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ABSTRACT 

We develop a new approach for estimating mutual fund performance that controls for both factor 

model betas and stock characteristics in one measure. Our double adjustment procedure shows 

that fund returns are significantly related to stock characteristics in the cross section after 

controlling for risk via factor models. Compared to standard mutual fund performance estimates, 

the new measure substantially affects performance rankings, with a quarter of funds experiencing 

a change in percentile ranking greater than ten. Double-adjusted fund performance persists a full 

nine years after the initial ranking period, much longer than standard performance. Moreover, 

inference based on the new measure often differs, sometimes dramatically, from that based on 

traditional performance estimates. 
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The performance evaluation of mutual fund managers is an enduring topic within 

financial economics. At the core of any performance analysis is the model used to determine the 

fund’s benchmark. Among the alternative techniques utilized over the years, the factor model 

regression approach of Jensen (1968, 1969) and, more recently, Carhart (1997) and the 

characteristic-based benchmark approach of Daniel et al. (DGTW, 1997) stand out for their 

simplicity, intuitive interpretation, and widespread use. Both approaches are parsimonious, yet 

control for major influences identified in the empirical asset pricing literature as significantly 

affecting the cross section of stock returns.  

For example, both the Carhart (1997) and DGTW approaches control for fund exposure 

to varying degrees of stock market capitalization, book-to-market ratio, and momentum stocks, 

either via factor model betas, as in Carhart, or via benchmark portfolio returns, as in DGTW. 

Evaluating a fund by either approach provides insight into the types of stocks held by the fund 

through the regression factor loadings or specific characteristic benchmarks, while at the same 

time identifying a return hurdle for the fund commensurate with its stock portfolio. 

The parsimonious structure of the models, however, has its drawbacks. For instance, 

factor models are imperfect, particularly vis-à-vis stocks with outlier characteristics. Fama and 

French (1996), for example, show that extreme small cap growth stocks show negative 

performance relative to their three-factor model. Consequently, a fund manager that holds small 

cap growth stocks might perform poorly when evaluated via a multi-factor Fama French or 

Carhart type of regression model, even absent poor stock selection skill (e.g., if their mandate is 

to invest in small cap growth stocks). Holding stocks with extreme characteristics poses similar 

issues for the DGTW measure because the typical DGTW implementation uses coarse quintile 

sorts to ensure well-populated benchmark portfolios.  
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Recently, the empirical asset pricing literature has examined the incremental effect stock 

characteristics have on the cross-section of stock returns beyond what is captured by factor 

model betas. That is, after controlling for risk in a Fama-French type of regression, for example, 

does a cross-sectional relation exist between residual returns and the stock’s market 

capitalization? Brennan, Chordia, and Subramanyam (1998) and Chordia, Goyal, and Shanken 

(2013) find that characteristics such as market capitalization, book-to-market ratio, momentum, 

and liquidity are all statistically significantly related to average returns after controlling for factor 

model betas. That is, cross-sectionally, stock returns remain related to market capitalization, for 

example, even after controlling for market capitalization via Fama and French’s (1993) SMB 

factor. In the context of mutual fund performance, these findings suggest that some of the 

abnormal performance previously identified via Fama-French or Carhart type regressions could 

be attributable to stock characteristics, rather than manager skill.  

In this paper, we utilize in a mutual fund context the insight from the empirical asset 

pricing literature that both factor loadings and stock characteristics help explain the cross section 

of stock returns. We do so by developing a new mutual fund performance measure that controls 

for both types of influences. We base our measure on a two-step procedure, where we 

sequentially control first for exposure to factors and then for the characteristics of a mutual 

fund’s stock holdings. Specifically, we compute Carhart (1997) four-factor alphas for a sample of 

funds and then regress cross sectionally the four-factor alphas on fund portfolio holding 

characteristics (i.e., fund portfolio value-weighted averages of market capitalization, book-to-

market, and six-month momentum). Based on the cross-sectional regression estimates, we 

decompose the standard four-factor alpha into two components: (i) double-adjusted performance, 

which we define as the sum of the intercept and a fund’s residual from the cross-sectional 
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regression, and (ii) characteristics-driven performance, the component attributable to exposure to 

stock characteristics, estimated as the difference between standard four-factor alpha and double-

adjusted performance.  

Just as Brennan, Chordia, and Subramanyam (1998) and Chordia, Goyal, and Shanken 

(2013) find that characteristics explain the cross-section of stock returns after controlling for 

exposure to risk factors, we find that standard alpha measures from factor model regressions of 

mutual fund returns are significantly related in the cross section to the characteristics of mutual 

fund portfolio holdings. For instance, funds in the bottom quintile of stock size (i.e., those 

holding the smallest market capitalization stocks) have an annualized four-factor alpha that is 1.1 

percent (t-stat.=2.5) greater than the alpha of funds in the top quintile. Funds in the top quintile 

of stock momentum (i.e., those holding the highest momentum stocks) have an annualized four-

factor alpha that is 2.9 percent (t-stat.=5.4) greater than funds in the bottom quintile. Thus, funds 

can show higher relative performance based on standard four-factor alpha by passively loading 

on characteristics, even when those characteristics are explicitly addressed in the factor model.     

To address the above issue with standard factor model performance estimates, we 

perform a second pass cross-sectional adjustment and remove the component of performance 

attributable to characteristics from standard alpha measures. Our double-adjusted performance 

measure provides a cleaner estimate of true fund skill, to the extent that it controls for the passive 

effects associated with stock characteristics that is not addressed by the factor models. We find 

that about a quarter of a typical fund’s standard four-factor alpha is attributable to stock 

characteristics conditional on double-adjusted and characteristics-driven components of the same 

sign. More importantly, we find that our second pass adjustment procedure impacts inference 

associated with relative fund performance, sometimes quite dramatically.  
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To provide some economic insight into the degree to which the second pass control 

impacts relative performance, we find a median percentile ranking change of about five percent. 

For example, a fund that ranked in the 50th percentile based on the standard Carhart four-factor 

alpha ranks in the 45th or 55th percentile after the second pass characteristics control. As a point 

of comparison, the median percentile ranking change from a Fama-French three-factor alpha to 

the Carhart four-factor alpha is three percent. Moreover, many funds experience extremely large 

percentile changes, as ten (five) percent of funds experience a change in performance percentile 

greater than 17 (22) percent.  

Changes in performance of this degree can obviously affect the interpretations one takes 

away from analysis that focuses on relative fund performance, which is central to much of the 

mutual fund performance literature. For example, studies of performance persistence examine 

consistency in relative fund rankings over time (e.g., Carhart (1997), Bollen and Busse (2005)). 

Ranking funds based on standard four-factor performance, we find weak evidence of long-term 

performance persistence, largely consistent with Carhart (1997). By contrast, after controlling for 

both factor exposure and characteristics, we find that double-adjusted performance persists a full 

nine years after the initial ranking period. Thus, after removing the portion of performance 

attributable to the characteristics of portfolio holdings, we document new evidence that mutual 

fund skill persists over long periods of time. We also find strong evidence of short-term 

persistence (i.e., over the next month) via our new measure, where past top performing funds 

generate statistically significant positive performance in the future. 

Beyond performance persistence, studies that emphasize relative fund performance 

include numerous analyses that relate performance to a particular fund feature, such as industry 

concentration (Kacperczyk, Sialm, and Zheng (2005)), the difference between their reported fund 
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return and holdings-based return (i.e., return gap, Kacperczyk, Sialm, and Zheng (2008)), 

tendency to deviate from a benchmark (e.g., active share as in Cremers and Petajisto (2009)), or 

factor model regression R-squared (Amihud and Goyenko (2013)), among many others. When 

we use standard four-factor alpha performance measures, we confirm the major findings of these 

earlier mutual fund studies. However, after we adjust for the characteristics of the funds’ stock 

holdings in the second stage of our measurement procedure, we find important changes that 

affect the way we interpret the results. For instance, we find no significant relation between a 

fund’s industry concentration and our double-adjusted performance. We also find that the 

significant relation between a fund’s standard four-factor alpha and its active share or factor 

model R-squared disappears after further adjusting standard performance for fund portfolio 

characteristics.  

Taken together, our results suggest that it is fund exposure to particular stock 

characteristics that drive many of the relations documented in the literature. Furthermore, our 

results suggest that many prior findings are not driven by fund skill, to the extent that our double 

adjustment produces a cleaner measure of true fund skill. While it is debatable whether or not 

fund managers actively choosing to emphasize certain stock characteristics in their portfolios is a 

specific dimension of skill, it seems difficult to argue for an approach that only partially adjusts 

for a particular influence. Our results suggest that the most commonly used performance 

measures do just that. We should note that the goal of our paper is not to argue that mutual fund 

benchmark models should control for anomalies beyond market capitalization, book-to-market 

ratio, and momentum, for example, as in Carhart (1997). Our point is that, for whichever set of 

anomalies addressed in a model, adjusting for both the factor betas and stock characteristics 

more fully controls for those influences than utilizing only one type of approach.  
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Our paper contributes to the literature on mutual fund performance that applies 

innovations from the broader empirical asset pricing literature. To this point, advancements have 

largely proceeded either by expanding the set of factors used in the regression model, as in the 

move from the one-factor model of Jensen (1968, 1969) to the multi-factor models of Elton, et 

al. (1993) and Carhart (1997), or by the more radical move to nonparametric benchmarks that 

control for stock holding characteristics, as in Daniel, Grinblatt, Titman, and Wermers (1997).1 

Our paper is the first to incorporate both approaches in one measure to produce an estimate of 

performance that more comprehensively controls for influences that are not necessarily 

attributable to manager skill. Moreover, our analysis provides new insight into how traditional 

performance measures attribute performance, while at the same time raising questions regarding 

what constitutes genuine skill. Finally, since we base our new measure on actual fund 

shareholder returns, rather than returns estimated from periodic disclosures of fund portfolio 

holdings, we capture several effects that standard characteristic-based measures miss, including 

intra-quarterly fund activity, transaction costs, and trading skill (Kacperczyk, Sialm, and Zheng 

(2008) and Puckett and Yan (2011)). 

The remainder of the paper proceeds as follows. Section I motivates the paper’s 

methodology. Section II describes the data sample and variables. Section III presents the 

empirical results. Section IV concludes. 

 

I. Methodology 

A. Asset Pricing Motivation 

                                                           
1 Additional advancements include conditional models that allow for time-varying factor loadings (Ferson and 

Schadt (1996)) or time-varying alphas (Christopherson, Ferson, and Glassman (1998)) and a model that 

simultaneously accommodates security selection, market timing, and volatility timing (Ferson and Mo (2013)). 
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Conventional asset pricing proposes a risk-return trade-off where greater expected returns 

require greater systemic risk. Within the empirical mutual fund literature, a fund’s benchmark 

exposure defines the risk that drives most of the fund’s return, and the convention is to interpret 

the remaining portion as manager skill. Jensen (1968, 1969), for example, evaluates fund 

manager performance as the intercept from a regression of excess fund returns on the excess 

returns of a stock market index.  

Beginning with Ball and Brown (1968), however, numerous studies identify empirical 

asset pricing anomalies, where stock characteristics other than market beta help explain the cross 

section of stock returns. A partial list of those characteristics include market capitalization (Banz 

(1977)), book-to-market ratio (e.g., Fama and French (1992)), and momentum (Jegadeesh and 

Titman (1993)). Fama and French (1992) use these empirical regularities as motivation for multi-

factor models, while Daniel and Titman (1997) advocate utilizing characteristic-based 

benchmarks. Both methods enjoy widespread application in the mutual fund literature via factor 

models like Carhart (1997) and the DGTW (1997) characteristic benchmark approach.  

Rather than utilizing only one type of return control, Brennan, Chordia, and 

Subramanyam (1998) find that, after adjusting for risk factors, stock characteristics such as 

market capitalization and book-to-market ratio capture additional aspects of the cross section of 

stock returns. Similarly, Chordia, Goyal, and Shanken (2013) find that both factor loadings and 

stock characteristics explain cross-sectional variation of stock returns. Thus, one can express the 

expected excess return of a stock, j, as,  

 𝐸(𝑟𝑗,𝑡 − 𝑟𝑓,𝑡) = 𝑐0 + ∑ 𝛽𝑗,𝑘𝜆𝑘
𝐾
𝑘=1 + ∑ 𝑍𝑚,𝑗,𝑡𝑐𝑚

𝑀
𝑚=1 , (1) 
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where 𝛽𝑗,𝑘 is the loading of stock j on factor k, 𝜆𝑘 is the risk premium associated with factor k, 

𝑍𝑚,𝑗,𝑡 represents stock j’s characteristic m, 𝑐𝑚 is the premium per unit of characteristic m, and 𝑐0 

is the zero-beta rate in excess of the risk-free rate. 

In this paper, we use the insight from Brennan, Chordia, and Subramanyam’s (1998) and 

Chordia, Goyal, and Shanken’s (2013) stock analysis to examine the extent to which equity 

mutual fund returns relate to both factor loadings and fund portfolio holding characteristics. 

Controlling only for factor loadings, as in Carhart (1997), or only for characteristics, as in 

DGTW, may overlook the other effect, and in so doing materially impacts estimates of fund 

manager skill. To control for both types of return influences, we express equation (1) for mutual 

fund returns as 

 𝐸(𝑟𝑖,𝑡 − 𝑟𝑓,𝑡) = 𝑎 + ∑ 𝛽𝑖,𝑘𝐸(𝐹𝑘,𝑡)4
𝑘=1 + ∑ 𝑍𝑚,𝑖𝑐𝑚

𝑀
𝑚=1 + 𝜇𝑖, (2) 

where 𝑟𝑖,𝑡 is the return of fund i, 𝑟𝑓,𝑡 is the risk-free rate, 𝛽𝑖,𝑘 is the loading of fund i on factor k, 

𝐹𝑘,𝑡 is the return of factor k, 𝑍𝑚,𝑖 is fund i’s portfolio value-weighted stock characteristic m, 𝑎 

measures the average skill across all mutual funds in the industry, and 𝜇𝑖 measures the skill of 

fund i over the industry average. By construction, the cross-sectional average of 𝜇𝑖 equals zero. 

We note that, as in Brennan, Chordia, and Subramanyam (1998), we assume 𝑐0 = 0, and set the 

risk premium of factor loadings equal to the expected excess return of their respective risk 

factors (𝜆𝑘 = 𝐸(𝐹𝑘,𝑡)).  

 

B. Empirical Specification 

Multi-factor models (e.g., Carhart (1997)) specify mutual fund returns as  

 𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝛼𝑖 + ∑ 𝛽𝑖,𝑘𝐹𝑘,𝑡
𝐾
𝑘=1 + 𝜀𝑖,𝑡. (3) 

We can rewrite equation (3) as 
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 𝐸(𝑟𝑖,𝑡 − 𝑟𝑓,𝑡) = 𝛼𝑖 + ∑ 𝛽𝑖,𝑘𝐸(𝐹𝑘,𝑡)𝐾
𝑘=1  (4) 

Combining equations (2) and (4) yields  

 𝛼𝑖 = 𝑎 + ∑ 𝑍𝑚,𝑖𝑐𝑚 +  𝜇𝑖
𝑀
𝑚=1 . (5) 

Equation (5) shows that the standard performance measure, 𝛼𝑖, from a multi-factor model 

such as Carhart (1997) captures performance attributable to both fund exposure to stock 

characteristics and true fund skill. To control for the effects of stock characteristics, we define 

mutual fund double-adjusted performance as  

 𝛼𝑖
∗ = 𝛼𝑖 − ∑ 𝑍𝑚,𝑖𝑐𝑚

𝑀
𝑚=1 = 𝑎 + 𝜇𝑖. (6) 

We define characteristic-driven performance as 

 𝛼𝑖
𝑐ℎ𝑎𝑟 = 𝛼𝑖 − 𝑎 − 𝜇𝑖 = ∑ 𝑍𝑚,𝑖𝑐𝑚

𝑀
𝑚=1 . (7) 

Empirically, we estimate the cross-sectional regression of equation (5) with ordinary least 

squares (OLS) method and use (�̂�𝑖 − ∑ 𝑍𝑚,𝑖�̂�𝑚)𝑀
𝑚=1  to calculate the double-adjusted 

performance measure. Under regularity assumptions, the estimated coefficient �̂�𝑚 in equation (5) 

is unbiased, even though �̂�𝑖 is estimated from equation (3) (see Brennan, Chordia, and 

Subramanyam (1998)). To preview our later findings, using mutual fund data from 1980 to 2012, 

we find that the 𝑐𝑚 significantly differ from zero (which indicates the importance of the second 

stage adjustment), and, consequently, 𝛼𝑖
∗ often differs from 𝛼𝑖.  

In particular, we calculate our double-adjusted performance measure based on the 

following two-step procedure. First, we compute alphas via the Carhart (1997) four-factor model 

over a 24-month estimation period, rolling this window a month at a time.2 Second, for each 

month in our sample period, we regress cross-sectionally the four-factor alphas on fund portfolio 

                                                           
2 Our results are qualitatively the same if we use a 36-month estimation period.  



10 
 

holding characteristics using all sample funds in that month. We standardize each of the holding 

characteristics by subtracting its monthly cross-sectional mean before including them in the 

regressions. The demeaning procedure insures that the intercept of each monthly regression 

equals the cross-sectional mean of the four factor alphas, so that our second stage adjustment 

only affects relative performance ranking. Based on the cross-sectional regression estimates, we 

decompose the standard four factor alpha into two components: (i) double-adjusted performance, 

defined as the sum of the intercept and the residual of a fund from the cross-sectional regression, 

and (ii) characteristics-driven performance, the component attributable to exposure to stock 

characteristics. As in equations (6) and (7), the sum of these two components always equals the 

standard four-factor alpha.  

 

II. Data and Variables 

A. Data Description 

We obtain our data from several sources. We take fund names, returns, total net assets 

(TNA), expense ratios, investment objectives, and other fund characteristics from the Center for 

Research in Security Prices (CRSP) Survivorship Bias Free Mutual Fund Database. The CRSP 

mutual fund database lists multiple share classes separately. We obtain mutual fund portfolio 

holdings from the Thomson Reuters Mutual Fund Holdings (formerly CDA/Spectrum S12) 

database. The database contains quarterly portfolio holdings for all U.S. equity mutual funds. We 

merge the CRSP Mutual Fund database and the Thomson Reuters Mutual Fund Holdings (also 

known as Thomson S12) database using the MFLINKS table available on WRDS (see Wermers 

(2000)).  

We examine actively-managed U.S. equity mutual funds from January 1980 to December 

2012. We exclude balanced, bond, sector, index, and international funds. Similar to priors studies 
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(e.g., Kacperczyk, Sialm, and Zheng (2008)), we base our selection criteria on objective codes 

and on disclosed asset compositions. First, we select funds with the following Lipper 

classification codes: EIEI, G, LCCE, LCGE, LCVE, MCCE, MCGE, MCVE, MLCE, MLGE, 

MLVE, SCCE, SCGE, or SCVE. If a fund does not have a Lipper Classification code, we select 

funds with Strategic Insight objectives AGG, GMC, GRI, GRO, ING, or SCG. If neither the 

Strategic Insight nor the Lipper objective is available, we use the Wiesenberger Fund Type Code 

and select funds with objectives G, G-I, AGG, GCI, GRI, GRO, LTG, MCG, or SCG. If none of 

these objectives is available, we keep a fund if it has a CS policy (i.e., the fund holds mainly 

common stocks). Further, we exclude funds that have the following Investment Objective Codes 

in the Thomson Reuters Mutual Fund Holdings database: International, Municipal Bonds, Bond 

and Preferred, Balanced, and Metals. We identify and exclude index funds using their names and 

CRSP index fund identifier.3 To be included in the sample, a fund’s average percentage of stocks 

in the portfolio as reported by CRSP must be at least 70 percent or missing. We exclude funds 

with fewer than 10 stocks to focus on diversified funds. Following Elton et al. (2001), Chen et al. 

(2004), and Yan (2008), we exclude funds with less than $15 million in TNA. We further 

eliminate observations before the fund’s starting date reported by CRSP to address the 

incubation bias (Evans (2010)). Our final sample consists of 3,126 unique actively-managed U.S. 

equity mutual funds and 400,914 fund-month observations.  

 

B. Variable Construction 

B.1. Fund Characteristics 

                                                           
3 Similar to Busse and Tong (2012) and Ferson and Lin (2014), we exclude from our sample funds whose names 

contain any of the following text strings: Index, Ind, Idx, Indx, Mkt,Market, Composite, S&P, SP, Russell, Nasdaq, 

DJ, Dow, Jones, Wilshire, NYSE, ishares, SPDR, HOLDRs, ETF, Exchange-Traded Fund, PowerShares, 

StreetTRACKS, 100, 400, 500, 600, 1000, 1500, 2000, 3000, 5000. We also remove funds with CRSP index fund 

flag equal to “D” (pure index fund) or “E” (enhanced index fund). 
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To measure performance, we compute alphas using the Carhart (1997) four-factor model 

with fund net returns over a 24-month estimation period. We require a minimum of 12 monthly 

observations in our estimation. The four-factor model includes the CRSP value-weighted excess 

market return (Mktrf), size (SMB), book-to-market (HML), and momentum (UMD) factors from 

Ken French’s website.4 We also compute the Daniel et al. (DGTW, 1997) characteristic 

selectivity (CS) benchmark-adjusted return. We form 125 portfolios in June of each year based 

on a three-way quintile sort along the size (using the NYSE size quintile), book-to-market ratio, 

and momentum dimensions. The abnormal performance of a stock position is its return in excess 

of its DGTW benchmark portfolio, and the DGTW-adjusted return for each portfolio aggregates 

over all the component stocks using the most recent portfolio dollar value weighting. 

Fund TNA is the sum of portfolio assets across all share classes of a fund. The variable 

Fund Age is the age of the oldest share class in the fund. Family TNA is the aggregate total 

assets under management of each fund in a fund family (excluding the fund itself). Expense 

Ratio is the average expense ratio value-weighted across all fund share classes. We define fund 

cash flow as the average monthly net growth in fund assets beyond capital gains and dividends 

(e.g., Sirri and Tufano (1998)).  

B.2. Portfolio Holding Characteristics 

For each stock in a fund’s portfolio, we obtain stock-level characteristics from CRSP and 

COMPUSTAT, including market capitalization, book-to-market ratio, past six-month cumulative 

return, and the Amihud (2002) measure of illiquidity. We only keep stocks with CRSP share 

codes 10 or 11 (i.e., common stock) and NYSE, AMEX, or NASDAQ listings. For each fund in 

our sample, we use individual stock holdings to calculate the monthly fund-level market 

capitalization, book-to-market ratio, momentum, and Amihud measure. To calculate the fund-

                                                           
4 See: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 



13 
 

level statistic, we weight each firm-level stock characteristic according to its dollar weight in the 

most recent fund portfolio. Since the fund holdings are usually available at a quarterly frequency, 

we obtain the monthly measures by keeping the fund holdings constant between quarters. 

We calculate book-to-market ratio of a firm as the book value of equity (assumed to be 

available six months after the fiscal year end) divided by previous month market capitalization. 

We take book value from COMPUSTAT supplemented by the book values from Ken French’s 

website. We winsorize the book-to-market ratios at the 0.5% and 99.5% levels to eliminate 

outliers, although our results are not sensitive to this winsorization. We define momentum as the 

six-month cumulative stock return over the period from month t – 7 to t – 2. For a given stock, 

we calculate the Amihud (2002) illiquidity measure as the average ratio of the daily absolute 

return to its dollar trading volume over all the trading dates in a month, adjusting for NASDAQ 

trading volume as in Gao and Ritter (2010). Following Acharya and Pedersen (2005), we 

normalize the Amihud ratio to adjust for inflation and truncate it at 30 to eliminate the effect of 

outliers.  

 

III. Empirical Analysis 

A. Relation between Characteristics and Performance 

To provide initial evidence that standard factor models imperfectly control for passive 

characteristics of the stocks held in fund portfolios, we examine the contemporaneous four-factor 

alpha of funds sorted into quintiles by their holding value-weighted average market 

capitalization, book-to-market ratio, six-month price momentum, or Amihud illiquidity measure. 

Table 1, Panel A reports sample summary statistics for these characteristics. Of these 

characteristics, all except the Amihud illiquidity measure are addressed in the four-factor model. 

Here, we include illiquidity in our analysis because the empirical asset pricing literature (e.g., 
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Amihud and Mendelson (1986), Acharya and Pedersen (2005)) finds a statistically significant 

cross-sectional relation between stock liquidity and returns (i.e., less liquid stocks show greater 

returns, on average).  

[Insert Table 1 about here] 

Each month beginning with the 24th month during our 1980-2012 sample period, we sort 

by average portfolio holding characteristics during a 24-month time period and examine the 

standard four-factor alpha estimated over that same 24-month period. To the extent that the four-

factor model controls for influences related to market capitalization, book-to-market ratio, and 

price momentum via the Fama-French SMB, HML, and UMD factor loadings, we would not 

expect any significant relation between fund four-factor alpha and the characteristic quintile for 

market capitalization, book-to-market ratio, and six-month price momentum. Since there is a 23-

month overlap in the estimation periods of two consecutive monthly alpha measures, we 

compute t-statistics of the differences between the top and bottom quintiles with Newey-West 

correction for time-series correlation with 12 lags.5 

Table 1, Panel B reports the average four-factor alpha (each computed from 24 monthly 

returns) for each quintile. The results indicate that for sorts associated with all four 

characteristics, the difference between the top quintile (which includes funds that hold stocks of 

the greatest market capitalization, book-to-market ratio, six-month price momentum, or 

illiquidity) and the bottom quintile (which includes funds that hold stocks with the smallest 

market capitalization, book-to-market ratio, six-month price momentum, or illiquidity) is 

statistically significant at the five percent level or lower. The magnitude of these differences is 

economically large. For instance, funds in the bottom quintile of holding stock size have an 

annualized four-factor alpha that is 1.1 percent (t-stat.=2.53) higher than funds in the top quintile. 

                                                           
5 Our results are qualitatively the same if we use 23 lags in the Newey-West correction. 
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Funds in the top quintile of holding stock momentum have an annualized four-factor alpha that is 

2.9 percent (t-statistic=5.41) higher than funds in the top quintile. That is, funds show higher 

four-factor performance by passively loading on characteristics, even when those characteristics 

are explicitly addressed in the four-factor model. 

Funds holding smaller cap and higher six-month price momentum stocks show higher 

four-factor alphas than funds holding larger cap or lower six-month price momentum stocks. 

These results suggest that the four-factor model under-adjusts for influences related to market 

capitalization and momentum. That is, funds with small cap stock (high six-month price 

momentum) holdings outperform despite the SMB (UMD) control factor, which sets a higher 

than average hurdle for funds that hold small cap (high momentum) stocks. By contrast, the 

book-to-market results indicate that funds that hold stocks with high book-to-market ratios 

underperform funds that hold stocks with low book-to-market ratios, which suggests that the 

four-factor model over adjusts for influences related to book-to-market. Since the four-factor 

model does not include a liquidity factor, it is not surprising that the liquidity results in the last 

column of Panel B indicate that the four-factor model does not adjust well for illiquidity (i.e., 

funds holding less liquid stocks show greater performance than funds holding more liquid 

stocks).  

To more formally examine the relation between standard factor model alphas and the 

characteristics of the funds’ stock holdings, we regress cross sectionally the fund alphas used in 

Table 1 on the 24-month average of fund holding characteristics. That is,  

 𝛼𝑖,𝑡 = 𝑎 + ∑ 𝑍𝑚,𝑖,𝑡−1𝑐𝑚
𝑀
𝑚=1 + 𝜂𝑖,𝑡, (8) 

where 𝑍𝑚,𝑖,𝑡−1 represents lagged fund holding characteristics, including portfolio value-weighted 

measures of market capitalization, book-to-market ratio, six-month price momentum, or 
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illiquidity. For 𝛼𝑖, we examine four- and five-factor model performance, where the five-factor 

specification adds the Pástor and Stambaugh (2003) liquidity factor to the Carhart (1997) four-

factor model.  

Table 2 shows the results, where we compute the mean regression coefficients across all 

sample months. Again, to address the series-correlation due to the overlap in estimation 

windows, we calculate Fama and MacBeth (1973) t-statistics with Newey-West correction for 

time-series correlation with 12 lags. Panel A reports results associated with the four-factor 

model, and Panel B reports the results associated with the five-factor model. The alternative 

specifications control for each characteristic by itself as shown in the first four columns of Table 

2 and all characteristics jointly as in the last column of Table 2.  

[Insert Table 2 about here] 

Similar to the inference associated with the results in Table 1, the results in Table 2 again 

show that standard fund performance measures are sensitive to the characteristics of the stocks 

held in the fund portfolios. All four univariate regression results show a statistically significant 

relation at the one percent level between fund factor model alpha measure and the value-

weighted mean market capitalization, book-to-market ratio, six-month price momentum, or 

illiquidity of the fund stock portfolio. In untabulated results, we find that 307, 293, and 324 of 

the 396 individual monthly size, book-to-market, and momentum regression coefficients in the 

first three columns of Panel A in Table 2 are statistically significant at the five percent level, 

compared to an expectation of 20 under the null hypothesis, providing further evidence that 

standard measures of risk-adjusted performance via factor models are sensitive to stock holding 

characteristics. 
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B. Double-Adjusted Performance Effects 

The results in the prior section demonstrate an important shortcoming in standard multi-

factor abnormal performance estimates, insofar as they attribute skill to passive exposure to 

common characteristics. Our double adjustment procedure helps to alleviate this issue by 

removing from the factor model performance attributable to characteristics.  

In this section, we examine the extent to which the second adjustment in our two-stage 

procedure affects performance. We begin by estimating the fraction of standard alphas that is 

driven by exposure to characteristics. Later, we estimate the difference in fund percentile 

performance rankings before and after the second adjustment. That is, we examine the economic 

difference between standard performance measures (i.e., the first stage in our double-adjustment 

procedure) and our new performance measure. 

In Section I, we show that standard factor model abnormal performance estimates can be 

decomposed into the sum of our new double-adjusted performance estimate and the portion of 

performance attributable to exposure to characteristics. Consequently, for a given fund, we can 

estimate the fraction of its standard performance measure that is attributable to characteristics, 

i.e., the ratio of the characteristic-driven component to the standard estimate,  

 𝑓𝑟𝑎𝑐𝑐ℎ𝑎𝑟 = 𝛼𝑖
𝑐ℎ𝑎𝑟 𝛼𝑖⁄ , (9) 

with the remaining fraction, 1 − 𝑓𝑟𝑎𝑐𝑐ℎ𝑎𝑟, attributable to double-adjusted performance. This 

ratio is difficult to interpret, however, when the two components of skill are of different sign. As 

an extreme example, when the two components are equal in magnitude but of opposite sign, the 

ratio in equation (9) is undefined. Consequently, we focus on the subset of fund observations 

where the two components have the same sign, and we report statistics for this subset of funds in 

Table 3, Panel A. We find that the median ratio defined by equation (9) across our sample is 
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0.24. That is, characteristics account for roughly a quarter of traditional four-factor abnormal 

performance estimates for a typical fund, conditional on the two components being the same 

sign.  

[Insert Table 3 about here] 

Naturally, given that roughly a quarter of a fund’s performance is attributable to the stock 

characteristics of its portfolio holdings, one might anticipate that removing the characteristics 

component could impact fund performance rankings. When we compare percentile performance 

rankings of standard four-factor performance estimates to our double-adjusted performance 

estimate, the median change in percentile performance estimate is five percent. That is, a fund 

originally ranked in the 50th percentile would be ranked at the 45th or 55th percentile via the new 

measure. As a point of comparison, the median change in performance from a Fama-French 

three-factor performance estimate to the Carhart four-factor performance estimate is three 

percent. Furthermore, some funds experience dramatic changes in performance, with ten (five) 

percent of funds experiencing a mean change in percentile ranking of at least 17 (22).  

 

C. Performance Persistence 

The fraction of standard alpha attributable to characteristics and the degree to which the 

new double-adjusted measure impacts fund performance together suggest that the new 

performance measure could impact the inference of studies that analyze relative performance 

rankings. Central to the empirical mutual fund literature, studies that focus on relative 

performance rankings include analyses of performance persistence (e.g., Carhart (1997)) as well 

as studies that examine the relation between a specific fund feature and performance. Some 

recent studies in the latter category include Kacperczyk, Sialm, and Zheng’s (2005, 2008) 
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analysis of industry concentration and return gap, Cremers and Petajisto’s (2009) analysis of 

active share, and Amihud and Goyenko’s (2013) analysis of fund factor model R-squared. We 

explore how the double-adjusted skill measure affects inference in these mutual fund analyses. 

Analyses of performance persistence include those that examine long- and short-term 

persistence. Long-term persistence studies, such as Carhart (1997), analyze the tendency for 

relative performance rankings to persist for at least one year beyond the ranking period. Short-

term persistence studies, such as Bollen and Busse (2005), analyze persistence in relative 

performance rankings over shorter time periods, up to one quarter, for example.6 Here, we 

examine persistence over both long and short post-ranking periods. We examine persistence in 

standard alpha performance measures as well as the two components of performance defined in 

equations (6) and (7), i.e., our double-adjusted measure and the component attributable to 

characteristics. To the extent that our double-adjusted measure of performance is a cleaner 

estimate of genuine skill, analyzing both components of performance will indicate whether 

evidence of persistence is attributable to fund manager skill or to passive effects attributable to 

characteristics.  

C.1. Short Term Persistence 

We begin with short-term persistence, where we examine whether performance during a 

ranking period persists to the next month after (i.e., the one month post-ranking period). Each 

month, we sort into deciles based on performance measures estimated over the 24-month time 

period ending that month. We sort based on four different performance measures: standard four-

factor alpha, the two components of standard performance, and, for comparison purposes, the 

average DGTW CS measure. For performance during the post-ranking month, we use standard 

                                                           
6 Additional persistence studies include Grinblatt and Titman (1992), Hendricks, Patel, and Zeckhauser (1993), 

Goetzmann and Ibbotson (1994), Brown and Goetzmann (1995), Malkiel (1995), Elton, Gruber, and Blake (1996), 

Busse and Irvine (2006), Busse and Tong (2012), and Berk and Van Binsbergen (2014). 
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four-factor performance, which we estimate by taking the difference between the realized fund 

return and the sum of the product of the standard four-factor betas estimated during the 24-month 

sorting period and the factor returns during the post-ranking month. As an example, we use 

performance estimates over the period from January 2000 through December 2001 to rank at the 

end of December 2001. We tie this December 2001 ranking to the January 2002 post-ranking 

month. We then move forward one month to analyze end of January 2002 rankings and the 

February 2002 post-ranking month performance. We examine post-ranking four-factor 

performance, rather than the characteristic-based DGTW measure, because four-factor 

performance utilizes actual shareholder returns, rather than a proxy for returns gleaned from fund 

portfolio holdings. We compute t-statistics of the differences between the top and bottom 

quintiles with Newey-West correction for time-series correlation with three lags. 

Table 4 shows the short-term persistence results. The table reports the one-month post-

ranking performance estimates, averaged across all post-ranking periods. The results show strong 

evidence of persistence in the standard four-factor alpha. The 6.23 percent annualized difference 

in post-ranking top-bottom performance is both statistically and economically significant. We 

also find strong persistence in the double-adjusted performance measure, with a statistically 

significant 6.19 percent annualized top-bottom post ranking return difference that accounts for 

almost all of the return difference in the standard four-factor alpha. By contrast, the returns 

associated with characteristics do not persist. The difference between the top and bottom post-

ranking returns is small in magnitude and is not significantly different from zero. To the extent 

that a fund’s stock holding characteristics are an artifact of their investment style, rather than an 
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active choice of the fund manager, our results suggest that short-term persistence is attributable 

to persistence in genuine fund manager skill.7 

[Insert Table 4 about here] 

We also find statistically significant positive performance in the top post-ranking decile 

sorted by standard alpha or double-adjusted measure. That is, funds that performed well in the 

past produce statistically significant positive abnormal performance of approximately 2.3-2.5 

percent annualized over the subsequent month. This result suggests that the evidence of short-

term persistence is not solely attributable to persistence in the poorly performing funds. 

Lastly, we find that the DGTW CS performance measure predicts future four-factor fund 

performance, with a statistically significant 2.34 percent difference between the top and bottom 

post-ranking deciles. Note, however, that this difference represents less than half the post-

ranking difference associated with double-adjusted performance ranks. Together with the other 

persistence results, this evidence suggests that controlling for both risk factors and characteristics 

provides a cleaner picture of fund manager skill, insofar as such controls produce a performance 

measure that more closely aligns with future performance. 

As a robustness test, we examine short-term persistence by regressing cross-sectionally 

the post-ranking monthly standard four-factor alpha on the ranking period performance, 𝑝𝑒𝑟𝑓,  

 𝛼𝑖,𝑡 = 𝑎 + 𝑏𝑝𝑒𝑟𝑓𝑖,𝑡−1 + 𝛾Χ𝑖,𝑡−1 + 𝜂𝑖,𝑡, (10) 

where 𝑝𝑒𝑟𝑓 is the four-factor alpha or 24-month average DGTW CS measure, or on both the 

ranking period double-adjusted alpha and characteristic-related alpha, 

 𝛼𝑖,𝑡 = 𝑎 + 𝑏𝛼𝑖,𝑡−1
∗ + 𝑐𝛼𝑖,𝑡−1

𝑐ℎ𝑎𝑟 + 𝛾Χ𝑖,𝑡−1 + 𝜂𝑖,𝑡. (11) 

                                                           
7 We find qualitatively similar results if we examine performance persistence over a quarter.  
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In some specifications, we include 𝑋𝑖 as regressors, which represent fund-level control variables 

(e.g., fund TNA, age, expense ratio, fund flow, and family TNA). We calculate Fama and 

MacBeth (1973) t-statistics with Newey-West correction for time-series correlation with three 

lags. 

Table 5 shows the results. Panel A provides summary statistics of the fund-level control 

variables. In Panel B, the cross-sectional regression results show a strong association between 

the post-ranking alpha and the ranking-period alpha, which is driven by the double-adjusted 

component of alpha (t-stat.=8.53) rather than the characteristic-related component (t-stat.=1.26). 

The regression results very much coincide with the decile analysis of short term persistence. The 

DGTW CS measure also strongly predicts future post-ranking alpha (t-statistic = 3.44), although 

the relation appears to be weaker than the relation between double-adjusted performance and 

post-ranking alpha, also consistent with the decile results in Table 4. The last three columns of 

the table show that this result is not sensitive to the inclusion of several control variables. Our 

interpretation is that the double-adjusted performance measure captures genuine fund skill, 

which persists over time, and persistence in this component of alpha leads to persistence in 

standard four-factor alpha. The characteristics-related component does not persist over time, 

probably because the characteristic premia of size, value, and momentum time vary.  

[Insert Table 5 about here] 

C.2. Long Term Persistence 

We turn next to long-term persistence. We use the same set of performance estimates that 

we use in the short-term persistence analysis. We aggregate the ranking period alphas in each 

calendar year (i.e., we average over the twelve months in a calendar year monthly alphas, each 

estimated over a 24-month window ending that month) and move forward the ranking period by 
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one-year at a time. We keep the decile assignment constant for post ranking periods ranging from 

one to ten years and compute mean returns each month for each decile. We then estimate four-

factor alphas for each decile over each of the post ranking year using concatenated time series of 

post-ranking returns (similar to Carhart (1997)). For example, we base one-year post ranking 

period performance on 32 annual ranking periods (each year from 1980 to 2011) and a 

concatenated set of one-year post-ranking periods (each year from 1981 to 2012), where the 

post-ranking periods immediately follow the ranking period. We base the tenth-year post-ranking 

performance on the concatenated set of 23 post-ranking periods (from 1990 to 2012) that begin 

the tenth year after the ranking period.  

Table 6 shows the long-term persistence results. The alternative panels reflect decile 

sorting based on the same four alternative performance measures used in Table 4, and we 

compute four-factor alphas for each decile using net fund returns unless mentioned otherwise. 

Panel A sorts based on standard four-factor alpha; Panel B sorts based on double-adjusted alpha; 

Panel D sorts based on characteristic-driven alpha; and Panel E sorts based on 36-month average 

DGTW CS performance measure. In Panel C, we report results for sorts based on double-

adjusted alpha similar to Panel B, but we compute alphas for each decile using gross fund returns 

(i.e., where we add one-twelfth of the annual expense ratio back to the shareholder return). The 

results for each post-ranking year reflect non-cumulative post-ranking periods, so that the year 

ten results reflect performance only during the tenth year after the initial ranking, rather than the 

performance across all ten post-ranking years. 

[Insert Table 6 about here] 

 Compared to the short-term persistence results, we see weaker persistence in the long 

term, as one might expect given results previously documented in the literature. The results in 
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Panel A show mixed evidence of long-term persistence in standard four-factor alpha, largely 

consistent with Carhart (1997). Although three post-ranking years are statistically significantly 

consistent with past top performers outperforming past bottom performers (years 2, 3, and 6), the 

remaining seven post-ranking years show a statistically insignificant difference (at the five 

percent significance level) between past top and bottom performers. 

By contrast to the standard alpha results in Panel A, the double-adjusted results in Panels 

B and C show a statistically significant difference between past top and bottom performers for 

almost all of the ten post-ranking years. For net returns in Panel B, years 1-3 and 5-9 all show 

evidence of statistically significantly greater performance (at the one or five percent significance 

level) in past winning funds compared to past losing funds. We find similar evidence on gross 

fund returns in Panel C, which suggests that such performance persistence is not due to the 

difference in fund expense ratios. Thus, after removing the portion of performance attributable to 

the characteristics of portfolio holdings, we find stronger evidence of performance persistence. 

To the extent that the double-adjusted measure provides a more precise estimate of genuine fund 

skill, we document new evidence that mutual fund skill persists over long periods of time. Using 

a four-factor model, Carhart (1997) found little evidence of persistence in mutual fund 

performance in the five years after ranking by four-factor alpha.8 By contrast, our new measure 

shows evidence of persistence through the ninth post-ranking year. Note, however, that, in 

contrast to the short-term persistence results, the evidence of persistence is solely driven by the 

poorly-performing funds, as the top decile in Panel B fails to produce statistically significant 

positive abnormal returns during any post-ranking year.  

                                                           
8 When ranking by lagged one-year fund net returns, Carhart (1997) finds no evidence of persistence in fund 

performance even during the first post-ranking year.  
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Regardless of the post-ranking year, the results in Panel D show no evidence of 

persistence in the portion of standard alpha attributable to characteristics. These results help to 

explain why we see stronger evidence of persistence in the double-adjusted measure than in the 

standard four-factor alpha. In particular, the standard alpha includes performance attributable to 

characteristics, which does not persist. The combination of genuine skill that does persist (as in 

Panels B and C) plus characteristic-driven performance that does not persist (as in Panel D) 

produces the weaker evidence of persistence that we see in Panel A. 

In Panel E, we see no relation between the DGTW CS performance measure and future 

long-term four-factor performance, as none of the post-ranking years show a statistically 

significant difference in four-factor performance between the top and bottom deciles. Our long-

term CS persistence results are consistent with Daniel, Grinblatt, Titman, and Wermers (1997), 

who also find no relation between the CS measure and future fund performance. Similar to the 

short-term persistence results, these long-term persistence results highlight the importance of 

controlling for both risk factors and characteristics when trying to extract a signal for future 

performance.  

Figure 1 shows cumulative post-ranking performance for funds sorted into deciles based 

on the double-adjusted measure. The figure illustrates the consistency in relative performance 

across the performance deciles over time. Panel A reports results for net fund returns, and Panel 

B reports results for gross fund returns. Both panels show an increasing cumulative performance 

gap between top, middle, and bottom decile funds over the first nine years of the ten-year post 

ranking period. These two panels show that, although past winning funds outperform 

benchmarks gross of expenses, the past winning fund companies extract all of the positive 

performance via the expense ratio, such that, going forward, fund investors of past winners 
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receive no additional net abnormal returns. Panel C shows a gradual increase in performance 

difference between top and bottom decile funds from the first post-ranking year to the ninth. In 

all of the panels, we finally see a leveling off of performance differences in the tenth year. The 

strong evidence of continuation in double-adjusted performance through year nine contrasts with 

Carhart’s (1997) analysis of standard four-factor performance (e.g., see Carhart’s (1997) Figure 

4). 

[Insert Figure 1 about here] 

 

D. Impact on Prior Studies on Industry Concentration, Return Gap, Active Share, and R-squared 

Beyond studies of performance persistence, many other analyses examined in the recent 

mutual fund literature emphasize relative performance, especially relating it to a specific fund 

feature (rather than stock characteristic). In this section, we examine whether the inference one 

takes away from these analyses can be sensitive to more fully controlling for fund holding 

characteristics. Given the prevalence of this type of analysis in the mutual fund literature, 

numerous suitable candidates for examination exist. We focus on the following four recent 

studies: Kacperczyk, Sialm, and Zheng (2005, 2008) on industry concentration and return gap, 

Cremers and Petajisto (2009) on active share, and Amihud and Goyenko (2013) on factor model 

R-squared. 

We begin by examining the performance implications of these four studies and replicate 

some of the main analyses. In particular, we examine the relation between each of the measures 

and fund performance using four-factor alpha as our baseline measure of performance. By 

utilizing the four-factor alpha for baseline performance, we can also relate the various fund 

measures to the two components of performance, our double-adjusted measure and the portion of 
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performance attributable to characteristics. Relating the fund measures to the two components of 

performance will help disentangle which of the two components drives the main findings. To 

examine the relation between the various measures and fund performance, we sort funds into 

quintiles based on each measure each month and then examine the subsequent performance of 

the quintiles. For performance during the post-ranking month, we use four-factor alpha measure 

calculated as the difference between the realized fund return and the sum of the product of the 

factor betas estimated over the previous 24-month and the factor returns during the month. 

D.1. Industry Concentration 

We begin with the industry concentration index of Kacperczyk, Sialm, and Zheng (2005). 

We compute this index as the sum of the squared deviations of the value weights for each of ten 

different industries held by the mutual fund, relative to the industry weights of the total stock 

market. We impose a three-month lag between the industry concentration measure and 

subsequent performance, consistent with the original study. For example, we relate industry 

concentration as of the end of March to performance during July.  

Table 7, Panel B1 shows the industry concentration quintile results. First, we find slightly 

weaker evidence of a correspondence between industry concentration and standard four-factor 

alpha compared to the original study, probably due to differences in sample period. However, 

statistically, the strongest results indicate a relation between industry concentration and the 

subsequent performance associated with fund stockholding characteristics. That is, funds with 

the highest industry concentration show the greatest characteristic-based performance. By 

contrast, we see no significant relation between industry concentration and double-adjusted 

performance. These results suggest that, rather than proxying for fund skill, industry 
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concentration proxies for stockholding characteristics that produce higher standard four-factor 

alphas.  

[Insert Table 7 about here] 

D.2. Return Gap 

The return gap measure (Kacperczyk, Sialm, and Zheng (2008)) is the difference between 

fund gross returns and holdings-based returns. We compute gross fund returns by adding one-

twelfth of the year-end expense ratio to the monthly net fund returns during the year. We 

calculate the holdings-based gross portfolio return each month as the return of the disclosed 

portfolio by assuming constant fund portfolio holdings from the end of the previous quarter. For 

our analysis of the return gap, we sort based on the average return gap over the prior year, 

consistent with the original study, and then examine performance over the following month.  

The results in Table 7, Panel B2 indicate that the return gap is positively related to 

subsequent double-adjusted fund performance, with a statistically significant difference between 

the top and bottom post-ranking performance deciles. The results also indicate that the return gap 

is not related to the characteristic-driven component of fund performance. These results are 

consistent with the interpretation that the return gap proxies for an unobserved action of the fund 

manager that affects performance not attributable to exposure to stock characteristics. That 

performance could relate to transaction costs and interim trading activity (e.g., stock picking, 

timing the entry or exit of positions, or unusual trading ability), but cannot be attributed to the 

size, book-to-market, or price momentum of fund holdings. Our findings, therefore, are 

consistent with the authors’ original interpretations of their results. 

D.3. Active Share 



29 
 

We next examine the relation between fund active share (Cremers and Petajisto (2009)) 

and performance. Active share captures the percentage of a manager’s portfolio that differs from 

its benchmark index. It is calculated by aggregating the absolute differences between the weight 

of a portfolio’s actual holdings and the weight of its closest matching index. Here we sort into 

active share quintiles each month and examine performance of the quintiles during the following 

month. The results in Panel B3 of Table 7 indicate a statistically significant relation between 

active share and the performance driven by the characteristics of the fund stock holdings. By 

contrast, we see little correspondence between active share and double-adjusted fund 

performance. Thus, the significant relation between active share and standard four-factor alpha is 

driven by the characteristic-related component, rather than fund skill (i.e., performance unrelated 

to characteristics). Greater deviations from one’s benchmark produces performance that our 

results tie back to stock characteristics, but that is not necessarily associated with stock-picking 

skill. 

D.4. R-squared 

Finally, we examine the relation between R-squared (Amihud and Goyenko (2013)) and 

performance. We obtain a fund’s R-squared from regressing its excess returns on the returns of 

the Carhart four-factor model over a 24-month estimation period. Each month, we sort our 

sample funds into R-squared quintiles and examine performance of the quintiles over the 

following month. Panel B4 of Table 7 shows the results. Similar to the industry concentration 

and active share results, the R-squared results show a significant relation (here the relation is an 

inverse one) between R-squared and the characteristic component of performance, rather than 

double-adjusted performance. A low R-squared indicates fund returns are not well explained by 

the four factors of the regression model, which the original study interprets as high fund 
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selectivity. One could hypothesize that characteristics help explain stock returns in instances 

where factors do not well explain fund returns, and that could lead to the strong inverse relation 

we find between R-squared and the characteristic component of performance.  

D.5. Prior Studies Robustness Test 

As a robustness test, we use cross-sectional regressions to examine the same relations 

between the various fund features and performance that we examined via quintiles in Table 7. 

We regress future monthly performance on each of the four fund measures, 

 𝑝𝑒𝑟𝑓𝑖,𝑡 = 𝑎 + 𝑏𝑓𝑢𝑛𝑑𝑐ℎ𝑎𝑟𝑖,𝑡−1 + 𝛾𝛸𝑖,𝑡−1 + 𝜂𝑖,𝑡,  (12) 

where 𝑝𝑒𝑟𝑓𝑖,𝑡 refers to fund i’s standard four-factor alpha, double-adjusted performance measure 

from equation (6), or characteristic component of performance from equation (7) for month t, 

and 𝑓𝑢𝑛𝑑𝑐ℎ𝑎𝑟𝑖,𝑡−1 represents fund i’s lagged industry concentration index, return gap, active 

share, or log transformed R-squared.9 We examine alternative specifications that exclude and 

include the fund-level control variables, denoted by 𝑋𝑖 in equation (12). 

Table 8 reports the cross-sectional regression coefficients averaged across time along 

with Fama-Macbeth t-statistics with Newey-West correction for time-series correlation with 

three lags. The inference that we take away from the cross-sectional results closely match the 

quintile analysis interpretations associated with Table 7. Without fund-level controls, industry 

concentration, active share, and R-squared are statistically significantly related to the 

characteristic component of performance, but not to double-adjusted performance. Any 

significant relation between these measures and standard performance, therefore, appears to be 

driven by the portion of standard performance attributable to stock holding characteristics. By 

contrast, the return gap significantly relates to double-adjusted performance. Our results are 

                                                           
9 Following Amihud and Goyenko (2013), we use the logistic transformation of R-squared in our regressions since 

the distribution of R-squared is skewed towards 1.0. Results using untransformed R-squared are qualitatively 

similar.  
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qualitatively similar if we examine the relation between the various measures and future 

performance with a standard set of control variables as additional regressors.  

[Insert Table 8 about here] 

 

E. Investor Cash Flows 

Lastly, we examine which component of fund performance investors respond to. To do 

so, we examine the cross-sectional relation between fund cash flows and the alternative 

performance estimates at the annual level. Following Sirri and Tufano (1998), we define fund 

cash flow as the average monthly net growth in fund assets beyond capital gains and dividends. 

It reflects the percentage growth of a fund in excess of the growth that would have occurred with 

no new inflow and had all dividends been reinvested. We then regress cross sectionally annual 

cash flow estimates on prior annual return or four-factor alpha,  

 𝐶𝐹𝑖,𝑡 = 𝑎 + 𝑏𝑝𝑒𝑟𝑓𝑖,𝑡−1 + 𝛾Χ𝑖,𝑡−1 + 𝜂𝑖,𝑡, (13) 

or on both the prior annual double-adjusted alpha and characteristic-related alpha, 

 𝐶𝐹𝑖,𝑡 = 𝑎 + 𝑏𝛼𝑖,𝑡−1
∗ + 𝑐𝛼𝑖,𝑡−1

𝑐ℎ𝑎𝑟 + 𝛾Χ𝑖,𝑡−1 + 𝜂𝑖,𝑡, (14) 

where 𝑝𝑒𝑟𝑓𝑖 represents fund i’s return or four-factor alpha, and 𝐶𝐹𝑖 represent fund i’s annual net 

flow estimate. Similar to our earlier regressions, we include the fund-level control variables, 𝑋𝑖, 

as regressors in some specifications. 

The results in Table 9 suggest strong relations between all of the alternative performance 

measures and subsequent cash flows. Fund investors do not show a strong preference for a 

particular type of performance and invest in funds that show relatively higher net returns, 

regardless of the source of those returns.  

[Insert Table 9 about here] 
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IV. Conclusion 

Many mutual fund studies incorporate both factor model regressions and characteristic 

benchmarks in their performance analyses. But by estimating the alternative measures separately, 

rather than in a unified framework, each performance estimate only partially controls for passive 

influences on fund returns. Motivated by recent developments in the empirical asset pricing 

literature, we advocate adjusting for both factor exposure and stock characteristics 

simultaneously in one measure. 

We find that stock characteristics drive roughly a quarter of a fund’s four-factor alpha, an 

amount that, when taken away, can dramatically impact the inference drawn from a sample of 

performance estimates. When we re-examine several recent mutual fund analyses that emphasize 

relations between specific fund features and relative performance, we find that, quite often, the 

feature correlates with performance attributable to stock characteristics of the fund’s portfolio 

holdings, rather than the skill that remains after controlling for those effects. At the very least, 

more fully controlling for the impact of characteristics can alter how one interprets the results of 

studies that emphasize relative performance. 

By more fully controlling for passive effects associated with stockholding characteristics 

and by utilizing actual fund shareholder returns rather than proxies based on periodic disclosures 

of fund portfolio holdings, we argue that our double-adjusted performance measures provide a 

cleaner estimate of genuine fund manager skill. We find that this new proxy for mutual fund skill 

persists much longer than standard measures, up to nine years in our analysis, and thereby 

provides a clearer signal of future performance that may be beneficial to investors. 
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Figure 1. Long-term persistence 

 

The figure shows cumulative post-ranking performance of select deciles during a ten-year post-ranking period for 

funds sorted by double-adjusted performance during the initial ranking period. The horizontal axes show the post-

ranking month number.  

Panel A. Net performance by decile 

 

Panel B. Gross performance by decile 
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Panel C. Performance difference between top and bottom deciles 
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Table 1. Fund Stockholding Characteristics 

 

Panel A reports statistics for fund portfolio holding stock characteristics. Panel B reports mean post-ranking period 

Carhart (1997) four-factor alphas for funds sorted into deciles based on average portfolio characteristics during a 24-

month ranking period. We compute t-statistics of the differences between the top and bottom quintiles with Newey-

West correction for time-series correlation with 12 lags. ** and *** indicate statistical significance at the five and 

one percent level respectively. The results reflect 396 individual monthly observations over a 1980-2012 sample 

period. 

 

 

Panel A. Stock characteristic statistics 

Characteristic Mean Std. 1st percentile Median 99th percentile 

Size ($ million) 33,376 36,846 295 15,176 139,635 

Book-to-market 0.43 0.20 0.11 0.40 1.08 

Six-month return (%) 12.94 20.49 -30.37 11.02 81.80 

Illiquidity 0.72 1.35 0.25 0.30 7.19 

 

Panel B. Performance of stock characteristic sorts 

Quintile Market cap Book-to-market Six-month return Illiquidity 

Bottom 0.33 1.19 -1.52 -0.85 

2 0.66 -0.46 -0.75 -0.77 

3 -0.28 -0.59 -0.19 -0.25 

4 -0.71 -0.37 0.28 0.63 

Top -0.78 -0.56 1.39 0.46 

Top-bottom -1.11** -1.75*** 2.91*** 1.31*** 

t-statistic (-2.53) (-3.49) (5.41) (3.71) 
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Table 2. Fund Stock Holding Characteristic Regressions 

 

The table reports regression coefficients averaged monthly cross-sectional regressions, 

 

 𝛼𝑖,𝑡 = 𝑎 + ∑ 𝑍𝑚,𝑖,𝑡−1𝑐𝑚
𝑀
𝑚=1 + 𝜂𝑖,𝑡, (8) 

where 𝑍𝑚,𝑖,𝑡−1 represents lagged fund holding characteristics, including portfolio value-weighted measures of 

market capitalization, book-to-market value, six-month price momentum, or illiquidity. Panel A reports Carhart 

(1997) four-factor alpha results, and Panel B reports five-factor alpha results, with Carhart (1997) model augmented 

with the Pástor and Stambaugh (2003) liquidity factor. We estimate the t-statistics in parenthesis as in Fama and 

MacBeth (1973) with Newey-West correction for time-series correlation with 12 lags. *** indicates statistical 

significance at the one percent level. The results reflect 396 individual monthly regressions over a 1980-2012 

sample period. 

      

Panel A. Four-factor Alpha 

Market cap -0.385***    -0.169 

 (-3.35)    (-1.49) 

Book-to-market  -1.315***   -0.103 

  (-3.32)   (-0.25) 

Six-month return   0.098***  0.076*** 

   (5.45)  (4.03) 

Constant -0.183 -0.183 -0.183  -0.183 

 (-0.67) (-0.67) (-0.67)  (-0.67) 

R-squared 0.027 0.036 0.051  0.086 

      

Panel B. Five-factor Alpha 

Market cap -0.395***    0.031 

 (-3.25)    (0.17) 

Book-to-market  -1.439***   -0.431 

  (-4.04)   (-1.28) 

Six-month return   0.097***  0.073*** 

   (5.70)  (3.87) 

Illiquidity    0.307*** 0.398*** 

    (3.44) (3.02) 

Constant -0.106 -0.106 -0.106 -0.106 -0.106 

 (-0.37) (-0.37) (-0.37) (-0.37) (-0.37) 

R-squared 0.029 0.034 0.049 0.011 0.095 
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Table 3. Double-Adjusted Performance Effects 

 

Panel A reports statistics associated with the fraction of standard four-factor alpha attributable to characteristics,  

 

 𝑓𝑟𝑎𝑐𝑐ℎ𝑎𝑟 = 𝛼𝑖
𝑐ℎ𝑎𝑟 𝛼𝑖⁄ , (9) 

and the fraction of double-adjusted performance, 1 − 𝑓𝑟𝑎𝑐𝑐ℎ𝑎𝑟 . Panel B reports statistics that describe the change in 

performance percentile from standard four-factor alpha to the double-adjusted measure. The results reflect 397,590 

fund observations over a 1980-2012 sample period. 

 

 Percentile 

 5 10 25 50 75 90 95 

        

Panel A. Performance attribution 

Double-adjusted 0.186 0.315 0.555 0.761 0.888 0.955 0.977 

Characteristics 0.023 0.045 0.112 0.239 0.445 0.685 0.814 

        

Panel B. Change in performance 

Rank (%) -18.182 -12.195 -4.477 0.374 5.536 11.787 15.900 

Abs. Rank (%) 0.236 0.564 1.869 5.061 10.338 16.900 22.147 
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Table 4. Short-term Persistence Sorts 

 

The table reports mean annualized post-ranking percentage four-factor alphas for funds sorted into deciles based on 

performance during a 24-month ranking period. The four-factor alpha in the post-ranking month is calculated as the 

difference between the realized fund return and the sum of the product of the factor betas estimated over the 

previous 24-month and the factor returns during the month. We compute t-statistics of the differences between the 

top and bottom deciles with Newey-West correction for time-series correlation with three lags. *** indicates 

statistical significance at the one percent level. The results reflect 396 individual monthly observations over a 1980-

2012 sample period. 

 

 Model 

Decile Four-factor Double-adjusted Characteristics DGTW CS 

Bottom -3.92 -3.71 -0.87 -1.85 

2 -2.39 -2.44 -0.86 -1.05 

3 -1.54 -1.91 -0.85 -0.96 

4 -1.40 -1.40 -1.20 -0.96 

5 -1.11 -1.03 -0.96 -0.74 

6 -0.79 -0.61 -1.00 -0.75 

7 -0.19 -0.05 -0.99 -0.84 

8 -0.27 -0.24 -1.44 -0.64 

9 0.76 0.51 -0.20 -0.39 

Top 2.31 2.48 0.07 0.48 

Top-bottom 6.23*** 6.19*** 0.93 2.34*** 

t-statistic (7.80) (8.67) (-1.18) (3.07) 
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Table 5. Short-term Persistence 

 

Panel A reports sample fund statistics. Panel B reports mean coefficients from monthly cross-sectional regressions 

of four-factor alpha on past four-factor alpha 

 

 𝛼𝑖,𝑡 = 𝑎 + 𝑏𝛼𝑖,𝑡−1 + 𝛾Χ𝑖,𝑡−1 + 𝜂𝑖,𝑡, (10) 

or on both past double-adjusted alpha and past characteristic related alpha, 

 

 𝛼𝑖,𝑡 = 𝑎 + 𝑏𝛼𝑖,𝑡−1
∗ + 𝑐𝛼𝑖,𝑡−1

𝑐ℎ𝑎𝑟 + 𝛾Χ𝑖,𝑡−1 + 𝜂𝑖,𝑡. (11) 

The last three columns include fund-level control variables. We estimate the t-statistics in parenthesis as in Fama 

and MacBeth (1973) with Newey-West correction for time-series correlation with three lags. *, **, and *** indicate 

statistical significance at the ten, five, and one percent level respectively. The results reflect 396 individual monthly 

regressions over a 1980-2012 sample period. 

 

 

Panel A. Fund statistics 

Characteristic Mean Std. 1st percentile Median 99th percentile 

TNA ($ million) 1,180 4,566 16 229 17,440 

Age (months) 178.1 169.0 16.0 124.0 824.0 

Expense ratio (%) 1.24 0.44 0.02 1.20 2.49 

Cash flow (%) 0.43 4.97 -13.23 -0.30 25.40 

Family TNA ($ million) 94,988 247,617 0 11,541 1,390,823 

 

Panel B. Cross sectional regressions 

Four-factor alpha 0.313***    0.314***    

 (7.82)    (7.54)    

Double-adjusted alpha   0.328***    0.325***  

   (8.53)    (8.16)  

Characteristics   0.202    0.224  

   (1.26)    (1.36)  

DGTW CS   0.115***   0.103*** 
   (3.44)   (3.08) 

log TNA    -0.367*** -0.344*** -0.323*** 

    (-4.27) (-4.04) (-3.94) 

log Age    0.182* 0.185* 0.047 

    (1.76) (1.82) (0.49) 

Expense ratio    -0.692*** -0.553** -0.890*** 

    (-2.66) (-2.30) (-3.69) 

Cash flow    -0.004 -0.006 0.046** 

    (-0.14) (-0.22) (1.99) 

log family TNA    0.127*** 0.131*** 0.144*** 

    (3.88) (3.94) (4.62) 

Constant -0.702** -0.742** -0.788** 0.158 -0.180 0.533 

 (-2.16) (-2.26) (-2.50) (0.23) (-0.26) (0.78) 

R-squared 0.040 0.069 0.022 0.066 0.092 0.045 
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Table 6. Long-term Persistence Sorts 

The table reports mean annualized post-ranking percentage four-factor alphas from net fund returns for funds sorted into deciles based on four-factor alpha 

(Panel A), double-adjusted performance (Panel B), characteristics performance (Panel D), or DGTW CS measure (Panel E). Panel C reports annualized post-

ranking percentage four-factor alphas from gross fund returns for funds sorted based on double-adjusted performance. The post-ranking performance measure, 

four-factor alpha, for each decile over each post ranking year is the intercept of the regression of the concatenated time series over the entire sample period of 

post-ranking monthly fund returns on Mktrf, SMB, HML, and UMD factor returns. *, **, and *** indicate statistical significance at the ten, five, and one percent 

level respectively. The results comprise 384 individual post-ranking monthly observations over a 1980-2012 sample period. 

 

 Post-ranking year 

Decile 1 2 3 4 5 6 7 8 9 10 

           

Panel A. Four-factor alpha 

Bottom -1.30 -2.07 -2.17 -1.10 -1.12 -1.72 -1.20 -0.87 -1.37 -0.71 

2 -1.00 -1.14 -1.35 -1.33 -1.00 -0.92 -0.75 -1.70 -1.18 -0.69 

3 -1.38 -1.08 -1.25 -1.33 -0.75 -0.83 -0.70 -0.88 -0.97 -0.55 

4 -1.33 -1.10 -1.36 -1.58 -1.04 -0.84 -0.71 -1.21 -0.96 -1.47 

5 -0.66 -1.01 -1.31 -0.99 -0.90 -0.47 -0.94 -1.42 -0.78 -0.11 

6 -0.92 -0.61 -0.80 -0.73 -0.47 -0.81 -1.12 -0.75 -0.95 -0.68 

7 -1.09 -0.69 -0.86 -0.73 -1.02 -0.79 -0.51 -0.89 -0.52 -0.61 

8 -0.89 -0.54 -0.66 -0.70 -0.94 -0.70 -0.49 -0.42 -0.47 -0.77 

9 -0.44 -0.60 -0.63 -0.59 -0.57 -0.22 -0.12 -0.43 -0.56 -0.63 

Top -0.18 -0.06 0.18 0.06 0.20 0.53 0.21 -0.23 0.32 -0.81 

Top-bottom 1.12 2.01** 2.35*** 1.16 1.32* 2.25*** 1.41* 0.64 1.69* -0.09 

t-statistic (1.12) (2.19) (2.74) (1.65) (1.74) (2.87) (1.75) (0.79) (1.95) (-0.10) 

           

Panel B. Double-adjusted Alpha, net return results 

Bottom -1.50 -1.80 -2.13 -1.10 -1.29 -1.85 -1.37 -1.28 -1.63 -1.00 

2 -1.40 -1.23 -0.99 -1.29 -1.20 -1.17 -1.05 -1.20 -0.77 -1.04 

3 -0.93 -0.73 -1.26 -1.20 -1.09 -0.91 -0.37 -1.19 -1.39 -0.46 

4 -1.23 -0.93 -1.44 -1.31 -1.13 -0.66 -0.80 -1.17 -1.02 -0.34 

5 -0.87 -1.39 -1.19 -1.31 -0.96 -0.64 -0.62 -0.82 -0.75 -0.57 

6 -1.11 -1.02 -0.95 -0.79 -0.80 -0.64 -0.62 -0.89 -0.87 -0.99 

7 -0.89 -0.89 -0.70 -0.81 -0.58 -0.65 -0.69 -0.76 -0.55 -0.57 

8 -0.79 -0.27 -0.72 -0.67 -0.51 -0.58 -0.44 -1.08 -0.38 -0.93 

9 -0.51 -0.77 -0.64 -0.38 -0.37 0.03 -0.33 -0.34 -0.16 -0.35 

Top 0.04 0.14 -0.14 -0.17 0.29 0.29 -0.04 -0.02 0.03 -0.84 

Top-bottom 1.54** 1.94*** 1.99*** 0.93* 1.58*** 2.14*** 1.34** 1.26** 1.66** 0.16 

t-statistic (2.40) (3.43) (3.45) (1.77) (2.73) (3.95) (2.09) (2.01) (2.40) (0.25) 
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Table 6 continued. 

 

Panel C. Double-adjusted Alpha, gross return results 

Bottom -0.16 -0.47 -0.82 0.19 -0.01 -0.59 -0.12 -0.02 -0.37 0.25 

2 -0.21 -0.03 0.21 -0.10 -0.01 0.01 0.13 -0.04 0.38 0.11 

3 0.22 0.41 -0.12 -0.06 0.04 0.21 0.74 -0.07 -0.25 0.66 

4 -0.12 0.18 -0.34 -0.20 -0.02 0.44 0.31 -0.04 0.11 0.80 

5 0.22 -0.31 -0.12 -0.23 0.12 0.42 0.45 0.26 0.32 0.52 

6 -0.04 0.05 0.12 0.27 0.25 0.41 0.44 0.15 0.18 0.06 

7 0.15 0.15 0.36 0.24 0.47 0.40 0.36 0.29 0.50 0.47 

8 0.30 0.82 0.36 0.40 0.56 0.49 0.62 -0.02 0.68 0.12 

9 0.61 0.34 0.45 0.71 0.72 1.12 0.75 0.74 0.91 0.74 

Top 1.27 1.35 1.06 1.03 1.48 1.47 1.13 1.15 1.20 0.30 

Top-bottom 1.43** 1.83*** 1.88*** 0.84 1.49*** 2.06*** 1.24* 1.17* 1.57** 0.05 

t-statistic (2.23) (3.23) (3.26) (1.59) (2.58) (3.80) (1.95) (1.87) (2.26) (0.08) 

 

Panel D. Characteristics 

Bottom -0.57 -0.58 -1.23 -1.18 -0.15 -0.40 -0.49 -1.63 -0.55 0.07 

2 -0.18 -1.34 -1.14 -1.03 -0.53 -0.37 -0.73 -1.37 -0.75 -0.04 

3 -0.86 -1.45 -1.14 -1.42 -0.70 -0.65 -0.67 -1.19 -0.98 -0.69 

4 -0.76 -0.90 -1.39 -0.96 -0.58 -0.43 -0.65 -0.77 -0.53 -1.68 

5 -0.76 -1.01 -1.10 -1.19 -0.66 -0.55 -0.95 -0.64 -0.85 -0.98 

6 -1.06 -0.72 -1.24 -0.72 -0.67 -0.90 -0.81 -0.54 -0.64 -0.75 

7 -1.07 -0.57 -0.95 -1.06 -0.63 -0.85 -0.88 -0.81 -0.64 -0.64 

8 -0.77 -0.88 -1.25 -0.67 -0.87 -1.15 -0.29 -0.28 -0.51 -0.52 

9 -1.34 -0.61 -0.61 -0.84 -1.22 -0.72 -0.32 -0.05 -0.41 -0.74 

Top -1.79 -0.84 -0.09 0.00 -1.61 -0.77 -0.59 -1.51 -1.62 -1.06 

Top-bottom -1.22 -0.27 1.14 1.18 -1.46 -0.36 -0.11 0.12 -1.07 -1.13 

t-statistic (-0.68) (-0.14) (0.64) (0.81) (-1.02) (-0.25) (-0.08) (0.09) (-0.90) (-0.76) 
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Table 6 continued. 

 

Panel E. DGTW CS 

Bottom -0.73 -0.92 -0.78 -1.15 -0.14 -1.05 -1.03 -0.65 -1.03 -0.54 

2 -0.43 -1.01 -0.68 -0.55 -0.37 -0.66 -0.53 -1.04 -0.42 -0.84 

3 -0.67 -0.94 -1.09 -0.68 -0.82 -0.78 -0.40 -1.70 -1.14 -0.94 

4 -1.09 -1.14 -0.97 -1.25 -0.63 -0.24 -1.41 -0.67 -0.44 -1.18 

5 -0.67 -0.84 -1.12 -0.83 -1.02 -0.89 -1.27 -1.39 -1.43 -0.94 

6 -0.87 -1.40 -1.40 -1.17 -0.72 -1.02 -0.84 -0.68 -0.03 -1.01 

7 -1.11 -0.95 -0.80 -0.82 -1.22 -0.35 -1.20 -0.67 -0.74 -0.94 

8 -1.28 -0.72 -1.11 -0.74 -0.52 -1.05 -0.77 -0.43 -1.19 -0.92 

9 -1.07 -0.57 -1.09 -0.81 -0.88 -0.49 -0.82 -0.28 -0.53 -0.64 

Top -0.86 -0.94 -0.23 0.15 -0.50 -0.26 -0.17 0.30 -0.81 -1.10 

Top-bottom -0.13 -0.01 0.55 1.30 -0.35 0.79 0.86 0.95 0.22 -0.57 

t-statistic (-0.10) (-0.01) (0.54) (1.51) (-0.43) (0.95) (1.00) (1.01) (0.22) (-0.57) 
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Table 7. Fund Characteristic Sorts 

The table reports mean annualized post-ranking percentage four-factor alphas for funds sorted into quintiles based 

on industry concentration index (Panel A), return gap (Panel B), active share (Panel C), or R-squared (Panel D). 

Post-ranking four-factor alphas is defined in Table 4. We compute t-statistics of the differences between the top and 

bottom quintiles with Newey-West correction for time-series correlation with three lags. *, **, and *** indicate 

statistical significance at the ten, five, and one percent level respectively. The results reflect 396 individual monthly 

observations over a 1980-2012 sample period. 

 

Panel A. Fund characteristic statistics 

   Percentile 

Characteristic Mean Std. 1 50 99 

ICI 0.091 0.150 0.002 0.042 0.755 

Return gap -0.014 0.400 -1.145 -0.018 1.182 

Active share 0.82 0.16 0.33 0.87 0.99 

R-squared 0.90 0.10 0.47 0.93 0.99 

 

Panel B. Performance of fund characteristic sorts 

 Model 

Decile Four-factor Double-adjusted Characteristics 

    

B1. Industry concentration 

Bottom -1.25 -0.89 -0.36 

2 -0.95 -0.78 -0.17 

3 -0.66 -0.68 0.02 

4 -0.49 -0.68 0.20 

Top -0.46 -0.73 0.27 

Top-bottom 0.79* 0.16 0.63*** 

t-statistic (1.70) (0.49) (2.68) 

    

B2. Return gap 

Bottom -1.38 -1.53 0.14 

2 -0.85 -0.80 -0.05 

3 -0.67 -0.61 -0.06 

4 -0.61 -0.49 -0.11 

Top 0.03 -0.02 0.05 

Top-bottom 1.41*** 1.51*** -0.09 

t-statistic (4.67) (5.82) (-0.61) 

    

B3. Active share 

Bottom -1.17 -0.70 -0.47 

2 -1.06 -0.76 -0.30 

3 -0.65 -0.56 -0.08 

4 -0.19 -0.54 0.35 

Top -0.23 -0.69 0.48 

Top-bottom 0.95* 0.01 0.95** 

t-statistic (1.79) (0.06) (2.12) 

    

B4. R-squared 

Bottom `-0.08 -0.38 0.33 

2 -0.52 -0.77 0.26 

3 -0.94 -0.93 0.00 

4 -1.24 -1.03 -0.20 

Top -1.20 -0.80 -0.40 

Top-bottom -1.12** -0.42 -0.73*** 

t-statistic (-2.42) (-1.16) (-3.14) 
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Table 8. Fund Characteristic Regressions 

 

The table reports mean coefficients from monthly cross-sectional regressions of fund performance on past fund 

characteristics,  

 

 𝑝𝑒𝑟𝑓𝑖,𝑡 = 𝑎 + 𝑏𝑓𝑢𝑛𝑑𝑐ℎ𝑎𝑟𝑖,𝑡−1 + 𝛾𝛸𝑖,𝑡−1 + 𝜂𝑖,𝑡, (12) 

where 𝑝𝑒𝑟𝑓𝑖 represents fund i’s four-factor alpha, double-adjusted alpha, or characteristic-related alpha, and 

𝑓𝑢𝑛𝑑𝑐ℎ𝑎𝑟𝑖  represents fund i’s industry concentration index (ICI, Panel A), return gap (Panel B), active share (Panel 

C), or log transformed R-squared (log TR-sq, Panel D). We estimate the regressions with and without fund level 

control variables. We estimate the t-statistics in parenthesis as in Fama and MacBeth (1973) with Newey-West 

correction for time-series correlation with three lags. *, **, and *** indicate statistical significance at the ten, five, 

and one percent level respectively. The results reflect 396 individual monthly regressions over a 1980-2012 sample 

period. 

 

 Four-factor alpha Double-adjusted Characteristics 

       

Panel A. Industry concentration 

ICI 0.883 0.687 0.107 0.107 0.623** 0.434 

 (0.77) (0.60) (0.10) (0.10) (2.12) (1.55) 

log TNA  -0.281***  -0.206***  -0.075** 

  (-3.41)  (-2.86)  (-2.48) 

log Age  -0.002  -0.045  0.036 

  (-0.02)  (-0.57)  (0.71) 

Expense ratio  -0.842***  -0.992***  0.126 

  (-3.48)  (-5.06)  (0.93) 

Cash flow  0.088***  0.069***  0.020** 

  (4.10)  (3.69)  (2.02) 

log family TNA  0.115***  0.104***  0.011 

  (3.57)  (3.36)  (1.43) 

Constant -0.879*** 0.651 -0.797** 0.805 -0.071** -0.093 

 (-2.69) (1.02) (-2.40) (1.38) (-2.24) (-0.36) 

R-squared 0.015 0.039 0.014 0.035 0.012 0.073 

       

Panel B. Return gap 

Return gap 0.138*** 0.122*** 0.142*** 0.129*** -0.004 -0.006 

 (5.61) (5.07) (6.36) (5.73) (-0.38) (-0.59) 

log TNA  -0.333***  -0.245***  -0.087** 

  (-3.71)  (-2.99)  (-2.55) 

log Age  0.048  0.016  0.024 

  (0.50)  (0.20)  (0.45) 

Expense ratio  -0.949***  -1.131***  0.145 

  (-3.69)  (-5.51)  (1.18) 

Cash flow  0.077***  0.061***  0.016 

  (3.58)  (3.07)  (1.64) 

log family TNA  0.132***  0.114***  0.017** 

  (3.91)  (3.49)  (2.27) 

Constant -0.677** 0.827 -0.645** 0.920 -0.036* -0.026 

 (-2.19) (1.13) (-2.07) (1.46) (-1.89) (-0.08) 

R-squared 0.008 0.033 0.007 0.029 0.015 0.073 
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Table 8 continued. 

       

Panel C. Active share 

Active share 2.195* 2.594** -0.051 0.490 2.141** 2.019** 

 (1.76) (1.97) (-0.08) (0.64) (2.06) (1.99) 

log TNA  -0.257***  -0.208***  -0.049 

  (-3.02)  (-2.63)  (-1.62) 

log Age  0.070  0.034  0.026 

  (0.77)  (0.42)  (0.65) 

Expense ratio  -0.909***  -0.955***  0.024 

  (-3.98)  (-5.14)  (0.27) 

Cash flow  0.086***  0.067***  0.019** 

  (4.03)  (3.53)  (2.12) 

log family TNA  0.137***  0.117***  0.020*** 

  (4.18)  (3.64)  (2.60) 

Constant -2.485*** -1.895 -0.607 -0.003 -1.795** -1.753** 

 (-2.76) (-1.62) (-1.29) (-0.00) (-2.00) (-2.00) 

R-squared 0.020 0.044 0.004 0.026 0.141 0.172 

       

Panel D. R-squared 

log TR-sq -0.659** -0.739** -0.247 -0.391 -0.379*** -0.319*** 

 (-2.21) (-2.50) (-0.93) (-1.49) (-3.25) (-2.78) 

log TNA  -0.258***  -0.209***  -0.051* 

  (-3.24)  (-2.79)  (-1.68) 

log Age  0.009  0.001  -0.001 

  (0.09)  (0.01)  (-0.02) 

Expense ratio  -0.902***  -1.059***  0.132 

  (-4.00)  (-5.80)  (1.03) 

Cash flow  0.087***  0.069***  0.018** 

  (3.79)  (3.36)  (2.06) 

log family TNA  0.137***  0.124***  0.014* 

  (4.29)  (3.96)  (1.73) 

Constant 0.935 2.415** -0.178 1.553 1.018*** 0.854* 

 (0.96) (2.31) (-0.20) (1.63) (3.31) (1.78) 

R-squared 0.017 0.042 0.014 0.035 0.027 0.085 
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Table 9. Cash Flow Regressions 

 

The table reports mean coefficients from annual cross-sectional regressions of fund cash flow on past four-factor 

alpha, 

 𝐶𝐹𝑖,𝑡 = 𝑎 + 𝑏𝛼𝑖,𝑡−1 + 𝛾𝛸𝑖,𝑡−1 + 𝜂𝑖,𝑡, (13) 

or on both past double-adjusted alpha and past characteristic-related alpha, 

 𝐶𝐹𝑖,𝑡 = 𝑎 + 𝑏𝛼𝑖,𝑡−1
∗ + 𝑐𝛼𝑖,𝑡−1

𝑐ℎ𝑎𝑟 + 𝛾Χ𝑖,𝑡−1 + 𝜂𝑖,𝑡. (14) 

The last three columns show results where the regressions include fund-level control variables. We estimate the t-

statistics in parenthesis as in Fama and MacBeth (1973) with Newey-West correction for time-series correlation with 

three lags. *, **, and *** indicate statistical significance at the ten, five, and one percent level respectively. The 

results reflect 32 individual annual regressions over a 1980-2012 sample period. 

 

Return 0.082***   0.063***   

 (9.48)   (8.58)   

Four-factor alpha  0.139***   0.077***  

  (11.23)   (6.58)  

Double-adjusted alpha   0.130***   0.074*** 

   (9.41)   (5.81) 

Characteristics   0.207***   0.109*** 

   (3.08)   (2.77) 

log TNA    0.293*** 0.292*** 0.286*** 

    (12.92) (13.76) (15.45) 

log Age    -0.227*** -0.238*** -0.235*** 

    (-8.86) (-8.69) (-8.27) 

Expense ratio    -0.105*** -0.071* -0.067** 

    (-2.86) (-1.82) (-2.07) 

Cash flow    0.028 0.011 0.005 

    (0.21) (0.08) (0.05) 

log family TNA    0.069*** 0.074*** 0.072*** 

    (6.14) (6.15) (5.93) 

Constant -0.365* 0.337** 0.333** 0.811** 1.237*** 1.204*** 

 (-1.72) (2.59) (2.53) (2.12) (4.39) (4.32) 

R-squared 0.081 0.062 0.088 0.242 0.213 0.226 
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