − 1)/2, and each node will have s(m′ − 1) expected number of neighbours. We

randomly set s from 0.2 to 0.8 in our experiments.

Step 3. Remove all the isolated nodes in the network.

Step 4. Create an initial node s. For each node i without incoming arcs, add an arc s → i.

Step 5. Create a terminal node t. For each node i without outgoing arcs, add an arc i → t.

After this step, the structure of the network is fixed. Denote the final number of nodes as m

and the final number of arcs as n.
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Step 6. For arc i, generate the random arc length with mean µi uniformly drawn between 1 and

10, and standard deviations uniformly drawn from 0 to 0.7µi.

Step 7. Randomly generate a correlation matrix for the activities.

The results for ten random networks are presented in Table 44. The sample size for all

the simulations is 2× 104. From Table 4, it is clear that our findings observed in small exam-

ple network carry on to larger networks, and both least squares approximations demonstrate

consistent superior performance. It is worthwhile to mention that the quadratic estimator con-

sistently provides very accurate estimation of the variability in project completion time. For

quite a few cases, the estimation errors are less than 1%.

E [T ] σ (T )
Error on

sk (T ) ESD E [T ] σ (T )
Error on

sk (T ) ESD
σ (T ) σ (T )

m = 20, n = 29 m = 22, n = 41

SIMU 4.1392 0.2220 - 0.0605 - 3.5374 0.1942 - 0.3421 -

PERT 4.0185 0.2725 22.72% 0 0.0445 3.3992 0.2713 39.70% 0 0.0547

LSNe 4.0185 0.1968 11.34% 0 0.0229 3.3992 0.1572 19.05% 0 0.0296

LSQe 4.0197 0.2262 1.91% 0.5085 0.0183 3.3997 0.2040 5.06% 0.9225 0.0238

m = 10, n = 28 m = 22, n = 35

SIMU 4.2635 0.3561 - 0.1281 - 3.8964 0.1553 - 0.3447 -

PERT 4.1912 0.3986 11.93% 0 0.0171 3.7742 0.2102 35.35% 0 0.0378

LSNe 4.1912 0.3416 4.09% 0 0.0101 3.7742 0.1228 20.93% 0 0.0230

LSQe 4.1928 0.3540 0.60% 0.5213 0.0100 3.7744 0.1713 10.28% 0.7489 0.0207

m = 24, n = 44 m = 12, n = 37

SIMU 3.5860 0.2115 - 0.6954 - 5.0994 0.2843 - 0.1939 -

PERT 3.5031 0.2807 32.72% 0 0.0296 5.0289 0.3311 16.46% 0.0212

LSNe 3.5031 0.1847 12.63% 0 0.0176 5.0289 0.2664 6.30% 0.0130

LSQe 3.5034 0.2241 6.00% 1.2997 0.0136 5.0304 0.2932 3.13% 0.6096 0.0108

m = 8, n = 16 m = 9, n = 20

SIMU 3.5774 0.3298 - 0.2027 - 4.2892 0.1644 - 0.5189 -

PERT 3.5350 0.3682 11.65% 0 0.0105 4.2159 0.2082 26.66% 0 0.0196

LSNe 3.5350 0.3203 2.87% 0 0.0062 4.2159 0.1474 10.34% 0 0.0112

LSQe 3.5352 0.3317 0.59% 0.5817 0.0045 4.2174 0.1769 7.64% 1.0683 0.0078

m = 25, n = 42 m = 11, n = 33

SIMU 3.5276 0.2756 - 0.5382 - 5.1726 0.2911 - 0.0965 -

PERT 3.4938 0.3234 17.35% 0 0.0110 5.0934 0.3156 8.43% 0 0.0164

LSNe 3.4938 0.2531 8.19% 0 0.0073 5.0934 0.2712 6.85% 0 0.0105

LSQe 3.4925 0.2767 0.40% 1.2969 0.0071 5.0958 0.2913 0.08% 0.4413 0.0091

Table 4: Estimation results for random project networks in Example 5

4For this example, we have constructed and analyzed more than one hundred random networks, and the results
share the same pattern throughout the experiment. Hence, we only show ten instances as a demonstration.
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6 Conclusion

In this paper, we show that the distribution approximation problem under least squares frame-

work and normality assumption can be transformed into the related persistency problem. Var-

ious applications and computational experiments are presented to demonstrate the advantages

of our approximation method, especially the benefits of introducing persistency into the dis-

tribution approximation problem. Better estimation on persistency values is then becoming

critical and hence worth more exploration, especially under the normality assumption.

The results in this paper can be developed further in several ways. In particular, with the

knowledge on the distribution of the optimal value, we can now conduct more in-depth risk anal-

ysis or parameter calibration for the underlying stochastic mixed zero-one linear optimization

problem. We leave these and other related issues for future research.
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Appendix A. Proof of Lemma 1

The proof is consolidated from Stein (1972), Stein (1981) and Liu (1994).

The first result is the univariate version of Stein’s Identity (cf. Stein (1972) and Stein (1981)).

Let c̃ follow a standard normal distribution, N (0, 1), and ϕ (c) denote the standard normal

density with the derivative satisfying ϕ′ (c) = −cϕ (c). For any function h : R → R such that h′

exists almost everywhere and E[|h′(c̃)|] < ∞,

E
[
h′ (c̃)

]
=

∫ ∞

−∞
h′(c)ϕ (c) dc

=

∫ ∞

0
h′(c)

[∫ ∞

c
zϕ (z) dz

]
dc+

∫ 0

−∞
h′(c)

[∫ c

−∞
−zϕ (z) dz

]
dc

=

∫ ∞

0
zϕ (z)

[∫ z

0
h′(c)dc

]
dz −

∫ 0

−∞
zϕ (z)

[∫ 0

z
h′(c)dc

]
dz

=

(∫ ∞

0
+

∫ 0

−∞

)
[zϕ (z) [h(z)− h(0)]] dz

=

∫ ∞

−∞
zϕ (z)h(z)dz

= E [c̃h (c̃)] ,

where the third equality is justified by Fubini’s Theorem. Note that since E[c̃] = 0 and V ar(c̃) =

1, the equality proved above is essentially

Cov (c̃, h (c̃)) = V ar(c̃)E
[
h′ (c̃)

]
. (7)

Next, we present the generalization of the result to the multivariate case (cf. Stein (1981) and

Liu (1994)).

Let z̃ = (z̃1, . . . , z̃n)
T , where z̃j ’s are independent and identically distributed standard

normal random variables. From Equation (7) it follows that for any function ĥ : Rn → R
satisfying the same conditions as h in the Theorem,

E
[
z̃1ĥ (z̃)

∣∣∣ (z̃2, . . . , z̃n)] = E

[
∂ĥ (z̃)

∂z1

∣∣∣∣∣ (z̃2, . . . , z̃n)
]
.

Taking the expectation of both sides, we get

E
[
z̃1ĥ (z̃)

]
= E

[
∂ĥ (z̃)

∂z1

]
.
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Using a similar argument for the remaining random variables, we can show that

Cov
(
z̃, ĥ (z̃)

)
= E

[
∇ĥ (z̃)

]
.

Note that the random vector c̃ can be written as c̃ = Σ1/2z̃+µ. Consider ĥ (z̃) = h
(
Σ1/2z̃ + µ

)
,

then ∇ĥ (z̃) = Σ1/2∇h (c̃). Hence,

Cov (c̃, h (c̃)) = Cov
(
Σ1/2z̃, ĥ (z̃)

)
= Σ1/2E

[
∇ĥ (z̃)

]
= ΣE [∇h (c̃)] .

Appendix B. Proof of Theorem 2

Since Problem (Q) is convex, its necessary and sufficient optimality conditions are

E

Z(c̃)− α∗ −
n∑

j=1

β∗
j (c̃j − µj)−

n∑
j1=1

n∑
j2=j1

γ∗j1,j2(c̃j1 − µj1)(c̃j2 − µj2)

 = 0,

E

[(
Z(c̃)− α∗ −

n∑
j=1

β∗
j (c̃j − µj)−

n∑
j1=1

n∑
j2=j1

γ∗j1,j2(c̃j1 − µj1)(c̃j2 − µj2)

)
(c̃k − µk)

]
= 0,

∀k = 1, . . . , n, and

E

[(
Z(c̃)− α∗ −

n∑
j=1

β∗
j (c̃j − µj)

−
n∑

j1=1

n∑
j2=j1

γ∗j1,j2(c̃j1 − µj1)(c̃j2 − µj2)

)
(c̃k1 − µk1) (c̃k2 − µk2)

]
= 0,

∀1 ≤ k1 ≤ k2 ≤ n.

Hence, an optimal solution (α∗,β∗,Γ∗) should satisfy

α∗ = E [Z(c̃)]− Σ • Γ∗,

E

[(
Z(c̃)− α∗ −

n∑
j=1

β∗
j (c̃j − µj)

)
(c̃k − µk)

]

−E

[
n∑

j1=1

n∑
j2=j1

γ∗j1,j2(c̃j1 − µj1)(c̃j2 − µj2) (c̃k − µk)

]
= 0, ∀k = 1, . . . , n, and

E

[(
Z(c̃)− α∗ −

n∑
j=1

β∗
j (c̃j − µj)

)
(c̃k1 − µk1) (c̃k2 − µk2)

]

−E

[
n∑

j1=1

n∑
j2=j1

γ∗j1,j2(c̃j1 − µj1)(c̃j2 − µj2) (c̃k1 − µk1) (c̃k2 − µk2)

]
= 0, ∀1 ≤ k1 ≤ k2 ≤ n.

29



From Isserlis’ Theorem, if random variable (z̃1, . . . , z̃n) follows a zero mean multivariate normal

distribution, then

E

[
n∏

i=1

z̃i

]
=

{
0, if n is odd,∑∏

E [z̃iz̃j ] , if n is even,

where
∑∏

means summing over all distinct ways of partitioning (z̃1, . . . , z̃n) into pairs (cf.

Isserlis (1918)). In particular, when n = 3, 4,

E [z̃1z̃2z̃3] = 0, and

E [z̃1z̃2z̃3z̃4] = E [z̃1z̃2]E [z̃3z̃4] +E [z̃1z̃3]E [z̃2z̃4] +E [z̃1z̃4]E [z̃2z̃3] .

Applying Isserlis’ Theorem, we can reduce the optimality conditions into

α∗ = E [Z(c̃)]− Σ • Γ∗,

E

[(
Z(c̃)− α∗ −

n∑
j=1

β∗
j (c̃j − µj)

)
(c̃k − µk)

]
= 0, ∀k = 1, . . . , n, (8)

and

E [(Z(c̃)− α∗) (c̃k1 − µk1) (c̃k2 − µk2)]

−
n∑

j1=1

n∑
j2=j1

γ∗j1,j2 (σj1,j2σk1,k2 + σj1,k1σj2,k2 + σj1,k2σk1,j2) = 0, ∀1 ≤ k1 ≤ k2 ≤ n.
(9)

Further simplifying Equation (8), we get

E [Z(c̃) (c̃k − µk)] =

n∑
j=1

β∗
j σj,k, ∀k = 1, . . . , n.

Since E [Z(c̃) (c̃k − µk)] = Cov (c̃k, Z(c̃)), we arrive at the same conditions as Equation (3) in

Theorem 1. Therefore, following the same argument, we have β∗
k = E [xk(c̃)] , k = 1, . . . , n,

which is unique if Σ is positive definite.

Consider a part of the first term in Equation (9),

E [Z(c̃) (c̃k1 − µk1) (c̃k2 − µk2)] = E [Z(c̃)c̃k1 c̃k2 ]− µk1E [Z(c̃)c̃k2 ]

−µk2E [Z(c̃)c̃k1 ] + µk1µk2E [Z(c̃)]

= E [Z(c̃)c̃k1 c̃k2 ]−E [Z(c̃)c̃k1 ]µk2

−µk1 (E [Z(c̃)c̃k2 ]−E [Z(c̃)]µk2)

= Cov (Z(c̃)c̃k1 , c̃k2)− µk1Cov (Z(c̃), c̃k2) .
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It is straightforward to apply Stein’s Identity on Cov (Z(c̃), c̃k2) as we have done before, i.e.,

Cov (Z(c̃), c̃k2) =

n∑
j=1

E [xj (c̃)]σj,k2 .

For the other term, Cov (Z(c̃)c̃k1 , c̃k2), we can also use Stein’s Identity,

Cov (Z(c̃)c̃k1 , c̃k2) =

n∑
j=1

E

[
∂Z(c̃)c̃k1

∂cj

]
Cov (c̃j , c̃k2)

=

n∑
j=1

E

[
c̃k1

∂Z(c̃)

∂cj
+ Z(c̃)

∂c̃k1
∂cj

]
σj,k2

=

n∑
j=1

E [c̃k1xj (c̃)]σj,k2 +E [Z(c̃)]σk1,k2 ,

where the last equality follows from the same argument as in the proof of Theorem 1. Therefore,

E [(Z(c̃)− α∗) (c̃k1 − µk1) (c̃k2 − µk2)] = E [Z(c̃) (c̃k1 − µk1) (c̃k2 − µk2)]− α∗σk1,k2

=

n∑
j=1

E [c̃k1xj (c̃)]σj,k2 +E [Z(c̃)]σk1,k2

−µk1

n∑
j=1

E [xj (c̃)]σj,k2

− (E [Z(c̃)]− Σ • Γ∗)σk1,k2

=
n∑

j=1

(E [c̃k1xj (c̃)]− µk1E [xj (c̃)])σj,k2

+σk1,k2Σ • Γ∗.

Substituting this into Equation (9), we get a system of (n2 + n)/2 linear equations on Γ∗,

n∑
j=1

(E [c̃k1xj (c̃)]− µk1E [xj (c̃)])σj,k2 + σk1,k2Σ • Γ∗

−
n∑

j1=1

n∑
j2=j1

γ∗j1,j2 (σj1,j2σk1,k2 + σj1,k1σj2,k2 + σj1,k2σk1,j2) = 0, ∀1 ≤ k1 ≤ k2 ≤ n,

which reduces to

n∑
j1=1

n∑
j2=j1

γ∗j1,j2 (σj1,k1σj2,k2 + σj1,k2σk1,j2)

=
n∑

j=1
(E [c̃k1xj (c̃)]− µk1E [xj (c̃)])σj,k2 , ∀1 ≤ k1 ≤ k2 ≤ n.
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Thus, we complete the proof.
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